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This paper describes work on the stochastic modelling of loss networks.
Such systems have long been of interest to telephone engineers and are
becoming increasingly important as models of computer and information
systems. Throughout the century problems from this field have provided an
impetus to the development of probability theory, pure and applied. This
paper provides an introduction to the area and a review of recent work.

1. Introduction. Modern computer and telecommunications networks
are able to respond to randomly fluctuating demands and failures by rerouting
traffic and by reallocating resources. They are able to do this so well that, in
many respects, large-scale networks appear as coherent, almost intelligent,
organisms. The design and control of such networks requires an understand-
ing of a variety of fundamental issues and is providing an important stimulus
to many areas of mathematics.

In this paper we describe work on a particular class of networks, called loss
networks. Our main aim is to present a coherent account of the theory of loss
networks, but in passing we hope to indicate connections with, and open
questions involving, many more general areas of probability theory. In particu-
lar, we shall touch on central limit theorems and weak convergence, interact-
ing particle systems and phase transitions, random graphs and dynamic
programming.

1.1. The historical context. In 1917 the Danish mathematician A. K.
Erlang published his famous formula,

VC C pn -1
(1.1) E(v,0)=—[z —,] ,

C!'|, Z,n!

for the loss probability of a telephone system ([6], page 139). The problem
considered by Erlang can be phrased as follows. Calls arrive at a link as a
Poisson process of rate ». The link comprises C circuits, and a call is blocked
and lost if all C circuits are occupied. Otherwise the call is accepted and
occupies a single circuit for the holding period of the call. Call holding periods
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are independent of each other and of arrival times and are identically dis-
tributed with unit mean. Then Erlang’s formula (1.1) gives the proportion of
calls that are lost.

Erlang obtained the formula (1.1) from his development of the concept of
statistical equilibrium, and he powerfully demonstrated the concept’s ability to
deliver exact formulae for many of the important and typical problems of
telephony [6]. The concept had been used in other domains: Erlang mentions
known applications to Euler’s theory on the age distribution of a population,
and contemporary work on the ultimate consequences of Mendel’s laws of
heredity ([6], page 215). Perhaps the most important influence on Erlang was
the development through the preceding half-century of statistical mechanics.
Certainly he provided an elementary proof of Maxwell’s law for the velocity of
gas molecules ([6], pages 222-226), and he stressed comparisons between the
role of probability in such applications and its role in the theory of telephone
traffic ([6], page 194).

We now identify Erlang’s concept of statistical equilibrium with the station-
ary measure of a Markov process. Thus, if call holding periods are exponen-
tially distributed, then the number of lines occupied is a finite Markov chain
and (1.1) gives the stationary probability that all C circuits are busy. If call
holding periods are arbitrarily distributed, then the stochastic process describ-
ing the number of circuits occupied is more complex. Nevertheless, (1.1) still
gives the stationary probability that all C circuits are busy. This was known to
Erlang ([6], pages 205-208), but a strict proof was first presented in 1957, by
Sevastyanov [64]. Indeed, we now know that the result holds under much
weaker independence assumptions; for example, the loss probability remains
the same if the successive call holding periods associated with a given circuit
are a dependent stationary sequence. This fact motivated and was established
by the modern theory of insensitivity [17].

We have seen that Erlang’s formula (1.1) gives the stationary probability
that all C circuits are busy. Hence, since the arrival stream is Poisson, it also
gives the probability that a typical call is lost. The Poisson character of the
arrival stream is, of course, important. For example, suppose a call blocked at
the link described previously has a second chance: it overflows to a second link
comprising C’ circuits. The probability that a call is lost from the combined
system is E(v,C + C’), and so the probability that a typical call overflowing
the first link is lost is E(v,C + C')/E(v,C). This differs from E@wE(v,C),C"),
the probability that would obtain if the overflow stream, of mean rate vE(v, C),
were Poisson. The second link provides an example of how the probabilistic
structure of an arrival stream can affect loss probabilities and motivated the
work of Palm [57] and Khintchine [40] on Palm distributions. Palm and
Khintchine also gave sufficient conditions for the superposition of independent
stationary point processes to approach a Poisson process ([11], Chapter 4).
Systems involving both overflow and superposition will figure frequently later
in this paper.

In 1925 Erlang described the application of the method of statistical equilib-
rium to determine loss probabilities in simple networks of links ([6], page 203).
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The approach was extended by Benes, who in 1965 presented his systematic
study of the structural aspects of networks and further developed the analogy
between traffic theory and statistical mechanics [5]. However, exact results
were difficult to obtain, and telecommunications engineers relied increasingly
on approximations and simulation ([69, 75]). A recurring theme of this paper
will be the search for a mathematical relationship between some of these
approximations and exact results.

In recent years there has been a resurgence of interest in the mathematical
theory of loss networks and in its application to the design and control of
telecommunication systems. This has been prompted in part by the successful
development over the last few decades of the theory of queueing networks (see,
e.g., [31, 42, 68)]) and in part by the challenge of the conceptual issues raised by
advances in the technology of computer and communication systems (see, e.g.,
[24, 63)]).

1.2. A loss network with fixed routing. Next we define the basic model of a
loss network.

Consider a network with o links, labelled 1,2, ..., J, and suppose that link
J comprises C; circuits. A call on route r uses A;, circuits from link j, where
A, €7,. Let # be the set of possible routes. In the important special case
where each element of the matrix A =(4,,, j =1,2,...,J,r € #)is either 0
or 1, a route r can be identified with a subset of the set of links {1,2,...,J}:
just let r ={j: A;, = 1}. Calls requesting route r arrive as a Poisson stream of
rate v,, and as r varies it indexes independent Poisson streams. A call
requestlng route r is blocked and lost if on any link j, j = 1,2,...dJ, there are
fewer than A;, circuits free. Otherwise the call is connected and simultane-
ously holds A circuits from link j, j = 1,2,..., dJ, for the holding period of
the call. The call holding period is 1ndependent of earlier arrival times and
holding periods; holding periods of calls on route r are identically distributed
with unit mean.

Let n,(¢) be the number of calls in progress at time ¢ on route r, and define
the vectors n(¢) = (n,(¢), r € #) and C = (C,C,, ..., C,). Then the stochas-
tic process (n(¢), t > 0) has a unique stationary distribution and under this
distribution 7(n) = P{n(¢) = n} is given by

ny

(1.2) m(r) = G(C) " T1 : S nes(0),
where
(1.3) A(C) = {n € Z%: An < C}

and G(C) is the normalizing constant (or partition function)

(1.4) G(C)=( Y TI-

neAc)reR ;! )

This result is easy to check in the case where holding times are exponentially
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distributed: then (n(¢), ¢ > 0) is a Markov process and the distribution (1.2)
satisfies the detailed balance conditions

m(n) -v,=mw(n+e.) (n,+1), n,n+e.e/(C),

where e, = (I[r' = r],r' € #) is the unit vector describing just one call in
progress on route r. In this form the result has been known for many years
[6]; see [9], [17], [31], and [73] for a discussion of the insensitivity of (1.2) to
holding time distributions.

The classical example of this model is a telephone network, and hence we
couch the definition in terms of calls, links and circuits. The model also arises
naturally in the study of local area networks, multiprocessor interconnection
architectures, database structures, mobile radio and broadband packet net-
works (see [24, 32, 45, 53, 59]). In computer communication networks, and
increasingly in telephone networks, the circuits are virtual rather than physi-
cal: for example, a fixed proportion of the transmission capacity of a communi-
cation channel. The term “circuit-switched” is common in some application
areas, where it is used to describe systems in which before a request (which
may be a call, a task or a customer) is accepted it is first checked that sufficient
resources are available to deal with each stage of the request.

Part of the model’s attraction is that very many generalizations are readily
incorporated. For example, if calls requesting route r arrive at rate v,/n, and
have holding periods with mean 7,, then the distribution = associated with
the resulting stochastic process is given by the unaltered expression (1.2). If
the arrival rate of calls labelled r depends on n, (the Engset model, for
example, assumes a finite source population of each type of call), then the
corresponding distribution 7 is given by a minor variant of the form (1.2).
More subtly, if a call can be carried on a number of routes and can be shifted
or shared between these routes while the call is in progress, then an equivalent
loss network can be defined (Section 3.3). These variations retain the essential
features of the model: that a call makes simultaneous use of a number of
resources and that blocked calls are lost.

Most quantities of interest can be written in terms of the distribution (1.2)
or the partition function (1.4). For example, let L, be the stationary probabil-
ity that a call requesting route r is lost. Since the arrival stream of calls
requesting route r is Poisson,

(1.5) 1-L.= Y  w(n)=G(C) 'G(C - Ae,).
neA(C-Ae,)

Such simple explicit forms might be thought to provide the complete solution.
However, this is far from the case. For all but the smallest networks it is
impractical to compute G directly—observe that the number of routes ||
may grow as fast as exponentially with the number of nodes J and that, in the
(otherwise trivial) case when |%#| = J and A = I, the size of the state space
|#(C)| = T1¢_,C; grows rapidly with the capacity limitations C,,C,,...,C i3
More formally, even in the restricted case where links have capacity 1 and
arrival rates are equal, the task of computing the partition function (1.4) is
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#P-complete [49]. A theme of much recent work has been to find approaches to
the model which avoid these computational problems and which provide
deeper insights. Indeed, we shall see that in many respects the properties of
the model become simpler the larger or more complex the network.

Observe that the form (1.2) is obtained by truncating |%#| independent
Poisson random variables to the polytope (1.3). The natural approximation to
the resulting distribution is that obtained by truncating a multivariate normal
distribution to a polytope. In Section 2 we develop this approximation, by
considering a limiting regime in which the capacities C;, j = 1,2,...,J, and
the offered traffics v,, r € #, are increased together (with ratios C;/v, held
fixed). The limiting behaviour of loss probabilities L, under this regime has a
very simple description. There is a parameter B; € [0, 1) associated with link j
such that

J
(1.6) 1-L, - [11-B)", re=.

j=1

For example, if A is a 0-1 matrix, then
(1.7) 1-L,- ]_[(l—Bj), re .

JjET
It is as if links block independently, link j blocking with probability B;. The
parameters B = (B, B,, ..., B;) emerge as the solution to a straightforward
optimization problem involving just J variables: under the identification
B; =1 — exp(—y;), the vector B is just a stationary point of the convex

J
function

J J
(18) Z Vrexp(_ ZyjAjr + Zyjcj
re® j=1 j=1

In Section 2 we present the central limit theorem for large capacity net-
works under fixed routing, from which we deduce the limit (1.6) as a form of
the law of large numbers. The central limit theorem allows a number of other,
more detailed, conclusions to be drawn. In particular, we shall see that under
the limiting regime a link may be classified as overloaded, critically loaded or
underloaded, with important consequences for the process describing the

number of free circuits at the link.

1.3. The Erlang fixed point. Section 3 is concerned with an important
approximation procedure. For a loss network with fixed routing and A a 0-1

matrix, let E,, E,, ..., E; be a solution to the equations
(1.9) E;,=E(p;,C;), ji=12,...,d,
where

(1.10) pi= L v Il (1-E)

rijer ier—{j}

and the function E is Erlang’s formula (1.1). We shall see that the equations
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have a unique solution, which we term the Erlang fixed point. Then an
approximation for the loss probability on route r is given by

(1.11) 1-L.=]IQ1-E), re.
JETr

The idea underlying the approximation is simple to explain. Suppose that a
Poisson stream of rate v, is thinned by a factor 1 — E; at each link i € r — {;j}
before being offered to link j. If these thinnings could be assumed independent
both from link to link and over all routes passing through link j (they clearly
are not), then the traffic offered to link j would be Poisson at rate (1.10), the
blocking probability at link j would be given by (1.9) and the loss probability
on route r would satisfy (1.11) exactly. Call expression (1.10) the reduced load
on link j.

The preceding approximation is worthy of study for a number of reasons.
First, it has a long history in the telecommunications literature and is fre-
quently used in practice ([33, 39, 48, 71, 75]). It generalizes straightforwardly
to provide a reduced load approximation able to represent important additional
features, to be discussed in detail later, such as alternative routing and trunk
reservation. Second, the approximation is of some mathematical interest. The
similarity between relations (1.7) and (1.11) is clear: At a deeper level we shall
establish uniqueness of the Erlang fixed point by showing that it is a station-
ary point of a strictly convex function strikingly similar in form to the function
(1.8). In Section 4 reduced load approximations will appear naturally as limit
solutions for a number of models. A further reason for interest is that the
relationship between the Erlang fixed point approximation and the underlying
stochastic process precisely parallels the relationship in statistical mechanics
between the mean field or Bragg—Williams approximation and the stochastic
Ising model [8].

How accurate are such approximations? We shall approach this question
from a variety of directions. In Section 3 we consider the behaviour of the
Erlang fixed point under the limiting regime described earlier, where capacities
and offered traffics are increased together. We find that under this limiting
regime the error in the approximation (1.11) approaches zero. While this is
reassuring, it is a rather crude test of accuracy. More refined tests distinguish
between networks containing critically loaded links and those without and
indicate the importance of diversity of routing. We study further the issue of
diversity in Section 4.

1.4. Symmetric networks. The central limit theorems of Section 2 concern
networks with increasing link capacities and loads, but fixed network topology.
In Section 4 we consider a different form of limiting regime, where link
capacities and loads are fixed or bounded and where the numbers of links and
routes in the network increase to infinity.

Recall the informal idea underlying the Erlang fixed point approximation
given in Section 1.3. The various streams of traffic making up the reduced load
on a link are clearly not independent, but we might hope that the approxima-
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tion will be more accurate the more diverse the collections of routes passing
through any given link. In Section 4 we provide theoretical support for this
suggestion by describing asymptotic results for networks exhibiting various
symmetries. We consider sequences of networks with % and J increasing.
Symmetry reductions will leave fixed the number of distinct equations in the
set (1.9) and the number of distinct approximate forms (1.11), and we shall see
that the exact loss probabilities (1.5) converge to the forms (1.11).

The combined simplifications of diverse routing and symmetry reduction
allow a number of other important issues to be addressed. In particular, we are
able to study networks operating under alternative routing, where a call which
is blocked on a route may be allowed to try again on another route. We find
that the Erlang fixed point again emerges as an asymptotically exact solution,
but that it may now have multiple solutions. If alternative routes use more
network resources than first-choice routes, then alternative routing can lead to
instability and hysteresis, with several modes of behaviour possible. These
deleterious consequences of alternative routing can be controlled by allowing a
link to reject alternatively routed calls if the link occupancy is above a certain
level. This method of giving priority at a link to certain traffic streams is
known as trunk reservation. For a simple model of a network operating with
trunk reservation and multiple alternatives, we find that the reduced load
approximation emerges as an asymptotically exact solution, and we discuss the
insights into network performance issues provided by the approximation. We
also consider a very simple least busy alternative scheme, in which a call
blocked on its first-choice route selects from among a list of alternative routes
that one which is least busy.

Many of the formal limit theorems we review in Section 4 require rather
restrictive symmetry assumptions, which often involve ignoring the graph
structure naturally associated with a network. Taking proper account of graph
structure leads to an interesting class of random graph problems. We describe
some of the results in this area due to Hajek ([21, 22]), and use these results to
establish the asymptotic form of the optimal admission and routing policy in a
network allowing repacking.

1.5. Lattice models. In Section 5 we consider loss networks with fixed
routing defined on lattices. The regular structure of such networks permits an
exact analysis in a number of interesting cases.

