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By TimoTHY J. KILLEEN AND THOMAS P. HETTMANSPERGER
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We consider (X1, Y1), (X2, Y2), +++, (X, Y»), random sample from an
absolutely continuous bivariate, population with symmetric density f(x, y)
and test Ho: f(x, y) symmetric about (0, 0) against H;: all possible location
alternatives.

Hotelling’s 7 statistic is often used for this test. We denote a form of

this statistic by 7,2’ and make an exact Bahadur efficiency comparison of
T,'» with respect to three of its competitors: a new bivariate Wilcoxon
signed rank test 7,'V), Hodges’ bivariate sign test T,'3, and Blumen’s
bivariate sign test T4,
. When a bivariate normal alternative with parameter A = p/X-1; ob-
tains, it is shown that the exact Bahadur slopes of TV, T,2, and T,'®
are identical to the exact slopes of their univariate analogues with a uni-
variate normal alternative with parameter A = y/s obtains. In this case,
the exact Bahadur efficiency of T,V is uniformly better than either the
exact Bahadur efficiency of T,'® or T,'¥' with respect to T2,

1. Introduction. Bahadur (1967) developed the concept of the exact slope of
a test statistic T,. Suppose that X, X, - - -, X, is a random sample from a dis-
tribution with distribution function F(x), € Q, and we wish to test the hypo-
thesis H,: ¢ = 6, against H,: 6 ¢ Q — {6,}. Assume T, rejects H, for T, > k,.
Under appropriate conditions, discussed by Bahadur, it follows that

lim,_., n~'log P, (T, > k,) = h(k) <O forall k,—k > 0.
Further, if there exists a function 5(¢;) > 0 for 6, € Q — {#,} such that
neo Po,(|Tw — 0(01)] > ¢) = 0,
then the exact slope of T, evaluated at 6, is C(6,) = —2h(b(6,)).

We call A(x) the large deviation of T, and b(6,) the stochastic limit of 7, when
0, obtains.

If T, and T, are two statistics with exact slopes C,(f,) and C,(¢,) respec-
tively, then e, ,(6,) = C(6,)/Cy(6,) is known as the exact Bahadur efficiency of
T, with respect to T, evaluated at 6,.

In this paper we evaluate the Bahadur efficiencies of three bivariate tests with
respect to Hotelling’s 7* statistic, Anderson (1958), when the underlying distri-
bution is bivariate normal.

2. Bivariate tests for location. Suppose that (X}, Y)), (X;, Y,), -+, (X,, Y,) is
a random sample of size n from a two-dimensional absolutely continuous dis-
tribution with density f(x, y). We further suppose that f(x, y) is symmetric about

lim
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some point (4,, 8,), that is, f(6, + x, 0, + y) = f(6, — x, 6, — y), for all x, y.
Here we consider testing H,: f symmetric about (0, 0) against all possible loca-
tion alternatives H,: f symmetric about (4,, 6,) = (0, 0).

The first test we wish to consider, 7,", is the maximum value that the stand-
ardized Wilcoxon signed rank test, (Wilcoxon (1945)), attains when calculated
using the directed distances of the projections of the sample points on any line
passing through the origin. To define the Wilcoxon statistic, let Z,, Z, - - -, Z,
be random variables, and let R, be the rank of |Z;|. Furtherlet a, = + 1 depend-
ing upon whether Z; is positive or negative. There is an ambiguity in the defi-
nition of the q, if |Z;| = |Z;| for some i = j. However, if the Z; are independent
identically distributed absolutely continuous random variables the probability
of these occurrences is 0. Therefore, we will not be concerned with this pos-
sibility. Now define W = (n(n — 1))~' 33, a, R; to be the standardized Wilcoxon
signed rank statistic calculated on the Z;.

