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SHARP BOUNDS FOR THE TOTAL VARIANCE OF
UNIFORMLY BOUNDED SEMIMARTINGALES'

By LesTER E. DuUBINS?

University of California, Berkeley

Let S, = f + X1+ - - - + X, be an expectation-decreasing semimartingale
with values in the unit interval, and let ¥, be the conditional variance of
X, given the past. Then E(X Va) is less than f(2 — f), and this bound is
sharp. Sharper bounds are available if the process So, S1, - - - satisfies suit-
able additional constraints.

1. Introduction. For each stochastic process S = {S,, S,, - - -} for which V,
the conditional variance of the increment S; — S;_,, given the past is meaning-
ful for each i, let V = I7(S), the total variance of S, be defined as the sum V, +
V,, ---, where V,, the variance of S,, will, in this note, be zero.

The size of V reflects the size of S, and conversely. For example, as is well
known when the increments have mean 0 and are independent, V < oo if and
only if lim S, exists and is finite. Also, for martingale increments, the size of V
and the growth of S are known to be related. (Seee.g., [2] Theorem 4.1 (5), [3]
and [5].)

One obvious measure of the size of the total variance ¥ is its expected value
E(V). It is the purpose of this note to give sharp upper bounds for E(V) when
S ranges over a sufficiently simple class of stochastic processes. This note is
closely related to [1]. Some notation is helpful.

Let I be the closed unit interval [0, 1]. For fe I, let S(f) be the class of all
expectation-decreasing semimartingales S for which S, = f and S; e I for all j,
and let M(f) be the set of all martingales S € S(f).

Here is a simple preliminary observation.

ProposITION 1. For S e M(f),

(1) EV)=f1-f)-
For every f the bound is attained, and is attained by S € M(f) if and only if lim S,
is, with probability one, an endpoint of 1.
Proposition 1 is an easy consequence of this easily established lemma.
LemMA 1. For S e M(f), E(V) is the variance of the limit of the S,.
A related inequality, typical of the contents of this note, is this.
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ProposITION 2. For S e S(f),

2) EV) <f@—f),
and this bound is sharp.

To make inequality (2) plausible and to see how it was conjectured, consider
a standard Brownian motion with f as its initial state and with a reflecting bar-
rier at 1 and an absorbing barrier at 0. An easy computation would show that
the expected value of the time until absorption for this expectation-decreasing
semimartingale in continuous time is indeed the right-hand side of (2). This sug-
gests that for any discrete-time S € S(f) which approximatgs this continuous-time
semimartingale, E(¥) is close to f(2 — f).

For perhaps the simplest S € S(f) for which E(V) is close to f(2 — f), proceed
thus. Fixe > 0. Foreachg,0 < g < 1, lety = 7, be that probability measure
on I of mean g that “lives” on the two-point set {0, 1}. Thus y, assigns to {1}
the probability g and assigns probability 1 — g to {0}. Forg =1, let y, = r, be
the one-point, or Dirac-delta, measure that lives on the one-point set {I — e}.
Consider the family 7, as the system of transition probabilities for a Markov pro-
cess. Plainly, for each initial state f, this process S is an expectation-decreasing
semimartingale, and, therefore, an element of S( f). Plainly, for each g, the
variance of 7,18 g(1 — g). A trite calculation shows that if the initial state is 1,
then the expectation of N, the number of visits to 1 — ¢, is ¢7*. Since the total
variance V,, when the initial state is 1, is plainly ¢(1 — ¢)N,

3) EWV)=¢l —e)EN)=1—c¢.

Plainly, for an arbitrary initial state f € [, V is the variance y - of the first gamble
plus the variance of the later gambles, so

E(V) = %) + 1 AET)
“4) = %) + (1 —¢)
=fA=f)+f0 —¢).
As is now evident, the bound ¢(f) = f(2 — f) in Proposition 2 cannot be low-
ered. That ¢ is indeed a bound, is obviously a consequence of these two lemmas.

LEMMA 2. Let g(x) = x(2 — x) for x in the unit interval I, let f € I, let y be a prob-
ability measure on the unit interval, of mean at most f, and let o*(y) be the variance
of y. Then

(5) § 9(x) dr(x) = 9(f) — o*() -
The computation needed to verify (5) is straightforward, and omitted here, but

is included in the slightly less simple computation given in Section 3.

LEMMA 3. Let g be any nonnegative, real-valued, (measurable) function defined on
I which satisfies (5) for all f eI and all y on I of mean at most f. Then, for every
SeS(f),

(6) E(V) = q(f) -
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Though Lemma 3 is a special case of the basic Theorem 2.12.1 in [5], as will
be seen in Section 2 below, a direct proof is given here, in part to make this
introduction self-contained.