One-dimensional networks are of some interest in their own right and
provide a contrast to the various asymptotic link independence results of
earlier sections. Suppose each route r € # is a set of consecutive integers
chosen from {1,2,...,J} and that C; = C, j = 1,2,..., JJ. One could imagine
a cable on which are positioned J + 1 stations and that communication
between two stations uses a fraction C~! of the cable’s capacity over the
section of cable lying between the two stations. In Section 5 we consider two
simple examples. If the offered traffic between two stations decays geometri-
cally with the distance between the stations, then the number of free circuits
(m,, my,...,m,;) on the J links of the system is a Markov chain. If C =1
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and offered traffic between stations depends arbitrarily on the distance be-
tween the stations, then the vector (m, m,, ..., m ) can be described in
terms of an alternating renewal process.

There has been substantial progress in the field of interacting particle
systems concerning the relationship between macroscopic phenomena, such as
the existence of a phase transition, and the microscopic dynamical description
of a system [47]. In Section 5 we illustrate connections with this rich field. In
particular, we describe loss networks with fixed routing defined on a Bethe
lattice (or tree) and on a two-dimensional lattice which exhibit phase transi-
tions analogous to that of the Ising model of ferromagnetism [4]. As loss
networks these models are rather special, but they serve to establish that long
range influence can emerge from very simple networks involving only nearest-
neighbour interactions.

1.6. Optimization. A major motivation for the development of loss net-
work models is the hope that these models may help with practical problems
concerning how routes should be chosen or capacity allocated. These problems
are often quite difficult, owing to the complexity of the various interactions
involved. For example, an increase in the offered traffic along a particular
route will increase blocking at links along that route; this in turn will affect
traffic carried along other routes through these links and also along routes
which act as alternatives to these routes. Such knock-on effects will generally
propagate throughout the entire network.

A further practical problem concerns the extent to which control can be
decentralized. Over a period of time the form of the network or the demands
placed on it may change and routings may need to adapt accordingly. A single
node could perhaps control this, receiving information from everywhere in the
network and making all decisions about routing. But this approach has
drawbacks, particularly if links or nodes may fail. Could control be distributed
over the nodes of the network, with computations and decisions made locally?
A distributed control scheme should be able to react rapidly to a local distur-
bance at the point of the disturbance, with slower adjustments in the rest of
the network as effects propagate outwards.

These practical problems are closely related to the interaction phenomena
investigated rigorously in Sections 4 and 5. On the other hand, to be practi-
cally useful it is essential that any approach suggested be capable of dealing
with asymmetric and irregular network structures, as well as the complica-
tions of alternative routing and trunk reservation. In Section 6 we discuss how
the simplified analytical model provided by fixed point approximations can be
used to provide substantial insight into both the pressing practical problems of
routing and capacity allocation and the theoretically challenging issues of
interaction and long range influence.

2. Large capacity networks. The distribution (1.2) is that of |#| inde-
pendent Poisson random variables conditioned on a collection of linear inequal-
ity constraints (1.3). It is natural to look for a limit theorem as the capacities
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C;, j=12,...,J, and the offered traffics v,, r € #, are increased together
(with ratios C;/v, held fixed). We would expect the distribution (1.2) to
approach that of |%#| independent normal random variables conditioned on a
collection of linear inequality constraints. Limit results of this form are
familiar when the linear inequalities are replaced by linear equalities and arise
naturally in the analysis of contingency tables (see, e.g., [20]). The first step in
establishing a result of this form is to find the centering term for the expected
central limit theorem. This we do in Section 2.1, by formulating and solving a
simple optimization problem which is of some intrinsic interest and which will
arise later in a number of other contexts.

2.1. Finding the mode and the dual problem. Consider the problem of
finding the most likely state n under the probability distribution (1.2). This is
equivalent to maximizing

Y (n,logv, —logn,!)

over n € #(C), a problem which is complicated by the discrete nature of the
state space. To simplify things, replace log n! by n log n — n [recall that, by
Stirling’s formula, log n!=nlogn — n + O(log n)] and replace the integer
vector n by a real vector x. The resulting problem is the following.

THE PRIMAL PROBLEM.

Maximize Y, (x,logv, — x, log x, + x,)
(2.1) ;
subjectto x>0, Ax <C.

Observe that the objective function in problem (2.1) is differentiable and
strictly concave over the cone x > 0 and tends to — as ||x|| - «, and the
feasible region is a closed convex set. Hence a maximizing value of x exists and
is unique, and can be found by Lagrangian methods [72]. Consider, then, the
Lagrangian form

L(x,z;y) =) (x,logv, —x,logx, +x,) + Zyj(Cj - Y A,x, — zj)

J
= Zxr+ Zxr(logyr_logxr— ZyjAjr) + Zyjcj_ Zyjzj,
r r J J J

where 2z = (24, 2,,...,2;) is the vector of slack variables z = C — Ax and
y = (¥, ¥y, .-.,¥,) s a vector of Lagrange multipliers. To maximize L(x, z;y)
over the cone x,z > 0, we require that y > 0, y - z = 0 and, differentiating
with respect to x,,

logv, —logx, — 3} y;A;. = 0.
J
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The maximizing x, is then
(22 5(0) = v exp( - LA,

J
and so

max L(x,2;y) = Erf,‘(y) + gijj
=Y v, exp(— Z yjAj,) + E ¥:C;.
r J J

Hence the Lagrangian dual to the primal problem is the following.

THE DUAL PROBLEM.

Minimize ), v, exp( - yjAjr) + ) ¥,C;
(23) r J J

subjectto y > 0.

We may solve the primal problem (2.1) by choosing values for the Lagrange
multipliers ¥ = ¥ so that x(¥),y are primal and dual feasible,

(2.4) x(y) =0, z=C-Ax(y) =0, y=0,

and satisfy the complementary slackness conditions

(2.5) y2(3) = 0.

It is interesting to rewrite these conditions in terms of transformed variables
(2.6) B, =1—exp(—y;).

Under this transformation the conditions (2.4) and (2.5) on ¥ become the
following.

CONDITIONS ON B.

S l1-8) [~9 if B, > 0,
= Sirtrd, Y \<c, ifB;=0,

B, B,,...,B; €[0,1).

(2.7)

The convexity properties of the primal problem (2.1) imply that there exist
Lagrange multipliers y satisfying (2.4) and (2.5), and hence that there exists
B = (B,, B,, ..., B,) satisfying (2.7). Alternatively, observe that the objective
function of the dual problem (2.3) is differentiable and convex over the cone
y = 0 and tends to » as ||y|| - «. Hence an optimum  exists; differentiation of
the dual objective function with respect to y; establishes a one-to-one corre-
spondence under the transformation (2.6) between optima of the dual problem
and solutions B to conditions (2.7). Finally, observe that the mapping y’ — yA
is one-to-one from the set y > 0 if A has rank J. The objective function of the
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dual problem (2.3) is thus strictly convex if A has rank J. Hence the optimum
¥ is unique if A has rank oJ.
We collect these observations in the following result [33].

2.8 THEOREM. There exists a unique optimum to the primal problem (2.1).
It can be expressed in the form

x =v]I1-B)", re=,
J

where B = (B, B,, ..., B;) is any solution to the conditions (2.7) on B. There
always exists a solution to the conditions on B, and it is unique if A has rank
J. There is a bijection between solutions to the conditions (2.7) on B and
optima of the dual problem (2.3), given by the transformation (2.6).

Conditions (2.7) have a straightforward interpretation in terms of a contin-
uous, or fluid, flow. Suppose that an offered flow of v, on route r is thinned by
a factor (1 — B,)* on each link i = 1,2,...,dJ so that a flow of

(2.9) v, 111 - B

remains. Assume that one unit of flow on route r uses A;, units of capacity at
link j. Then conditions (2.7) state that at any link j for which B; > 0 the
total capacity of that link, C;, must be completely utilized by the superposition
over r € # of the flows (2.9). Conversely, no thinning of flow is allowed at a
link which is not full.

To illustrate the possibility of nonuniqueness consider the matrix

1 0 0 1
{11 0 o

(2.10) A=l 11 ol
00 1 1

The matrix A has rank 3, and if (B,, B,, B;, B,) is a solution to condition
(2.7) with all entries positive, then so is

(1-d(1-B)),1- d(1-B,),1-d(1-B;),1-d (1- B,)),
for d close enough to 1. Flow can be thinned at either an odd or an even link,
and only products of the form (1 — B 4 X1 — ) are fixed. For a further
illustration see Example 2.32.

Networks exhibiting nonuniqueness of the vector B = (B, B,,...,B,)
arise very naturally, and for this reason we are not prepared to exclude them
by assuming, say, that A has rank J. We do, however, need to take some
additional care with such networks. The set of optima to the dual problem
(2.3) is convex, and hence there exists an optimum of maximal support—that
is, an optimum y such that if y’ is any other optimum, then y; > 0 =y, > 0.
Thus there exists a solution B to the conditions (2.7) Wthh is of maximal
support. For such a solution B let its support be & = {j: B; > 0} and let
Ag=(4A;, j€ H, r €R) be the restriction of the matrix A to the set &.

even
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The representation (2.2) of the unique optimum to the primal problem shows
that nonuniqueness of a solution to the conditions (2.7) is equivalent to linear
dependence between the rows of Ag. Recall the definition of the slack vari-
ables z = C — Ax, where henceforth x = (x,, r € &) is the optimum identified
in Theorem 2.8. For j € & the slack variable z; = 0. But it is possible that
z; =0 for j & &: in the fluid analogy this would correspond to the utilization
of link j exactly matching the capacity of link j without the need for any
thinning at link j. Define the set of such links &= {j: z; = 0, j € %} and the
corresponding matrix A,=(A;,, j € O,r € &). Observe that no row of A,
is in the space spanned by the rows of A, by the maximality of & and the
representation (2.2). Finally, let &= {j: j &€ & U &}. We interpret & as the
set of overloaded (or busy) links, . as the set of underloaded (or free) links
and & as the set of critically loaded links.

Observe that arbitrarily small perturbations of v or C are sufficient to
render the set & empty. We shall deal explicitly with the set &, rather than
just assume it empty, since in certain circumstances critical loadings may be
important. For example, the dimensioning procedures for a network may well
lead to critical loadings at some links. We study such links in more detail in
Section 2.3.

2.2. A central limit theorem. We review the quantities we have defined in
Section 2.1. The vector B = (B, B,, ..., B;) is a solution of maximal support
to the conditions (2.7) on B, the link subsets %, & and % have been
identified by the solution B, and the vector x = (x,, r € &%) is the unique
optimum identified in Theorem 2.8.

Now consider a sequence of networks of the form described in Section 1.2,
indexed by N. In the Nth network replace C; by C,(N) and », by v,(N),
where

1 1
(2.11) N—V,(N) - v, NCj(N) - C,

and all limits are as N — «. Let n,.(N) be the number of calls in progress
using route r: we are interested in the stationary distribution of n(N) =
(n,(N), re ). Let B(N) = (B{(N), B,(N),..., B;(N)) solve the conditions
(2.7 on B with v, replaced by v,(N) and with C; replaced by either C;(N) for
J € & or by infinity for j & #. Let

x,(N) = V,(N)[J](1 — B,(N))™.

From the representation of x as the unique optimum of the primal problem
(2.1), it follows that x,(N)/N — x,., r € #. Some of our results will need a
more precise comparison between offered traffics and capacities than that
provided by (2.11): in particular, we shall sometimes require that

(212) C,(N) - Y A,x(N)=0o(NY?), jea,

(213)  Cy(N) -~ L A,x,(N)=a;NV2+0o(NV?), jeo.
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The vector a,= (a;, j € &) is thus a corrected second-order measure of
capacity at the links in #. Let

(2.14) u,(N) = N"%(n,(N) - x,(N)).

Thus u,(N) is a normalized version of the number of calls in progress using
route r, centred on x,(N).
Let

A(N)={ne€z?: An < C(N)}
and, for a state n(N) € .#(N), let
(2.15) m,(N)=C,(N) - Z A,n.(N).
J

Thus the vector m(N) =(m(N), j=1,2,...,J) describes the number of
free circuits on each link. It is important to notice the variety of constraints
there may be on the values taken by m(N), even when A has full rank. Let

A#(N)={m:3 ne A(N)with An + m = C(N)},
the set of possible vectors m(N). For example, consider the matrix
1 0 1
1 1 0f.
0 1 1

Let C,(N) = 2N, for N =1,2,..., j=1,2,3. Then elementary calculations
show that

A=

(2.16) Z(N) —>{(ml,mz,m:%):mj-zO,m1+m2+m3 even}.
If, instead, C,(N) = 2N + 1, for j = 1,2,3, then
(2.17) M(N) > {(my,my,mg):m; >0, m; +my+my odd}.

If C(N)=N, for j =1,2,3 then the sequence .#(N), N=1,2,..., oscil-
lates rather than converges. Simplifications may occur if we restrict attention
to a subset of the components of m. For # c {1,2,...,J}, m(N) € .#(N), let
m,(N)=(m;(N), j € %) and let
A s(N) = {mg(N): m(N) € #(N)).

In the preceding example if & = {1, 2}, then for each of the three choices
C;(N)=2N, 2N + 1 or N we have that .#,(N) > 7%.

Construct a vector u = (u,, r € #) by conditioning independent normal
random variables, u, ~ N(0,x,), r€ #, on Ayu =0 and A, u < a,. Con-
struct an independent vector m , with distribution

(2.18) P{m ,} = g ! H Bj(l - Bj) ’ My € My,
JEH .
where g is a normalizing constant, chosen so that the distribution sums to

unity. Let “ = ” denote convergence in distribution. The following results are
established in [27] and [33].
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2.19 THEOREM. Under the limiting regime (2.11)-(2.13),
u(N)=u.

Further, moments of u(N) converge to the corresponding moments of u. If
MG (N) = My, then

(mQ(N)’u(N)) = (mg’u)

and moments converge also.

2.20 REMARK. If .#,5 = 7%, then the normalizing constant g in (2.18) is
unity, and m g4 = (m, j € %) are independent random variables, m ; geomet-
rically distributed with parameter 1 — B;. A simple sufficient condition for this
conclusion is that columns of the matrix A, include the columns of I, the
| #|-dimensional identity matrix—that is, there is some single link traffic on
each link j € 4. In [33] it is shown that a necessary and sufficient condition is
that A, have an integer right inverse, that is, there exists a matrix D with
elements from 7 such that AgzD = I4. In general, the form of the set .Z,
captures any parity conditions that obtain, such as those illustrated by the
limit sets (2.16) and (2.17).

2.3. Critically loaded links. For links in & the number of free circuits is
0O(1) and well-described by Theorem 2.19 and the distribution (2.18). For links
in & the number of free circuits is O(N): these links have little effect upon
loss probabilities or the utilization of other links. For links in & the number of
free circuits is O(N!/2): it is these links we now consider. Let

(2.21) v,(N) = N"2m (N).

Thus v;(N) is a normalized version of the number of free circuits on link ;.
From (2.14), (2.15) and (2.21) we have that

G(N) = N7V Cy(N) = £ Ay, (N)] = T A,u,(N).

Thus, from (2.14),
(2.22) v,(N) =a, - ZAjrur(N) +0(1), jEO.

Initially, let u be a multivariate normal random vector, u ~ N(0, 3), where
2 = diag(x,),. The distribution of A, u conditional on the event A ju = 0 is
then multivariate normal N(0, ®), where © is the |# |-dimensional covariance
matrix

(2.23) O = A SAL— A SAL(AGSAL) TALSAL.

Here (A 43 A%)"! denotes the generalized inverse [60] in the case where A
has deficient rank. Thus, from the representation (2.22) and Theorem 2.19, we
deduce the following result ([27]; see also [13, 76])).
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2.24 COROLLARY. Under the limiting regime (2.11)—(2.13), the distribution
of vA(N) = (v(N), j € &) converges weakly to the distribution of a vector
vo=(v;, j € O) formed by conditioning a multivariate normal random vector
vy~ N(a,,09)onv,> 0.

