SHARP BOUNDS FOR THE TOTAL VARIANCE OF UNIFORMLY BOUNDED SEMIMARTINGALES¹

BY LESTER E. DUBINS²

University of California, Berkeley

Let $S_n = f + X_1 + \cdots + X_n$ be an expectation-decreasing semimartingale with values in the unit interval, and let V_n be the conditional variance of X_n given the past. Then $E(\sum V_n)$ is less than f(2 - f), and this bound is sharp. Sharper bounds are available if the process S_0, S_1, \cdots satisfies suitable additional constraints.

1. Introduction. For each stochastic process $S = \{S_0, S_1, \dots\}$ for which V_i , the conditional variance of the increment $S_i - S_{i-1}$, given the past is meaningful for each i, let $\bar{V} = \bar{V}(S)$, the total variance of S, be defined as the sum $V_0 + V_1, \dots$, where V_0 , the variance of S_0 , will, in this note, be zero.

The size of \bar{V} reflects the size of S, and conversely. For example, as is well known when the increments have mean 0 and are independent, $\bar{V} < \infty$ if and only if $\lim S_n$ exists and is finite. Also, for martingale increments, the size of \bar{V} and the growth of S are known to be related. (See e.g., [2] Theorem 4.1 (5), [3] and [5].)

One obvious measure of the size of the total variance \bar{V} is its expected value $E(\bar{V})$. It is the purpose of this note to give sharp upper bounds for $E(\bar{V})$ when S ranges over a sufficiently simple class of stochastic processes. This note is closely related to [1]. Some notation is helpful.

Let I be the closed unit interval [0, 1]. For $f \in I$, let $\bar{S}(f)$ be the class of all expectation-decreasing semimartingales S for which $S_0 = f$ and $S_j \in I$ for all j, and let $\bar{M}(f)$ be the set of all martingales $S \in \bar{S}(f)$.

Here is a simple preliminary observation.

Proposition 1. For $S \in \overline{M}(f)$,

$$(1) E(\bar{V}) \leq f(1-f).$$

For every f the bound is attained, and is attained by $S \in \overline{M}(f)$ if and only if $\lim S_n$ is, with probability one, an endpoint of I.

Proposition 1 is an easy consequence of this easily established lemma.

LEMMA 1. For $S \in \overline{M}(f)$, $E(\overline{V})$ is the variance of the limit of the S_n .

A related inequality, typical of the contents of this note, is this.

Received July 19, 1971; revised January 27, 1972.

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, USAF, under Grant No. AFOSR-1312-67. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.

² The hospitality of the University of Rome, the University of Florence, and the Consiglio Nazionale delle Ricerche during the author's sabbatical year facilitated this research.

Proposition 2. For $S \in \bar{S}(f)$,

$$(2) E(\bar{V}) < f(2-f),$$

and this bound is sharp.

To make inequality (2) plausible and to see how it was conjectured, consider a standard Brownian motion with f as its initial state and with a reflecting barrier at 1 and an absorbing barrier at 0. An easy computation would show that the expected value of the time until absorption for this expectation-decreasing semimartingale in continuous time is indeed the right-hand side of (2). This suggests that for any discrete-time $S \in \bar{S}(f)$ which approximates this continuous-time semimartingale, $E(\bar{V})$ is close to f(2-f).

For perhaps the simplest $S \in \bar{S}(f)$ for which $E(\bar{V})$ is close to f(2-f), proceed thus. Fix $\varepsilon > 0$. For each $g, 0 \le g < 1$, let $\gamma = \gamma_g$ be that probability measure on I of mean g that "lives" on the two-point set $\{0, 1\}$. Thus γ_g assigns to $\{1\}$ the probability g and assigns probability 1-g to $\{0\}$. For g=1, let $\gamma_g=\gamma_1$ be the one-point, or Dirac-delta, measure that lives on the one-point set $\{1-\varepsilon\}$. Consider the family γ_g as the system of transition probabilities for a Markov process. Plainly, for each initial state f, this process S is an expectation-decreasing semimartingale, and, therefore, an element of $\bar{S}(f)$. Plainly, for each g, the variance of γ_g is g(1-g). A trite calculation shows that if the initial state is 1, then the expectation of N, the number of visits to $1-\varepsilon$, is ε^{-1} . Since the total variance \bar{V}_1 , when the initial state is 1, is plainly $\varepsilon(1-\varepsilon)N$,

(3)
$$E(\bar{V}_1) = \varepsilon(1-\varepsilon)E(N) = 1-\varepsilon.$$

Plainly, for an arbitrary initial state $f \in I$, \bar{V} is the variance γ_f of the first gamble plus the variance of the later gambles, so

(4)
$$\begin{split} E(\bar{V}) &= \sigma^2(\gamma_f) + \gamma_f \{1\} E(\bar{V}_1) \\ &= \sigma^2(\gamma_f) + f(1-\varepsilon) \\ &= f(1-f) + f(1-\varepsilon) \,. \end{split}$$

As is now evident, the bound q(f) = f(2 - f) in Proposition 2 cannot be lowered. That q is indeed a bound, is obviously a consequence of these two lemmas.

