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NON-OPTIMALITY OF PRELIMINARY-TEST ESTIMATORS
FOR THE MEAN OF A MULTIVARIATE
NORMAL DISTRIBUTION'

By STaNLEY L. ScLoVE,? CARL MORRIS
AND R. RADHAKRISHNAN?®

Carnegie-Mellon University and RAND

Estimation-preceded-by-testing is studied in the context of estimating
the mean vector of a multivariate normal distribution with quadratic loss.
It is shown that although there are parameter values for which the risk of
a preliminary-test estimator is less than that of the usual estimator, there
are also values for which its risk exceeds that of the usual estimator, and
that it is dominated by the positive-part version of the Stein-James esti-
mator. The results apply to preliminary-test estimators corresponding to
any linear hypothesis concerning the mean vector, e.g., an hypothesis in
a regression model. The case in which the covariance matrix of the multi-
normal distribution is known up to a multiplicative constant and the case
in which it is completely unknown are treated.

1. Introduction and summary. In making statistical inferences relative to in-
completely specified models, we sometimes test an hypothesis concerning some
or all of the parameters before performing an estimation, making the estimation
procedure dependent upon the outcome of the test of hypothesis. For example,
in multiple regression we may test the significance of the regression upon a subset
of variables and include or exclude these variables from the model, depending
upon the outcome of the test of significance. The estimate of the coefficients of
the remaining variables in general depends, then, upon the outcome of the test
of significance. We shall consider such procedures within the following context.
Let X be a p-variate (p = 3) normal random vector with unknown mean vector
6 and convariance matrix ¢/, ¢® being unknown. (Here 7, denotes the identity
matrix of order p.) Let S be distributed independently of X as o%y,*. (x,’denotes
a chi-square random variable with n degrees of freedom.) We shall consider the
problem of estimating § when the loss function is

(1.1) L(G; 0, 0% = (|0 — 0|}/0*

where, for a vector v, ||v||* = v'v. The risk of an estimator ¢(X, S) is thus
E[||e(X, S) — 6]]*]/e* = R(p; 0, %), say. The usual estimator, ¢(X, S) = X, has
constant risk, equal to p for all 4, ¢°; it is well known that X is unbiased, is
the maximum likelihood estimator, and is minimax. Stein and James [2] showed
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that X is dominated by the estimator
(1.2) o(X,8) = (1 —eS/IX X)X, where 0 <c<2(p —2)(n+2).

Consider the following procedure of testing-followed-by-estimation. We test
the hypothesis H: § = 0, against not H (0, denotes the vector of p zeros), using
the statistic F = X" X/S and rejecting H if F > ¢ > 0; note that under H the
statistic nF/p is distributed according to Snedecor’s F-distribution with p and »
degrees of freedom. If we accept H we take 0, as our estimate of #; otherwise,
we use the usual estimate, X. The resulting “preliminary-test estimator” can be
written as

(1.3) o(X, 8) =1, (F)X,

where I,(+) denotes the indicator function of the set B. In Section 2 expressions
for the risk of invariant estimators of # are given. In Section 3 these formulas
are used to show that there are parameter values for which the risk of (1.3)
exceeds p, that there are values for which its risk is less than p, and that (1.3)
is dominated by a modification of (1.2) which is minimax if the size of the test
¢ = 0, is not too small. It is shown in Section 4 that the results extend im-
mediately to preliminary-test estimators corresponding to other hypotheses con-
cerning the mean vector, e.g., the hypothesis that it lies in a specified linear
subspace. In Section 5 covariance structures other than ¢*I, are considered; in
particular it is shown that results for the case ¢/, extend at once to the case in
which the covariance matrix is completely unknown.

2. Expressions for the risk of invariant estimators. We shall be concerned with

estimators

eu(X, ) = W(F)X,
where A(+) is any Borel-measurable function on [0, co). Such estimators are
invariant estimators under the transformation X — cPX, S — ¢S, where ¢ is any
scalar and P is any p X p orthogonal matrix (P'P = I).

(An example of the model under consideration arises as follows. Let X,
X, - -+, X, be independent and identically distributed according to a p-variate
normal distribution with mean vector # and covariance matrix /. Then
X=X=Y",X,/N is p-variate normal with mean vector # and covariance
matrix o’l, where o = /N, and S = }}?_, »¥, (X,; — X,)?, where X, and X,
are the jth components of X and X;, respectively, is distributed independently of
Xas a%,’, where n = p(N — 1). If we make the transformation X; — cPX;, then
the induced transformation of X and S'is X — cPX, § — ¢S.)