We extend these concepts to the bivariate situation. Let Z(¢) be the directed
distance to the origin of the projection of the point (X, Y;) on the directed line
which is a counterclockwise rotation of ¢ radians of the x axis. Also let R(¢)
be the rank of |Z,(7)|, with a,(r) = &1 depending upon whether Z(z) is positive
or negative. We let
(2.1) T, = maxoz, o, (n4(n — 1))7" T, al(O)R(7) -

The asymptotic distribution of 7,V is discussed in Killeen (1971). The small
sample distribution and hence whether or not the distribution of the statistic is
nonparametric is unknown at this time.

If it is plausible to assume that f{(x, y) is a bivariate normal density, we would
use Hotelling’s T statistic to test the hypothesis. The T statistic is of the form
T = n(X, Y)S-Y(X, YY), where X = n' 3>, X;and ¥ = n~' 37, X,, with S the

sample convariance matrix. If f(x, y) is the bivariate normal density, then
(2.2) T, =[2(n — )] (n — 2)T?
has an F distribution with 2 and n — 2 degrees of freedom. Many competitors
of this test have been proposed in the literature. The simplest of these is perhaps
the bivariate sign test introduced by Hodges (1955). We will denote this test
by T,®. The statistic T, is the maximum number of sample points in the plane
lying in any halfplane formed by a line passing through the origin. Joffe and
Klotz (1962) give expressions for the exact and asymptotic null distributions of
T,”. They also calculate the Bahadur approximate efficiency of this test with
respect to Hotelling’s 7 when the underlying population is bivariate normal.
Another test we wish to consider is Blumen’s (1958) bivariate sign test. To
construct this test, let I'; be the random angle measured counterclockwise from
the nonnegative x axis to the line passing through (X;, ¥;) and the origin, 0 <
I'; <z Now let R, be the rank of I';, and let a,, = +1 according to whether
Y, is positive or negative. Define:

(2-3) T,% = 2[(Z7-1 a; cos(xj/n))* + (X5 a; sin(zj/n))*)/n .
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The test rejects H, for large values of 7,”. Blumen shows that, under the
null hypothesis, T, has an asymptotic chi-squared distribution with 2 degrees
of freedom and claims that 7, is more efficient that Hodges’s T, test.

We find the exact slopes of the four previously introduced statistics. The
large deviation of Hodges’ bivariate sign test T, and our test T, are obtained
by an ad hoc method which is particularly suited to this type of test. The large
deviation of Hotelling’s 7% is found, with the assumption that the sample is
bivariate normal, using the technique of Killeen, Hettmansperger, and Sievers
(1972).

The exact slope of Blumen’s bivariate sign test T, seems less accessible. Here
we use the techniques of Klotz (1965) and Chernoff and Savage (1958).

3. The exact slopes of T, and T,". The Hodges bivariate sign test T, and
the new bivariate signed rank test T, are formulated in a similar fashion.
Therefore, we are able to calculate the large deviations of each of these tests
using the same technique. We use the following theorem.

THeoREM 3.1. Suppose that for each n = 1,2, ..., X, ,, X,,, ---, X, , are

identically distributed random variables. Further, there exists an integer k such that
for sufficiently large n, 1 < m, < n*. Let M, = max,_,, X;,,and suppose that

(3.1) lim, . n'log P(X,, = ¢,) = ¢,

N —00

then

(3.2) lim, ., n'log P(M, = ¢,) = c.

7 —00

Proor. Since {X,, = ¢,} € (M, = ¢,} = U {Xi. = ¢,}, it follows that

n =

(3-3) P(X,, =z ¢.) = PIM,, = ¢,) = n*P(X,, = ¢,) -

nm =

The last inequality results from the fact that the X, , are identically distributed
and m, < n* for sufficiently large n. The result now follows from (3.3).

We now state the stochastic limit of T,® as given by Joffe and Klotz (1962).
They show that if any particular density f(x, y) obtains, then 7,/n converges
almost surely to sup,. ;. P(X,cos (a) 4+ Y;sin(a) > 0) + L. They further show
that if f(x, y) is a bivariate normal density with parameter

A= (01’ 02)2_1(01’ 02)’ >
then

(3.4) T,9/n — ®A) = by(d), a.s.

where @ is the standard univariate normal distribution function.