LEMMA 2. Let q(x) = x(2-x) for x in the unit interval I, let $f \in I$, let γ be a probability measure on the unit interval, of mean at most f, and let $\sigma^2(\gamma)$ be the variance of γ . Then

(5)
$$\int q(x) d\gamma(x) \leq q(f) - \sigma^2(\gamma).$$

The computation needed to verify (5) is straightforward, and omitted here, but is included in the slightly less simple computation given in Section 3.

Lemma 3. Let q be any nonnegative, real-valued, (measurable) function defined on I which satisfies (5) for all $f \in I$ and all γ on I of mean at most f. Then, for every $S \in \overline{S}(f)$,

(6)
$$E(\bar{V}) \le q(f) .$$

Though Lemma 3 is a special case of the basic Theorem 2.12.1 in [5], as will be seen in Section 2 below, a direct proof is given here, in part to make this introduction self-contained.

PROOF OF LEMMA 3. For $S \in \bar{S}(f)$, the hypotheses imply:

(7)
$$E(q(S_1)) \leq q(f) - V_1;$$

and, for every positive integer n,

(8)
$$E(q(S_{n+1}) | S_0, \dots, S_n) \leq q(S_n) - V_{n+1}.$$

Assume, by induction, that

(9)
$$E(q(S_n)) \leq q(f) - E(V_1 + \cdots + V_n),$$

which certainly holds for n = 1 by (7), since V_1 , being constant, equals $E(V_1)$.

Now, take expectations in (8), and use (9) to see that (9) holds again when n is replaced by n + 1. Since $q \ge 0$, the left-hand, and hence the right-hand, side of (9) is nonnegative. This completes the proof of Lemma 3, and hence of Proposition 2.

Proposition 2 is subsumed under Theorem 2 below, and Theorem 2 itself follows from the (gambling) theorem presented in the next section.

2. Specialization of the basic gambling theorem. Each gambling house Γ defined on an abstract set F of fortunes determines, and is determined by, the set of all (γ, f) such that $\gamma \in \Gamma(f)$. There is no great ambiguity, and some economy of notation, if the symbol " Γ " is used to designate this set of ordered couples too.

Let w be a nonnegative, real-valued function defined on Γ , that is, $w(\gamma, f) \ge 0$ for each (γ, f) such that $\gamma \in \Gamma(f)$. In this note, principal interest focuses on a w which is a function of γ only, indeed where $w(\gamma)$ is simply the variance of γ . But having in mind applications where $w(\gamma, f)$ could be, for example when F is a subset of the reals, the second moment of the lottery $[\gamma - f]$, that is, of the distribution of the displacement about f, the more general case will be treated here, which is hardly less simple.

The immediate program is to describe a nonnegative, real-valued function defined on F, and determined by Γ and w, here to be designated by Γw .

As a preliminary, for each initial fortune f, strategy $\sigma = (\sigma_0, \sigma_1, \cdots)$, and history $h = (f_1, f_2, \cdots)$, let

(1)
$$w(\sigma,f,h,n) = w(\sigma_0,f) + \cdots + w(\sigma_n(f_1,\cdots,f_n),f_n),$$

where n can be any positive integer, or more generally, any stop rule. For fixed (σ, f, n) , this is a nonnegative, finitary function of h, and hence has an expectation under σ ; call this expectation $w(\sigma, f, n)$. Now designate the supremum over all n of $w(\sigma, f, n)$ by $\hat{w}(\sigma, f)$ and define Γw thus.

(2)
$$(\Gamma w)(f) = \sup \hat{w}(\sigma, f)$$

where the sup is taken over all strategies σ available in Γ at f.

THEOREM 1. If q is a nonnegative, real-valued function defined on F which satisfies

(3)
$$w(\gamma, f) + \gamma q \leq q(f)$$
 for all f and all $\gamma \in \Gamma(f)$,

then $q \geq \Gamma w$.