LemMma 1.
(2.1) R(¢43 0, 0°) = E[R(0ax/ 0t s2k] — AETA(G 1ok /1) K] + 6'6]0%

where K is distributed according to the Poisson distribution with parameter 6’ 6/24*
and y% ., and y,? are independent.

Proor. (cf. formula (2.11) of [3].)



ESTIMATORS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION 1483

LEMMA 2. If h(.) is any Borel-measurable function on [0, co), then

(2.2) E[h(1 12kl 2.5) K] = (0"0/26%) E[ 2} 1 010x/2,7)]
and
(2.3)  E[h(xpsex/ 0D Aov2x] = PETA( savax/%P)] + (07 0/0°)E(] 4 sar 2] 5

where 2, and y,? are independent, y% . .. and y,* are independent, and y’ ., ,, and
X.. are independent.

PRrOOF.
0’ 0/20%)* ,

El(tyanf2,)K] = ok CO2T exp [ 0002618108 ol | K = K]
B ~0I—0 . (010/20.2)k——1
T 200 7 (k= 1))

0’6 0'0/20%)! )
= OO 51p OOLTY oxp [~ 0020\ ELh(22 01/ 1,)]

20 I
= (0"0/20") E[h(1; s22x/2:)] 5
establishing (2.2). The density of y,? is f,(s) = s?/*"'e=?/['(p/2)2?/*. Note
that sf,(s) = pf,.«(s). This gives E[A(x} u/2. ) X512l = (P + 2K)ETh(x5 a2/ 2915

whereupon E[A(X} ox/1." )15 12x] = E[(p + 2K)A(15 1 2x1/1,7)]- (2.3) follows from
this relation and (2.2).

(2.4) exp [— 6"0/20°|E[A(t; 00/ Xa")]

LEMMA 3.
(2.5)  R(pw: 0, 0°) = E[R (Lo 1) 2prox] — 200" 0]0°) E[A(2} 0 42x/207)]
+ 0'6/0*
(2.6) = PE[h2(Xf;+2+2K/Xn2)] - 2(6,0/02)E[h(xi+2+2K/Xn2)]

+ (00]0") E[R* (X 1410x/247)] + 0" 60 .

Proor. Use of (2.2) in (2.1) produces (2.5), and use of (2.3) in (2.5) gives
(2.6).

3. Properties of preliminary-test estimators.

THEOREM 1. Let ¢(X, S) be of the form (1.3), where c is any positive constant.
Then R(p; 0, 0®) > p if [|0|]"[o* > p.

Since the risk of X is p, and X is fninimax, Theorem 1 states that no such
preliminary-test estimator can be minimax.

Proor. Here h(F) = I, ,, (F), so that #*(F) = h(F), and the risk is thus
(3.1) R(p3 0, 0%) = (p — 20'0/0") Pt {3 3000 > €.}
+ (0/0)0Y) Pr {14 0k > €17} + 0/0)0?
= (p — 20°0[0°) Pr {11210k > €X'}
(3-2) + (0"0/0®) Pr {3 040 > 2,7} + 0°0]0°
= (p — 0'0/0) Pr {3 0005 > 1.} + 0" 0]
=p+ (000" — p)Pr{y} siax = 1.’}
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where (3.2) follows because y2,,,,x is stochastically larger than y2., ,.. The
result now follows, because the final expression is greater than p if 6’6/ > p.

Theorem 1 states that there are points in the parameter space where the pre-
liminary-test estimator has larger risk than does the usual estimator, X; we would
expect preliminary-test estimators to perform better than X when the length of
0 is small; we see in the next theorem that this is true.

THEOREM 2. Let ¢o(X, S) be of the form (1.3). Then R(¢;0,0% <p if
0'0/a* < p/2.

Proor. Choose @, ¢* such that p — 26’6/s* > 0. Replacing Pr {32, ., > cx,’}
in (3.1) by Pr {y3,,..x > cx,%}, which is a larger probability, we see that

R(p; 0, 0%) = (p — 200/0°) Pr {1 1ox > €247}
F (070)0) Pr {2, 0 > c1,7) + 0'0)0?
=(p— 00/ ) Pr{y} s 1ax > cx,’} + 0'0/0”
=p—(p—00/")Pr{y, ox < c1,”}
<p
since 0'6/o* < 20'0/a* < p.

