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A LIMIT RESULT RESPECTING GRAPH STRUCTURE FOR A
FULLY CONNECTED LOSS NETWORK WITH
ALTERNATIVE ROUTING!

By J.-P. CRAMETZ AND P. J. HUNT

Ecole des Mines de Paris and University of Cambridge

Recently there has been a considerable amount of work on the tran-
sient behaviour of loss networks in two different limiting regimes. The first
of these, which we do not consider here, is when link capacities and offered
traffics become large but the number of links remains finite. The second is
the diverse routing limit when the number of links increases with the
offered load to each link held constant. Thus far, however, all results of this
latter type have been for simplified models with exchangeable links. In
adopting such a simplified model one loses the inherent graph structure of
the original loss network, which appears to be a serious drawback.

In this paper we consider a loss network with graph structure and show
that, subject to natural constraints on the initial configuration, the model
behaves asymptotically exactly like one with exchangeable links. Our result
is proved by combining the techniques of Gibbens, Hunt and Kelly with
those of Hajek for a problem in random graph theory.

1. Introduction. The model we consider is a fully connected loss network
operating under alternative routing. An example would be a telephone network
in which every node (or exchange) is connected to every other node and in
which an arriving call may, if the direct link between its source and destina-
tion is full, be routed via two or more alternative links. To be more precise, our
network consists of n + 2 nodes, every pair of nodes being connected by a link
consisting of C circuits, giving a total of N = (n + 1X(n + 2)/2 links. For all
a # (3, calls between node a and node B arrive as a Poisson process of rate v,
all arrival streams being independent. If there is free capacity on the direct
link between a and B, then the call is routed along this path. If not, we try to
route the call along two links via a randomly chosen third node y # «, B. If
there is free capacity on both these links, then the call is routed. Otherwise the
call is lost. A call that has been successfully routed holds one circuit from each
link on its path for the holding period of the call. This holding period is
independent of earlier arrival times and holding periods, and is exponentially
distributed with unit mean. In [3], Gibbens, Hunt and Kelly replace the model
by a simplified version as follows.

There are N links, each link comprising C circuits. Calls requesting link /
as their first choice arrive as a Poisson process of rate v. If a call is blocked on
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its first choice link, it tries two other links chosen at random from the N — 1
remaining links, with each pair of links having equal probability of being
chosen. If neither of the links in the chosen pair is full, the call is set up along
these two links. Otherwise, the call is lost. When a circuit is used by a call, the
circuit is held for an exponential time, mean 1. All circuit holding times are
independent of one another and of earlier arrival times. In particular, a call
that requires two links holds each link independently for an exponential length
of time, and so these circuits will become free at different times. Thus the
simplified model differs in two ways from the original network: circuit holding
times in multilink calls are independent, and the graph structure relationship
between links has been lost.

For this simplified model it is relatively straightforward to prove a limit
result and they prove the following. Let nf’ (¢) be the number of links with j

circuits in use at time ¢, j = 0,1,...,C. Let
n(t)
(0= =5 x0 = (),

TuEOREM 1. If xM(0) = x(0), then xV(-) = x(-), where x() is the unique
solution to the equations

(1) xo(¢) = %(0) + /;{xl(u) — (v + Mu))x(w)) du,

%(1) =%,(0) + [{(v+ M)z, ()

2
@) —(v+ Au) +j)xj(u)+(j+1)xj+1(u)}du, J#0,C,

(8) xo(t) =xc(0) + [{(+ A(u))e1() = Cxc(w)) du
and

(4) A(t) = 2vxc(8)(1 = xc(2)).

