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THE RATE OF GROWTH OF SAMPLE MAXIMA!

By LAURENS DE HAAN AND ARIE HORDIJK

Mathematisch Centrum, Amsterdam

The sequence of partial maxima for i.i.d. random variables is consid-
ered. Two theorems concerning the sample behaviour of the maxima are
proved. Also a large deviations result is given, connected with weak
convergence to the double exponential distribution.

0. Introduction. Suppose X;, X, X;, - - - are independent real-valued random
variables with common distribution function F. Suppose F has a positive deri-
vative F'(x) for all sufficiently large x. We define

, =max (X, X,, .-+, X,).

In a recent paper (1970), Robbins and Siegmund gave conditions for sequences
of real numbers to belong to the upper (or lower) class (in the sense of P. Lévy)
for {Y,}. Here we consider the classical problem of the law of the iterated
logarithm: find sequences of real numbers {b,} and {a,} (a, > Oforn =1,2, ..-)
such that the sequence {a,”'(Y, — b,)} has at least two different but only finite
limitpoints for n — co.

From von Mises’ work (1936) we know that weak convergence properties of
{Y,} are closely related to the behaviour of the function f defined by

M ) = <5

for x — oo. It will be shown that much about the sample behaviour of {Y,} can
be concluded from the behaviour of the function g defined by

{1 — F(x)}log log{1/(1 — F(x))}
F'(x)

(2) 9(x) =

for x — co.
Our exposition is based on a few lemmas of an analytic nature which are
proved in Section 1. In Section 2 first we give conditions under which almost

surely
0 < liminf,_, Y,/b, < limsup,_. Y,/b, < o

with b, defined by F(b,) = 1 — 1/n. For the special case that lim,_., Y, /b, exists
almost surely, a more refined result is proved which previously has been stated
by J. Pickands III (1967). However, the proof given there seems to contain
an error.
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1186 LAURENS DE HAAN AND ARIE HORDIJK

Most of our conditions imply that
Yn - bn
fb,)

In Section 3 we give a large deviations result in connection with this weak con-
vergence property.

lim,_,, P{ < x} =exp(—e™).

1. Lemmas. In this section we give some lemmas which we need afterwards.
Lemmas 1 and 3 play a basic role in our attack.

LeEMMA 1. Suppose ¢ is a real-valued function with positive derivative ¢’ and
lim,_,, ¢(x) = oo. If for some constant ¢ (0 < ¢ < o)

lim,_,, log ¢() =c,
t-¢'(1)

3

then for all positive x
P(tx) — (1) _ logx .

log ¢ (%) c

Proor. First suppose 0 < ¢ < co. Without loss of generality we assume
¢(1) = 2. Define the function p by

4) lim,_,,

- 9'(1)

p) = og 9(t)

then .
St& ds — (¢ ¢'(s) ds = 3o ds .
i " log ¢(s) * logs

If we denote the function §# (logs)~*ds by I(x) and its inverse function by K,

we get

) o) = K (3t 2 as)

Applying de I’Hospital’s rule one sees that log /(y) ~ log y for y — co. Sub-
stitution of x for /(y) gives log K(x) ~ log x for x — co. Hence

(6) K'(x) = log K(x) ~ log x for x— oo .
We now calculate the limit (4). Using (5) we have
1z P(5) _ ¢ P(S)
G(1x) — Y1) _ K<S‘ _s_ds> K<s‘ s ds)
log ¢(?) log ¢(?)
» P(15)  PG) g6\ — k(¢ PO
K (5 2 ds 51 20 as) — (5 20 )

s
logK<§§£(SS_)ds>
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Consequently
lim,_, 2 =90 _ iy, KO+ a0) = K(y) |
log ¢(t) log K(y)
where

lim, . a(y) = lim,_.., {z P9 gg = 198%
R (4

By the mean value theorem of differential calculus we get for some 0 s0(y) <1

P(tx) — P(t) _ lim,_, a(y) K'(y +6(y) - a(y))

lim,_, 22— 7V —

log ¢(7) log K(y)
= lim, ... a(y) 1% K()l';g Jg(()): )) ~a0)
= lim, . a(y) 1080 l—ggﬁ(()):)) ~a) _ lofx .

