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A CRAMER VON-MISES TYPE STATISTIC FOR
TESTING SYMMETRY

By E. D. ROTHMAN AND MICHAEL WOODROOFE
University of Michigan

A Cramér von-Mises type statistic is proposed for testing the symmetry
of a continuous distribution function. Its asymptotic null distribution is
found explicity, and its asymptotic distribution under a sequence of local
alternatives is described. A Monte Carlo study indicates that the asymptotic
formulae are accurate for sample sizes as small as twenty.

1. Introduction. Let X, --.-, X, denote a random sample from a continuous
distribution function F and consider the problem of testing F for symmetry about
zero. This problem, of course, has not suffered from lack of attention and may,
in particular, be treated with any of a multitude of rank tests (e.g., [3], Chapter 3).

Smirnov ([6] and [7]) once proposed a test based on the statistic

Bn = Supxéo ,Qn(x)l ’

Qu(x) = n{[F,(x) + Fy(—x) — 1]
for x e R with F, equal to the sample distribution function. This statistic has
also been considered in [2]. The exact and asymptotic null distributions of B,
are known. Moreover, tests which reject for large values of B, are known to be
consistent against all non-symmetric alternatives, whereas some rank tests are not.
Here we consider a related statistic—namely,

(1) Rn =n S°—°°° [F'n,(x) + Fn’(_x) - 1]2 an(x) ’

where 2F,/(x) = F,(x + 0) + F,(x — 0) for xe R. We use F,’ instead of F, in
order to make R, invariant under multiplication of the data by —1. For com-
putational purposes R, may more conveniently be written

@ R, = Tiu|Fi(-xy) - U LT,

2n

where X/, ..., X, denote the ordered values of X,, - - -, X,. We shall show that
our test too is consistent against all non-symmetric alternatives, give its asympto-
tic null distribution and percentiles explicitly, and describe its asymptotic non-
null distribution under a sequence of local alternatives. We shall also present
the results of a Monte Carlo study which indicate that the asymptotic null distri-
bution provides an adequate approximation for sample sizes as small as twenty.

where

2. Distribution theory. We begin with two theorems which describe the
asymptotic distribution of R, under both the null hypothesis and a sequence of
local alternatives. In the statement of these theorems, all distribution functions
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are understood to be right continuous. Also, if F is a distribution function and
0 < y < 1, then F~'(y) is the infimum of x € R for which F(x) = y.

THEOREM 1. Let X,, ..., X, be a sample from a continuous, symmetric distri-

bution function F. Then, R, converges in distribution as n — oo to
R = {{W(t)dt,
where W denotes a standard Wiener Process on [0, 1].

THEOREM 2. Let G be a continuously differentiable, symmetric distribution
function whose support is an interval and define p on [0, 1] by p(0) = 0, and
#(2t) = 2G'(G™()), 0 < t < L. Also,letY,, --., Y, be a random sample from G
and let X;, =Y, +9,, i=1,---,n where n'd, -0 as n— oo. If p is square
integrable, then R, converges in distribution as n — co Yo

R(3) = §3 (W(1) — du(t))* dt,
where W is as in Theorem 1.

Proor. We will prove Theorem 2 and then indicate how the proof may be
modified to apply to Theorem 1.

Let F denote the distribution function of X, (the dependence of X, and F on
n will be suppressed in the notation) and let

T, (x) = n¥(F,(x) + F,(—x) — F(x) — F(—X)), x=<0.
Then, as in [2], we find that T,(F~Y(¢)), 0 < ¢t < 1, converges in distribution to
W(2t) with respect to the topology of D = D[0, }]. (Here, of course, T, (F~'(0)) =
0 by convention.) Therefore,

0.(G-(1)) = T,(F-X(t) — 3,) + n¥(G(G~(1) — b,) + G(G(1 — 1) —3,) — 1)
converges in distribution to W(2r) — du(2t) by the continuity of W and a simple
application of Taylor’s theorem. Since integration defines a continuous func-
tional on D, it now follows easily that

$, = §7u Q,(x)* dG(x)
= 2 §4 Q.G (1) dt
converges in distribution to
2 §E[W(2t) — op(20)]* dt = R(9)

as n — oo. Thus, Theorem 2 will be proved if we can show that S, — R, — 0
in probability as n — co.