The large deviation of T, is obtained by means of Theorem 3.1. Let L, be
the directed line passing through the origin such that the angle from the non-
negative x axis to the positive half of L, is tz, L < r < 5; now let the number
of positive projections of sample points on L, be N, and let the line passing
through the origin which is perpendicular to L, be denoted by L,’. As increases,
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each time that L, crosses a sample point, the value of N, changes by one. Let
X,, = N, and let X, , be the kth value of N, as 7 increases from 4. Notice that
T,” = max,;_, ..., X;,and we will show that each X, , is binomially distributed
with parameters n and § when (6,, §,) = (0, 0) obtains. To accomplish this, we
use the following fact:

If X is a random variable with a binomial (n, §) distribution and Z is a +1
random variable such that (i) P(Z=1|X=k)=1 — k/n, and (ii) P(Z =
—1|X = k) = k/n, then X’ = X 4+ Z is also binomial (n, ).

If we let X = X, ,and Z = +1 depending upon whether the first sample point
encountered when the x axis is rotated counterclockwise has a negative or posi-
tive y value, then conditions (i) and (ii) are satisfied, and X; , is binomial (n, }).
We get the same distribution for X, , inductively, k < 2n.

Theorem 3.1 now implies that the large deviation of the sequence T, is
identical to that of a sequence of random variables which are binomial (n, 1).
It is well known (Klotz (1965)) that in this case

3.5) lim, ., n~'log (T, = na) = —(a)log (2a) — (1 — a)log (2(1 — a)) .
Combining this with (3.4) we get

(3.6) Cy(A)/2 = alog (2a) 4+ (1 — a)log (2(1 — a)),

where a = ®(A). We observe that the exact slope of Hodges’ bivariate sign test
is identical to that of the univariate sign test when the underlying distribution
is normal with A = p/s.

An argument similar to the proof of the Glivenko-Cantelli Theorem yields,
when f(x, y) is the bivariate normal density,

(3.7) T,V /nt — ®(2}A) — L = by(A), a.s.

This result is identical to the stochastic limit of the univariate Wilcoxon statistic
as shown by Klotz (1965).
We use Theorem 3.1 to evaluate the large deviation of T,. We will define

m, < 2n* random variables, X, ,, X,,, ---, anm, which are identically dis-
tributed and
(3.8) T,” = maX,<r<m, Xin

We also show that
(3.9) Xipw = (n¥(n — 1)) 302 a, R,

where, for any fixed set of rankings, the a,; are independent +1 random vari-
ables, P(a,; = +1) = 4. This implies that the distribution of X, , is identical
to that of W, the standardized Wilcoxon signed rank test, under the hypothesis
that the underlying univariate density is symmetric about 0. Theorem 3.1 now
implies that the large deviation of T, is the same as the large deviation of W.
To arrive at this result we must define X, ,, X, X, show that each of

2,2 " Amy,m

the X, , have the desired distribution, and establish (3.8). Assume that f(x, y)
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is symmetric about (0, 0), and consider the set of points G, in the plane which
consists of the combinations of pairs of sample points, +(X;, Y;) + (X, Y,) for
all combinations of +’s and —’s, 1 < i < j < n, where addition and subtrac-
tion are coordinatewise. There are no more than 2»* such points.

Define X, , to be W calculated on the projections of the n sample points on
the y axis. Now rotate the coordinate axes counterclockwise until the x axis
crosses a point in G,; we then calculate W on the projections of the sample
points on the rotated y axis. Call this statistic X; ,. Continue rotating the co-
ordinate axis and construct X,,, ---, X,, , in the same way, where m, is the
number of points in G,.

We observe that the X, , attain all of the values of

(3.10) V() = (n(n — 1))~ T2, a()R(1) 0<1<2r.

Since T, is defined by (2.1), (3.8) follows.