For ¢ = 0, the same procedure shows (4) for x > 1. Suppose (4) does not hold
for x < 1. Then for some x, > 1 and sequence #, — oo we have

o ¢(tnxo)' - ¢(tn) %)
lim sup, .. ——~log o) < .
On the other hand,
- ¢(tnx0) - ¢(tn) — oo
T log ¢o(t,)

lim

b

hence
log g(t,x) _ |
" log ¢(t,)
Since clearly &(logn — logé) < n — & for 0 < € < 7, we have
log ¢(t, %,) log (2, x,)

As for n — co, the left-hand member tends to infinity and the right-hand mem-
ber is bounded; by contradiction we have (4) for all positive x. []

lim,_,

REMARK. With the aid of Theorem 1.4.2 from Section 1.4 of de Haan (1970)
one can prove that for non-decreasing ¢ with lim,_,, ¢(x) = co and 0 < ¢ < oo
relation (4) is equivalent to

$(x) — x5 () dr _
oo log ¢(x)

LEMMA 2. Suppose f is a positive differentiable function and lim,_., f'(f) = 0.

Then
m SO _
[t + xf(1)

uniformly on each bounded x-interval.

lim

1
.

li
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Proor. By the mean value theorem of differential calculus for some 0 <
o, x) <1
St + xf(x) = fl) + xf(0) f'(t + 0(2, )x f(7)) -

From f'(f) — 0 for t — co we get ' f(t) — 0 and hence ¢ + 0(¢, x)xf(f) — o©
for all x. Now the statement of the lemma follows as

lim,_, f'(t 4+ 6(¢, x)xf(t)) = 0
uniformly on each bounded x-interval. []

LeEmMA 3. Suppose ¢ is a twice differentiable real-valued function with positive
derivative ¢' and lim,_,,, ¢(x) = co. Define the function q by

log ¢(1)

7 =

™ a0 =58

and suppose lim,_,, ¢'(t) = 0, then for all real x

(8) lim ¢(t + xq(t)) _ ¢(t) —x.
T logd(

Proor. We proceed in the same way as in the proof of Lemma 1. Again we

suppose ¢(1) = 2 and get
. ds
o0 = K (5 75)-

t4eq(t) . ds
9(t + xq(1) — 4O _ K <s> o <s>> K<s‘ﬁ>.

log ¢(?) B log K <s q‘(ls)>

Now

Consequently
B xg0) =0 _ iy KOG) ) — K)
log ¢(7) log K(y)

where by Lemma 2

lim b(y) = lim,_., St+mq(t)

y—»oo

lim

& im,, 599D ge— x.
q(5) q(t + s4(1))

In the same way as in the proof of Lemma 1 the statement (8) follows. []
The following lemma is of a probabilistic’ character. The elements for this

lemma can be found in Geffroy (1958), Barndorff-Nielsen (1963), and Pickands
(1967). We consider the situation described in the Introduction.

LeEMMA 4. Suppose {c,} is a sequence of positive constants, b, = inf{x|1 — F(x) <
1/n} and {c,x + b,} is an ultimately non-decreasing sequence for all real x > —1.
(a) For all distribution functions F we have almost surely
Y, n bn
c

0.

lim inf,_,,

IA

n
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(b) Suppose c is a finite constant. We have almost surely
Yn - bn —
. =

lim sup,, ... c

if and only if ’
) Zaa{l — Fle,x + b,)}
converges for all x > c and diverges for all x < c.
(c) If forall -1 < x< 0
(10) Lol = Fleax + by} exp{—n(l — Fle,x + b,))} < oo,

then almost surely
Yn - bn
c

(11) lim inf,_., 0.

v

PRroOOF. (a)
P{Y, < b, infinitely often} > lim sup,,_, P{¥, < b,} = limsup,_,., F"(b,,)
=l —1/m=e*>0.
As {Y, < b, infinitely often} is a tail event, we have
P{Y,/c, < b,/[c, infinitely often} = P{Y, < b, infinitely often} = 1.

(b) As {c,x + b,} is a non-decreasing sequence for all real x > —1, we have
Y, > ¢, x + b, infinitely often if and only if X, > ¢,x + b, infinitely often.
As the X, are independent, part (b) is a direct consequence of the Borel-Cantelli
lemmas.