Proor oF LEmma 3. For Se S(f), the hypotheses imply:

(7) E(q(S) = 9(f) — V3

and, for every positive integer n,

(8) E(q(S'n+1) I SO’ ] Sn) é q(Sn) - Vn+1 .
Assume, by induction, that

(©) E(q(S,) = 9(f) — EVi+ --- + Vo),

which certainly holds for n = 1 by (7), since ¥}, being constant, equals E(V).

Now, take expectations in (8), and use (9) to see that (9) holds again when n
is replaced by n 4+ 1. Since ¢ > 0, the left-hand, and hence the right-hand,
side of (9) is nonnegative. This completes the proof of Lemma 3, and hence
of Proposition 2.

Proposition 2 is subsumed under Theorem 2 below, and Theorem 2 itself fol-
lows from the (gambling) theorem presented in the next section.

2. Specialization of the basic gambling theorem. Each gambling house I defined
on an abstract set F of fortunes determines, and is determined by, the set of all
(7, f) such that y e I'(f). There is no great ambiguity, and some economy of
notation, if the symbol “I'” is used to designate this set of ordered couples too.

Let w be a nonnegative, real-valued function defined on I', that is, w(y, =0
for each (r, f) such that y e I'(f). In this note, principal interest focuses on a
w which is a function of y only, indeed where w(y) is simply the variance of 7.
But having in mind applications where w(y, f) could be, for example when F is
a subset of the reals, the second moment of the lottery [y — f], that is, of the
distribution of the displacement about f, the more general case will be treated
here, which is hardly less simple.

The immediate program is to describe a nonnegative, real-valued function
defined on F, and determined by I' and w, here to be designated by I'w.

As a preliminary, for each initial fortune [, strategy ¢ = (0,, 0y, - --), and
hiStOI‘y h = (fl’fza .. .)’ let
(1) W(O',f, h’ n) = W(Uo,f) + -0+ W(Un(fl’ . ’fn)’fn) ’

where n can be any positive integer, or more generally, any stop rule. For fixed
(o,f, n), this is a nonnegative, ﬁnitary function of 4, and hence has an expecta-
tion under ¢; call this expectation w(s, /> n). Now designate the supremum over
all n of w(a, f, n) by w(s, f) and define I'w thus.

2) Tw)(f) = sup (s, f)

where the sup is taken over all strategies ¢ available in I at f.
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THEOREM 1. If q is a nonnegative, real-valued function defined on F which satisfies

@3) W f) + 79 = 9(f)  forallfandall 7eT(f),
then g = I'w.

The special case of constant w, w(y, f) = 1 for all (7, f) includes “a general
theorem” in [1].

Proor oF THEOREM 1. The proof is a simple application of Theorem 2. 12.1
in [5] to a gambling problem (I',,, #) now to be described.

For each point y, let F, be the set of (f, y) for fe F, let i(y) be the one-point
measure that lives at y, and for each y on F, let y(y), defined for subsets of F,,
be the product measure y x d(y). Of course, y(y) can be extended to the subsets
of any set that contains F, (and, in particular, to F x R if y € R) by assigning
measure zero to any subset of the complement of F,.

Let the fortune space of I', be F x R where R is the set of nonnegative real
numbers, and let y’ e I' (f, x) if, and only if, for some y e I'(f), 7’ is y trans-
ferred to the section of F x R whose second coordinate is x + w(y, ), or more
formally,

4) =1+ w, f)) -

Now that ', has been defined, define u as the projection of F x R onto R,
that is u(f, x) = x, and define Q(f, x) as ¢(f) + x. Since ¢ =0, 0 > u, and
since ¢ satisfies (3), Q is excessive for I' ;. Though u and Q are not bounded,
they are bounded from below, and this is adequate to conclude from the basic
Theorem 2.12.1 in [5] that Q majorizes I' ,u. Consequently,

q(f) = (/> 0)
() = (T,u)(f, 0)
=T

and the theorem is proven.

3. Return to the unit interval when the variances are bounded from below. In this
section F is specialized to be the closed .unit interval, and for every y, y(F) = 1.
Let s be a nonnegtive number, and let I (f) consist of all y such that the mean
of y is at most f and the variance of y is at least s. There is no loss in supposing
that s does not exceed one-fourth, for otherwise, there is no y available in T,.
Also, as is easily seen, for any y on F of mean m, the variance of 7 is at most
m(1 — m). Hence, for y to be available in I',, m(1 — m) = s, or, equivalently,

M 1 — B(s) = m(r) = B()

where f5(s) is the maximum of the two solutions to x(1 — x) = s, and m(y) is the
mean of y.
In particular, for 0 < f < 1 — f(s), there is no y available in I',. There is,
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therefore, some technical advantage in modifying the definition of I', by also
permitting o(f) € I',(f) for each f.