2.25 REMARK. We have seen in Theorem 2.19 and Remark 2.20 that the
numbers of free circuits on links in & are asymptotically independent, or
independent modulo the parity conditions captured by the limit set .Z,.
Corollary 2.24 shows that the numbers of free circuits on critically loaded links
are not independent. Nevertheless, network structure may lead to approxi-
mate independence. Consider, for example, the case where |&'| = J, so that all
links in the network are critically loaded. Then

0, = )y Aj Ay,

and so 9, is a weighted measure of the volume of traffic going through both
links j and k. If routing within the network is very diverse, so that ©;, is
small in comparison with ©;; and ©,,, for all j and k, then © will be nearly
diagonal and the components of the conditioned vector v, will be approxi-
mately independent. More generally, in networks containing both busy and
critically loaded links, the covariance matrix (2.23) can be used to assess the
extent of dependence between the numbers of free circuits on links in &. We
return to the study of diverse routing in Section 4.

2.4. Loss probabilities. Let L,(N) be the stationary probability that a call
requesting route r is lost. Then, by Little’s formula ([61], page 102),
(1~ L(N))u(N) = E(n,(N)), re®.
Thus, from the definition (2.14),
x(N)

6, (V)
_ — 2 _N " ‘77
L= "V L

(2.26)

I,](l — B,(N))™ + O(N'72).

From the convergence of x,(N) to x, and a consideration of subsequences
satisfying (2.12) and (2.13), we deduce the following result.

2.27 COROLLARY. Under the limiting regime (2.11),
1-L(N)=TI(-B;))* +o(1).
J

2.28 REMARK. Corollary 2.27 is just statement (1.6) of the Introduction:
asymptotically it is as if requests for circuits are granted or denied indepen-
dently. Observe that Corollary 2.27 uses only that the error term in expression
(2.26) is 0(1): in [27] a refinement is obtained. There it is shown that the vector
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u, formed by conditioning a multivariate normal random vector u ~ N(0, 3)
on Ay u =0and A u < a,, satisfies

(2.29) [E(Z—) - L BA,, re®,
J

for some B4, By, ..., B,. Let
b,(N)=B,(N) —N‘l/zﬁj(l - Bj(N)).

2.30 THEOREM. Under the limiting regime (2.11)-(2.13),
1-L(N)=TI(1-b(N)*" +o(N"?), rea.

J

2.31 REMARK. If there is a route which uses just a single circuit from link
J> then we can deduce from Theorem 2.30 that the probability that link j is
full is b;(N) + o(N~'/?), since this is the loss probability for that route. In
any event we have refined the implication of Corollary 2.27, that limiting loss
probabilities are as if links block independently.

It is possible to obtain still more precise error bounds on L,(N), provided
we have more precise information about capacities than is contained in
relations (2.12) and (2.13). We illustrate this point with a brief account of an
example considered in detail by Mitra [52].

2.32 ExamPLE. There are K + 1 links, and
R={{j,K+1}:j=1,2,...,K}.

Capacities and offered traffics in network N satisfy the limiting regime (2.11)
and, in addition,

K
L G(N) = Cn(N) = 1,

where I > 1, for each value of N. Thus there is not quite sufficient capacity on
the common link K + 1 to be able to deal with all the traffic that could be
carried onlinks 1,2, ..., K. Assump VG R+1) > Cj,andlet1 — B, = C;/v,; K+ 1y
Then, from Theorem 2.19, the limiting distribution for the number of idle

circuits on links 1,2,..., K is

K K
(2.33) P{my,my,...,mg} =g~ 1} By(1 —Bj)m’, for 3\ m; >1.
j=1 j=1
The normalizing constant is thus

K

K
g=1-h[IB;, whereh= Y TI(1-B,)"
Jj=1 ne/J=1
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and

K+1
S={(ny,ng ..., ng,,) € 7K1 Y n, =1},
j=1

The reader may recognize h as the normalizing constant for a closed queueing
network with I customers and K + 1 single server queues ([31, 68]), and part
of the attraction of this example is the relationship it exhibits between loss
networks and queueing networks. The stationary distribution for the queueing
network is

K
(2.34) P(n;,ng,...,ng,) =h! ]_[1(1 - Bj)n’, over ..
jo

An elementary calculation now shows that

1 - B,
J_h(

(2.35) Em;=g""! B

J

K
IIB T ) En J] ,
j=1

where Em;,En; are calculated with respect to the distributions (2.33) and
(2.34), respectively. From Theorem 2.19, moments of m ,(N) converge to
moments of m ;, and hence expression (2.35) gives [E(m ;(N)) to within an error
of 0(1). Thus,

[C,(N) — Em)]
V(j,K+1)(N)

and so we have the loss probability to within an error of o(N~!). Mitra [52]
gives a complete analysis of this example, establishing a full expansion for loss
probabilities in inverse powers of N, without the restriction that v; ¢, > C;.
The analysis provides an efficient recursive formula for calculating the general
term of the expansion and provides tight upper and lower bounds.

1_L(j,K+1)(N) = +0(N_1),

2.5. Time evolution. Until now we have been concerned entirely with the
distribution of the stochastic process (n(¢), ¢ > 0) as a fixed point in time. Here
we provide a brief heuristic discussion of the time evolution of the process,
intended to illuminate the results of Section 2 and to display a range of open
questions. Observe that all of the results of Section 2 have been derived from
the exact stationary distribution (1.2): progress with these open questions
might provide techniques able to handle networks where a product-form
solution is not available. Throughout assume the limiting regime (2.11)-(2.13).

Write n(N, t), m(N, t) for n(N), m(N), to emphasize their dependence on
the time parameter ¢. Observe that n,(N,t) moves to n,(¢) + 1 at rate O(N),
and so, if the network is stationary, we would expect it to traverse a distance
O(N'/2) in time of order O(1). A relaxation time of order O(1) also seems
reasonable since call holding periods are of order O(1). Put more precisely, we
would expect to obtain a nondegenerate limit process (u(¢), ¢t > 0) from the
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sequence
(2.36) N-2[n(N,t) —x(N)], N - .

If holding times are exponentially distributed, then we would expect (u(#),
t > 0) to be an Ornstein—Uhlenbeck diffusion within the region

{u: Agu = 0, Aﬁu < aﬁ},

reflected at the boundary A, u = a,. The reflection must be such that when
stationary the process (u(#), ¢ > 0) is reversible, with stationary distribution
the conditioned multivariate normal distribution identified in Section 2.2.

Consider now links j € &, and assume that .#4(N) — .#Z4. By Theorem
2.19 the fluctuations of the number of spare circuits m (N, ¢) are of order
O(1). But m ;(N,t) moves to m (N, ¢) + 1 at rate O(N), indicating that the
relaxation tlme of m,(N,t) is of order O(N~1). We would then expect to
obtain a nondegenerate limit process from the sequence

(2.37) mg(N,tN), N - =,

This can be checked readily in special cases such as Example 2.32, where A,
has rank |Z|.

Note especially the different time-scale normalizations appearing in (2.36)
and (2.37): they suggest that m (N, ¢) might quickly reach a quasistationary
distribution even when the network is not stationary. More precisely we
present the following conjecture of Kurtz [44] and Hunt [26]. Let A = (A,,
re#)andlet = {j: 3,A; A, =C}. Consider a Markov chain m, = (m,,
J € 2) with state space Z' ! and nonzero transition rates

q(Mmg,mg+ Age,) =A, q(mgy+ Age,,mgy) =v,.

Let m,(A) be the limiting probability under these transition rates that m; > A,
for all j € 9. Consider now the sequence

(2.38) N-'a(N,t), Noo,

with initial condition N~'n(N,0) — X(0). The conjecture is that the sequence
(2.38) converges to a limit (X(#), ¢ > 0) which is determined as a unique
solution of the integral equations

(2.39) X,(t)=X,(O)+f0t[v,»n-r(X(s))—X,(s)]ds, re®.

The form of this equation is easy to explain. From the vector X(¢) determine
the set 2 of links which are nearly full. From the Markov chain describing the
number of free circuits on links in 9, calculate the acceptance probability
,.(X(¢)) on route r: the net drift upwards in X,(¢) is then just the integrand
of (2.39). Note the interesting interplay: The current vector X(¢) determines
the transition rates of the Markov chain and hence the limiting probabilities
m,(X(¢)); conversely, these limiting probabilities determine the rate of change
of the vector X(¢). Hunt [26] has shown that a separation of time scales allows
the limiting probability () to be used to give the rates of change of X(#), but
has also shown that in more complex networks with various forms of routing
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control it is possible for interesting and nonuniquely determined behaviour to
occur following points in time when the set 9 changes. It remains open
whether such behaviour can occur in networks with fixed routing.

3. Fixed point approximations. It will be convenient to consider the
following generalization of the Erlang fixed point, (1.9) and (1.10). Let

E,, E,, ..., E; be a solution to the equations
(3.1) E, =E(p;,C;), Jj=12,...,d,
where

-1 .
(32) pi=(1-E) L Aw»IIA-E)™

and the function E is Erlang’s formula (1.1). Then an approximation for the
loss probability on route r is given by

(3.3) 1-L,=T1(1-E)*
J

Again the underlying idea is simple to explain. If a request for a circuit from
link i is denied with probability E; and if we make the approximation that all
such requests are granted or denied independently, then the traffic offered to
link j will comprise independent Poisson streams and the level of carried
traffic on link j willbe £, A ,»,I1,(1 - E;)*-. Equations (3.1) and (3.2) simply
state that the blocking probability on link j should be consistent with this
level of carried traffic, under the Erlang model of a single link offered Poisson
single-circuit traffic. Observe that (3.1) and (3.2) reduce to (1.9) and (1.10)
when A is a 0-1 matrix.

Under the limiting regime considered in Section 2, we have seen that the
vector B = (By, By, ..., B;) of blocking probabilities emerges as a solution to
the dual problem (2.3) or, equivalently, as a solution to the conditions (2.7) on
B. In Section 3.1 we show that a natural relaxation of the dual problem and of
the conditions on B provides us with the Erlang fixed point equations (3.1)
and (3.2). This characterization of the Erlang fixed point provides a simple
proof of its uniqueness under fixed routing. In Section 3.2 we consider the
accuracy of the approximation (3.3) under the limiting regime of Section 2. In
Section 3.3 we take the opportunity to define a loss network with repacking,
and we illustrate the application of the Erlang fixed point. Finally, in Section
3.4 we discuss the Erlang fixed point as a special case of a general reduced load
approximation. This prepares the way for Section 4, where reduced load
approximations will appear as limit solutions for a number of models.

3.1. Uniqueness and the revised dual. Our starting point is the dual
problem (2.3); recall that this arose as the dual of the problem of finding the
mode of the stationary distribution (1.2) for a loss network with fixed routing.
We shall see that by amending the final term in the objective function of (2.3)
we can establish the connection with the Erlang fixed point.
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Define a utilization function U(y, C) by the implicit relation
(3.4) U(-log(1-E(»,C)),C)=v(1-E(»,C)).

Observe that as v increases from 0 to « the first argument of U increases
from 0 to » and so this implicit relation defines a function U: R, X Z, - R,.
Indeed, under the Erlang model of a single link (Section 1.1) the quantity
U(y, C) is just the mean number of circuits in use (the utilization) when the
blocking probability is 1 — exp(—y). Thus U(y,C) is a strictly increasing
function of y.

Consider now the following problem.

THE REVISED DUAL PROBLEM.

Yj
Minimi ,e (— ~A~r)+ U(z,C;) dz
8.5) inimize Xr‘,v Xp Xj‘,yj j Zfo (2,C))

J
subject to y = 0.

Since U(y, C) is a strictly increasing function of y, [JU(z, C) dz is a strictly
convex function of y. Hence the objective function of problem (3.5) is strictly
convex: it thus has a unique minimum. The objective function is also differen-
tiable, hence the stationarity conditions

(3.6) ZAjrvrexp(—ZyiAi,)=U(yj,Cj), j=1,2,...,d,

obtained by differentiating the objective function with respect to y;, j =
1,2,...,J, locate a unique vector y > 0. Now suppose that (E,, E,, ..., E,) €
[0,1) is a solution to (3.1) and (3.2). Under the one-to-one transformation
E; =1~ exp(—y;) and using the definition (3.4), these equations become
precisely (3.6). Hence we obtain the following result [33].

3.7 THEOREM. Equations (3.1) and (3.2) have a unique solution,

(E,E, ..., E,), given in terms of the optimum y of the revised dual problem
BB byE; =1~ exp(~y)).

3.8 REMARK. The conditions (2.7) insist that the carried traffic on a link
must equal capacity before the blocking probability on that link can be
positive. Conditions (3.6) are a natural relaxation: as carried traffic approaches
capacity, blocking increases in a manner corresponding to Erlang’s formula
(1.1). Similarly, replacing the function U by a function

Ur(2,C) =C, z>0,

reduces the revised problem (3.5) to the dual problem (2.3). The utilization
function U; would be natural for fluid flow, where if there is any blocking,
then all capacity is in use. For C large there is not much difference between U
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and U;: we can show [33] that
(3.9) U(z,C)=C — (e = 1) ' +0(1), asC — =,

uniformly over z in any compact subset of (0, «).

3.10 REMARK. Whittle [74] has shown that the revised dual problem (3.5),
with U(z, C) replaced by

c o
Ug(Z,C) - ( Z enz) ( Z nenz)’
n=0 0

n=

emerges naturally from a saddlepoint approximation to a contour integral
representation of the expected value of n,. Observe that U,(z,C) is the
utilization of a link if the number of free circuits on the link has a geometric
distribution with parameter 1 — B = exp(—z), truncated to the range
{0,1,...,C}. Thus U, also corresponds to the asymptotic geometric characteri-
zation (2.18) established in Theorem 2.19. Recall that the definition (3.4) of
the function U corresponds to the Erlang model of a single link, where the
number of circuits in use has a truncated Poisson distribution. We can thus
view the utilization functions U, U, and U as determined by increasingly
refined models of the behaviour of a single link. The saddlepoint approxima-
tion and the Erlang fixed point approximation behave similarly under the
limiting regime of Section 2, to be considered further in Section 3.2; we shall
see that reduced load approximations such as the Erlang fixed point are
preferred under the asymptotic regimes to be considered in Section 4, where
the capacity C of a link is held fixed.

3.2. Limiting loss probabilities. We consider now a sequence of networks,
with »,,C; replaced by v,(N),C,(N), respectively, satisfying the limiting
regime (2.11). For network N the revised dual objective function satisfies,
using relation (3.9),

> V,(N)exp(—— zyjAj,) + X foy’U(z,cj(N)) dz

r J
=N{Z vrexp(— ZyjAjr) + Zijj} +0o(N), as N > o,
r J J

uniformly over y in any compact subset of (0, )”. Thus, under the limiting
regime (2.11), the revised dual objective function approaches a scaled version
of the original dual objective function. Let (E(N), Ex(N),..., E ;(N)) be the
Erlang fixed point for the Nth network. The following result [33] then follows
from Corollary 2.27.
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3.11 THEOREM. Under the limiting regime (2.11),

1-L(N)=TI(1-E(N))* +0(1), re®.
TJ

We can establish more when the network contains no critically loaded links.

3.12 THEOREM. Under the limiting regime (2.11) and (2.12), and provided
O is empty,

1-L(N)=TI(1-E(N)" +o(N"V?), rea.