(c) As Y=, {1 — F(b,)} = o, we have almost surely Y, > b,i.0o. Hence

also Y, > ¢,x + b, i.0. for all x < 0. So to prove (11) it is sufficient to show
that almost surely

P{Y,<c,x+b, and Y., > ¢, x + b,y finitely often} = 1,
or equivalently (as {c,x + b,} is non-decreasing for x > —1)
P{Y, < c,x+b, and X,,, > ¢, x + b,,, finitely often} = 1.
By the first Borel-Cantelli lemma this is true if
(12) Do, PY, < c,x+ b, and Xy > cpud + by
= N {l — Flepux + by} - Fi(c,x + b,)
converges. Now

1 — F(c'n+lx + bn+l) é 1 — F(cnx + bn)
and

Fr(c,x + b,) = exp{nlog F(c,x + b,)} < exp{—n(l — F(c,x + b,))},
hence the convergence of (12) is implied by (10).

2. Rate of growth of {Y,}. In the situation described in the introduction we
prove the following statement concerning the rate of growth of {¥,}.
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THEOREM 1. Suppose F is a distribution function with positive derivative F'(x) for
all real x. If for some constant ¢ (0 < ¢ < o0)

(13) 1imm.5@ —c

(with g defined by (2)), then almost surely
(14) lim inf,

Nn—00

Y,/ b, =1
lim sup, ., Y,/b, = €.

Here b, is defined by F(b,) = 1 — 1/n.
If (13) holds with ¢ = oo, then almost surely lim sup,,_,, Y,/b, = co.

REMARK. For ¢ = 0 the theorem has been proved by Geffroy (1958).
Proor. We use Lemma 1 with ¢(x) = log 1/(1 — F(x)). Then

log (1) — {1 — K1)} log log {1/(1 — K1)} = g_(t) —cC for t — oo
TZ0) LF(1) ‘

and hence for x > 0

. 1 — F(tx) 1 t_ logx
I log {1 =FID | fio010g 1 |7 = _
HMeer Og{ 1= () } {Og 87 —F(t)} c
or equivalently
1 c(t)
I — Ftx) = {1 — F(1)) {log_l—:—F(—t)}
with
lim,_., o(f) = —1°8% .
Substitution of b, for ¢ gives
1 ™ (log n)n
15 | — F(b,x) = {1 — Fb, ) {1 -
(1s) 0.3) = 1 = Fb.) {log o] :
with
(16) lim, _r, = —198%
c

First we prove the statement concerning the lim sup for 0 < ¢ < co. Asthe
right-hand side of (16) is less than — 1 for x > e° and larger than —1 for x < e,
we have proved

Zaa {1l — Fb,x)} < oo for x> e

e {l — Fb,x)} = o0 for x < e
and by part (b) of Lemma 4 (with ¢, = b,) we have almost surely

limsup,_.. Y,/b, =e°.

To prove the statement concerning the lim inf for 0 < ¢ < oo we verify
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condition (10) of Lemma 4 with ¢, = b,. Using (15) we have for 0 < x < 1
Lo {l — Fb,x)} exp{—n(l — F(b,x))}
= Yiv ni(log n)»exp{—(log n) =} .
Take M = (—2c/log x) + 1, then
Zaa{l = Fb,x)} exp{—n(l — F(b,x))} < X7, n7}(log n)"»(log n)=n
< Zian(logn)™ < oo
and we have almost surely
liminf, ., Y,/b, = 1.

By part (a) of Lemma 4 (with ¢, = b,) the proof is complete. []

REMARK. In the usual way (see e.g. Geffroy (1958') page 121) the result can
be translated as follows: if g(x) — ¢ (0 < ¢ £ o), then P{lim sup, . (¥, — b,) =
¢} = 1; moreover P{liminf,_ .Y, — b, =0} =1for 0 < ¢ < oo.

For 0 < ¢ < oo this theorem provides exact information concerning the be-
haviour of ¥,. For ¢ = 0 we prove a refined statement.

THEOREM 2. Suppose F is a twice differentiable distribution function and F'(x) is
positive for all real x. If

17) lim,_, g'(t) =0
(with g defined by (2)), then almost surely
(18) liminf, _ Yo =60 _
f(b,)loglogn
imsup,_,——n» " =
f(b,)loglogn

(here f is defined by (1) and b, defined by F(b,) = 1 — 1/n).
Proor. The proof is similar to that of Theorem 1. We use Lemma 3 with
¢(x) = log 1/(1 — F(x)). Then
7 =9'(t)—0 for t — oo

and hence

lim,_, log { 1 — f(i;(;;g(t)) } {log log I——IW}MI = —X

or equivalently

I — Kt + xg(t)) = {1 — F(n)}{loglog 1/(1 — F(t))}""
with
lim,_, c(t) = —x.