Let w(y) be the variance of 7, and the problem is to determine I',w. To con-
jecture I' w, one finds, for each g,a gamble y(g) € I, (9) such that, for each initial
state f, the Markov process with stationary transition probabilities y(g) has a
large total variance. Of course, for 0 < g < 1 — B(s), 7(g9) must be d(g). For
1 — B(s) < g < B(s), there are nontrivial fair gambles available in I',(g), and
among them the simplest is 7(g) which lives on the two endpoints {0, 1}, and
assigns probability g to {1} and probability 1 — g to {0}. For f(s) < g < 1, there
are no fair gambles available; in fact, the mean of every available y is at most
B(s), as (1) implies. Moreover, for each g in this interval, there is precisely one
7 available whose mean is $(s), namely, the y of mean B(s) that “lives” on the
two-points {0, 1}. Therefore, for 8(s) < g < 1, let y(9) = r(8(s))- Let o(f) be
the strategy that corresponds to the Markov process with initial state f and tran-
sition probabilities y(f). For s > 0, let ¢,(f) be the total variance of the strategy
a(f), that is, ¢,(f) = w(a(f), f), as in Section 2. A simple computation, like
the one given in Section 1, determines the analytic form of g,. Namely,

9.(f) =0 0=f<1—8s),
) =fA+86)—f)  1—Hs) LB,
= 8(s) B =f=1.

Plainly, for s = 0, ¢,(f) = f(2 — f), which is the bound in Proposition 2.
Of course, g, < I'w. For the reverse inequality, this extension of Lemma 2
is needed.

LEMMA 4. For all f and all y € T (f),

3) a*(r) + 14, = 9.(f) -

Proor oF LEMMA 4. For 0 < f < 1 — f(s), only (f) € I',(f), so the inequality
is trivial. For 1 — B(s) < f < B(s), and any y e ' ,(f), indeed even for any y €
Ty(f), let m be the mean of y and ¢* its variance, and verify that

(4) a* + 70, = Q,(m) = O,(f) >

where

(5) 0,(9) = 9(1 + B(s) — 9) 0sg=s1.
Therefore,

o'+ 19, = " + 10,
(6) = 0.
= qa(f) *

Finally, to verify (3) for f in the interval (5(s), 1], first observe that for any
7y available in T',, y is available in I',(m), where m is the mean of y. Moreover,
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unless y is trivial, m < f(s), as (1) implies. Therefore, for nontrivial y e L.(f),

(7) ot + 14, = q(m) = q.(f) .

where the first inequality holds because (3) has already been established for
S = B(s), and the second holds because ¢, is nondecreasing.

Now that Lemma 4 has been established, Theorem 1 applies to prove this
extension of Proposition 2.

THEOREM 2. For w(y) equal to the variance of r,'w= g, for0 <s < L and,
fors > 0, q, is attained.

4. Applications of Theorem 2. With only slight loss, Theorem 2 can be recast
into the usual language of countably additive stochastic processes. Suppose, for
example, that S = {S,, S,, - - -} is an expectation-decreasing semimartingale for
which S, = f, 0 < f < 1. Suppose, too, that z is a stopping time for S such that
S; is in the unit interval [0, 1] for all i < 7, and, for all i < 7, V; > s, where ¥,
is the conditional variance of S; — S;_, given the past. Then E(V) < ¢,(f), where
V is the total variance of S before time . Moreover, since st < V,

(1 E(z) < s7q,(f) >
and, for each s > 0, this bound is attained.

For 0 < ¢ < d < 1, consider the interesting example in which 7 is the least
i such that §; is outside [c, d]. Then the first hypothesis on ¢ is satisfied if, and
only if, 0 < §, < 1, and this plainly obtains if

2) —c<S, -8 1 —-d forall n.

nl—

For such 7, a bound on E(r) closely related to the right-hand side of (1), but for
processes with uniformly bounded increments and with a constraint on the
second moment rather than on the variance, was obtained by Blackwell ([1],
Inequality 4).

In a forthcoming joint paper with Isaac Meilijson, I expect even the simple
Proposition 2 to find application to the proof that if a subfair casino with a fixed
goal is perturbed a little, then the optimal probability of reaching that goal under-
goes a correspondingly small alteration.

5. Change of scale. Of course, if the fortune space F = [0, 1] is replaced by
* = [a, b], and T', is correspondingly replaced by I',*, then the upper bound
g, must be replaced by ¢ *, where

(1) 4.*(f) = 9.(f*)

and where

®) Cst=s/b—ay and  f*=(f—a)b—a).
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