J

Proor. If the set & is empty, then the vector u of Theorem 2.19, formed
by conditioning u ~ N(0,%) on A u = 0, has distribution u ~ N(0,% —
SAT(A,3AT) A ,S). In particular, E(u,) = 0, r € %, and so a solution to
(2.29)is B; =0, j = 1,2,...,dJ. Thus, from Theorem 2.30,

1-L(N)=TI(1-B;(N)" +0o(N"?), re=.
J
The result now follows, since by the characterizations of (B;(N ), J=
L,2,...,J)and (E/(N), j=1,2,...,J) in terms of solutions to equations of
the respective forms (2.7) and (3.6),

[T -B(N)™ =TI - E(N)* +o(N"/?), rex. O
J

J

3.13 REMARK. The restriction in Theorem 3.12, that & be empty, is
important. In [27] an example is given which shows that the Erlang fixed point
approximation may not be accurate to order o( N~ !/2) in a network containing
critically loaded links. In view of Theorem 2.30, this is an interesting observa-
tion. In networks containing critically loaded links, there is a level of accuracy
at which acceptance probabilities have a limiting product-form decomposition,
and yet at this same level of accuracy the Erlang fixed point approximation
fails. This observation provides insight into the informal argument leading to
the Erlang fixed point: at the N~1/2 level of refinement, mean carried traffics
are given by multiplicative thinnings; however, the rate of arrivals at a link
varies sufficiently to invalidate the Poisson approximation, and hence the use
of Erlang’s formula.

Zachary [76] has developed a refinement to the Erlang fixed point which,
provided & is empty, reduces the error in estimating loss probabilities to order
o( N—3/2+%),

3.3. Repacking. We have interpreted our earlier results primarily in terms
of a loss network with fixed routing, as introduced in Section 1.2. Here we
show that a network operating under a certain form of dynamic routing,
termed repacking, is equivalent to a transformed network operating under
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fixed routing: in particular, the central limit theorem of Section 2 and our
results on the Erlang fixed point apply to networks with repacking.

Let the label g of a call arriving at the network identify not a single route,
but a set of routes, any of which could serve the call. Set D, = 1 if a call
labelled g can be carried on the route r, and set D, = 0 otherwise. This
defines a 0-1 matrix D = (D,,, ¢ € 2, r € #). As before assume that a call
carried on route r uses A;, circuits from link j and that link j comprises C;
circuits. Assume now, however, that a call labelled g can be shifted or shared
between the routes {r: D, = 1} while the call is in progress and that an
arriving call is accepted provided the calls already in progress can be repacked
to provide space for the arriving call. More formally, suppose that calls labelled
q arrive at the network as a Poisson stream of rate v, and let n, be the
number of calls in progress labelled gq. Then an arriving call is accepted

provided the vector n = (n,, ¢ € 2) remains within the set
= {n€2?:3x € R such that Dx = n, Ax < C};

otherwise, the call is lost. Each call holding period is independent of earlier
arrival times and holding periods and has unit mean.
Let

T={x=>0: Ax < C}.

Thus J is the intersection of the half-spaces {x: (Ax); < C}, j = 1,2,...,d,
and the nonnegative orthant. With no loss of generality assume no column of
A is null; hence the set 9 is bounded, and is the convex hull of a finite
number of extreme points. Hence D9 is the convex hull of a finite number of
extreme points, or, equivalently, the bounded intersection of a finite set of
half-spaces. But .= D N Z< and hence there exists a representation

S= {n €72: An 55},

for some choice of A and C. Moreover, A, C can be chosen to have nonnega-
tive elements, since 0 € .7, and (n € #, n’ € Z2, n’ < n), implies n’ € ..
Hence, under repacking the vector n = (n,, g € 2) has stationary distribu-
tion
g

m(n) =G '] i ne.,

b
geony!

where G is the normalizing constant chosen so that 7(n) sums to unity over
the set . We can thus apply any of our earlier results concerning the
truncation of independent Poisson random variables to a polytope.

As a simple example, consider a three-node network in which a call between
nodes « and B can be routed via the direct link of capacity C,;, or on the
two-link alternative route through node y, for (a, 8,v) = (1,2,3), (2,3,1),
(3,1,2). Let v, be the arrival rate of calls between nodes « and B, and let 7,
be the number of calls in progress between nodes a and B, for (a,8) =
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(1,2),(2, 3),(3,1). Then it is easy to check [29] that
S= {(nlz,n23,n31) €Z%:in,s+ng, < Cup+ Cg,
for (a,B,v) = (1,2,3),(2,3,1) and (3,1,2) }.

From Section 2 we can deduce a central limit theorem for the network, or from
(1.9) and (1.10) we can develop a fixed point approximation. Observe that a call
between nodes « and B can be blocked either because there are no free circuits
out of node a or because there are no free circuits out of node B: under the
limiting regime of Section 2 it is as if these events are independent. The Erlang
fixed point estimates the blocking probability out of node 8 by E,4, where

EB = E(pB’CaB + CB7)’ Pp = Vop(l — E,) + VB7(1 - Ev)

for (a, B,y) = (1,2,3),(2,3,1),(3,1,2).
Similarly, if the network comprises a complete graph on four nodes with
arbitrary repacking, the constraints defining . can be written in the form [65]

Z Z n’aBS Z Z Caﬁ’ AC{1’2,3,4}’

acld BEA a€lA BEA

and the Erlang fixed point attaches a blocking probability to each of these
natural cut constraints. For a complete graph on five nodes with arbitrary
repacking, there is a further class of linear constraints defining the polytope .
in addition to the natural cut constraints [29]. For networks with arbitrary
repacking, the results of Papernov (described in [29]) provide necessary and
sufficient conditions on graph topology for cut constraints alone to define the
polytope /.
We consider in detail a further example of repacking in Section 4.6.

3.4. Reduced load approximations. The Erlang fixed point (1.9), (1.10) is a
special case of a general reduced load approximation, constructed as follows.
Model link j, j = 1,2,...,d, as if calls on routes passing through link j arrive
as independent Poisson streams at given reduced loads, calls on route r
require A, circuits and call holding times are exponential. The resulting finite
state Markov chain provides blocking probabilities at link j for each route
passing through link j, as a function of the reduced loads on link j. Finally,
calculate the reduced load on a link by assuming that blocking events are
independent from link to link along each route. This procedure produces a set
of fixed point equations, which are just (1.9) and (1.10) in the case of a network
with fixed routing and A a 0—1 matrix. More generally, the procedure provides
a straightforward and canonical approximation scheme for networks involving
features such as alternative routing and trunk reservation, as we shall illus-
trate in Section 4. ‘

When A is not a 0-1 matrix, the Erlang fixed point (3.1), (3.2) contains a
further approximation over and above that contained in the general reduced
load approximation: it treats the combined arrival process at a link as a
Poisson process, rather than a compound Poisson process, and ignores the
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feature that multiple circuits on a link occupied by a single call are all released
together. The distinction disappears under the limiting regime of Section 2,
where, despite its crude method of dealing with calls requiring multiple
circuits from a single link, the Erlang fixed point gets the loss probabilities for
such calls asymptotically correct (Theorem 3.10). In general, we shall use the
term “Erlang fixed point” for reduced load approximations where the finite
state Markov chain modelling a single link is the Erlang model of single link.

The fixed point equations produced by the general reduced load approxima-
tion are guaranteed to have a solution, by the Brouwer fixed point theorem.
We shall see that there can be multiple solutions, even in the apparently
simple case of fixed routing (Example 4.21). In practice the equations are
usually solved by the method of successive approximation, often with some
additional damping. See Whitt [71] for some results on the convergence of
successive approximation schemes.

4. Symmetric networks. In this section we consider a limiting regime
where link capacities and loads are fixed or bounded and where the numbers of
links and routes in the network increases to infinity. We shall find that
reduced load approximations emerge as asymptotically exact provided routing
within networks is sufficiently diverse. Throughout this section, assume call
holding periods are exponentially distributed with unit mean.

4.1. Fixed routing in star networks. Consider a network with % the set of
all subsets of size w of {1,2,...,J}. Set v,=v, re %, and C;=C, j =
1,2,...,dJ. For w = 2, this network might model a star network, where there
are J stations linked through a common hub and a call is equally likely to
connect any pair of stations. The model also arises in a study by Mitra and
Weinberger [53] of database locking: ‘‘links” become items in the database,
and a “call” is a transaction that involves several items in the database. A
transaction locks the items it needs, and the case C = 1 corresponds to one
copy of each item. (For closely related queueing models, see [12, 30].)

Let

_(Jd-1
A= V(w _ 1),
so that A is the rate of offered traffic involving any single station. Let @, (¢) be
the numbers of links with n busy circuits at time ¢ Let X, (t) = J~'Q,,(¢)
and let X ,(¢) = (X,,(¢t), n =0,1,...,C). Note that X ,(¢) lies in the simplex

c
A= {(xo,xl,...,xc) e RC*L: Y x, = 1}‘
0

Write X, or occasionally X,(+), for (X,(¢), t > 0). Let “= "’ denote conver-
gence in distribution of random elements in the state space A or the space of
all sample paths D,[0,x); for background see Ethier and Kurtz [14]. The
following functional law of large numbers is due to Whitt [71].
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4.1 TueoreM. If X,(0) = X(0) in A, then X; = X in D,[0,), where
X() = (xg(), x (), ..., xc(+)) is the unique solution to the equations

d n
(4.2) E( Z_Oxm(t)) =(n+ Ux,, (t) —y(t)x,(t), n=0,1,...,C -1,

where
y(8) = A1 = xc(2)"

Proor. We sketch a proof based on Whitt [71] and Hunt [26]. The first
step, which we omit, establishes from tightness arguments that the sequence
(X ), is relatively compact in D,[0,») and that the limit of any convergent
subsequence has continuous sample paths [71]. The second step, which we
outline, uses a martingale convergence argument to characterize the limit [26].
Let

X h) - X,
(4.3) A(X,(1)) = time| 2 =20 XJ(t)],
(4.4) M, (1) = X, (1) = X,(0) = [d(X,(s)) ds.

Then M, is an {&,%’}-martingale and the cross variation [M,,,, M;,1t) - 0
as J — ». Hence ([14], page 339, Theorem 1.4) M ; = 0. Next combine the
preceding two steps. Along any convergent subsequence of (X ), the continu-
ous mapping theorem (see Whitt [70]) implies that M ; converges, and by the
second step, the limit must be 0. Thus the differential equations (4.2), derived
from the integral representation (4.4) and an explicit calculation of the drift
(4.3), are satisfied by the limit of every convergent subsequence. Hence the
sequence (X ;); converges to the solution of (4.2). O

Thus x = (xy, x1,...,%c) € A is a fixed point of the flow (4.2) if and only if

(4.5) (n+ Dx, . =vx,, n=0,1,...,C -1,
where
(4.6) y =M1 -x.)" L

But equations (4.5) are just the equilibrium equations for the stationary
distribution of a single link of capacity C circuits offered Poisson traffic at rate
y. Thus x, = E(y,C) and (4.6) becomes.

(4.7) y=AM1-E(y,C))" "

Now E(y,C) is an increasing function of y. Hence (4.7) provides a unique
solution for y. The vector x given by

n C m -1
(4.8) x =7—( Y ) , n=0,1,...,C,

n !
m=0 "
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is thus the unique fixed point in A of the flow (4.2). Whitt [71] goes on to
establish convergence of any solution of the flow (4.2) to this fixed point and to
deduce convergence in probability of X;,,.

4.9 CoroLLARY. For any initial vector X(0), X(¢) - x as t — .

4.10 THEOREM. Let X, be the proportion of links with n busy circuits in a
stationary star network with J links. Then X;, —, x, as J = =, for each n,
where x,, is given by (4.8) with vy the unique solution to (4.7).

4.11 REMARK. Let I' be the one-dimensional submanifold of A defined by

1
,yn C ,ym
I'= (xO’xI""axC):xnzm(mZ‘;Om s

(4.12)
n=0,1,...,C, forsome y € (0,00)}.

The submanifold I' is a natural space to consider: as A varies over the range
(0, =), the fixed point x traces out I'. Also, if y(¢) is replaced by a constant y in
(4.2), then a solution to the resulting linear differential equations converges
exponentially quickly to the submanifold I', to the point parametrized by 7.
This is clear, since with y(¢) replaced by vy, equations (4.2) are Kolmogorov’s
forward equations for the Markov process describing a single link of capacity C
circuits offered Poisson traffic at rate y (see, e.g., [15], page 461).

Under the identification x.(¢) = 1 — exp(—y(¢)), the function U(y,C) de-
fined by (3.4) satisfies

C
U(y(t),C) = Y, mx,(t), forx(¢)eTl.
m=0
Now, from Theorem 4.1,
d w c
—U(3(),€) = A1 = xc(1)” = L mx,, (1)
m=0
= Nexp(—wy(t)) - U(y(t),C) [for x(t) €]

71 a(y)
= - 5 y )
dy y=y(8)
where ®(y) is the objective function of the revised dual problem (3.5). Thus &
is a form of potential function on the manifold I'. This establishes an interest-
ing connection between the revised dual problem (3.5) and the differential
equations (4.2). It would be nice to be able to deduce directly the convergence
of any solution to (4.2) to the unique minimum of the convex function ®, but

this seems difficult: in particular, the manifold I" is not closed under the flow
(4.2).
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4.13 REMARK. Whitt [71] has conjectured the form of a functional central
limit theorem to accompany his functional law of large numbers (4.1). Define

VJn(t) = J_l/z(QJn(t) - an)’

and let V,(¢) = (V,,(¢), n = 1,2,...,C). For each value of J, let V, = (V,(2),
t > 0) be the stationary version of this normalized stochastic process. Then
Whitt’s conjecture is that V, = V in Dc[0,), where V is a stationary
multivariate Ornstein—-Uhlenbeck diffusion process. Whitt [71] establishes the
convergence of the drift of V; as J — o, but the infinitesimal covariance is
more difficult. Hunt [26] has established the conjecture in the case C = 1: then
Q,(¢) is Markov, and the drift and infinitesimal variance of the limiting
process Vy(+) are —(1 + wA(l — x,)*~ )V,(#) and 2wx,, respectively.

4.2. Poisson convergence. For the network considered in Section 4.1, the
Erlang fixed point equations (1.9) and (1.10) reduce to the single equation

(4.14) B=E(x(1-B)"',C)

for every value of ¢J. This is just a rewritten version of (4.7), with B = E(y, C),
and so, from Theorem 4.10,

(4.15) 1-L,-»(1-B)", re%,

as J — . Thus the Erlang fixed point approximation is asymptotically exact.

Variants of this result can be established for many other forms of symmet-
ric network. We describe two further examples. Consider a network with %
the set of all subsets of size less than or equal to W, and let

o (J=-1\""
v, = A'”(]rl _ 1) ,
so that the total offered traffic involving link j and w — 1 other links is A,,.
Let all links have capacity C. Then ([71, 78]) as J — o,
(4.16) 1-L,-(1-B)", re=,

where B is the solution to

(4.17) B= E( XV)V Ay(1 - B)“"l,c).

w=1
Next consider an unbalanced star network, where
R={j,k+d}:j=1,2,...,d,k=12,...,Jd5

and C;=C,, j=1,2,...,J,C=Cs j=d, +1,...,d, + Jg. This network
might model a system where stations are of two types linked through a
common hub and a call connects two randomly chosen stations of distinct
types. This is perhaps the simplest variant of the star network to allow distinct
blocking probabilities to emerge from (1.9) and (1.10). For this network, if
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J, =Jp,, Jg = Jpg, with p, + pg =1, and v, = A /J, then [78] as J —
(4.18) 1-L, > (1-B,)(1-B,),

where (B, Bp) is the solution to

(419) B, =E(Aps(l - B,),C.), By =E(Ap,(1 - B,),Cp).

