The Annals of Mathematical Statistics
1972, Vol. 43, No. 6, 2078-2082
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In denumerable state, denumerable action sequential decision problems
in which the reward function has uniformly bounded 2nd moment, the
optimal reward for the decisionmaker who restricts himself to the countable
set of stationary policies consisting of those which choose some arbitrary
action at all but a finite number of states will be the same as the optimal
reward for the decisionmaker who optimizes over all stationary policies.
Under some further restriction, he can do almost as well simply by solving
a large finite state truncation of the original problem..

1. Introduction. In denumerable state, denumerable action sequential decision
problems, the number of possible stationary policies is uncountably infinite.
We show (Theorem 2) that so long as the reward function being optimized has
a uniformly bounded 2nd moment, the optimal reward for the decisionmaker
who restricts himself to the countable set of stationary policies consisting of
those which choose some action arbitrarily at all but a finite number of states
will be the same as the optimal reward for the decisionmaker who considers all
possible stationary policies. (The term “optimal,” as used herein, refers to
optimality among all stationary policies. This is not necessarily the same as
optimality among all policies, including non-stationary policies. See, for in-
stance, page 58 of [3], example 3.9.2.)

We also show (Theorem 3) that under some further restriction, the optimal
reward will be the limit of the optimal rewards in the finite state truncations
of the countable state problem. Thus, the decisionmaker can get close to the
optimal reward by solving a large finite state truncation of the original problem.
Since this procedure is frequently followed in practice, this result may give
practitioners who worry about such things more peace of mind. Fox ([4] and
[5]) gives results in the same vein for some dynamic programming problems.

2. Results. LetS = (1,2, --.)be the states, let 4 = (1,2, - - -) be the actions,
and let g(+ |5, a) be the transition probabilities to the new states for a sequential
decision problem. A stationary policy 4 is a function from S to 4. Let A be
the set of stationary policies. The cylinder topology on A is the topology gen-
erated by sets of the form (6|d(i) = a;, 1 < i < m) for some m and some fixed
sequence of actions a, - -, a,,.

In what follows, we assume that the initial state of the process, s, is fixed.
Our results are thus valid for each initial state individually, rather than uni-
formly across states. Functional dependence on the initial state is suppressed.
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Suppose there exists some event B which occurs at some finite stage of the
process with probability one for all € A. (Examples are: first return to some
fixed state in a recurrent chain, occurrence of stage N in the process, reaching
a terminal state, etc.) Let 4 denote the path of the process (i.e., the sequence
of states visited and actions taken) beginning at state s, and continuing until
event B occurs. Let H denote the set of possible paths &, and let P, denote the
probability induced on H by 4. For any function v defined on H, let E,(v) denote
the expectation of v under P;. Think of v(%) as the reward accumulated along
the path 2. Examples are given in Section 3.

THEOREM 1. If E;(v?) is uniformly bounded for all 6 € A, then E4(v) is a continuous
function of d in the cylinder topology on A.

Proor. Assume v = 0, the general case follows by considering the positive
and negative parts of v separately.

Let ||#|| be the largest state reached by h. Let p,(0) = P;(||#|| = i) and let
Vi(6) = E5(v|||h|| = i). We need the following lemma.

LemMMA 1. If 6 and o are stationary policies such that 6(i) = o(i) for 1 < i< m
for some m = s,, then p,(3) = p,(d) and V(0) = V(o) for1 < i < m.

Proor. So long as state m is not exceeded, the probability laws governing
the process under policies d and ¢ are identical. []

Now let d,, — 0 in the cylinder topology. Without loss of generality, assume
that 4,,(/) = 6(i) for 1 <i < m, and that lim,,_, E, (v) exists. (Choose a sub-
sequence to achieve this, if necessary. This convention avoids having to keep
track of an additional index.)

By the lemma, for all m > s,,

(1) L1 Pi(0,)Vi(0,) = Xt pi(0)V(9) -
Hence, for any r > s;and all m > r
E, (v) = X1 pi(0,)Vi(0,) = 27-1 p:(0)Vi(0) -

Hence,
lim, ., E, (v) = 271 pi(0)Vi(0) = E(v) .

Now assume lim,, ., E; (v) > Ey(v). Then there exists M > s;, and ¢ > 0 such
that for all m > M, E; (v) > E;(v) 4 e. Thus, by (1), for m > M

) Py (IRl > m)E; (v][[Rll > m) = 2iimr Pi0n)VilBn) > &

But by Lemma 1, P; (||h|| > m) = Py(||h|| > m) — 0 as m — oo.

Hence E, (v|||A|| > m) — co. From (2), then

P; (|hl] > m)E7 (v]|[|h]| > m) — oo .
But
P; (Al > m)E} (v][|h|| > m) < P; (||Al| > m)E; (V*|[A]| > m)
2 E, (v").
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But the E, (v*) are uniformly bounded. This is a contradiction; hence
lim, .., E; (v) = Ey(v). [

CorOLLARY 1. If v is bounded, then E;(v) is a continuous function of & in the
cylinder topology on A regardless of the transition probabilities q.

Proor. If v is bounded, E;(v*) is uniformly bounded regardless of ¢. []

COROLLARY 2. If A is finite and E(v?) uniformly bounded, then there exists a 6*

such that
E;*(v) = sup;seq Es(v) .

