HITTING TIME DISTRIBUTIONS FOR GENERAL STOCHASTIC PROCESSES

By Dudley Paul Johnson

University of Calgary

We show that under mild conditions the hitting time distributions of a general stochastic process are the unique solutions of an abstract Dirichlet problem.

It is the purpose of this paper to suggest, by a simple example, that the methods which have been so successful in the study of temporally homogeneous Markov processes can be applied equally successfully to general stochastic processes.

Let λ be a probability measure in the space $\mathscr{M}(\Omega,\mathscr{F})$ of all measures on the measurable space (Ω,\mathscr{F}) of all functions ω mapping $R_+=(0,\infty)$ into a measurable space (S,Σ) where \mathscr{F} is the σ -field generated by the events $X_t(\omega)=\omega(t)\in U\in \Sigma$ and where S is a separable compact space with Borel sets Σ , and suppose that the continuous functions in Ω have λ -outer measure one. Let T_t , $t\in R_+$ be the semigroup of linear operators on $\mathscr{M}(\Omega,\mathscr{F})$ defined by $T_t\mu(X_{t_1}\in U_1,\cdots,X_{t_n}\in U_n)=\mu(X_{t+t_1}\in U_1,\cdots,X_{t+t_n}\in U_n)$ and let $E_U,U\in \Sigma$ be the resolution of the identity

$$E_U \mu(\Lambda) = \mu(X_0 \in U, \Lambda)$$
.

Let Φ be the weak * closure over the continuous functions on the product topology of (Ω, \mathcal{F}) of the linear subspace of $\mathcal{M}(\Omega, \mathcal{F})$ which is generated by measures of the form $E_{U_n}T_{t_n}\cdots E_{U_1}T_{t_1}\lambda$ and let Φ_+ be the set of all probability measures in Φ .

Suppose now that τ is the first exit time of X from the interior U of S and let g be a continuous function on the boundary U' of U. Let Φ^* be the set of all linear functionals ϕ^* on Φ which are continuous in the weak * topology of Φ . Let

$$T_{\star}^*\phi^*\phi = \phi^*T_{\star}\phi$$
, $\phi^* \in \Phi^*, \phi \in \Phi_+$

and

$$G^*\phi^*\phi = \lim\nolimits_{{\scriptscriptstyle h} \to 0} h^{-1}[T_{{\scriptscriptstyle h}}^*\phi^*\phi \, - \, \phi^*\phi] \, , \qquad \phi^* \in \Phi^*, \, \phi \in \Phi_+$$

and let a^* and b^* be the linear functionals on Φ_+ defined by

$$a^*\phi = \int g(X_{\tau}) d\phi$$

and

$$b^*\phi = \int \frac{\tau}{1+\tau} d\phi$$
.

Received March 15, 1971; revised February 18, 1972.

AMS 1970 subject classification. Primary 6040.

Key words and phrases. Stochastic process, semigroups of operators, Dirichlet problem, hitting time distributions, infinitesimal generator.

Let Φ_A be the set of all $\phi \in \Phi_+$ for which $E_A \phi = \phi$. If

I. a^* and b^* are in Φ^* ,

II.
$$\phi(\tau \leq t) = o(t), \ \phi \in \Phi_K, \ K \subset U \text{ compact},$$

III.
$$\tau d\phi < \infty, \ \phi \in \Phi_+$$

then we have the following

Theorem 1. Under conditions I–III, a^* is the unique solution in Φ^* of the Dirichlet problem

$$G^*a^*\phi=0$$
, $\phi\in\Phi_{\scriptscriptstyle K},\, K\subset U$ compact

with boundary condition

$$a^*\phi = g(\mathbf{u})$$
, $\phi \in \Phi_{\{\mathbf{u}\}}$, $\mathbf{u} \in U'$.

PROOF. If $\phi \in \Phi_K$, then letting $\omega_h^+(t) = \omega(t+h)$,

$$\begin{split} G^*a^*\phi &= \lim_{h \to 0} h^{-1}[T_h^*a^*\phi - a^*\phi] \\ &= \lim_{h \to 0} h^{-1}[a^*T_h\phi - a^*\phi] \\ &= \lim_{h \to 0} h^{-1}[\int g(X_\tau) \, dT_h\phi - \int g(X_\tau) \, d\phi] \\ &= \lim_{h \to 0} h^{-1}\int \left[g(X_\tau(\omega_h^+)) - g(X_\tau(\omega))\right] \phi(d\omega) \\ &= \lim_{h \to 0} h^{-1}\int_{\{\tau > h\}} \left[g(X_\tau(\omega_h^+)) - g(X_\tau(\omega))\right] \phi(d\omega) \\ &+ \lim_{h \to 0} h^{-1}\int_{\{\tau \le h\}} \left[g(X_\tau(\omega_h^+)) - g(X_\tau(\omega))\right] \phi(d\omega) \\ &= 0 \end{split}$$

since $g(X_{\tau}(\omega_h^+)) = g(X_{\tau}(\omega))$ on $[\tau > h]$ and

$$|\int_{[\tau \leq h]} [g(X_{\tau}(\omega_h^+)) - g(X_{\tau}(\omega))] \phi(d\omega)| \leq 2||g||_{\infty} \phi(\tau \leq h) = 2||g||_{\infty} o(h).$$