The risk of preliminary-test estimators at the origin can readily be computed
from Lemma 1. For when # = 0,, K is degenerate at 0 and F = y,*/x,% and so
R(¢;0,, 6°) = E[I, .,(t,)2.5)x,°]- As is well known, the statistic G = y,* + x,’
is independent of F, and we have y,* = GF/(1 + F), so

R(¢; 0,5 0°) = E[,,,(F)GF[(1 + F)]
= (n 4 p)E[L ., (F)F|(1 + F)]
= (n + P)E[Lej0se),)(B)B]
= [(n + p)IB(pI2, n|2)] §G0s0b™ (1 — b)**"'db
= (n+ p)B(p/2 + 1, n[2) Pr{B* = c/(1 + ¢)}/5(p/2, n/2)
=pPr{B* =z ¢/(1 + ¢)}
=pPri{g./t' =,

where B=F/(1 + F) has the beta distribution with parameters p/2 and n/2 and B*
has the beta distribution with parameters (p + 2)/2 and n/2. Thus, as ¢ — oo,
the risk at the origin of the corresponding preliminary-test estimators tends to
zero, that is, we can find a preliminary-test estimator which does arbitrarily
well at the origin (at the expense of being poor elsewhere).

We turn now to the main result of this paper, that any preliminary test esti-
mator is dominated by a modification of Stein’s rule (1.2) if p = 3. The pre-
liminary test rule ¢, estimates # as 0 if F < ¢ and as X otherwise. Since Stein’s
rules dominate X, we expect that the rule which estimates § as 0, if F < ¢ and
otherwise estimates # by a Stein rule would be superior. That this is true is the
subject of Theorem 3. Define ¢, = (p — 2)/(n 4 2) and let asatisfy 0 < a < 2.
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Define gy(F) = 1, o (F), 9:(F) = g(F)[1 — ac,/F] and gy(F) = Ly, o(F)[1 —
ac,/F]. Define ¢,(X, S) = g,(F)X, i <0,1,2. Theorem 3 shows ¢, dominates
¢, for all ¢, a. If ¢ < ac, then ¢, is uniformly better than ¢, since g,(F) =
max (0, g,(F)) is a uniformly better coefficient of X than g,(F) in that g, does
not change the signs of the components of X. (This is pointed out in [3].) The
estimators ¢, are always minimax and therefore the rule ¢, is a minimax sub-
stitute for the preliminary test estimator whenever ¢ < 2¢, (by choosing a to
satisfy c¢/c, < a < 2ing,). If ¢ > 2¢,then ¢, dominates ¢,, but ¢, may not domi-
nate ¢,. In this case, ¢, may not be minimax. All of these assertions are simple
consequences of the following

THEOREM 3. Let ¢, = (p — 2)/(n + 2), let a satisfy 0 < a < 2, and define
0(F) = Iy o)(F), g:(F) = go(F)[1 — acy/F, ¢i(X, S) = g(F)X, i =0,1. Then
R(py; 0, 6% > R(py; 0, 0*) for all 0, o,

Proor. In formula (2.1), we calculate risks conditioned on the value K = k
and set F = yx?,,x/x,> which is independent of 7 =y}, + x,>. Thus,
ER(2 a1’y s2x = ER(F)TF[(1 + F) = (n + p + 2k)ER(F)F[(1 + F).  Re-
call that the density of the ratio y,*/x,* at f is f“*7}/[(1 — f)™+2725(u/2, v[2)].
Let F, have the distribution of y2,,./x%,,- Then for any function s, Er(F)/(1 +
F) = n(p + 2k + n)'Eh(F,). Formula (2.1) therefore becomes

ke —2
(3.3) R(gy; 0, 0%) = X155, 2__6571:'(__) R,(h)
with 2 = ¢’6/20* and
4nk
(3.4) R(h) = nER(F,)F, — P 2’2 L EHEN B+ 2

Since g (F) = go(F) and g(F) = g(F)[1 — 2ac,/F + a*c}/F?], from (3.4) we
easily derive
(3.5) AR, = R, (9,) — Ri(9,)