Substitution of b, for ¢ gives

g(b,) = f(b,) loglog 1/(1 — F(b,)) = £(b,) log log n
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and

(19) 1 — Fb, + xf(b,) loglogn) = {1 — F(b,)} {log — ;(b ) } _ (IOgn ny»

with

(20) lim, r, = —x.

We want to apply Lemma 4 with ¢, = £(b,) log log n. By (17) for all real x the

sequence {b, + xf(b,) log log n} = {b, + xg(b,)} is ultimately non-decreasing.
As the right-hand member of (20) is less than —1 for x > 1 and larger than

—1 for x < 1, we have proved

2in-1 1 — F(b, + xf(b,) loglogn) < oo for x > 1
Zine 1 — F(b, 4+ xf(b,) loglog n) = oo for x <1
and by part (b) of Lemma 4 we have almost surely
lim sup, ., Y, — b,

" =1
f(b,) log log n
By part (a) of Lemma 4 we have
Yn - bn
f(b,)loglogn
To prove the other statement concerning the lim inf we verify condition (10)
of Lemma 4. Using (19) and (20) we have for x < 0 with M > — 2x~' + 1

2w {1l — Kb, + xf(b,) log log n)} exp{—n(1 — F(b, + xf(b,) log log n))}
= 2w n7i(log my exp {—(log n)} « Yo, ni(log m)rna=i)
K Zini(log m)™i < oo

and hence almost surely

A

lim inf,_, 0.

Y, — b,
f(b,)loglogn
REMARK. Theorem 2 has been stated first by J. Pickands (1967) but the proof
seems to contain an error. Taking the last relation of page 1572 in Pickands
(1967) and translating it into our terminology, we get (—e < x < 1 4 ¢ for
some fixed ¢ > 0)

() Pt + x9(t)) — P(r) — xlog ¢(t) - 0

for t — co. The structure of the proof is: (2.15) = (*) = (2.16). Relation (x)
is stronger than our relation (8) and is not fulfilled for all distribution functions
satisfying (2.15) as is shown in the example

0. 0

v

lim inf

n—>00

Flx) =1 —exp {—S:wdt}

(the left-hand side of (x) then tends to 4 oo according to x > 0 or x < 0).
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ReMARK. Relation (17) implies relation (13) of Theorem 1 with ¢ = 0. On
the other hand, for distribution functions satisfying (13)

lim,_. fib,) loglogn _

b,
hence for 0 < ¢ < oo the condition (13) implies
liminf, . Y2 =% _
f(b,)loglogn
1 Y, — b, e — 1
im sup,_,,

fb,)loglogn ¢
almost surely.

Examples of distribution functions satisfying Theorem 2 are given by Pickands.
The distribution functions :

F(x) = 1 _exp{_sgL"gcif’.;z%_’_)”dt}

with positive p and ¢ satisfy

lim, . Q_(tL) — lim, .. g'(1) = 0 for p>1
=c for p=1
= oo for p<1.

As all these distribution functions are in the domain of attraction of the double
exponential distribution, this answers a question raised by Pickands whether
Theorem 2 holds for all distribution functions from this domain of attraction.

It is clear that if (18) from Theorem 2 holds, then this relation is still true if
we replace Y, = max(X,, X,, ---, X,) by [Y,]+ 1 = max([X,] + 1, [X,] +
1, ..., [X,] + 1) (here [a] is the largest integer not exceeding @). As (18) holds
for the exponential distribution with b, = logn and f(b,) = 1, this relation is
also true for the geometric distribution

Fx)=1—el=] for x> 0.

Hence the validity of (18) does not imply that F belongs to the domain of attrac-
tion of the double exponential distribution.

