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We consider the expected performance of two greedy matching algo-
rithms on sparse random graphs and also on random trees. In all cases we
establish expressions for the mean and variance of the number of edges
chosen and establish asymptotic normality.

1. Introduction. In this paper we discuss the expected performance of
the simplest of matching algorithms, that is, the GREEDY (or myopic)
algorithm. Given a graph G, the algorithm repeatedly chooses an edge e and
deletes it along with its end vertices until the graph remaining has no edges.
The set of chosen edges forms a matching. More formally the algorithm
proceeds as follows:

GREEDY
begin
M «
while E(G) # & do
begin
A: Choose e = {u,v} € E
G <« G\ {u, v}
M« M U {e}
end;
Output M
end

(G \ {u, v} is the graph obtained from G by deleting the vertices u, v and all
edges incident with them.)

The algorithm is simple and yet basic to combinatorial optimisation.
Consequently, knowledge of its performance is important. The first analysis
of this algorithm was from the point of view of its worst case performance; see
Korte and Hausmann [6]. They showed that in the worst case the size of the
matching produced was one-half of the size of the maximum matching. There
has been more interest of late in the average performance of this algorithm.
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Dyer and Frieze [2] considered a randomised version in which the edge e in
statement A is chosen randomly from the available edges. The input graph is
arbitrary, not random, and it is shown that, at least for sparse graphs, the
likely performance is noticeably better than worst-case. Dyer and Frieze also
discussed the performance of this randomised version on a tree and they
found that the trees with the worst expected ratio of size of matching found to
maximum size are caterpillars in which case the ratio is about 0.769... . The
average performance of GREEDY when the input is random has also been
analysed by Tinhofer [11]. He considered its performance on the random
graph G, , (the p model) in which each edge of the complete graph is
independently included with probability p. He only considered the dense case
where p is fixed independent of n. In this case it is fairly easy to show that
the algorithm produces a near perfect matching with high probability. The
algorithm is deceptively simple but it requires a nontrivial analysis to handle
the conditioning introduced at each stage. Unfortunately Tinhofer makes an
incorrect assertion and, consequently, the analysis is flawed. (The statement
Prob(M|G) = 1/m! on page 244 of [10] is incorrect.)

In this paper we consider sparse random graphs. We deal with the random
graph G, ,, which has vertex set [n] ={1,2,...,n} and m = 1cn random
edges, where ¢ > 0 is a constant, the study of which was pioneered by Erdos
and Rényi [3]. The p model with p = ¢/n is closely related. (In both models
the average degree is asymptotic to ¢.) Let X = X(n, m) [ X(n, p), resp.} be
the random number of edges in the matching produced by GREEDY applied
to G, ,, (G, ,, resp.) when the edge choice in statement A is uniformly
random. We will not only compute an asymptotic formula for the mean, but
also for the variance, and we will establish the asymptotic distribution. Let

¢(c) = 1)’

THEOREM 1. As n — », (X(n,m) — n¢(c))/ ny(c) converges in distri-
bution and with all its moments to the standard normal variable with mean 0
and variance 1.

Roughly X(n, m) is asymptotically Gaussian with mean n¢(c) and vari-
ance ni(c). As one should expect, ¢(=) = %, which corresponds to a (near)
perfect matching.

Using a general rule, which relates G, ,, and G, , (Pittel [10]), we can
+ assert then that X(n, p) is asymptotically Gaussian as well, with the same
mean n¢(c) and variance

c¢® +3c¢% + 3¢

n(cﬁ(c) + 2¢(¢'(c)) ) =n Cr 1)
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We also discuss the performance of GREEDY on a randomly chosen labelled
tree. So now let Y =Y, be the random number of edges in the matching
produced by GREEDY on a random labelled tree with n vertices. We prove
the following theorem:

THEOREM 2.

EY 3 1 01
sl

7
VarY = Toz " + 0(1).

Furthermore (Y — (3/8)n)/ y/(7/192)n converges in distribution to the stan-
dard normal variable with mean 0 and variance 1.

This should be compared with the result of Meir and Moon [8], who showed
that Y,* = (1 — p)n, in probability and mean, where Y,* is the size of the
largest matching in a random labelled tree on n vertices and p = 0.5671...
is the unique solution to xe* = 1. The preceding results mean that with high
probability, Y, /Y,* = 0.87; that is, GREEDY falls short of the mark by about
13% most of the time.