The special case of constant w, $w(\gamma, f) = 1$ for all (γ, f) includes "a general theorem" in [1].

PROOF OF THEOREM 1. The proof is a simple application of Theorem 2.12.1 in [5] to a gambling problem (Γ_w, u) now to be described.

For each point y, let F_y be the set of (f, y) for $f \in F$, let $\delta(y)$ be the one-point measure that lives at y, and for each γ on F, let $\gamma(y)$, defined for subsets of F_y , be the product measure $\gamma \times \delta(y)$. Of course, $\gamma(y)$ can be extended to the subsets of any set that contains F_y (and, in particular, to $F \times R$ if $y \in R$) by assigning measure zero to any subset of the complement of F_y .

Let the fortune space of Γ_w be $F \times R$ where R is the set of nonnegative real numbers, and let $\gamma' \in \Gamma_w(f, x)$ if, and only if, for some $\gamma \in \Gamma(f)$, γ' is γ transferred to the section of $F \times R$ whose second coordinate is $x + w(\gamma, f)$, or more formally,

(4)
$$\gamma' = \gamma(x + w(\gamma, f)).$$

Now that Γ_w has been defined, define u as the projection of $F \times R$ onto R, that is u(f, x) = x, and define Q(f, x) as q(f) + x. Since $q \ge 0$, $Q \ge u$, and since q satisfies (3), Q is excessive for Γ_w . Though u and Q are not bounded, they are bounded from below, and this is adequate to conclude from the basic Theorem 2.12.1 in [5] that Q majorizes $\Gamma_w u$. Consequently,

(5)
$$q(f) = Q(f, 0)$$

$$\geq (\Gamma_w u)(f, 0)$$

$$= (\Gamma_w)(f),$$

and the theorem is proven.

3. Return to the unit interval when the variances are bounded from below. In this section F is specialized to be the closed unit interval, and for every γ , $\gamma(F)=1$. Let s be a nonnegtive number, and let $\Gamma_s(f)$ consist of all γ such that the mean of γ is at most f and the variance of γ is at least s. There is no loss in supposing that s does not exceed one-fourth, for otherwise, there is no γ available in Γ_s . Also, as is easily seen, for any γ on F of mean m, the variance of γ is at most m(1-m). Hence, for γ to be available in Γ_s , $m(1-m) \geq s$, or, equivalently,

$$(1) 1 - \beta(s) \leq m(\gamma) \leq \beta(s) ,$$

where $\beta(s)$ is the maximum of the two solutions to x(1-x)=s, and $m(\gamma)$ is the mean of γ .

In particular, for $0 \le f < 1 - \beta(s)$, there is no γ available in Γ_s . There is,

therefore, some technical advantage in modifying the definition of Γ_s by also permitting $\delta(f) \in \Gamma_s(f)$ for each f.

Let $w(\gamma)$ be the variance of γ , and the problem is to determine $\Gamma_s w$. To conjecture $\Gamma_s w$, one finds, for each g, a gamble $\gamma(g) \in \Gamma_s(g)$ such that, for each initial state f, the Markov process with stationary transition probabilities $\gamma(g)$ has a large total variance. Of course, for $0 \le g < 1 - \beta(s)$, $\gamma(g)$ must be $\delta(g)$. For $1 - \beta(s) \le g \le \beta(s)$, there are nontrivial fair gambles available in $\Gamma_s(g)$, and among them the simplest is $\gamma(g)$ which lives on the two endpoints $\{0, 1\}$, and assigns probability g to $\{1\}$ and probability g to $\{0\}$. For g to $\{0\}$. For g is at most g and g in this interval, there is precisely one g available whose mean is g in this interval, there is precisely one g available whose mean is g in the g of mean g in the "lives" on the two-points g in the strategy that corresponds to the Markov process with initial state g and transition probabilities g in the g in the total variance of the strategy g in that is, g in the strategy g in the strategy

$$q_s(f) = 0 0 \leq f < 1 - \beta(s),$$

$$= f(1 + \beta(s) - f) 1 - \beta(s) \leq f \leq \beta(s),$$

$$= \beta(s) \beta(s) \leq f \leq 1.$$

Plainly, for s=0, $q_s(f)=f(2-f)$, which is the bound in Proposition 2. Of course, $q_s \leq \Gamma w$. For the reverse inequality, this extension of Lemma 2 is needed.