REMARK ON PROOF. Consider an arriving call when the Nth network is in
state x™(¢). This call is blocked directly with probability xX'(#) and is then
offered to two other links chosen at random. The probability that the call is
now routed via these two links is (1 — x2'(¢))? + o(1), since the call must
choose two links that are not full. If, however, the model retained its graph
structure, it is not immediately clear that this result still holds. For example,
suppose that all the links that are full have a node in common and that every
link from this node is full. Then a blocked call cannot be rerouted even though
the vast majority of links in the network are not full. It will be shown that
such configurations have negligibly small probability (Section 2) and hence
Theorem 1 remains valid for a loss network with graph structure (Section 3).
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REMARK. Although the simplified model of Gibbens, Hunt and Kelly [3]
assumes that the two circuits used by a rerouted call are released indepen-
dently, Theorem 1 holds even without this; see Hunt [5], for example.

2. Analysis of graph structure. The techniques we use here are gener-
alisations of those developed by Hajek [4] to solve Kelly’s triangle problem. The
result Hajek proves is for a static system but the methods he uses are readily
extended to a transient situation. To examine the graph structure as our
network evolves, we consider the jump chain, so let %2 index the jumps of the
process. We make the following definitions.

R(%) = the total number of directly routed calls at stage %,

W(k) = the total number of alternatively routed calls at stage %,
D, = R(k) + W(k) + vN,

y;(k) = the number of links with ¢ circuits in use at stage k.

Now fix some ¢, > 0 and consider the first n%¢, steps in the jump chain. At
stage & the following occurs.

1. With probability p,(k) := (R(k))/D,, a randomly chosen directly routed
call clears down.

2. With probability p, (k) := (W(k))/D,, a randomly chosen alternatively
routed call clears down.

3. With probability p, (k) := (WN)/D,, a link is chosen at random. If the link
is not full, a call is routed directly along this link. If, however, the link is
full, then two links that form an alternative route to this link are chosen at
random and a call is routed along these two links if possible. Otherwise,
nothing happens.

For i #j, let A%7(k) be the number of triangles containing edge e and i
busy circuits on one side and j on the other, 0 < i, j < C; for i =j, let AL/(k)
be twice this. We adopt this latter definition rather than the more obvious one
for ease of notation; we are interested in the number of links in state i that
form triangles with edge e and when relating this to the triangles that contain
edge e we must double count those that contain two edges in state i. Let
A (k) be the number of calls alternatively routed from link e and set

yi(k) y;(k) — . W(k)
N N AR =g

AL(k) = 2n
#(k) = max {max 1AL 7(k) ~ AT(R)} v 1A.() = K (R)]}.

We wish to establish tight bounds on ¢(k) for 0 < k < n?t, and we do this via
Theorem 3. First, we need a lemma. Let A be the one-step difference operator,
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AX(k) = X(k + 1) — X(k) for any variable X depending on % and let F, be
the o-algebra generated by configurations at stages less than or equal to k.

LEMMA 2. There exist constants L and & > 0 such that, for n sufficiently
large, we have

- L .
“E(AXe(k) - AXe(k)|Fk)| ]]'((/)(k)snﬁ) =< ﬁ(d)(k) + 1)? Xe = ALe’J OrAe’
for every edge e and all k < n®t,.

REMARK. The condition that ¢(%) < nd is not necessary for the lemma but
is used in the proof of Theorem 3.

Proor. We consider two cases separately.

0 X, A,
- 1( W(k) 1 1
(5) E(AA,(R)IF,) = N D, +Pa(k)ﬁe%“[;(n - ECA‘BIC(k))]},
_ Ae(k) ]]'(e fully 1 ,
(6) E(AA(k)IF,) = — D, +pa(k)T;(n - ECAIG C(k))-

The last terms in equations (5) and (6) are each bounded in modulus by 1/N
and thus

_ 1 - 2
[E(AA (k) — AR (R)IF,)l < D—kIAe(k) = R(b)] + &

so the result follows easily.
(1) X, =AY/,
First, define

ALY k) = ALY (k) =y_ (k) =ycs(k) =0 forall k,eandl,
to deal with the extreme cases when i or j € {0, C}. Defining

2n

Bi(k) = 2

yi(R)Ay;(k) +y;(k)Ay,(k)),
we have
- [E(AAL/(R) — AALI(R)IF,)

< IE(AAY/(k) — BL/(k)IF,) + [E(BL/ (k) — AALI(R)IF,).