It is possible to modify this algorithm without considerable complications,
so as to improve its likely performance. Perhaps the simplest modification is
to first choose a vertex v at random and then to randomly choose an edge
incident with v. We refer to this as MODIFIED GREEDY.

MODIFIED GREEDY

begin
M <« O
while E(G) = J do
begin
B: Chooseve V
C: Choose u € T'(v) and let e = {u, v}
G <« G\ {u,v};
M« MU {e}
end;
Output M
end

We have analysed the performance of MODIFIED GREEDY in the same
_settings as for GREEDY. First of all, let X =X(n,m) [X(n, p)] be the
random number of edges in the matching produced by MODIFIED GREEDY
on'G, , (G, ). Let

R 1 log(2—e7°)

de)=5 -5
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THEOREM 3. As n — o, (X(n, m) — nd(c))/ \/nt/A/(c) converges in distri-
bution, and with all its moments, to the standard normal variable with mean
0 and variance 1. [ Here y(c) is the solution of the subsequent differential
equation (50), whose closed form solution, if any, has eluded us, Maple and
Mathematica.] Consequently X(n, , p) is also asymptotically normal with mean
nd(c) and variance n({(c) + 2c¢'(c)2)

MODIFIED GREEDY was also discussed by Tinhofer [11] as well as
Goldschmidt and Hochbaum [4], who proved probabilistic lower bounds on
the size of the matching produced in G, ,. In particular, Goldschmidt and
Hochbaum prove a probabilistic lower bound of n(1 — (1 + &)/c)/2 for any
fixed ¢ > 0.

Because ¢(c) > (1 — ¢ 1)/2, Theorem 1 already provides a better lower
bound for the matching number Because, for any ¢ > 0, ¢(c) > ¢(c), Theo-
rem 3 yields a further improvement.

We have also analysed the performance of MODIFIED GREEDY on ran-
dom labelled trees. Let now Y = Y be the random number of edges in the
matching produced by MODIFIED GREEDY on a random labelled tree with
n vertices. We prove the following theorem:

THEOREM 4.
a e—1 3e — 2e? 1
EY = n— 3 (—),
2e — 1 2(2e - 1) n
VarY = 6n + 0(1),
where

18e? — 42e% + 32e%2 — 9e + 2
(2¢ — 1)* '

Furthermore (Y — (e — 1)/2e — 1n)/V0n converges in distribution to the
standard normal variable with mean 0 and variance 1.

Here (e — 1)/(2e — 1) = 0.3873...; that is, MODIFIED GREEDY per-
forms (with high probability) about 3% better than GREEDY.

We note that Karp and Sipser [5] considered a greedy type of algorithm
similar to ours. Their algorithm chooses an edge incident to a vertex of degree
1 while there is one and otherwise chooses a random edge. They show that
this algorithm is asymptotically optimal in the sense that with high probabil-
ity it finds a matching that is within o(n) of the optimum size. What this
optimum size actually is remains a mystery, except when 0 < ¢ < 1. In this
case, Pittel [10] has shown that the maximum size of a matching is asymptot-
ically normal with mean n(1 — (B8 + B2)/c), where B is the solution to
BeP = c.
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The main techniques employed in this paper are diffusion-type approxima-
tions to moment generating functions for establishing normality and the
analysis of regular generating functions in the case of trees.

2. GREEDY on G, ,,. In this section we prove Theorem 1 on the be-
haviour of randomized GREEDY applied to the random graph G, ,. We
assume that m = |3cn], where c is a constant. Thus c is (approximately) the
average degree of the graph.

Generically, let X, , be the (random) number of matching edges delivered
by the algorithm in G, , and let f, , be its moment generating function.
Thus

f, (z) = E(exp(2X, ,))
(1) — Eg(E(exp(2(1 + X,_5 ,_1_z))IR)),
= ezzfv—2,u—l—r(z)Pr(R =r),

where R is the random number of edges in G, , adjacent to the chosen edge.
(When a chosen edge e and R adjacent edges are deleted, we are left with a
random graph G'. Conditioned on e = (v, v,) and R = r, G’ has the same
distribution as G,_, ,_;_, up to a relabelling of vertices.)