Choose k, 0 <k <m,, B, By > B. @ fixed sequence of +1’s and N,
N,, - -+, N, some fixed rearrangement of the integers from 1 to n. Now con-
sider the set 4 which is the collection of possible samples of size n which yield
a, = B, and R, = N, in the calculation of X, ,. For the a; to be independent,
P(a; = +1) = }, it is equivalent that any sequence of +1’s is equally likely.
Therefore, consider any other sequence B/, 3;, ---, 8,’. We let 5/ = a;8;,
where o, = +1, fori =1,2,...,n. Notice that if ((x;, 1), (X35 ¥2) - - - (X0 V) € 4,
then ((a,x;, a, ), (@, Xy, @y )5), - -+ (@, X, @, ),)) € A where A’ is the collection
of possible samples of size n which yield a; = 8, and R, = N, in the calculation
of X, ,. The probability that a given sample of size n is a member of 4 is the
same as the probability that the sample is a member of the set 4. This follows
since f(x, y) is symmetric about the origin. The original sample points are in-
dependent, and neither the ranks of the projections of the sample points on lines
through the origin nor the points of G, are altered when we reflect sample points
through the origin. Therefore, all arrangements of +1’s are equally likely and
the X, , have the desired distribution. Theorem 3.1 now implies that the large
deviations of T, and W are identical. Recall that 5,(A) is given by (3.7) when
a normal alternative with parameter A obtains, which is identical to the uni-
variate stochastic limit of W/n? when a normal alternative obtains with A = p/o.
Therefore, the exact slope of T, when A obtains is identical to the exact slope
of the Wilcoxon signed rank test when the sample is taken from a normal popu-
lation with A = pu/o.

4. Hotelling’s 7. Since T,®, defined by (2.2), is a monotonic function of T?,
it has the same exact slope. Therefore, we proceed to find the exact slope of T, .
We observe that

(4.1) T,®n—, AY2 = by(A) .

Since (X, ¥) and S converge in probability to (6,, §,) and T respectively.
To calculate the large deviation of T,, we use the main result of Killeen,
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Hettmensperger and Sievers (1972). The statistic T, satisfies the necessary
conditions and it follows that when f{(x, y) is a bivariate normal density with
(61, 6,) = (0,0), then n~*logf,(nx) — n~*log P(T,” = nx) = o(l), as n— oo,
where f,(+) is the null density of 7,®. Straightforward manipulations now
yield lim,_, n~*log P(T,® = nx) = — () log (1 4 2x) = hy(x).

Now using these results we finally have

(4.2) Cy(8) = log (1 + A%

as the exact slope of T, evaluated at the alternative A. Observe that this is
identical to the univariate results for the 7 test (Klotz (1965)) with A = p/g.

5. Blumen’s bivariate sign test. Using (2.3) we see that T, /n is twice the square
of the distance of the centroid of the set of points {(a; cos(zj/n), a; sin(xj/n):
Jj=1,2, ..., n} from the origin. Let C, be the centroid of these points.

LemMa 5.1. Suppose that B, and D, be any two sets in the plane such that there
exists an integer [, 0 < | < 2n, with D, = ©(B,), where t is a counterclockwise rota-
tion about the origin of Ir/n radians. If (0,, 6,) = (0, 0) obtains then P(C, € B,) =
P(C,eD,).

Proor. The statistic has discrete distribution in the plane. Suppose that
¢ = (x, y) is a point of positive probability. This implies that P(C, = ¢) = k/2",
where k is the number of distinct arrangements of a; = +1,j=1,2, ..., n,
such that C, = c, since all possible arrangements are equally likely. Notice that
there are exactly k arrangements of a; = +1 such that C, = z(¢). This may be
seen if we let k; = (j + / — l)mod (n) + 1, then the sequence a,, a,, - - -, a,
yields C, = c if and only if the sequence a, , a,,, - - -, a, yields C, = z(c). We
have constructed a 1 to 1 correspondence between the sequences which give
C, = ¢ and the sequences which give C, = ¢(c) and the proof of Lemma 5.1 is
complete.