The final term here is bounded by 8n/N2, since AALY(k) = B/ +
2nAy,(k)Ay(k)/N? and Ay,(k) is bounded by 2. Now consider the first term
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on the right of (7). Direct calculation (with care when |i — j| < 1) yields
E(AAL/(k)IF,)

RG> M) - (Zi- ZAe(ai,j))}

€,+1(j) i1,y e;(j) a, j

D,

+[( L G+D - T aan) - (Zi- er(am)}}

e, (1) a, 41 e, (i) a, ,
(direct calls clearing down)
1
+D—{ ) )‘e(ai+1,j+1) - Z )‘e(ai,j)}(l + ]1(1‘=j))
k az+1,_1+1 al,j

(rerouted calls clearing down)

ALi=1(k) ALk Losor + Liiwoy)Abi(k
+pa(k){ e N( ) + e N( ) _ ( {i # C}) (ZJV#C)) ( )}

(directly routed arrivals)

k
+ pal(v ) { Z( )n ( Z A 1(])(k) (e full))
€1\
Z (Z Al ,(J)(k) - ]]'(e full))}
e(J) I<C
k 1

+ Pal(v ) { ) 7 (Z AL C(z)(k) 1., full))

J 1(l

1
- Z ;( Z Ae(z)(k) - ]]'(efull))}
ej(i) I<C

(calls rerouted, but not from e)

Pu(k) ATHITNR) ALI(R)
+ N { L, full)( " - Lise,jvc

n

(calls rerouted from e).

Here «; iJ indexes all nodes connected to edge e by one link in state ; and one
in state j and A,(a; ;) gives the number of alternatively routed calls for edge e
that pass through node . Also, ¢,(j) indexes those links with i circuits in
use that, along with a link in state j, form an alternative route to edge e.
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After some simplification we find

E(AALI(k)IF,)

- D—k{[(i + 1) AL LI(R) — AV (R)] + [(J + 1) AL TI(R) — jALI(R)]})

k i1, L
+ p‘}(v L[4 (0) = Ly oA ()

+ [Aie’j'l(k) - ]l(j*mAi"j(k)]}

P.(k)
» 2 { L k)~ T X AL mm]
6,_1(1) l<C el(]) l<C
{ Y = Z ALC (k) — X — E Al,ﬁ)(k)]}
e, _ l(z) e, (i) ni<c
AZI(k)  po(k) ALI(E)
+ Dk + N ]]‘(efull)———'

Here A collects all the terms involving A, and 1, fumf collects all the terms
involving 1, gy
Now consider y,(k). We find that

E(Ay;(R)IE,) = D—k[(i + 1)y 1(k) — iy(k)]

k
+ paj(\r ) (vi-1(k) = Ly uci(k))
L Pah) (___ ) B (A‘;;,l(k) )
N e%ll Eo § e%ll lgc n Fk
and thus
2n
s (RE(Ay,(R)F,)
- o _ pa( ) ALJ
- 5l + DATTIR) - A () + P AT - )

2 k
+F’;yj(k)p“( )[

AR

e' full I<C

(Ai"l(k)

rop(H

e full I<C
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Now, after some thought, we can see that

2 )
T T ALG(R) - qan(h) T T AV(k)| < Lng(k)

e(jHi<C e full [<C

for some L', and so, noting that A(k) < A(k) + d(k) < C + ¢(k), the result
follows easily. O

We are now in a position to prove the result that we need in the next
section.

THEOREM 3. Suppose that the initial configuration for our sequence of
networks is given and is such that ($™(0))/n — 0 as N — . Then

Al,im P(¢N(k) <dnforall 0 <k <n’t) =1
for all 56 > 0.