Let £;(t) be the number of calls offered to link j in the interval [0, ¢],
excluding calls blocked at other links, in a stationary network. Then for the
preceding three examples, the process (£,(¢), ¢ > 0) converges in distribution to
a Poisson process as J — o ([71, 78]; see also [7]). Moreover, the rate of the
Poisson process is just the reduced load on link j under the Erlang fixed point
approximation. This observation provides an intuitively appealing explanation
for the limiting results (4.14)-(4.19) and leads us to formulate a more general
conjecture.

Consider the network described in Section 1.2, with A a 0-1 matrix. Let

2
5j=2( Y v,) , &= max3},.
k ‘r:j,ker J
If §; is small, then two calls through link ; are unlikely to share another link
elsewhere in the network; thus the network measure § assesses the diversity
of routing. Consider now a sequence of such networks, with J, |#| — .
Suppose that the reduced load on link j, given by (1.10), is p; for each network

in the sequence.

4.20 CoNJECTURE. If 8 — 0, then (¢,(¢), t = 0) converges in distribution to
a Poisson process of rate p;.

The conjecture is based on the belief that the key property of the examples
considered earlier is diversity of routing (appropriately formulated) rather
than any particular network symmetries. The conjecture is made plausible by
the results of Palm and Khintchine on Poisson convergence for the superposi-
tion of independent point processes (Section 1.1; [11], Chapter 4). The diffi-
culty, of course, is that in the systems we consider the superimposed streams
are not quite independent.

4.21 ExampLE. This example, taken from [78], illustrates circumstances in
which the various arrival streams at a link approximate to independent
Poisson processes conditional on their rates, but where the rates themselves
are random variables. It also shows that the general reduced load approxima-
tion may have multiple solutions, even in the case of fixed routing.

Links 1,2,...,2K each have C circuits. An arriving call of type a requires
all C circuits from a link chosen randomly from the set {1,2,..., K} and a
single circuit from each link in a randomly chosen subset of size C from the
set {K + 1,...,2K}. Similarly, an arriving call of type 8 requires all C circuits
from a link chosen randomly from the set {K + 1,...,2K} and a single circuit
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from each link in a randomly chosen subset of size C from the set {1,2,..., K}.
For any given link, let v be the total arrival rate at the system of calls
requiring the C circuits from that link. Observe that the model differs from
those considered earlier in that a call may require more than one circuit from a
single link. Let

p° c pn\7t
F(p,p) =P+ =7 (ﬁ+ )y —)
C! noon!
c pn -1
Flp,p)=1-|p+ X —,) :
n—o !

These expressions correspond to Erlang’s formula (1.1), but for a link offered a
Poisson stream at rate p of calls requiring a single circuit and an indepen-
dent Poisson stream at rate p of calls requiring C circuits. The expression
F(p, p) gives the loss probability for calls requiring a single circuit, and the
expression F(p, p) gives the loss probability for calls requiring C circuits. We
can use the expressions to construct a reduced load approximation: let

Bk=F(pk’ﬁk)’ §k=F(pk’ﬁk)’ k=1,2,...,2K,

where p,, p, are the reduced loads of the two types of call at link %, calculated
by assuming a stream of traffic at link ¢ is thinned by a factor (1 — B;) or
(1 — B,), according as it requires one or C circuits from link i. Thus a
symmetric solution, that is one in which (p,, p,) = (p, p), for k = 1,2,...,2K,
satisfies

B=F(p’ﬁ), §=F(P,l3),
where
p=vC(1-B)(1-B)"', 5=uv1-B)°

By the Brouwer fixed point theorem there must exist a solution to these
equations, and hence a symmetric solution to the reduced load approximation.
But now this solution to the reduced load approximation may not be unique,
and, in particular, there may exist asymmetric solutions. Indeed, as v in-
creases above a critical level, there emerges an asymmetric solution in which
(B, B,) = (By, B,) or (B, EB), according as k<K or k> K, where
(B,, B By, B ) satisfy the equations

Ba = F(pa’ﬁﬂ)7 Ea = F(pﬁ’ ﬁa))
BB = F(pﬁ’ﬁa)’ EB = F(paa ﬁp)’
with
P =vC(1-B,)1-B)"", p,=v(1-B,)",

a

pg = VC(]. - EB)(I - BB)C—l, pg=v(l - BB)C.
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For example, if (v, C) = (0.2, 10), then these equations have a solution
(B.. B.; B, By) = (0.01,0.25;0.13,0.74).

Further, the asymmetric solution can be a good approximation for the behav-
ior of a network with K large over a finite period. Observe that if the network
has a preponderance of type a calls in progress, then arriving calls are more
likely to be accepted if they too are of type a rather than B. Offered traffic at
each of links 1,2,..., K will be approximately Poisson at rates pg, p,. Simi-
larly, offered traffic at each of links K + 1,...,2K will be approximately
Poisson at rates p,, pg, where p, > p, and p, <p,. But if the network is
observed over a long enough period, it eventually will flip to the opposite
regime, where there is a preponderance of type B calls in progress, with the
symmetric solution corresponding to an unstable intermediate regime.

We expect the preceding reduced load approximation and the associated
bistable behaviour to emerge from a limiting regime where K — « with v and
C held fixed. We do not pursue this here: instead, we explicitly demonstrate
bistable behaviour in the much simpler case when C = K. Let n,,ng; be the
number of calls in progress of types @ and B, respectively. Then (n,, ng) is
Markov: indeed, either n, or n, is zero and so (n, — ny) is a birth and death
process. The stationary distribution for n = (n, — n,) is

7(n) = [2(v + 1) - 1]_1(1,5),/", n=-K,-K+1,...,K.

The stationary distribution for (n,,n,) thus has two modes, at (n*,0) and
(0, n*) where n* = [Kv(v + 1)]~! + 1 provided v € (K~!, K). Type « calls are
offered to links in the set {1,2,..., K} at rate Kv during the periods while
n, > 0, and at rate zero during the periods while n, > 0. These periods have
mean lengths (v + 1)X(Kv)~! and [(v + DX — 1](Kv)~ !, respectively.

REMARK. Hajek and Krishna [23] recently have established a result con-
cerning networks in which each route is two links long and each link can carry
at most one call at a time. Let v = max; , v 4, 7 = max; X,v; - They show
that, as v — 0 with 7 fixed, the error of the reduced load approximation tends
to zero, uniformly over all such networks.

4.3. Alternative routing. We describe a model of alternative routing in a
fully connected network. Suppose that K nodes are linked to form a complete
graph. Between any pair of nodes, calls arise at rate » and there is a link of
capacity C. If there is a spare circuit on the link joining the end points of a
call, then the call is accepted and carried by that circuit. Otherwise the call
chooses at random a two-link path joining its end points: the call is accepted on
that path if both links have a spare circuit, and is lost otherwise.

The preceding model of a fully connected network is difficult to analyse, and
we consider instead the following simpler version. There are J = ;K(K — 1)
links, each link comprising C circuits. Calls requiring link j arrive as a
Poisson process of rate v. If the call is blocked on its first choice link, it tries
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two other links chosen at random from the J — 1 other links. If neither of
these links is full, a circuit is held from each; otherwise the call is lost. Call
holding periods are exponentially distributed with unit mean. Observe that the
original model is invariant under permutations of nodes, a group of order K!.
The simpler model is invariant under permutations of links, a much larger
group of order J!. We call it the exchangeable model, since links in this model
can be permuted arbitrarily without affecting the stationary behaviour.

Let @,,(t) be the number of links with n busy circuits at time ¢. As in
Section 4.1 let X,,(¢) = J'Q,,(t) and let X,(t) =(X,,, n=0,1,...,C).
Again, X ;(t) lies in the simplex A. The following result can be established by
the techniques used to prove Theorem 4.1 ([18, 26)).

4.22 TueoreMm. If X,;(0) = X(0) in A, then X, = X in D,[0,x), where
X() = (xg(+), x4(+), ..., xo(+)) is the unique solution to the equations

n

d
(4.23) E( ) xm(t)) =(n+ Dx,4(¢) = (v +0(2))x,(2),

m=0

where
o(t) = 2vxc(t)(1 — xc(2)).

Thus x = (x4, xq,...,x¢) € A is a fixed point of the flow (4.23) if and only if

(4.24) (n+Dx,,,=(v+o)x,, n=0,1,...,C -1,
where
(4.25) o= 2vx:(1 —x¢).

A fixed point x is thus of the form (4.8), where y solves
y=v+2vE(y,C)[1 - E(y,C)].

This equation for y is equivalent to the equation

(4.26) B=E(v+ 2vB(1 - B),C)

for B, under the transformation B = E(y, C). Equation (4.26) is, of course,
just a reduced load approximation. Suppose that links block independently,
each with probability B. The probability that a call overflows is B and the
probability it can be accepted at the other link of a two-link path is 1 — B; the
arrival rate of overflowing calls at a link is then 2vB(1 — B).

The locus of points satisfying (4.26) is illustrated in Figure 1. Observe the
possibility of multiple solutions for B, for C large enough and for a narrow
range of the ratio v/C. The upper and lower solutions correspond to stable
fixed points for the flow (4.23), while the middle solution corresponds to an
unstable fixed point.
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Link blocking probability, B
1

0.7 0.8 0.9 1.0 1.1 1.2
Load,v/C

Fic. 1. Instability of blocking probability.

4.27 REMARK. If I is the one-dimensional submanifold (4.12) and if
y(¢), U(y, C) are as in Remark 4.11, then

d 9 ¢
G U0(0,0) = v(1 = wc(®)) + 2ac()(1 = we(0)’ = T miy(t)

ve YD + 2pe”BW(1 — YD) — U(y(t),C) [forx(¢) €]

d O(y)
=7 )
dy y =y(t)

where
(4.28) ®(y) =ve™ +ve ¥(1- 2e7) + [[U(2,C) dz.
0

Thus ® is a form of potential function on the manifold I.

The function ® allows the bistability exhibited in Figure 1 to be described in
the language of catastrophe theory, as we now briefly indicate. Equation (4.26)
locates the stationary points of the potential function ®(y) under the equiva-
lence B =1 — e . Regard v/C as the normal variable and C as the splitting
variable. Then Figure 1 illustrates three cross-sections of the cusp catastrophe.
Comparing (4.28) and the objective function of the revised dual problem (3.5),
we see that alternative routing has led to the introduction of the second term
in (4.28) and hence to nonconvexity and multiple minima.

Simulations of similar fully connected networks with tens or scores of nodes
(1, 2, 18, 43)]) indicate that the upper and lower solutions for B in Figure 1
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correspond to distinct locally stable modes of a stationary distribution. Simula-
tions also indicate a hysteresis effect: if v is varied slowly, the mode which
obtains may depend not just on the current value of v but also upon whether »
approached this value from above or below. This is just what we would expect
from the preceding analysis, and an intuitive explanation is easy to provide.
The lower solution corresponds to a mode in which blocking is low, calls are
mainly routed directly and relatively few calls are carried on two-link paths.
The upper solution corresponds to a mode in which blocking is high and many
calls are carried over two-link paths. Such calls use two circuits each, and this
additional demand on network resources may cause a substantial number of
subsequent calls also to attempt two-link paths. Thus a form of positive
feedback may keep the system in the high blocking mode.

4.29 REMARK. In [18] (see also [55]), a one-dimensional diffusion model is
developed, based on the very crude approximation that X ,;(¢) lives on the
submanifold I'. The model takes into account the number of nodes J in the
system and is able to estimate the probability mass attached to each of the two
modes of the stationary distribution, as well as the expected time to tunnel
from one to the other.

4.4. Trunk reservation and multiple alternatives. For the network consid-
ered in Section 4.3, the network loss probability for the parameter choice
(v, C) = (115, 120) is about 0.12. If alternative routing is not allowed, so that a
call blocked on its direct link is lost, then the network loss probability is given
by Erlang’s formula (1.1) to be 0.05. Thus, allowing a blocked call to attempt a
two-link alternative route may increase the loss probability of a network, and
we might expect this effect to become even more pronounced if a blocked call
can attempt a sequence of alternatives routes. Recall that if a link accepts an
alternatively routed call, it may later have to block a directly routed call which
will then attempt to find two circuits elsewhere in the network. A natural
response is to allow a link to reject alternatively routed calls if the link
occupancy is above a certain level. Suppose then that in a fully connected
network a call attempting a two-link alternative route is only accepted if on
each of the two links the number of circuits occupied is less than C — s. This
method of giving priority at a link to certain traffic streams is known as trunk
reservation and the constant s is known as the trunk reservation parameter
for the link.

The preceding model for a fully connected network of K nodes is difficult to
analyse, and instead we consider a simpler exchangeable model. Suppose there
are J = $§K(K — 1) links and that a call blocked on its first choice link tries
two other links chosen at random from among the J — 1 remaining links. If
the number of circuits occupied on each of the two links is less than C — s,
then the call is routed via that pair of links. If not, the call can try another pair
of links chosen at random from among the J — 3 remaining links. On each
link a trunk reservation parameter of s acts against alternatively routed calls,
and a call is lost after it has tried v pairs.
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Define Q,,(¢), X;,(¢) and X ;(¢) as in Sections 4.1 and 4.3. Thus, X ,(¢) is
the proportion of links with n busy circuits at time ¢. The proof of the
following result parallels that of Theorem 4.1 (cf. [18, 51]).

4.30 THEOREM. If X ;(0) = X(0) in A, then X; = X in D,[0,»), where
X() = (xo(+), x,(), ..., xc(+)) is the unique solution to the equations

d n
5( r xm(t)) =(n+ 1)x,4(8) = (v +0(2))x,(2),

m=0

n=0,1,...,C—-s~-1

=(n+ x,(t) —vx,(t), n=C-s,...,C—1,
where
C-s-1 -1 C-s-1 21"
o(t) = 2ch(t)( ZO xm(t)) {1 - [1 - ( )y xm(t)) }}
m= m=0

A fixed point x = (xg, x1,..., %) € A of the preceding system of differential
equations satisfies

n+ Dx,,,=(v+o0)x,, n=0,1,...,C—s—1,
(4.31) ( )21 = ( )
(n+ Dx,.q =vx,, n=C-s,...,C -1,
where
o =2vBy(1 - Bz)_l{l ~i-qa- 32)2]”},
(4.32) c

B1=xC7 B2= Z xm'

m=C-s

The network loss probability corresponding to a solution to (4.31) and (4.32) is
(4.33) L=B1-(1-By]".

We can interpret this form as follows: A call is lost if it is blocked on its first
choice route, which happens with probability B;, and if it is then blocked on
each of v alternatives. It is blocked on an alternative route with probability
1 — (1 — B,)?, where B, is the probability that a link has s or fewer free
circuits. Observe that equations (4.31) are the equilibrium equations for a
single link of capacity C circuits and a trunk reservation parameter s offered
independent Poisson streams of priority traffic at rate v and nonpriority traffic
at rate o. Equations (4.31)-(4.33) are just the reduced load approximation for
a symmetric network with trunk reservation and multiple alternatives.

The effect of varying the trunk reservation parameter s and the number of
alternatives allowed v can be assessed from the above reduced load approxima-
tion. It is found that as v increases the hysteresis effect noted in Section 4.3
occurs at a lower capacity C. As s increases the hysteresis effect is diminished
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Fic. 2. Minimal loss probability under alternative routing and repacking.

or disappears, and the loss probability is lowered for larger values of the
offered traffic v. The minimal loss probability, using the best (integer) choice of
trunk reservation parameter, is shown in Figure 2 for various values of v, the
number of alternative routes. The case v = 0 corresponds to Erlang’s formula.
Note the diminishing benefits that occur from increasing v (cf. [19]).

Figure 2 includes the limiting case v = ». This case has an interesting
alternative derivation, which we describe next.