— nac,Eg(F)[2 — acylFy] — - 4Ka¢ _ pgpyL+ F

n‘|‘P+2k F,

Let F, and F, have the distributions of y2_, ,x /1%, and x2_, . /x4, rESpPectively.
Then it is easily checked by writing out the densities of F,, F,, F, that for any
function A,

EWE)1 + F)JF, =" TP+ 2K gy

p— 2+ 2k
EWF)F, = - "T2  EwgF).
(F)IR = i B
Consequently,
AR,/nac, = 2Egy(F,) — acn + 2) 94(F,)
k 0 o\*1 p — 2 2k o\L'3
- 2k 9o(F)
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or
(3.6) AR, /nac, = 2E[gy(F)) — 9(F)] + _p_—2__ [2Egy(F,) — aEgy(F)] -
P2+ 2%

From their definitions, F,, F,, F, are stochastically ordered, satisfying F, > F, >
F,. Since g, is monotone increasing and 2 > a, we have the bound

3.7 AR, > Mc(p —2)2 =D pup =~ 1 >0.
(3.7) ) K > P'“2+2k t{F, = c} =

We therefore have
Ak —2
(.8)  Rigie o) — Rips 0, 0) = Ny SRR, > 0,

which proves the theorem.

Averaging AR, of (3.6) according to the formula (3.3) provides an exact ex-
pression for R(gy; 0, 0*) — R(p; 0, 0%). The risk of (X, S) may be calculated
from (3.1). The difference of these two results provides a formula for R(¢y; 0, 0%)
in terms of the distribution functions of noncentral F distributions.

A limiting case (corresponding to n = oo) is essentially the special case of 4°
known. Here also a result similar to that of Theorem 3 holds. From calcula-
tions similar to, but easier than those of Theorem 3, using the risk formula
(2.10) of [3] page 353, it is easily shown that the estimator 7, .,(V)X, V' = [|X]%,
is dominated by Stein’s modified estimator I, ..,(V)[1 — a(p — 2)a*/V]X for any
0 < ax<2,¢>0. Again, Stein’s modified estimator above can be uniformly
improved upon by its positive part if ¢ < a(p — 2), and will not be minimax
for large c.

We have shown that minimax Stein estimators of the form ¢,(X, S) are uni-
formly better than preliminary-test estimators provided ¢ < 2¢,, or equivalently,
provided the size « of the test that # = 0 is not too small. Given in Table I for
several values of n, p are the probabilities a = Pr{p,(X, S) # 0} assuming & = 0
for ¢ = ¢, and ¢ = 2¢,. Letting F,, be Snedecor’s F variable, a is calcu-
lated as

a = Pr{F,, > nacy/p}

for a = 1,2 in Table I. As n—oo0, the case of ¢ known, the value calculated is
TABLE 1

Levels of significance of tests corresponding to use of the estimator
Lo, (F)X when ¢ = co and ¢ = 2co, where co = (p — 2)/(n + 2)

p
3 4 5 10 20 30 00
n=p [ .89 .84 .81 .73 .67 .64 .50
n=p 2 .76 .65 .57 .33 .14 .07 0
n=o0 ¢ .80 .74 .70 .63 .59 .57 .50

n=o0 20 .57 .41 31 .10 .02 .003 0
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a = Pr{y,>> a(p — 2)}. From the table, we see that for small values of p,
minimax Stein estimators only dominate those preliminary-test estimators with
larger values of a than are ordinarily used. The values in the table are not the
minimum possible values for which a minimax substitute exists dominating the
preliminary test estimator: the Stein rules are inadmissible; and rules of the
form ¢,(X, S) may be minimax for some values of ¢ > 2c,.

4. Other hypotheses. The results extend immediately to preliminary-test and
positive-part estimators corresponding to hypotheses more complicated than the
hypothesis that the mean vector equals the zero vector, for this hypothesis is
essentially the canonical form of more complicated hypotheses.

The hypothesis that part of the mean vector is equal to a given vector. Suppose
that the random vector Z is distributed according to a g-variate normal distribu-
tion with mean vector { and covariance matrix ¢*/,, where Z and { are parti-
tioned as Z' = (Z/, Z,)), ¢’ = (&/, &), Z, and {, being p x 1 and Z, and {, being
g — p x 1. Sis distributed independently of Z as o®y,*. Suppose we are inter-
ested in the hypothesis ¢, = {,. By taking 6 =, — {,, X =Z, —{,, and
F = ||Z, — {,||}/S we can see that for the problem of estimating { subject to .
loss [|€ — ¢|Pjo*(= II€, — Gl[Yfo* + |IC, — Gil[*/o%) the estimator
4.1) <1 — eSI|Z, — Ll (Z) — Cu) + C1o>

Z,
dominates the estimator
(Fem U =G+ )
Z,
A special case is the case p = ¢, when Z, is the whole vector Z.