SKETCH OF PROOF. The proof is very similar to the proof of [4], Proposition
2.1, and so we only highlight the differences. Fix 6 > 0 and 3 < y < 1 and let
f. = 2(¢™(0) v n”). Define r,, 0 < k < n?t,, by

k-1 ],
rn=Fft* X ?(rj—kl)

Jj=0

and notice that this gives
L k
O0<r,= (1+ —2) (fn+1)—1srnzt05e‘0L(fn+1)sn8
n

for all n sufficiently large. Set D = min{k > 0: $™(k) = r, or k > n?t,}. Then
[4] it follows that

Al,im P(¢N(k) = r;, for some k < D) = 0.

Since D < n?t, if and only if $"(k) > r, for some k < D and since this event
has probability tending to zero, we have P(D > n?t,) — 1, which implies the
result. O

3. Functional law of large numbers. Theorem 3 gives a tight bound
on the spread of alternative routes in the network and we can now apply this
to prove a limit theorem respecting graph structure.

THEOREM 4. Suppose xV(0) = x(0) and (¢N(0))/n — 0 as N —> . Then
xN(-) = x(-) where x() is the unique solution to equations (1)-(4).
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Proor. First, define
A(1)
SiZYj(t) = Z ]]'(efull)T - 2x(13'v(t)xlN(t)xJN(t)’
e

where A%/(¢) is the continuous-time version of A%/(k) and let 5;(k) be the
discrete-time version of 3},(¢). Let &= {more than 4n*T(v + C) jumps by
time T'}. Then, given any ¢, T > 0 and any sequence f,,,

[P’( sup 18Y;(¢) > s) <P(&) + [F"({ sup 18);(¢t) > e} N é”c)

0<t<T 0<t<T

<P(&) + [P’( sup  187;(k)l > s)

k<4n?T(w+C)
(8) < P(&)
(9) + P sup  18Y;(k)l > e|p™(0) <f,
k<4n?’T(w+C)
(10) + P(d)N(O) > fn)

The jump rate for the Nth network is bounded by 2n%(v + C) and so (8)
converges to zero. But our initial conditions and Theorem 3 ensure that we
can choose a sequence f, such that (9) and (10) also converge to zero and so
8N .(t) - 0 in probability for all ¢ > 0.

Now let zV(-) be a vector Markov process that completely defines the state
of the Nth network and let %, = o(z"(s): s < ). Define

MV (1) = x¥(t) - x¥(0) - ['¥Vx"(s) ds,
0
an {%,}-martingale, where <7, the generator for z"(-), is given by
(£Vx(t)), = (inzi1(t) - V]]'(i#C)xLN(t)) + (0 + Dal,(2) - lsz(t))
+20(1 = xJ(2)) (N () — x,N(t))

CcC-1
+v ) (5i1\11,j(t) - BiIYj(t))’
j=0

and xV, = xY,, = 0. The martingale central limit theorem [2] proves that
MY = 0 since [MY] — 0, and a modification of (Whitt [6], page 1843) shows
that {x"} is relatively compact. Applying the continuous mapping theorem [2]
to M" and using the fact that 5);(¢) — 0 in probability, we have that (1)-(4)
is obeyed by any subsequence of the {x"}. But the result now follows since
(1)-(4) has a unique solution. (See Arnold [1], pages 50, 57.) O

The above result is for a network employing alternative routing with each
call having only one retry. These techniques extend to more general networks,
for example, networks employing trunk reservation, multiple retries, least
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busy alternative and repacking. In all of these cases, we can derive a simple
and easily explained functional law of large numbers. It would be interesting to
extend the methods here to prove a functional central limit theorem for these
processes; this has been done for approximations based on exchangeable link
models [5] and presumably the graph structure is again irrelevant.

One situation in which we might expect the graph structure to be more
important is in the context of large deviations. If our network is bistable, with
two stable regimes (high and low blocking), the theory of large deviations can
be applied to derive estimates of the time to tunnel from one regime to the
other (see [3]). One would perhaps expect that the model with graph structure
would tunnel more quickly than the exchangeable links model because the
extra structure would allow local phenomena. It would be interesting to have
some results in this area.
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