LEMMA 4. For all f and all $\gamma \in \Gamma_s(f)$,

(3)
$$\sigma^2(\gamma) + \gamma q_s \leq q_s(f).$$

PROOF OF LEMMA 4. For $0 \le f < 1 - \beta(s)$, only $\delta(f) \in \Gamma_s(f)$, so the inequality is trivial. For $1 - \beta(s) \le f \le \beta(s)$, and any $\gamma \in \Gamma_s(f)$, indeed even for any $\gamma \in \Gamma_0(f)$, let m be the mean of γ and σ^2 its variance, and verify that

(4)
$$\sigma^2 + \gamma Q_s = Q_s(m) \leq Q_s(f),$$

where

(5)
$$Q_s(g) = g(1 + \beta(s) - g)$$
 $0 \le g \le 1$.

Therefore,

(6)
$$\sigma^{2} + \gamma q_{s} \leq \sigma^{2} + \gamma Q_{s}$$
$$\leq Q_{s}(f)$$
$$= q_{s}(f).$$

Finally, to verify (3) for f in the interval $(\beta(s), 1]$, first observe that for any γ available in Γ_s , γ is available in $\Gamma_s(m)$, where m is the mean of γ . Moreover,

unless γ is trivial, $m \leq \beta(s)$, as (1) implies. Therefore, for nontrivial $\gamma \in \Gamma_s(f)$,

(7)
$$\sigma^2 \gamma + \gamma q_s \leq q_s(m) \leq q_s(f) ,$$

where the first inequality holds because (3) has already been established for $f \leq \beta(s)$, and the second holds because q_s is nondecreasing.

Now that Lemma 4 has been established, Theorem 1 applies to prove this extension of Proposition 2.

THEOREM 2. For $w(\gamma)$ equal to the variance of γ , $\Gamma_s w = q_s$ for $0 \le s \le \frac{1}{4}$, and, for s > 0, q_s is attained.

4. Applications of Theorem 2. With only slight loss, Theorem 2 can be recast into the usual language of countably additive stochastic processes. Suppose, for example, that $S = \{S_0, S_1, \dots\}$ is an expectation-decreasing semimartingale for which $S_0 = f$, 0 < f < 1. Suppose, too, that τ is a stopping time for S such that S_i is in the unit interval [0, 1] for all $i \le \tau$, and, for all $i < \tau$, $V_i \ge s$, where V_i is the conditional variance of $S_i - S_{i-1}$ given the past. Then $E(\bar{V}) \le q_s(f)$, where \bar{V} is the total variance of S before time τ . Moreover, since $s\tau \le \bar{V}$,

$$(1) E(\tau) \leq s^{-1}q_s(f) ,$$

and, for each s > 0, this bound is attained.

For 0 < c < d < 1, consider the interesting example in which τ is the least i such that S_i is outside [c, d]. Then the first hypothesis on τ is satisfied if, and only if, $0 \le S_\tau \le 1$, and this plainly obtains if

$$-c \le S_n - S_{n-1} \le 1 - d \quad \text{for all} \quad n.$$

For such τ , a bound on $E(\tau)$ closely related to the right-hand side of (1), but for processes with uniformly bounded increments and with a constraint on the second moment rather than on the variance, was obtained by Blackwell ([1], Inequality 4).

In a forthcoming joint paper with Isaac Meilijson, I expect even the simple Proposition 2 to find application to the proof that if a subfair casino with a fixed goal is perturbed a little, then the optimal probability of reaching that goal undergoes a correspondingly small alteration.

5. Change of scale. Of course, if the fortune space F = [0, 1] is replaced by $F^* = [a, b]$, and Γ_s is correspondingly replaced by Γ_s^* , then the upper bound q_s must be replaced by q_s^* , where

(1)
$$q_{s}^{*}(f) = q_{s}(f^{*}),$$

and where

(2)
$$s^* = s/(b-a)^2$$
 and $f^* = (f-a)/(b-a)$.

REFERENCES

[1] Blackwell, David (1964). Probability bounds via dynamics programming. *Proc. Symp. Appl. Math.*, American Mathematics Society, Providence. 16 277–280.

- [2] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] Dubins, L. E. and Freedman, David A. (1965). A sharper form of the Borel-Cantelli Lemma and the strong law. *Ann. Math. Statist.* 36 800-807.
- [4] Dubins, L. E. and Savage, Leonard J. (1965a). A Tchebycheff-like inequality for stochastic processes. *Proc. Nat. Acad. Sci.* 51 274-275.
- [5] Dubins, L. E. and Savage, Leonard J. (1965b). How to Gamble if You Must. McGraw-Hill, New York.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720