To prove uniqueness, we note that for any $\phi \in \Phi_{\kappa}$,

$$\begin{split} G^*b^*\phi &= \lim_{h\to 0} h^{-1} \, \mathcal{I}_{[\tau>h]} \bigg[\frac{\tau(\omega_h^+)}{1+\tau(\omega_h^+)} - \frac{\tau(\omega)}{1+\tau(\omega)} \bigg] \phi(d\omega) \\ &+ \lim_{h\to 0} h^{-1} \, \mathcal{I}_{[\tau\leq h]} \bigg[\frac{\tau(\omega_h^+)}{1+\tau(\omega_h^+)} - \frac{\tau(\omega)}{1+\tau(\omega)} \bigg] \phi(d\omega) \\ &= \lim_{h\to 0} h^{-1} \, \mathcal{I}_{[\tau>h]} \bigg[\frac{\tau-h}{1+\tau-h} - \frac{\tau}{1+\tau} \bigg] d\phi + \lim_{h\to 0} h^{-1} o(h) \\ &= - \mathcal{I}_{[\tau>0]} \, \frac{1}{(1+\tau)^2} \, d\phi < 0 \; . \end{split}$$

Thus $G^*b^*\phi < 0$, $\phi \in \Phi_{\scriptscriptstyle K}$ and $b^*\phi = 0$, $\phi \in \Phi_{\scriptscriptstyle U'}$.

Now suppose that c^* is another solution in Φ^* of our equation which satisfies the boundary condition. Then $\psi_{\epsilon}{}^*=c^*-a^*+\epsilon b^*$ is a solution of $G^*\psi_{\epsilon}{}^*\phi<0$ for all $\phi\in\Phi_{\kappa}$ with boundary condition

$$\phi_{\varepsilon}^* \phi \geq 0, \qquad \phi \in \Phi_{u'}.$$

Since Φ_+ is weak * compact and since ψ_{ϵ} * is continuous in this topology, ψ_{ϵ} * must obtain its minimum value in Φ_+ at some point $\phi_0 \in \Phi_+$. It follows then

from Choquet's theorem [2] that there exists a probability measure m on the extreme points Φ_{++} of Φ_{+} such that

$$\psi_{\varepsilon}^*\phi_0 = \int_{\Phi_{++}} \psi_{\varepsilon}^*\phi m(d\phi) .$$

Since ψ_{ϵ}^* obtains its minimum value in Φ_+ at ϕ_0 , it must also obtain its minimal value at each $\phi \in \Phi_{++}$ which is in the support of m. As a result we can choose ϕ_0 to be in Φ_{++} and so there exists a point $u_0 \in S$ such that $\phi_0 \in \Phi_{\{u_0\}}$. Suppose that $\psi_{\epsilon}^*\phi_0 < 0$. Then since $\psi_{\epsilon}^*\phi \geq 0$ when $\phi \in \Phi_{U'}$, it follows that $u_0 \in U$ and so there exists a compact set $K \subset U$ for which $\phi_0 \in \Phi_K$. By the minimum principle $G^*\psi_{\epsilon}^*\phi_0 \geq 0$. But $G^*\psi_{\epsilon}^*\phi_0 < 0$ and so we have a contradiction. Thus $\psi_{\epsilon}^*\phi_0 \geq 0$ for all $\epsilon > 0$ and so $c^*\phi \geq a^*\phi$ for all $\phi \in \Phi_+$. Interchanging a^* and c^* yields, via the same reasoning, $a^*\phi \geq c^*\phi$ for all $\phi \in \Phi_+$. Thus $a^* = c^*$ and the theorem is proved.

This theorem is well known when λ is a temporally homogeneous Markov process since in that case T_t^* plays the role of the usual semigroup of operators associated with a Markov process.

The reader might also note that condition I will be satisfied if, for example, one lets τ_m be the minimum of m and the first exit time of $X_{k/2^n}$ from U, and then assume that

$$\phi(\tau_m > \tau + \varepsilon) \to 0$$
 uniformly in $\phi \in \Phi_+$

and

$$\phi[|g(X_{\tau_{-}}) - g(X_{\tau})| > \varepsilon] \to 0$$
 uniformly in $\phi \in \Phi_{+}$.

For example, a^* would then be continuous in the weak * topology of Φ_+ since if $\phi_n \to \phi$ in the weak * topology then

$$\begin{split} |a^*\phi_n - a^*\phi| &= |\smallint g(X_\tau) \, d\phi_n - \smallint g(X_\tau) \, d\phi| \\ & \leq \smallint |g(X_\tau) - g(X_{\tau_m})| \, d\phi_n + |\smallint g(X_{\tau_m}) \, d\phi_n - \smallint g(X_{\tau_m}) \, d\phi| \\ & + \smallint |g(X_{\tau_m}) - g(X_\tau)| \, d\phi \\ & \leq 4||g||_\infty \sup_{\phi \in \Phi_+} \psi[|g(X_{\tau_m}) - g(X_\tau)| > \varepsilon/3] + \varepsilon/3 \\ & + |\smallint g(X_{\tau_m}) \, d\phi_n - \smallint g(X_{\tau_m}) \, d\phi| \; . \end{split}$$

The first term can be made less than $\varepsilon/3$ by picking m sufficiently large. Then since $g(X_{\tau_m})$ is a continuous function in the product topology of Ω and since $\phi_n \to \phi$ in the weak * topology of Φ it follows that the last term can be made less than $\varepsilon/3$ if n is picked sufficiently large.

REFERENCES

- [1] DYNKIN, E. B. (1965). Markov Processes. Springer-Verlag, Berlin.
- [2] MEYER, P. A. (1966). Probability and Potentials. Blaisdell, Waltham, Mass.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALGARY CALGARY, ALBERTA, CANADA