To see this let R,, be defined by (1) with F,’ replaced by F,. Then, by expand-
ing the squares in the definitions of R, and R,, and using the inquality |F,(x) —
F,/(x)| < 1/2n, x € R, and the Minkowski Inequality, we find easily that

wp 1, so it will suffice to show that R,, — S, — 0 in probability as n — co. Let
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V,=0,oG*and let H, = F, o G™'. Then,
Ry — Sul = N3 V(1) dH, (1) — Sh V(1) d1] .

If we now approximate ¥, by a step function which is constant on the intervals
(i — 1))2k, ij2k], i =1, ..., k, we find easily that

[Rup = Sul = 28UPjeyy [Va(1)' — Vau(s)'|

+ 2(SUPos, sy Vn(t)2)< 5= H, <ﬁ> - ZJ—k‘) )

which converges to zero in distribution (and hence in probability) as n — co and
k — co (in that order). Here, of course, we use the fact that V, is converging
to V, where V(1) = W(2t) — op(2t), 0 < t < 1.

This completes the proof of Theorem 2. The proof of Theorem 1 is similar
but simpler, since there is no need to consider the function x. The reader may
easily convince himself that there is, consequently, no need to impose the addi-
tional conditions on the distribution of X;.

Since R, — oo wp 1 as n — oo if F is a fixed, non-symmetric distribution func-
tion, we immediately obtain

COROLLARY 1. Tests which reject for large values of R, are consistent against all
non-symmetric alternatives.

It is possible to describe limiting distribution of R, as that of an infinite
weighted sum of chi-square random variables. This representation will be useful
in determining the percentiles of the asymptotic null distribution. Its proof may
essentially be found in [5].

COROLLARY 2. If either 6 = O, or p is square integrable then
R(0) = Xia MZ, — 0a,)[(2k — 1)’
in distribution, where Z,, Z,, - - . are independent standard normal random variables

and (if 6 + 0)
@, = (k — §)m §b () sin ((k — p)r) di

fork:1,2,---.

We conclude with a series expansion of the asymptotic null distribution
function. The result may also be found in [4], but we include its proof for
completeness.

THEOREM 3. The distribution function of R = R(0) is

3) H(x) = 21 ;.;0(—%> (1 _® (4_111» , x>0,
j 2xt
where © denotes the standard normal distribution function.

Proor. It follows from Corollary 2 that the Laplace transform of R is

E(e") = [Tz (1 + 812k — 1)), 20,
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which we recognize as the infinite product expansion of
cosh (26)4 = 28 117, (/) exp[— (% + $)2¢1], t20.

Since for all & > 0, e~*®! defines the Laplace transform of the distribution
function H,(x) = 2(1 — ®(a/x?)), x > 0, (e.g., [1], Chapter 13), Theorem 3
now follows easily from the unicity theorem for Laplace transforms ([8], pages
59-63).

The series (3) was evaluated on a computer to determine the percentiles of the
limiting null distribution. The 100(1 — a) percentiles are given below for selected
values of « and agree with the values given in [4].

a .1 .05 .025 .01
X 1.196 1.656 2.135. 2.78

a

As a check on the accuracy of the large sample approximation, a Monte Carlo
study was conducted. 1000 samples of size 15, 20, 30, and 40 were drawn from
a uniform distribution and the proportion of samples producing an R, value
larger than x, recorded for the values of & given above. The results indicate that
the large sample approximation is accurate for sample sizes as small as twenty.

a .10 .05 .025 .01
n
15 .106 .051 .015 .005
20 .093 .047 .021 .008
30 .091 .040 .021 .010
40 111 .052 .023 .010
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