4.5. Least busy alternative schemes. Suppose that a call blocked on its
direct route in a fully connected network looks at each of the K — 2 two-link
alternatives routes and selects, in some sense, the alternative route which is
least busy. If m;, m, give the number of circuits occupied on links j and &,
then we measure the business of a route through links j and & by c(m;, m,),
where c(-, - ) is a symmetric positive function, increasing in both its argu-
ments. As an important special case, if c(m;, m,) =c(m;) +c(m,) and
c(m + 1) > 2¢(m), for all m, then the alternative chosen is a path j, & which
minimizes max{m ;, m,}. Again, we analyse this model not for a fully connected
network but 1nstead for an exchangeable model consisting of J = ;K(K — 1)
parallel links. We suppose a call blocked on its first choice hnk selects at
random K — 2 disjoint pairs of other links and chooses the pair {j, £} which
minimizes c(m;, m;}. If m;, m, < C, the call holds a circuit each from links j
and % for an exponentially dlstrlbuted period with unit mean. If either of links
j and k are full, the call is lost.
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Define @Q,,(t), X;,(¢), X,(¢) as in earlier sections. Thus, X, (¢) is the
proportion of links with n busy circuits at time ¢. The following result can be
established ([26], cf. [50]).

4.34 THEOREM. If X,(0) = X(0) in A, then X; = X in D,[0,), where
X() = (xo(), x,(*), ..., xc(+)) is the unique solution to the equations

d n
— t
di (mgoxm( ))
=0, n=0,1,...,u — 2
= [ux,(t) — wxg(t)], n=u—1
= (u + Dy o(£) = w2, (8) = [2vxc(t) —ux, ()], n=u
=(n+ x,,(t) —vx,(t), n=u+1,...,C—-1,
where
u(X(t)) = min{n: x,(t) > 0}.
A fixed point x = (x4, X, ..., %c) € A of the preceding system of differential
equations satisfies
x, =0, n=0,1,...,u—1,
ux, = 2v(l — a)xc,
(4.35) ¢
(v + 1)x, ., =vx, + 2vaxe,

(n+1x,,,=vx n=u+1,...,C—-1,

for some a € [0, 1]. These equations imply that
pCu v 1
C(C-1) - (u+1) “+(1_“)Z] T2
If v > 1C, then x = (0,0,...,0, 1) is a stable fixed point; further, if
VC—n+1 1
cC-1-n 2

then this is the only fixed point. The minimum of (4.37) over n occurs when
n = [v]; thus (4.37) is satisfied when v > v*, where v* solves

(4.36)

(4.37)

n=12,...,C,

V*C—[V*]+1 1

c(C-1)--[»] 2

For v < v*, we can set
)
pC—n+1 1

u=m1n{n: C(C—l)n SE

and choose « so that (4.36) is satisfied; this choice of «, @ provides a solution
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to (4.35) and a stable fixed point. It corresponds to a regime where no calls are
lost and where, when an alternatively routed call is set up through a link, the
link’s occupancy rises to either u or u + 1. If the system is operated with a
trunk reservation parameter of, for example, s = C — u — 1, then this regime
becomes the only one.

If v > v*, the only stable fixed point is x, = 1. If a trunk reservation
parameter of s is imposed, the network’s loss probability becomes

L=(1_1C(C—1)S'+'1'(C—s))
2 v

(4.38) c(C-1)-(C +1 17!
S — - m
" m

X

v

Minimizing this with respect to s provides the curve labelled v = « in Fig-
ure 2.

4.39 REMARK. Nakagomi and Mori [54] first observed that an independent
link approximation leads to bistability in networks with alternative routing.
Starting from an independent links hypothesis, Marbukh ([50, 51]) derived
differential equations analogous to those presented in Theorems 4.30 and 4.34.
He analyzes the stability of the corresponding fixed points and discusses the
possibility of hysteresis. In particular, Marbukh [50] obtains the expression
(4.38) for the loss probability of a network operating a form of least busy
alternative routing with trunk reservation. Anantharam [3] considers spatially
distributed versions of these models of alternative routing and obtains a
hydrodynamic equation for a lattice caricature.

4.6. Results respecting graph structure. Our earlier discussion of alterna-
tive routing was motivated by a fully connected network, but in fact all our
results have been for systems of exchangeable links. In this section we present
results which respect the graph structure underlying the fully connected
network. In particular, we find the asymptotic form of the optimal admission
and routing policy for a fully connected network operating under repacking.
The results show that, at least for this case, the graph structure does not, in
fact, matter: the form of the policy is that which would have been found from
an exchangeable model.

We begin with a simple static problem. Choose p € (0, 1) and suppose the
edges of a complete graph on K nodes are independently coloured red with
probability p and white with probability 1 — p. The graph represents a set of
K stations which are fully interconnected. At any given time only certain pairs
of stations need to communicate: these pairs are identified by the red edges.
The communication resource needed by a communicating pair is fixed and is
exactly twice the capacity provided by a single edge. A communicating pair
uses the entire capacity of the red edge joining them and can divide arbitrarily
the excess traffic between them over two-edge paths through tandem nodes
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which are connected to each of the pair by white edges. Let P(K) be the
probability that it is possible to do this simultaneously for each red edge
without exceeding the capacity of any white edge. The following result is due
to Hajek [21].

4.40 TueoREM. Forp < 3, P(K) —> 1as K — .

Proor. Choose a red edge. Look through the K — 2 two-link alterna-
tives and identify those composed of two white edges. Randomly select
(2/3)%(K — 2) of these and divide the unit excess traffic between them equally.
Repeat for each red edge. This procedure will work provided each red edge has
enough two-link alternatives composed of white edges and provided each white
edge is not part of too many such alternatives.

For a given red edge, let Z, be the number of two-link alternatives to this
edge which are composed of two white edges. Then Z; has a binomial
distribution, B(K — 2,(1 — p)?). Thus,

P(Z, < 4(K — 2)) < E2*/9E-2"% (forz > 1)

1 K-2
- 2o
4

(4.41)

IA

exp[(K— 2)(§logz - (1 - 2(1 —p)z)”

exp[ — (K - 2)I,(p)].

The choice z = (9/4)(1 — p)* > 1 gives I,(p) > 0.

For a given white edge, let Z, be the number of nodes such that the triangle
formed by the edge and node has two white edges and one red edge. Then Z,
has a binomial distribution, B(K — 2,2p(1 — p)). Thus,

P{Z, > 5(K — 2)} < Ez%~@W/E=D (for z > 1)

— (1 +2p(1—p)(z — 1)) 7z WK
<exp[— (K - 2)(4logz — 2p(1 — p)(z — 1))]
= exp[— (K — 2)I,(p)],

where since p < 3 we can choose z > 1 to force I,(p) > 0.
Since there are just 2K(K — 1) edges in the network, the bounds (4.41) and
(4.42) imply that P(K) - 1as K —» ». O

(4.42)

The method of routing used in the proof of Theorem 4.40 will divide the
excess traffic from a communicating pair over a large number of alternative
routes. Let @(K) be the probability that this excess traffic can be carried on a
single alternative route, simultaneously for each communicating pair. It is
helpful to rephrase this in graph-theoretic terms. Let a triangle be a set of
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three edges joining each pair from a set of three nodes. Call a triangle good if
it contains one red and two white edges. Then Q(K) is the probability that
there exists a set of disjoint good triangles such that each red edge is contained
in a triangle. Clearly Q(K) < P(K). The following result is due to Hajek [22].

4.43 THEOREM. Forp < 1, Q(K) > 1l as K — .

4.44 A GREEDY ALGORITHM. Hajek’s methods are informative about the
performance of algorithms as well as the structure of random graphs, and we
outline one aspect of his proof. Consider the following very simple greedy
algorithm. Suppose disjoint good triangles T, T,,...,T, have been found
already and the algorithm has not yet stopped. If there are no remaining red
edges, declare the algorithm successful and stop. Otherwise, call a triangle
available (after %k steps) if it is a good triangle which is disjoint from
T, T,,...,T,. Choose a red edge e at random from the remaining red edges. If
no available triangle contains e, declare the algorithm unsuccessful and stop.
Otherwise, choose T}, ; at random from among the available triangles contain-
ing e. Hajek conjectures that this algorithm is successful with probability
approaching 1. He proves Theorem 4.43 by consideration of a modified algo-
rithm. Choose ¢ with 0 < ¢ < 3+ — p. Independently consider each white edge
and delete it with probability . Now run the original algorithm (although now
only available triangles with nondeleted edges are counted). Then this modified
algorithm is successful with probability approaching 1. Hajek’s proof [22]
proceeds by comparing the evolution of the algorithm on a complete graph and
on an exchangeable model.

Next we extend Theorem 4.40 in a different direction. Suppose the offered
load between a pair of nodes is a nonnegative real valued random variable X
and suppose the offered loads between different pairs of nodes are independent
and identically distributed. Let the capacity of each edge be C. Let P(K) be
the probability that all offered loads can be carried over direct and two-edge
routes, with no edge in the network required to carry more than its capacity.

4.45 THEOREM. If E(e*X) < o, for some A > 0, and if
(4.46) 2E(X - C) < E(C - X)",
the P(K) > 1 as K — .

4.47 ComMENT. If C =1, P{X =2} =p, P{X =0} =1 — p, the result re-
duces to Theorem 4.40. The proof is a natural extension of Hajek’s proof of
Theorem 4.40.

Proor oF THEOREM 4.45. Select three nodes, label the edges joining these
nodes 1,2, 3 and let X, X,, X; be the respective offered loads on these edges.
Thus, X,, X,, X; are independent random variables, each distributed as X.
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Let link 1 reserve capacity through each of edges 2 and 3 for a flow of
(X, - C)'(C—X,)"(C—X,)
2
(K - 2){[[5(0 -x)] - s}

for small ¢ > 0. Repeat this step with the edge labels 1, 2, 3 rotated cyclically.
Observe that positive capacity will be reserved at most once, when the labels
are such that X; > C and X,, X; < C, so that edge 1 has excess flow and
edges 2 and 3 have excess capacity. Repeat the entire procedure with every
subset of three nodes.

Select an edge with excess flow. The capacity reserved through two-link
alternatives will fail to cope with this excess flow with probability

K-2
P,=P{ Y (K-2)7'Y, <1},
i=1
where Y,, i =1,2,..., K — 2, are independent random variables each dis-

tributed as
o (C-X)'(C-X)'
[E(c-x)]" -

But the expectation of Y is greater than 1, and so [10]
(4.48) P, <exp[-(K - 2)1,],

for some I; > 0.
Next select an edge with excess capacity. The capacity reserved through this
link will be greater than the excess capacity with probability

K-2
P,=P{ Y (K-2)"'z,> 1},
i=1

where Z;, i =1,2,..., K — 2, are independent random variables each dis-
tributed as

(X -0)'(C-X) +(X, - €)' (C-X,)"
[Ef(c-x)] - '

But the expectation of Z is less than 1 for ¢ sufficiently small, by (4.46). Now
X (and hence Z) has a moment generating function in a neighborhood of the
origin, and so [10]

(4.49) P, < exp[—(K - 2)1,],

for some I, > 0.
Since there are just $K(K — 1) edges in the network, the bounds (4.48) and
(4.49) imply that P(K) > 1 as K > ». O
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4.50 REMARK. The bound (4.46) is clearly the best possible; it corresponds
to the statement that the network load generated per edge must be less than
edge capacity. The requirement that X have a moment generating function in
a neighborhood of the origin can be weakened to the condition that F[ X3*¢] <
o, for some & > 0 (cf. [28], page 258).

So far the results of this section have concerned systems observed at a fixed
point in time. Now we return to consider a network evolving over time, driven
by Poisson arrival streams. Consider the fully connected network: let each link
have capacity C circuits and suppose calls arrive as independent Poisson
streams at rate v between each pair of nodes. Let call holding times be
exponentially distributed with unit mean. Assume that the network is oper-
ated with repacking. At any time the route carrying a call between two nodes
can be changed, and indeed that call can be divided over a collection of routes
connecting the two nodes, provided the collection together provide unit capac-
ity for the call.

We describe next one possible strategy for operation of this network.
Suppose that a link counts how many calls n are in progress between its end
points: an arriving call between the link’s end points is provisionally accepted
by the network if n < C + s, is rejected if n > C + s and is provisionally
accepted with probability « if n = C + s. Call this the link admission policy.
The network attempts to route calls as follows. If n calls are in progress
between two nodes and if n < C, then the network’s aim is to route all these
calls directly. If C <n < C + s + 1, the network’s aim is to route C calls
directly and to route the extra n — C calls via underutilized two-link paths. A
call provisionally accepted by a link’s admission policy is accepted by the
network if the network can succeed with its routing aim.

Suppose for the moment that the network’s routing aim is always achieved
and that all calls accepted by the link admission policies are carried. Then the
number of calls in progress between two nodes is a birth and death process,
with stationary distribution

Vn
7T(n)=b—', n=20,1,...,C+s
(4.51) n

=bav—, n=C+s+1,
n!
where b is a normalizing constant chosen so that = sums to unity. The
expected number of calls between two nodes which are routed via two-link
paths and the expected number of circuits on a link not utilized by directly
routed calls are, respectively, G, (s,a) = E_(n — C)* and H,(s,a)=E_(C —
n)*. The proportion of calls rejected is L (s, @) = 1 — v~ 'E_(n), which reduces
to Erlang’s formula E(v,C + s) when a = 0. Observe that G,, H, and L, are
readily calculated from the definition (4.51) of . Define s, & by

(452) s+a@=sup{s +a:seN,ac(0,1), H(s,a)>2G,(s,a)},
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and let L, = L (5, @). Let v* be the unique solution to the equation
HV*(OO, O) = 2GV*(°°, O).

Then for v < »* the supremum in (4.52) is unbounded, and we set 5§ =  and
L,=0.

The parameter s is rather like a negative trunk reservation parameter, and
we shall call the strategy defined previously a trunk reservation strategy with
parameters (s, @). It is just one strategy for the operation of a fully connected
network on K nodes with arrival streams of rate v and with repacking. Let
L, (K) be the minimal network loss probability over all nonanticipating sta-
tionary strategies. (Note that the network loss probability is clearly defined for
stationary strategies; also the theory of Markov decision processes with finite
state space [62] ensures that we lose no essential generality by restricting
attention to strategies which are stationary.)

4.53 THEOREM. In a fully connected network on K nodes in which repack-
ing is allowed, the minimal network loss probability satisfies

(4.54) L(K)>L,.
Further,
(4.55) L(K)—>L, asK— o,

and hence a trunk reservation strategy with parameters (3, @) defined by (4.52)
is asymptotically optimal.

Proor. Consider the following sequential optimization problem. We have a
single link of infinite capacity offered Poisson traffic at rate v, where accepted
calls have independent exponentially distributed holding times with unit mean.
Let n be the number of calls in progress. The control action allowed is to
admit or to reject an arriving call, and the objective is to maximize E(n) over
stationary policies which satisfy 2F(C — n)"< F(n — C)*, where expectations
are taken with respect to the induced stationary distribution for n. Then the
optimal policy is just the link admission policy described previously, namely, a
trunk reservation strategy with parameters (3, &). Call this the optimal single
link policy. The inequality L (K) > L, follows since otherwise a randomly
chosen link in the fully connected network could be used to define a policy
which improved upon the optimal single link policy. We make the inequality
strict, and obtain (4.54), by observing that in a network with finitely many
nodes the links are not quite able to operate the optimal single link policy,
since there is a positive probability that the network will not be able to route
all the calls provisionally accepted by links.