Proor. The cylinder topology on A is the product topology corresponding to
the discrete topology on A. By Tychonoff’s theorem, if A is finite, this topology
is compact, hence E;(v) achieves its maximum. []

Form > 1, let A, = (6|0({) = 1 for i > m). Think of A, as policies defined
only on the first m states—the choice of action 1 thereafter being an arbitrary
one. Let Ay = Ug.,A,. A, is a countable dense subset of A in the cylinder
topology. Our main result is

THEOREM 2. If E;(v*) is uniformly bounded in 9, then

Sup; e s E5(v) = sup;e,, E;(v) -

The theorem is an immediate corollary of Theorem 1. Thus, if the criterion
for optimization in the sequential decision problem may be placed in the form
“maximize E;(v)”, with E;(v*) uniformly bounded in v, then optimization may
be restricted to A,. Examples are given in Section 3.

THEOREM 3. If Ey(v*) is uniformly bounded and lim,, ., Py(||k|| > m) = O uni-
formly in d, then
(3 Sup; e, E;0 = lim,,_, sup;,, E;(v|[|[#]] < m) .
Thus, if the condition of Theorem 3 holds, the optimal return in the original
problem is the limit of the optimal returns in the finite state problems obtained
by considering only the first m states of S, with normalized transition proba-
bilities of g(|s, a)/ 3™, q(i|s, a) for s, t < m. Thus, for m sufficiently large,
¢/2-optimal stationary policies in the finite state problem will be ¢-optimal in the
original problem.

Proor oF THEOREM 3. By Lemma 1, E;(v|||k|| < m) depends only on 4(1), - - -,
d(m), hence
SUPsea,, Es(V[[1A]] < m) = sup;es Ex(v||k]| < m).

It is thus sufficient to prove that
4 lim,, ., sup;., E;(v|]|h]] < m) = sup;., E;(v) .
For any d e A,
E;(v) = Py(||h]| < m)E;(v|||h]| = m) + Py(||B]| > m)E;(v][|A]| > m) .
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As m — oo, Py(||h|| £ m) — 1, and the argument used in the proof of Theorem 1
shows that P;(||h|| > m)E,(v|||k]| > m) — 0. Hence, E;(v|||k|| £ m) — E;(v). If
Py(||#]| > m) — O uniformly in 4, this convergence will also be uniform, and (4)
follows. []

The condition Py(||A|| > m) — 0 uniformly in ¢ is sufficient to yield (3) but
not necessary. To see that some condition beyond E;(v?) uniformly bounded is
necessary, however, consider the following.

ExamPLE 1. At state 1, pick any state i > 1 and move there with probability
one. At state i, if i is even move to state 1 or state i 4+ 1 with probability
each, pay nothing. If i is odd, move to state 1 which probability one, pay $ 1.
Let v be the total received in a state 1 to state 1 cyc[e. Thus, for m even,

SUP;es,, Es(v|[|h]] < m) = 0> sup,., E;v = —}%,

where A’ = {d|d €A, P;(||k]| £ m) > 0}. Note that there existd € A,, for which
P;s(||h]] < m) = 0 so that E;(v|||k|]| < m) is undefined.

Note that in this case lim,, ., sup;., . E;(v|||h|] < m) does not exist. This ex-
ample shows that Theorem 2 can fail in discounted reward, total negative re-
ward, or average reward problems. (In the total negative reward case, move to
a terminal state instead of back to 1.) It can also fail for problems with positive
reward, as shown in Example 2.

EXAMPLE 2. Same transition structure as Example 1. Move from an even
state 1 and get $ 1. Move from an odd state and get nothing. Then, for m even

SUP;ey,/ E;v|||h]| < m)=1>sup;., E;v=1%.

3. Applications. The results given above are applicable to the following types
of sequential decision problems.

a. Terminating problems, in which the decision problem terminates after some
finite (possibly stochastic) length of time. This includes search problems, many
learning models, leavable gambling houses [3], and all finite stage problems.
Let the event B be the event of termination, and let v be the total reward or
cost, terminal utility, etc.

b. Discounted and positive bounded infinite stage problems. Let v be the total
discounted reward or total reward. Theorems 2 and 3 as stated above are not
directly applicable, since there is no satisfactory event B. However, they can
be easily extended to cover these cases using the fact that the optimal finite stage
rewards converge (uniformly in the discounted case and monotonically in the
positive case) to the optimal infinite stage reward ([1] and [2]). Theorems 2 and
3 hold for each finite stage, and remain valid under passage to the limit. The
equivalent of Theorem 3 for the discounted case is given by Fox in [5]. Corollary
2 does not extend in the same way, and in fact, is false in the positive case. See
[2] for a counterexample.

C. Average reward recurrent chains (including renewal problems). Assume some
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state, say state 1, is reached from every state with probability one. Start at
state 1 and let the event B be the return to state 1. Let v be the (time) average
reward on a state 1 to state 1 cycle. For continuous time problems one must
assume that the means and variances of the times between transitions are bounded
above and the means of these times are bounded away from zero so that the ex-
pected time average reward coincides with the overall time average reward. See
[6] for details.
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