The hypothesis that the mean vector lies in a specified linear subspace. Let T be
a t-dimensional normal random vector with mean vector = and covariance matrix
o’l,. Let S be distributed independently of T as ¢%,>. We are interested in the
hypothesis that  lies in , a specified linear subspace of dimension ¢ — p. (Thus
p is the number of degrees of freedom associated with the hypothesis.) Let T
be the projection of T onto w, i.e., T = PT, where P is the appropriate projec-
tion matrix. A preliminary test estimator corresponding to the hypothesis takes
the value T or 7, according as we accept or reject the hypothesis. Thus a pre-
liminary-test estimator for this problem takes the form 71, ., (F)(T' — T+ T, ie.,

(4.2) I, .(F)Y{ — P)T + PT,

where here the test statistic F = ||(I — P)T]|*/S. In the canonical reduction cor-
responding to the hypothesis r € @ we make an orthogonal transformation of 7'
into the vector Z, the transformation being chosen so that the hypothesis r €
is transformed into the hypothesis {; = 0,. It can be shown that in terms of the
vector T the estimator (4.1) takes the form

cS +
(4.3) (1 — m) (I — P)T + PT.



1488 STANLEY L. SCLOVE, CARL MORRIS AND R. RADHAKRISHNAN

It follows that for the problem of estimating z, subject to loss ||# — z||*/d?, the
positive-part estimator (4.3) dominates the preliminary-test estimator (4.2).

A particularly interesting special case is the hypothesis that all the components
of r are equal. The linear subspace w is then the equi-angular line in t-space,
and its dimensionality, ¢t — p, is equal to one, i.e., p = t — 1, so that the results
require t > 4. The projection T'is in this case equal to Te,, where e, is the vector
of t ones and T = Y}t T;/t, T; being the ith component of 7. It follows that
(4.3) is

<1 - _*JE___>+ (T — Te,) + Te, .
i (T = T)

Regression models. Let V be distributed according to an N-variate normal dis-
tribution with covariance matrix ¢/, and mean vector v lying in Q, an r-dimen-
sional linear subspace of N-space (r < N). (Thusv is of the form v = A48, where
the parameter vector 3 ranges over k-space and 4 is an N X k matrix of con-
stants and has rank r < k.) A linear hypothesis concerning v states that v lies
in w, an (r — p)-dimensional subspace of Q(p < r). Let P, be the matrix giving
the projection from N-space to Q; V, = P,V is the matrix projection of ¥ onto
Q. The statistic S = [|(/ — Py)V||* is distributed independently of ¥ as o*y%_..
Let P, be the matrix giving the projection onto w; ¥, = P,V is the projection
of ¥ onto w. The appropriate preliminary-test estimator estimates v as V, if we
accept the hypothesis that v € w and as ¥, if we reject this hypothesis and thus
takes the form /1, _,(F)( Vo—V)+ V,i.e.,

(4'4) ](C,bo) (F)(PQ - w)V + Pu) V ’

where here the test statistic is F = ||(P, — P,)V|[?/S. In the canonical reduction
of this problem we transform to a vector U with mean vector x. These vectors
are partitioned as U’ = (U/, U/, U)/) and ¢/ = (¢, 11, 1), where U, and p, are
px 1, U,and p, are (N —p + r) x 1, and U, and g, are (N — r) x 1. The
problem of testing the hypothesis that v € w is transformed into testing », = 0,
against p, # 0,(x; = 0, _, under both the null and alternative hypotheses and f,
is unspecified). Our results are applied to this model by taking {, = 1, {, = s,
Z =U,Z,=U, Intermsof Vand S = |[(I — Py)V| the resulting positive-
part estimator takes the form

cS

*3) ("~ o

>+(P&2 - Plv)V+ P{:)V'
The result is that for the problem of estimating v subject to loss [|2 — v||*/¢* the
positive-part estimator (4.5) dominates the preliminary-test estimator (4.4).