We now turn to the limit (4.55). Suppose that each link operates as its link
admission policy a trunk reservation strategy with parameters (s, @), where
s + a <5+ a. Then

2E (C—n) <E(n—C),
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where n is a random variable with the distribution 7 defined by (4.51).
Consider the network at the points in time at which a call is provisionally
accepted by a link. Can network routing cope with the additional call? Includ-
ing the additional call, the numbers of calls in progress between pairs of nodes
are stochastically dominated by a collection of independent random variables,
each with the distribution 7. Hence, by Theorem 4.45, the probability that the
additional call can be accommodated approaches 1 as K — . The network’s
loss probability thus approaches L (s, ) as K — «. Since (s, @) was chosen
arbitrarily subject to s + o < § + @, we have the result (4.55). O

The bound L, is illustrated in Figure 2, under the label repacking.

5. Lattice models. In this section we consider loss networks with fixed
routing where the structure of the system is sufficiently regular that an exact
analysis is possible.

5.1. One-dimensional networks. The results of Sections 2 and 4 indicate
that under diverse routing conditions we should expect the approximation
procedures introduced in Section 3 to perform well. But there are, of course,
circumstances where the approximation procedures may be inadequate. For
example, if a number of small capacity links are arranged one after another in
a line, then we might expect considerable dependence between the number of
free circuits on adjacent links. In fact it is not difficult to analyze exactly
systems with an essentially one-dimensional structure, as we illustrate in this
section (for a further illustration see [32], Section 3).

Suppose each route r € # is a set of consecutive integers chosen from
{1,2,...,J} and that C; =C, j=1,2,...,J. This model arises naturally in
the study of local area networks [45]; one can imagine a cable on which are
positioned J + 1 stations and that communication between two stations uses a
fraction C~! of the cable’s capacity over the section of cable lying between the
two stations. Let the arrival rate of calls between stations i and j be

v, =kl 7, r={i+1,i+2,...,j}.

Thus calls between stations a distance v apart are attempted at rate xu’. If
u = 1 distance has no effect on calling rates. Let

(5.1) m; = Y n,, j=12,...,dJ,
r:jer
and let
9 My;={m=(m;,j=0,1,....,d +1):mg=m ., =0,
2 m,€{0,1,....,C},j=1,2,...,d }.
Thus m € M describes the number of circuits in use on links 1,2, ..., J, with

m, and m; ; held identically zero. Recall that =(n), defined by (1.2), gives
the stationary distribution of n; through (5.1) the distribution 7 induces a
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distribution over M; for m. Call this distribution o,;(m). The following result
is established in [34].

5.3 THEOREM. There exists a transition matrix p(-,-) over {0,1,...,C}?
such that
n}]=op(mj, mj+1)
m) = , eM,.
7 m) = =T 0,0) e
5.4 REMARK. Thus m = (my, my,...,m ) is distributed as the sample

path of a Markov chain with transition matrix p(-, - ) conditioned on the end
effects my=m;,, = 0.

Next we consider a slightly different one-dimensional system. Now let C = 1
and suppose the arrival rate of calls between stations ¢ and j is
(5.5) v,=kf(j—1), r={i+1,i+2,...,j},

for f an arbitrary nonnegative function. Calls are thus attempted at a rate
depending arbitrarily on the distance between stations. Assume that

(5.6) 1l—a=xy, a"*1f(v)
v=1
has a solution « € (0, 1) and that
(5.7) Y va’tf(v) < .
v=1

Again define m; by (5.1) and M, by (5.2), and again let o,(m) be the
distribution over M, induced by the stationary distribution (1.2). Let X =
{0, 1}4, with the product topology and with measurable structure given by the
o-algebra of Borel sets. Construct the probability measure o on X correspond-
ing to a stationary alternating renewal process, the lengths of successive blocks
of ones having distribution

(5.8) g:(v) =x(1 —a) ' Yf(v), v=12,...,

and the lengths of the intervening blocks of zeros having the geometric
distribution

(5.9) go(u) = (1 —a)a”, u=20,1,....
‘Let ¢ be the projection mapping on X which sends x € X to (x;, j =
0,1,...,J + 1).

5.10 THEOREM.
o(x: p(x) =m)
o(x: p(x) €M)’

o;(m) = meM,.



364 F. P. KELLY

5.11 REMARK. Let (x;, j € Z) be the stationary alternating renewal pro-
cess with renewal measure o. Then Theorem 5.10, proved in [34], shows that

the distribution of the sequence (m, my,...,m ) is the same as the condi-
tional distribution of (x;, x,, ..., x;) given that x, =x,,, = 0.
5.12 ExampLE. If f(v) =1, v=1,2,..., then the solution to (5.6) is

a =1+ «?)7! and the distributions (5.8) and (5.9) are both geometric in
form. The proportion of occupied links under the stationary renewal measure
o is 1 — a. If f(v) increases with v, it is quite possible to construct examples
[34] where increasing the arrival rate parameter « has the effect of decreasing
the proportion of occupied links under the measures o and o;.

5.13 REMARK. It is interesting to consider a continuous unbounded version
of the preceding models. Imagine that users are arranged along an infinitely
long cable and that a call between two points on the cable s;, s, € R involves
just that section of cable between s; and s,. Past any point along its length
the cable has the capacity to carry simultaneously up to C calls: a call attempt
between s, s, € R, s; < s,, is lost if past any point of the interval [s,, s,] the
cable is already carrying C calls. The statistics of call attempts are most easily
defined using a space-time diagram. Let a rectangle {(s,?): s; < s < sy, #; <
¢t < t,} represent a call attempt between points s; and s, made at time ¢,. If
accepted, this call will last until time ¢,. Assume the northeast corners of
rectangles are distributed as a Poisson process of rate « (with respect to
Lebesgue measure on (R)?). Assume that heights have unit mean, that widths
have a distribution G with finite mean x~! and that heights and widths are
independent of each other and of the positions of northeast corners. Infor-
mally, the probability that at time ¢ a call attempt arises connecting a point s
to a point s + z € (s,®) is k dt ds dG(z). Let m(s, t) be the number of calls in
progress past point s on the cable at time ¢. It is possible to show that, from an
initial configuration of calls in progress at time ¢ = 0, the space-time diagram
defines the stochastic process ((m(s, ), s € (R), ¢ = 0). It seems plausible (but
has not been proved rigorously) that this process has a unique invariant
measure, constructed as follows: let X(s) be the number of customers at time
s in a stationary M/G/» queue with arrival rate k and with service time
distribution G. Then (X(s), s € (R) is a stochastic process, stationary with
respect to the parameter s. Now condition (X(s), s € [L, —L]) on the event
{X(s) <C, se[L,—L]}, and let L tend to infinity. We expect the limit
process to be the unique invariant measure for ((m(s,¢), s € R), ¢ = 0). The
structure of the limit process is considered in detail by Ziedins [77], in the case
where G is exponential. In this case X(s) is a Markov chain with transition
rates g(x — 1,x) =k, q(x,x — 1) =xu, x=1,2....

5.2. A TREE NETWORK. In sympathy with historical developments in statis-
tical mechanics [4] and interacting particle systems [66], we consider next a
loss network defined on a Bethe lattice or tree [32].
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Let T be the infinite tree with d edges from each vertex, and let T, be the
finite subgraph consisting of a distinguished vertex 0 and each vertex not more
than M steps from it. Associate the edges of T,, with the links of the loss
network, and suppose each link has capacity C = 1. Associate a call with a
vertex of T, and suppose a call arriving at a vertex requires the use of each
edge out of the vertex. Thus, a call may require the d edges out of an internal
vertex, such calls arriving at rate v for each internal vertex, or a call may
require the single edge out of an external vertex, such calls arriving at rate v,
for each external vertex. Let n, =1 or 0, according as there is a call in
progress associated with vertex v or not. Thus, n,n, =0 if u and v are
neighbours. The stationary distribution of n = (n,, v € T},) is given by (1.2)
and can be constructed directly as follows.

Let s(v) be the minimum number of steps from vertex v to an external
vertex and let u(v) be the neighbour of v which is one step nearer to vertex 0
than v. Let P, = (P, (i, j); i, j = 0,1) be the transition matrix defined by

P - (am 1- am)’
1 0
for ay,a,,...,a,, to be determined, and set

ﬂ(n) - ﬂ-(nO) 1;[Ops(“(v))(n’u(v)’ nv)’
v

for m(n,) to be determined. Under this distribution, the values observed along
a path of length M from vertex 0 to an external vertex are generated by a
nonhomogeneous Markov chain, with transition matrices Py, Py,_1,..., P;.
Let 7, be the induced probability that n, = 1, for a vertex v with s(v) = m.
Then 7y, = m(x,) and

(5.14) mo o =(1-m)1-a,), m=12.. M.

For m(n) to be the stationary distribution of n the following detailed balance
conditions must be satisfied:

(5.15) (I-m)ay, =1 -m)(1 - ay),
(5.16) (1-m,)a,a wv=1~-m)1-a,), m=23,..., M,
(5.17) (1 — my)ady = my.

Equation (5.17), for example, arises by considering an arrival at, or departure
from, vertex 0 of a call centred there. Equation (5.15) determines a, in terms
of v,. Equation (5.16) becomes

1

(518) amzl_-i-vaT’ m=2,3,...,M,

m-—1

determining a,, as,...,a,. The probability ,, is then given by (5.17), and
Mo, M1y - -, Tpr—1 DY the recursion (5.14).

The recursion a,, = f(a,,_;) given by (5.18) has one fixed point, a, the
positive root of a + va? = 1. There is an associated value v,(a) = (1 — a)/a
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which generates a solution a;, = - =ay=a and my=m, = - =7y, =
(1 —a)/(2 — a). This is an appealing solution, since under it the stationary
distribution over a vertex and its neighbours is identical at each internal
vertex. For example, the probability of acceptance of a call centred at any
internal vertex is a?(1 — a)/(2 — a). However, if

5 10 1 (d-1\¢
(5.19) V>d—1(d—2)’

then f’(a) < —1 and so the fixed point a is unstable: a value of v, arbitrarily
close to v,(a) gives rise to a sequence a,,a,,...,a, which oscillates away
from a. The stationary distribution over a vertex v and its neighbours, and, in
particular, the derived acceptance probability, will then depend upon the
location of v and markedly upon whether s(v) is even or odd. Edge effects will
predominate, no matter how large the value of M.

5.20 REMARK. A loss network defined on the infinite tree T may well have
more than one invariant measure: for example, there is certainly more than
one invariant measure when condition (5.19) is satisfied.

5.3. A two-dimensional network. For d > 2, most of the vertices of the
tree T,, are external vertices, and so the unstable behaviour described in
Section 5.2 is perhaps not unexpected. However, related phenomena can occur
when the underlying graph is a section of the two-dimensional lattice.

Let V}, be the graph with vertices {(z, j) € Z% lil, |j| < M} and with edges
between vertices unit distance apart. Associate the edges of V,, with the links
of a loss network, and suppose each link has capacity C = 1. Associate a call
with a vertex of V},, and suppose a call arriving at a vertex requires the use of
each edge out of the vertex. Thus, a call arriving at an internal vertex requires
the four edges out of that vertex: assume such calls arrive at the same rate v
for each internal vertex. A call arriving at a boundary vertex requires the two
or three edges out of that vertex: let the vector v,(M) = (v, ;), lil or |j| = M)
describe the arrival rates around the boundary. Call the vertex (i, j) odd or
even, according as i +j is odd or even. Two boundary conditions will be of
interest. Let the odd boundary condition v3*'(M) be defined by v; ;, = v or 0,
according as (i, j) is an odd or even boundary node. Similarly, let the even
boundary condition v;***(M) be defined by v, ;) = 0 or v, according as (i, ) is
an odd or even boundary node. The stationary distribution of the network is,
as usual, given by the form (1.2). Let m,(v,(M)) be the induced probability
that a call is in progress centred at the origin with boundary condition v,(M).
Louth [49] has established the following result.

5.21 THEOREM. For v sufficiently large

mo(vi(M)) < 3,  mo(vge(M)) > 2, forallM € Z.
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5.22 REMARK. Thus, for v large enough, the effect of the boundary is felt
at the centre no matter how far away it is. Louth’s proof of Theorem 5.21 is an
adaptation of the contour method of Peierls ([41, 58]), used to establish phase
transition in the two-dimensional Ising model of a ferromagnet. In some
respects the preceding network resembles an antiferromagnet—calls repel
each other—although note that there is a lack of symmetry between occupied
and unoccupied vertices, and configurations with adjacent vertices occupied
are infeasible [49].

5.23 REMARK. Both the odd and the even boundary conditions tend to
produce configurations with a chequerboard pattern for v large enough. Calls
tend to be centred at either the odd or the even vertices, depending on which
boundary condition is in force. By allowing the boundary to move off to
infinity, it is possible to construct two distinct invariant measures for the
process defined on the infinite lattice. More pertinent to our later discussion is
the following related observation: wrap the graph V;, on a torus, by identifying
pairs of vertices (i, M), (i,— M), for |i| < M, and (M, j), (=M, j), for |j| < M,
so that each vertex is internal with four edges incident. For v sufficiently large,
the stationary distribution 7, given by (1.2), is bimodal, placing mass on
configurations which are close to a chequerboard pattern centred on either odd
vertices or even vertices. (See [41] for an illuminating discussion of the
relationships between this form of bistability, phase transition, and the exis-
tence of multiple invariant measures for the infinite lattice.) If we condition
the distribution 7 on the presence of a call centred at the vertex 0, we shall
increase substantially the probability that a call is present at any given even
vertex, no matter how far away. In Section 6 we shall be interested in the
effect of capacity changes. But the stationary distribution conditioned on the
presence of a call centred at the origin is just the unconditioned stationary
distribution of a network which has had the capacity associated with the edges
from vertex 0 removed. Thus the effects of capacity change can make them-
selves felt at arbitrary distances from the point of change.

5.24 REMARK. Consider an arbitrary loss network with fixed routing, with
route set % and link-route incidence matrix A. Louth ([49]; see also [38])
defines the route interaction graph I(%, A) = (%, &) to be the graph with
node set % and with an edge {r,, r,} € & if there exists a link j of positive
capacity with A; ;A > 0. The route interaction graph of the loss network
considered in this section is thus isomorphic to V,,, the graph underlying the
loss network itself: routes are mapped to the vertices of V,, and two routes are
adjacent in the route interaction graph if and only if the vertices are adjacent
in V,,. In this example the route interaction graph is bipartite: routes can be
labelled even or odd, and overlapping routes have different parity. Thus the
various chains of influence between routes are in phase and reinforce one
another. Louth [49] terms a loss network frustrated if the route interaction
graph is not bipartite: some of the chains of influence between routes are out
of phase and compete with one another. Frustration is the crucial property
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that lies at the heart of the spin glass problem of statistical mechanics [16]. We
return to this point in Section 6.5.

6. Optimization of routing and capacity. How should calls be routed
or capacity allocated in a loss network so as to improve the performance of the
network? For example, for the model of a network with fixed routing described
in Section 1.2 there may be a number of routes r that carry traffic between the
same two end points, and we might be interested in varying the amounts of
traffic v, offered to each of these routes. Or we might be interested in how to
allocate additional capacity over the links of the network. What is the effect on
the performance of the network of changes in the parameters v or C?

In Sections 6.1-6.3 we address these issues for a network with fixed
routing, comparing exact answers obtained from the stationary distribution
(1.2) with approximate answers obtained from the Erlang fixed point. In
Sections 6.4 and 6.5 we describe how the latter can be used to provide
substantial insights into the issues of decentralization and long range influ-
ence.