We use Lemma 5.1 to derive the large deviation of T,". Choose a sequence
0, — p > 0 and define sets 4,;, forn =1,2, ..., =0,1, --.,2n — 1 such that
Ay ={(x, )| r = p,, mj/n = a < 7(j + 1)/n}, where x = rcos(a), y = rsin(a).
Observe that

(5.1) P(C,eA,;)=PC,eA,), for 0Zk<2n—-1,

since 4,,; and A4,, satisfy Lemma 5.1. Now choose ¢, 0 < ¢ < p, then for large n,
(5.2) P(C, € Ay) < (D11, cos(j[n) Z (p, — &)n) .

We use (5.1) and (5.2) to simplify the large deviation of T,*, and get

lim, ., n~'log P(T,"/2 = p,*n)
= lim,_, n~'log (2nP(C, € A4,,))
= lim,__, n~*log P(C, € 4,,)
= lim,_, n7*log P(}}%., a; cos(xj/n) = (p, — €)n) .
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This implies that if lim,_, n~'log P(Z _,a; cos(zmjjn) = p,n) = h(p), for all
0, — o and for all p > 0, then

(5.3) lim,_, n-*log P(T, /2 = p,*n) < h(p — ¢),

for e > 0. We also observe that P(T,"/2 = p,n) = P(3%_, a; cos(zj/n) = p,n)
and lim n~'log X(T,“/2 = p,’n) = h(p). If h(p) is continuous, then combining
(5.3) and (5.4) yields lim n='log P(T,/2 = p,%n) = h(p). It remains to evaluate
h(p), and to show that it is continuous.

The random variables Z,; = a; cos(xj/n) are independent but not identically
distributed. Therefore, the quantity 4(p) may be evaluated by an application
of Theorem 1 of Feller (1943). The argument is similar to that of Klotz (1965)
or Stone (1967). Let E,; = cos(zj/n) and introduce the random variables Z, ;(v)
defined by

Z,,(v)=E,; with probability exp(vE,;)[2 cosh(vE, ;)]
= —E,; with probability exp(—vE,;)[2 cosh(vE,;)]™".
Let S,(v) = > 7., Z,;(v). Then
(5.4) 0, = E(n7'S,(v)) = n~' 337_, cos(xrj/n) tanh (v cos(xj/n))

— i §5 cos(y) tanh (v cos(y)) dy as n— oo .
T

Now let Var(S,(v)) = ¢* and Y = (S,(v) — ES,(v))/s. An inductive argument
on n gives us

P(XtaZyj > pan) = i cosh(VE,,) §7 exp(—v(np, + yo)) dFy(y) .

Using an argument identical to Klotz (1965) it may now be shown that A(p) =
—lim,_, n~* 317, (log cosh(vE,;) + vp,), which yields

(5.5) h(p) = vo — b {5 log cosh (v cos(y)) dy,
T
and from (5.4) we see that
(5.6) - . o = b § cos(y) tanh (v cos(y)) dy .
= T

Therefore the large deviation of 7,“/2 is given by (5.5) subject to condition
(5.6). The resulting integrals are nonelementary and were evaluated by nu-
merical methods on the I.B.M. 360 model 67.

We now obtain the stochastic limit of 7,*/2. Chernoff and Savage (1958)
show the asymptotic normality of a certain class of test statistics, and we employ
their method to evaluate this stochastic limit. Recall that 7, is defined by
(2.3), so that if the bivariate normal alternative with parameter A obtains and

(5.7) %_,a; cos(mj/n)/n —, b (A)
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and
(5.8) S g, sin(ajfn)n —, byA),
then
(5.9) T,0[(2n) =, b2(8) + b(A) .