By referring to [3], where it is shown how to apply the results of [2], to
analysis-of-variance problems (by projection onto appropriate linear subspaces,
as above), one can generate positive-part estimators which dominate the cor-
responding preliminary-test estimators for these problems, too.
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5. Other covariance structures. Let X be the covariance matrix of the multi-
normal random vector X. We assumed that & = ¢/, where ¢? is unknown but
S, independent of X and distributed as a%,?, is available for estimating ¢?. The
results obtained extend at once to other covariance structures.

= ¢’B. Here B is a known, symmetric, positive-definite matrix. This case
is treated by making a transformation which sends B into I.

Y = %I, o® known. Results for this case can be obtained by letting n — oo.
S/(n + 2) is replaced by ¢*; i.e., F = X’ X/S becomes (n + 2)X' X/s?, so that, e.g.,
(1.2) becomes (1 — (n 4 2)cX'X[0*)X, 0 < ¢ < 2(p — 2)/(n + 2), or, equiva-
lently, (1 — aX'X/o*)X, 0 < a < 2(p — 2).

Z completely unknown. Now let Y be a p-dimensional (p = 3) normal random
vector with unknown mean vector » and unknown covariance matrix . Let
W be distributed independently of ¥ according to the Wishart distribution with
m degrees of freedom and parameter . The problem is to estimate » when the
loss function is

L@ 9, 2) = () — ) 27 () — ) -

Denote estimators for » by ¢; denote risks with respect to L* by R*. Let J be
distributed according to the Poisson distribution with parameter »'X~1/2. Let
T =Y'WY. We shall be interested in estimators of the form ¢, (Y, W) =
h(T)Y. Such estimators are invariant estimators with respect to the transforma-
tion ¥ —»CY, W — CWC’, where C is a p X p nonsingular matrix. (Let Y,

Y,, -+, Y, be independent and identically distributed according to a p-variate
normal distribution with mean vector 5 and covariance matrix I"'. Then Y =
Y = 31, Y,/N is p-variate normal with mean vector 5 and covariance matrix

Z=T/N, and W= 31, (Y, — Y)Y, — Y)/N is distributed independently of
Y according to a Wishart distribution with parameter £ and m = N — 1 degrees
of freedom. If we make the transformation Y; — CY,, then the induced trans-
formation of Y and Wis Y — CY, W — CWC(C".)

Lemma 4. R*(¢ys 7, Z) = E[h2(X:+2J/X3n—p+l)xi+2J] - 4E[h(X?J+2J/X3n—p+l)J] +
7' Z7Y, where y%.,; and y%,_,., are independent.

Proor. The risk is
R¥(¢y5 7, Z) = E[(h(Y' WS Y)Y — ) TR WY)Y — p)].

Let 4 be a matrix such that AX4’ = I and make the transformation Y* = AY,
giving W* = AWA’. Y* is normal with mean vector * = 47 and covariance
matrix /. W* is distributed independently of Y* according to the Wishart
distribution with m degrees of freedom and parameter /. The risk is
E[[|W(Y*W*1Y*)Y* — »*||?]. It can be shown that the conditional distribu-
tion of Y*' W*~'Y* given Y* is that of ||Y*|?/S*, where S* is distributed inde-
pendently of Y* as y2_,.,. (See Anderson, [1] page 106.) |[Y*|]* is distributed
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as noncentral chi-square with p degrees of freedom and noncentrality »*'y* =
n'Z7'y, i.e.,as xJ,,,. Thus the risk is E[||A(Y*'Y*/S*)Y* — »*|?], and the result
now follows by application of Lemma 1.

REMARK. An invariance argument shows that the risk of 4(T)Y depends upon
the parameters only through »'Z~'p; thus the risk is a function of »'Z~', m
and p.

THEOREM 4. R*(¢; 1, Z) = fiy’Z 'y, m — p + 1, p) if and only if R(¢,; 0, ¢*) =
f0'6)a*, n, p).
Proor. (Follows at once by comparing Lemmas 4 and 1.)

CoRrROLLARY. The estimator k(F)X dominates h(F)X for estimating 0 if and only
if k(T)Y dominates h(T)Y for estimating 7.

Thus, for example, the fact that (1 — d/YW'Y)Y, 0 < d < 2(p — 2)/(m —
p + 3), the estimator discussed in [2], is improved by replacing 1 — d/Y' W'Y
by its positive part follows from the corresponding fact for (1 — ¢S/X’ X)X.
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