6.1. An exact result under fixed routing. Consider the basic model of
a loss network with fixed routing, introduced in Section 1.2. Let n =
(n,, r € #) have the distribution (1.2), and write v = (v,, r € #) and C =
(C,C,y,...,C,) for the vectors of offered traffics and capacities, respectively.
Suppose that a call carried out on route r generates an expected revenue w,
(or, equivalently, interpret w, as the cost of losing a call on route ). Then the
rate of return from the network will be

W™(v;C) = [E”(Zr, wn)

where the expectation is taken with respect to the stationary distribution (1.2).
Throughout this section we shall use the superscript 7 to mark quantities
calculated from this exact distribution. Thus, for example, L™ will denote the
loss probability on route r, given by (1.5). The following result [35] is readily
established by an explicit differentiation.

6.1 THEOREM.

d

(6.2) —W(»;C) = (1 - LT)(w, - ¢),
dv,

where

(6.3) e =W"(v;C) — W(v; C — Ae,).

Equation (6.2) shows that the effect of increasing traffic on route r can be
assessed by the following rule of thumb: An additional call offered to route r
will be accepted with probability 1 — L7; if accepted, it will earn w, directly,
but at an implied cost of ¢7 to other calls arriving at the network later. The
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relation (6.3) shows that the implied cost ¢ also has an interpretation as the
shadow price for a decrease in the capacity of the network from C to C — Ae,.

Hunt [25] has established the following alternative representation of ¢J by
an explicit calculation from the representation (6.3).

6.4 THEOREM.
. L, w.cov(n,,n,)
cr=w, —
T E™(n,)

6.2. Differentiation of an approximation. The exact forms (6.2) and (6.3)
are awkward to use, because of their dependence on LT and W™ and hence on
the partition function. They are, however, extremely suggestive and have more
tractable analogues obtained from the Erlang fixed point approximation.

Let E=(E;, j=1,2,...,J) be the unique solution to the fixed point
equations (3.1) and (8.2). To emphasize its dependence on the parameter
vectors v and C, write E = E(v; C). Under the Erlang fixed point approxima-
tion, the rate of return from the network is given by

W(»;C) = Y w,A,, whereA, =v(1-L,),1-L,=T[(1-E)",
r J
and E = E(v;C). Thus L,,A, are the loss probability and carried traffic,
respectively, on route r, as calculated from the approximation. Let
(6.5) 8;=p;(E(p;C; = 1) = E(p;, C}))-

Extend the definition (1.1) to nonintegral values of scalar C by linear interpo-
lation, and at integer values of C; define the derivative of W(v; C) with respect
to C; to be the left derivative.

6.6 THEOREM.

d
(6.7) —W(y;C) = (1-L,)s,

dv,
and

d

(6.8) E@W(v;C) =c;,
where s = (s,,r € R), ¢ = (¢, ¢y, ..., ;) are the unique solution to the linear
equations
(6.9) r=wr_ chAjr’

J
.ZrAjrAr(sr + cj)

6.10 =
( ) CJ J ZrAjr)‘r
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6.11 REMARK. It is interesting to compare Theorems 6.1 and 6.6. Note
that using the Erlang fixed point approximation has the effect of replacing the
quantity c] appearing in the derivative (6.2) by the additive form ¥ ;c;A;,
appearing, through (6.9), in the derivative (6.7). The vector ¢ = (¢”, r € %) is
difficult to evaluate. The vector ¢ = (cy, ¢y, . . ., ¢ ;) has potentially much smaller
dimension and is defined through (6.9) and (6.10) as the solution to a set of
just J linear equations.

We can interpret s, as the surplus value of a call on route r: if such a call is
accepted, it will earn w, directly but at an implied cost of c; for each circuit
used from link j. The implied costs ¢ measure the expected knock-on effects of
accepting a call upon later arrivals at the network. From (6.8) it follows that c;
is also a shadow price, measuring the sensitivity of the rate of return to the
capacity C; of link j. The local character of (6.9) and (6.10) is striking. The
right-hand side of (6.9) involves costs c; only for links j on the route r, while
(6.10) exhibits c; in terms of an average, weighted over just those routes
through link j, of s, + c;.

Expression (6.5) for §; is called Erlang’s improvement formula, and its use
in capacity expansion decisions is known as Moe’s principle ([6], pages 216-221,
[67]). Observe that 3, is simply the increase in the rate at which calls are
blocked if a single link offered Poisson traffic at rate p; has its capacity
reduced by one circuit, and that §; increases from zero to one as p; increases
from zero to infinity.

The formal mathematical derivation of the relationships (6.7)-(6.10) is, in a
certain sense, elementary. These are, after all, simply relationships between
the derivatives of an implicitly defined function. The elementary approach is,
however, tedious. It is illustrated in [35] where a frontal assault is made on
(1.9) and (1.10), involving calculation of partial and total derivatives of
B.,B,,..., B, with respect to v and C and subsequent reduction of the
equations obtained. An elegant alternative approach is suggested by the work
of Whittle [74]. The fixed point B, B,,..., B; locates a stationary point of a
potential function, and so derivatives of W can be deduced from derivatives of
the potential function (note that Whittle [74] focusses on the saddlepoint
approximation, but his approach applies in the present context also). Unfortu-
nately, this approach does not appear capable of extension to more complex
models, involving, for example, trunk reservation: these models lack the
required characterization of fixed points as stationary points of a potential
function. A third approach [36] is based on the differentiation of W on various
carefully constructed manifolds around the point (v, C) € R¥ X RY. Currently,
this approach seems to be the most widely applicable; it also,seems to be the
most direct, in that equations possessing the local character 0? (6.9) and (6.10)
emerge naturally.

We leave to Sections 6.4 and 6.5 a discussion of some of the implications of
(6.9) and (6.10); next we consider how accurately the derivative (6.7) estimates
the derivative (6.2).
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6.3. Accuracy of approximation. We have seen in Sections 3 and 4 that
the Erlang fixed point is asymptotically accurate under various limiting
regimes. The derivatives (6.7) and (6.8) may, in some circumstances, inherit
the asymptotic accuracy. More precisely, consider the limiting regime defined
in Section 2, where capacities and offered traffics increase to infinity together.
Let c¢7(N), c;(N) be the exact and approximate quantities c, c;, respectively,
evaluated for the Nth network. Then Hunt [25] has established the following
two theorems.

6.12 THEOREM. Under the limiting regime (2.11)—(2.13),

lim ¢”(N) =w, —x;' ) w.cov(u,,u,), reR,
N-ow ’

r

where u = (u,, r € R) is the truncated multivariate normal vector of Theorem
2.19. Further, there exists a vector ¢ = (€, Cy, ..., ;) such that

Al,im (c7(N),re ) =_cA.

6.13 THEOREM. Under the limiting regime (2.11) and provided the set of
critically loaded links O is empty,

Al]im (¢f7(N),re )= Al]im (Z c;(N)A;,,re %)
— 00 —> 0 j

6.14 REMARK. Recall, from Remark 6.11, that the Erlang fixed point ap-
proximation has the effect of replacing the exact quantity ¢” with the additive
form cA. Theorem 6.13 shows that, under the limiting regime considered and
provided # is empty, this replacement is asymptotically accurate. Theorem
6.12 shows that, whether or not & is empty, the replacement of ¢” by an
additive form €A is asymptotically accurate. Hunt [25] provides an example
which shows that in the presence of critically loaded links the limiting value of
¢(N)A may not equal CA. Recall, from Remark 3.13, that in the presence of
critically loaded links the Erlang fixed point approximation may not be accu-
rate to order o(N~1/2), even though a product-form decomposition for loss
probabilities is. This corresponds to our present observation that in the
presence of critically loaded links implied costs calculated from the Erlang
fixed point approximation may not be accurate to order o(1), even though an
additive form is. The extent of the discrepancy between limiting implied costs
calculated exactly and from the Erlang fixed point approximation is related to
the diversity of routing in the network. In particular, it is related to the extent
of dependence between numbers of free circuits on critically loaded links,
which can be assessed using the covariance matrix (2.23)—recall Remark 2.25.
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We can pursue the issue of routing diversity from another angle. Consider
the star network of Section 4.1, under the limiting regime defined there. Let
w, = 1,r € %. Then c] and c; are independent of r and j, respectively. Hunt
[25] deduces from Theorem 6.4 that

var”(L.n,)
cT=1-

’ E"(X,n,)

The variance-to-mean ratio involved here can be calculated, in the case C = 1,
from the stationary distribution of the diffusion limit obtained for this net-
work (Remark 4.13). Hunt [25] establishes that, when C = 1, ¢; — mc; = 0 as
J — «, where J is the number of links in the network and m is the number of
links involved in a single call. Thus, the derivatives (6.7) and (6.8) are
asymptotically accurate for the star network of Section 4.1 with C = 1 under
the limiting regime defined there. It seems likely that these derivatives are
asymptotically accurate under much more general circumstances, but current
proof techniques seem inadequate. For the star network with C > 1, the
conjectured diffusion limit of Remark 4.13 would decide the issue. But the star
network is a very special case: we expect the implied cost c; to be asymptoti-
cally accurate under the conditions of Conjecture 4.20. It is possible to define
implied costs for networks with alternative routing and trunk reservation [36]:
in circumstances where reduced load approximations for loss probabilities are
asymptotically accurate (e.g., Sections 4.3-4.6) are implied costs accurate also?

6.4. Decentralization. The implied cost equations (6.9) and (6.10) are
linear in the costs c, and so there are a large number of methods available for
finding a solution. For example, the most direct method would involve explic-
itly inverting a matrix of dimension oJ. In this section we describe some simple
iterative methods which have the property that the calculations involved can
be carried out in a distributed fashion, using only local information.

As motivation it is helpful to think in terms of the following model of a
distributed computation. Suppose there is a limited intelligence in the form of
arithmetical processing ability available for each link j and for each route r.
This intelligence may be located centrally or it may be distributed over the
nodes of the network; for example, the processing for route r might be carried
out at the source node for calls on route r. We will require the possibility of
limited communication between the intelligences of link j and route r pro-
vided A;, is nonzero. Suppose for the moment that the value of g, is fixed and
known to the intelligence of link j, while the value of A, is fixed and it,
together with w,, is known to the intelligence of route r.

Consider now (6.9) and (6.10). One method for attempting a solution to
these equations is repeated substitution. Choose a vector c; substitute it into
(6.9) to obtain a vector s; substitute these into (6.10) to obtain a revised vector
¢, and repeat. This computation can be distributed over the intelligences of
links and routes, since (6.9) for s, involves implied costs c; only for links j on
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route r, while (6.10) for c; involves only surplus values s, for routes r passing
through link ;.
Will repeated substitution converge? Define a linear mapping f: RY — RY

by f=(fy, foros £,
-1
fi(x) = 5)(; A,-,-)\,-) Zr Ajr/\r(wr te T Zk« xkAkr)'

Thus, repeated substitution calculates the sequence f™(x), m = 1,2,... . For
a € (0,1), define f,: RY - R by f,(x) = (1 — a)x + af (x). Thus f(a)( ) is
simply a damped version of f(-). Define a norm on RY by

lxlla =  max {leklAkr— 1}
k

J,r: Aj,.> 0
The following result can be established (cf. [35]).

6.15 THEOREM. (i) Suppose that ||8ll4 < 1. Then the mapping f: RY - RY

is a contraction under the norm || - || 4, and so the sequence f ™(x), m = 1,2,...,
converges to ¢ for any x € R”.

(i) If a <J 7!, then the sequence fJ(x), m = 1,2,..., converges to c for
any x € RY.

6.16 REMARK. The condition [|§,]| < 1 is a form of light traffic condition. It
may well be violated in networks with long routes or heavily loaded links. In
these circumstances an attempt to solve (6.9) and (6.10) by repeated substitu-
tion may fail: it may, for example, produce a sequence which oscillates away
from the solution. Part (ii) of Theorem 6.15 shows that a sufficient damping of
the function f can guarantee convergence. The damping can be implemented
by a distributed computation, but individual intelligences now require some
knowledge of the network beyond that locally available. In fact, it is sufficient
for the intelligences to know just one item of global information, namely, JJ,
the total number of links in the network.

The quantities 6, and A, appearing in (6.9) and (6.10) are not fixed and
known. However, they can be estimated by intelligences of links and routes
from, for example, local measurements of carried loads. The estimates can
then by used in a distributed computation of the vector s. Finally, the
derivatives (6.7) can be used to implement a decentralized hill-climbing search
procedure able to vary routing patterns in response to changes in the demands
on the network (see [35] for a fuller discussion). Thus the structural form of
the derivatives exposed by Theorem 6.6 directly suggests a decentralized
routing algorithm.

6.5. Long range influence. How sensitive is the network to perturbations
in capacities or offered traffics? To explore this question further, it is helpful to
imagine a network with a very large number of links and nodes, but where
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routes are short and each route overlaps with only a small number of other
routes. Define the matrices A = diag(A,), and « = diag(5,(X ,A;,A,)™");. Then
(6.9) and (6.10) can be written in the form ¢ = wA ATk — ck ~1/?Ak'/2, where
A = k'2ANATk'/? — diag(3,);. Thus ¢ has the representation
(6.17) c= w)\ATkl/z{ Y (—A)”}Kl/z,
n=0

provided the summation converges, a condition which is implied by the condi-
tion [|6]l4 < 1. Observe that A r=0 if there is no route through both links j
and k. Similarly, (A");, = 0 if it is not possible to reach link % from link j by a
concatenation of n overlapping routes. Thus the higher powers of (—A) in the
representation (6.17) provide the linkage through which changes in capacity at
link j can affect traffic on routes r widely separated from j. For example, if
w,=I[r=r'], r€ %, then c; assesses, through the derivative (6.8), the
consequence for carried traffic on route r’ of a change in the capacity of link j.

The consequences of changes in offered traffic can be assessed similarly. Let
y = diag(6,(1 — )" (X ,A;,A,)"");, and let A = A'"/2ATyAX"/%. Then cA has
the representation

(6.18) cA = —wA1/2{ Y (—A)"}/\”I/Z,
n=1

provided the summation converges. Note that A, = 0 if there is no link
common to routes r and r’, and (A"),,. = 0 if it is not possible to reach route r
from route r’ by a concatenation of n or fewer overlapping routes. Through
the derivative (6.7) and the surplus value (6.9), the relation (6.18) assesses the
effects on other routes of an increased offered traffic on route r. The alternat-
ing nature of the series (6.17) and (6.18) reflects the potential for frustration
(Remark 5.34), where chains of influence along different paths compete with
one another.

If A or A* do not decay with n, then the underlying approximation
suggests that perturbations will have influence over arbitrarily great distances.
Note that the existence of such effects is not an artifact of the approximation:
Sections 5.2 and 5.3 have described examples where long range influence can
be deduced from the exact distribution (1.2). It is possible to define implied
costs and surplus values for fixed point approximations of alternative routing
and trunk reservation and to show that they solve linear relations generalizing
(6.9) and (6.10) (see [36, 37, 39]). The relationship between this approach to
dynamic routing and the Markov decision theory approach of [46] and [56] is
discussed in detail in [36]. The potential for long range influence and instabil-
ity is more pronounced in networks with alternative routing: when the net-
work becomes overloaded, the chains of influence along different paths tend to
reinforce one another. Again, the existence of such effects is not an artifact of
the approximation: recall that we have observed phase transition in the
symmetric network of Section 4.3.
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Additional references. Research in the area of loss networks continues
apace, and the following recent reports bear on the material discussed in this
paper. See Crametz ([79]) for Theorem 4.45 with integer rerouting; Crametz
and Hunt ([80]) for a proof of Theorem 4.22 without the exchangeable
assumption; Hunt and Kurtz ([81]) for work touched on in Section 2.5; Mitra
and Gibbens ([82]) for an analysis of fixed point models of least busy alterna-
tive schemes generalizing those considered in Section 4.5; and Ross and Tsang
([83)) for computational schemes for the normalizing constant (1.4).
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