We evaluate (5.7); the argument for (5.8) is very similar. Since
n~' 3"_, cos(mj/n) — 0 as n — oo, (5.8) holds if and only if Z,/n —, b,(A) where
Z, = Y"_1(a; + 1)cos(mj/n). Recall that I'; is the angle that the line joining
(X;, Y;) to the origin makes with the nonnegative x axis, 0 < T'; <z Let
0,=T,if Y, =20and I', — n if ¥; < 0. Now let F*(3) be the marginal distri-
bution function of §; with support on (—=x, 7). Let 2, be the number of 5, > 0,
i=1,2,...,n,divided by n. The strong law of large numbers insures that 2, —
P(6, > 0) =1 — F*0) = p, a.s. Thestatistic Z, is a one-sample Chernoff-Savage
statistic. A discussion of the one-sample Chernoff-Savage statistic appears in
Puri and Sen (1971). In order to apply these results we define the following
quantities: F(d) = (F*(9) — F*(0))/p, for 0 < 0 < m, G(9) = F*(0 — =)/F*(0),
for 0 < 0 <, J(H) = 2 cos (H), and

(5.10) H(d) = 2,F(3) + (1 — 2,)G(d)
— 2, (F*(0)/p + (1 — A,)F*(3 — 7)/F*(0).

We may replace 2, by p. Then (5.10) becomes H(d) = F*(d) — F*(0) + F*(0 — x).
Further, if

(5.11)  p(A) = p §=.. J(H(D)) dF(5)
= {5 2 cos(n(F*(3) — F*(0) + F*(@ — x))) dF*(3),

then (Z, — nu(A))/n? is asymptotically normal with 0 mean and finite variance.
Therefore, from (5.11) it follows that Z,/n —, u(A) = b,(A). Similarly, we see
that

(5.12) b(A) = §; 2 sin(a(F*() — F*(0) + F*(8 — r))) dF*() .

Now we are able to calculate the large deviation of 7, by combining (5.9) and
(5.11)—(5.12). The integrals involved in this calculation are nonelementary
and were evaluated by numerical methods on the I.B.M. 360 model 67.

Letting o = b*A) 4 b(A), (5.5) gives the expression for the exact slope of
T, when the alternative A obtains.

6. Conclusions. We have considered four bivariate tests of location: a new
bivariate signed rank test 7,V, Hotelling’s statistics T,*, Hodges’ bivariate sign
test 7,’, and Blumen’s bivariate sign test T,.

It is interesting to note that when the underlying distribution is bivariate
normal if the test statistic 7, has a univariate analogue, its exact slope is
identical to the exact slope of its univariate analogue when the univariate al-
ternative is normal with parameters A = p/s. One-half times the exact slope
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TABLE I
One-half times exact slopes for normal alternatives
A 3Cy(4) A 3C4(4)
125 .00611 1.750 . 5462
.250 .02412 1.875 .5744
.375 .05300 2.000 .59%1
.500 .09116 2.125 .6116
.625 .1365 2.250 .6299
.750 .1870 2.375 .6431
.875 .2401 2.500 .6528
1.000 .2937 2.625 .6622
1.125 .3457 2.750 .6688
1.250 .3944 2.875 .6810
1.375 .4398 3.000 .6889
1.500 .4706 o .6931
1.625 .5166
Efficiency
T
1.0 1€1,2
3/n
0.9
0.8
/b
0.7
2/m
0.6
0.5 4
0.4
0.3 4 s } N . >

Fic. 1. Efficiencies for normal alternatives.

for 7,™, T,”, and T,® are found in Table I in Klotz (1965) for normal alter-
natives. Table I gives one-half times the exact slope for 7,“.

The exact Bahadur efficiencies of 7, T,®, and T, with respect to 7,® for
bivariate normal alternatives are compared in Figure 1. The bivariate signed
rank test 7, is superior to 7, and T, when we use exact Bahadur efficiency
with these alternatives. The limit of the exact Bahadur efficiencies as A tends
to 0, of T,, T,®, and T, with respect to 7, are 3/x, 2/x, and z/4. Notice
that the bivariate signed rank test easily beats the other two.
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