3. A large deviations result. Let us reconsider the condition of Theorem 2.

oo d (1 — F() 1

g = E{ oy B8 F(t)}
_d {1 —F) 1 1
. 217{ F (1) }log 8 Ty T {log 1= F(t)}

= f'(t) - loglog 1/(1 — F(t)) + o(1) for t— oo .
So ¢'(f) — 0 for t — oo if and only if
21 lim,_, f'(¢) - log log 1/(1 — F(t)) =0
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and both imply von Mises’ condition f”(f) — O for the domain of attraction of
the double exponential distribution. So (21) implies

. Y,—b
1 n n — -z) |
im,_, P { b < x} =exp(—e™)

We shall prove a large deviations result related to this weak convergence prop-
erty under a condition of the type (21).

THEOREM 3. Suppose ¢ is a non-decreasing function and lim,_,,, ¢(x) = co. If
(22) lim,_o, f()$*(1/(1 — F(1))) = 0
(with f defined by (1)), then

(23) lim,_,
1 — exp(—e™)

for all sequences of positive numbers {x,} with x,, = O($(n)) for n — co. Here b,
is defined by F(b,) = 1 — 1/n.
ProOF. Obviously (22) implies f(7) — 0 for t — co and hence by von Mises’
criterion (von Mises 1936)
lim,_, F*(b, 4+ x f(b,)) = exp(—e™®
uniformly on each bounded x-interval. Hence (23) holds trivially for each

bounded sequence {x,}. Next suppose x, — co for n— oco. From —Iny ~
1 — yfor y 11 it follows

1 — FY(b, + %, /(b)) ~ n{l — Fb, + x, f(b,))}
and 1 — exp(—exp(—x,)) ~ exp(—x,) for n— co. So we have to prove
(24) lim,_,, ne»{1 — F(b, + x, f(b,))} = 1.

By (1) we have

1 _ P
A T—F@
and hence
i~ _log{1 — F(x) + log {1 — F(1))

J)
or equivalently (with ¢, = 1 — F(1))

I — F(x) = coexp{—SfTCz—)}.

Substitution in (24) gives (as n = 1/(1 — F(b,))
nen{l — Flb, + %, fib,)) = exp {x, — szz””"b"’?%}

= exp {5 —x, <f(b,, -{(f;if(bn)) — 1)
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As x, = O(¢(n)), for proving the theorem it is sufficient to show

25 lim,_. S.) —1l=o0

* e 80 g5 i )

uniformly on any bounded x-interval from [0, co). Substitution of 7 for b, gives
é(n) = ¢(1/(1 — F(t))) and (25) becomes

i f() — 1t =
lim,_, ¢(t) {f(t + xf(1)¢(1)) l} -

with ¢(f) = ¢(1/(1 — F(1)).
Using the mean value theorem of differential calculus we get for some 0 <
o(t,x) < 1

oo
9§ s Tk
R e ,
(26) = ey (ROHA 0 S0

= —x} 9(1) L @) |
Pt + 0t )xf()p(1) ) LSt 4 xf(0)¢(1))
X AL+ 00 x)x ()P0t + 6(1, x)xf()¢(2))} -
Now we treat the last three factors separately.

As ¢ is non-decreasing the first factor is bounded by 1. By assumption the
last factor tends to zero uniformly on [0, o). As

St + xf(Od(1) — f() _ . ¢(1)
f() Pt 4 0.1, X)xf(1)¢(1))
X St 4 0,8, )xf(O)p(0)(t + 0.(t, X)x (1)) (1))

and ¢(t) < ¢*(¢) for sufficiently large ¢, it follows

(27) lim,_,, J() _

St + xf(0)¢(1))
uniformly on every bounded x-interval from [0, co) and we have proved the
theorem. []

REeMARK. The condition of the theorem cannot be improved essentially: sup-
pose f'(t)¢*(1/(1 — F(t))) — ¢ with 0 < ¢ < oo and t¢’(¢) — 0, then one can prove

1 — FY(f(bu)p(m) + ba) _ oz
I — exp(—e?™)

lim

n—0

As an example we consider the normal distribution. Here
f(t) = te™? (P e2ds — 1 ~ —172 for t— oo .

As the inverse function of 1/(1 — F(t)) is asymptotically equal to (2 log s)}, (22)
holds if

lim, ... f/(1)¢* <41_~> = lim,_,, — #UA = FO) _ iy

_ 9 -0
1 — F(t) o

t 2log s
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and (23) is true for sequences {x,} with

x, = o((log n)?) for n— oo .
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