Let us denote the number of edges in the complete graph K, ; by
N, = (V; i) for i =0,1,... . We will simply write N for N,. Now, because
there are 2(v — 2) edges of K, adjacent to a given edge, N, edges in K, _,
and u — 1 edges still to be chosen in G, , once any one is fixed, it follows that
R has distribution

(2(1/—2)) N, )
r p—1-—r
Pr(R=r) = (N—l)
p—1
=p(v, 1),
say. If r = O(W/v) and £ = 2u/v = O(1), then

N,
;.L—l—r)_Nz(Nz—l)'“(Nz—/.L+r+2)
(N—l) (N-1)(N-2)(N-p+1)

(I%wgs;))“” e of2 3 (o o
aa) I

(M—I)(M 2) - (pn—r)

~[1+o
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Also, we have
(2(1/—2)) (2v—4)(2v—5) (21/—3—1”)

r r!

rvoft)

(103 ))(253

Thus

1+0

(2) p(v,p) =

S ) - o=

531

We will only need an upper bound on Pr(R > r) for large r. Let A be the
maximum vertex degree of G, ,. A straightforward application of the

“first-moment method” now gives
(3) Pr(R>2r) <Pr(Ax=r)

y— (w—=1)(p~— )
= ( rl)zl\i(zﬁ:f—i)m(;—rrii)
< V—-—(V_ l)r (ﬁ)r
=7 \N
SJV;D(vfly

(4) -

It now follows easily from (2) and (4) that

(5) E(R) =2¢+0(1/v), E(R?) +2£+4£%+0(1/v),

and more generally, for any fixed &, E(R*) = O(1). We will denote E(R*) by

Pk

In our analysis of the randomized GREEDY algorithm, we need to assume
that the average degree of the graph “remains bounded” as we select suffi-
ciently many edges. Suppose that at a general stage of the algorithm we have
v vertices and u edges remaining, so our graph is G, ,. We wish to have a
constant c, such that 2u/v < ¢, if v is “large”. To make this precise, we

establish the following lemma:

LEMMA 1. Let vy =[yn/Inn] and ¢, = 6 max{2c, 1}. Then

Pr(3v > v, such that 2u/v > c¢,) < exp(—Vnlnn)

for all large enough n.
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PROOF. Let & be the event that there exists any induced subgraph G, u
of G, ,, such that 2u/v > ¢, and v > v,. Then clearly

cov/2
cn/2 ]

(2)
en [e(v— 80/2 00/2 ’
( ) n — 1 )

(1 +o(1))e(j—0)%/2(‘)w )

n

Pr(&) < Z (%) c(v/)2

IA
M™M=

N
Il

N
=]

IA
M™M=

N
Il

N
=]

4

IA
M=

v=yv,

(1+ o(l))e(izr(—v-)z‘)
£ (&)

v \2%
<n(5)

1 \We/mn
‘n(M)
<exp(—vVnlnn)

for large enough n. This is clearly sufficient to prove the lemma. O

IA

v

REMARK 1. In fact, we can prove the following stronger result using an
inductive method similar to the proof of Lemma 2. Let ¢; >cand 0 < y< 1
be arbitrary constants. Then there exist positive constants A(c,,y) and
B(c, ¢y, v) such that the probability of having 2u/v > ¢, at any stage in the
algorithm is at most A exp(—pBn?). We omit the proof, because this stronger
result is not true for all choice rules A in GREEDY. It fails, for example, for
that used in MODIFIED GREEDY.

We turn now to the functions

3 _£2(B+¢)
21+ M4 WO= 6(1+ &)

that appear in the mean and variance of X »,m in-the statement of Theorem 1.
We abserve that these functions satisfy the differential equations

(6) 1-2¢-2¢'(1+£)=0, ¢(0)=0
(7) — g — ¢ (1+€)+4£(4) =0, ¥(0) =0.

#(¢) =
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Note that ¢ and ¢ are “well behaved;” that is, they and all their derivatives
are uniformly bounded on [0, ). In particular ¢(») = 3 and ¢(») = 0.

We now proceed to analyse the approximation that will enable us to prove
Theorem 1. Let g, ,.(2) = exp(n(z¢(2m /n) + 32%(2m /n))). We will show
that

(8) fa,m(2) = & m(2)(1 + O(n™/*log n)),

provided z = O(n~!/2). This will imply Theorem 1, that X, , is asymptoti-
cally Gaussian with mean n¢(c) and variance ni(c), by a limit theorem on
moment generating functions due to Curtiss [1]. As we will see, the functions
¢ and ¢ are chosen to ensure that g, , satisfies (1) up to terms quadratic in
z. Thus, let us choose ¢, = 6 max{2¢, 1} as in Lemma 1 and consider a stage of
the algorithm at which we have v > v, = yn/In n vertices, u edges remain-
ing, with 2u/v < ¢,. Then we have the following lemma:

LEMMA 2. Forz =un1?% (u # 0),
eZZpr(V’ “’)gy—2,,u.—l—r(z) = (1 + O(z/v))gv,,u.(z)'

Proor. We will estimate the sum

Zpr(v, /"')(ezgv—Z,,u—l—r/gV,p.)‘

Using the quantities
2(p—1-r)

2
e =&+ ——5(§-1-1),

E=2p/v, ¢

we may write
gy-2,u-1--(2) = exp((v = 2)(26( &) + 32°9(£)))-

Using Taylor’s theorem, we may easily establish

[

2 r
®) #6) = 9(6) + #(6) 2= 1-r) +0[ 5

2 re
10w =ue @ E-1-n ol 5)

uniformly for ¢ € (0, ¢,). Thus, using (9) and (10),
ln(ezgv—z,p,—l—r/gv,p.)
, =z+ (v—2)(26(&) + 32%(¢£))
(11) —v(2¢(€) + 32%(¢))
= 2(1- 26(£) +2¢'(£)(6—1-7))
+122(=29(€) + 2¢'(£)(E—1—7r)) +O(r?z/v).
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Denote the right side of (11) by 7(r). Thus we wish to show that
(12) Y P, (v, w)e™™ =1+ 0(z/v).

We deal first with large r in the sum of (12). Specifically this will mean
r > n'/3, say. Note that because r < 2v and z = o(1),

r’z/v < 2rz =o(r)

and hence 7(r) = o(r). Then, using (4),
(13) T pe®sn L (£®) /rl=n 00,

r>nt/8 r>nl/3/2
say, because the first term dominates the sum and its denominator dominates
its numerator. Thus large r do not effectively contribute to the sum in (12).
But now, if r < nl/3,

7(r) =0(rz) = 0O(n"1/%)

because z = 0(n"1/2), Thus we can expand e™"” uniformly over r in this
region. Therefore, using (13),

rpe®= Y pe®+n 0
-

r<nl/?

= ¥ pfl+z(1-2¢6+2¢'(6-1-7))

r<nl/3
+32(—2¢+2¢'(£-1-r)
+(1-26+2¢'(6—1-1))%)
(14) +0(r3z3) + O(rzz/v)] N
1+2(1-2¢+2¢'(£—1-F))

lz2(—2¢+ 2¢'(E-1-7)

+Ep,(1-20+2¢'(¢— 1))

+ O(732%) + O(F%z/v).

We will now examine in turn the coefficient of z, of 322 and the remainder
terms in (14). By comparison with (5), we have 7 = 2§ + O(1/v). Thus the
coefficient of z is

1-2¢—2¢'(1+ &) +0(1/v) = O(1/v),
on using (6). Now, the summation in the coefficient of 3z* involves
(1-2¢+2¢'(£-1-r))" =4(¢")(r — 2¢)*

on using (6) again. Thus the summation is

4(¢")’ Y (r—2£)p, = 8£(¢))" +O(1/v)
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on expanding the bracket and using (5). Thus the coefficient of 322

substituting for 7,
—29 + 29'(£— 1 — 26+ O(1/v)) + 8£(¢)* + O(1/v) = O(1/),
in view of (7). Finally, for the remainder terms,
0(732%) = 0(2®%) = O(z/n) = 0(z/v), O(F?z/v)=0(z/v)

using z = O(n"'/2), v < n and the boundedness of 7* for fixed k [F* is
defined immediately following (5)]. Combining these results we see that the
right side of (14) is (1 + O(z/v)), completing the proof of the lemma. O

is, on

We are now in a position to prove Theorem 1. Applying Lemma 1 we can
assert that the event 2u/v > ¢, will rarely be encountered during the
algorithm until v < Vo= vyn/In n . We may therefore use an “approximating”
stochastic process X, ,, defined for 0 < v<n and 0 < p < ( ) as

v, 12
X,— _ 1+X~V—2,[.L—1—R’ ile.L/VSCO and V> VO,
vk Y, . otherwise,

where R is an independent random variable with distribution p,(v, u) and
Y, , is a Gaussian random variable with mean v¢p(2u/v) and variance
vip(2u/v). We can think of this as running GREEDY until » < v, or possibly
2up/v > ¢, and then adding Y, , to the edge count in place of the number of
edges found by GREEDY on the remaining G, ,. Note that Y, , is the
constant zero if u = 0 in view of the initial condltlons in (6) and (7) Clearly,

f,, (2) = E(e**-+) satisfies, for 2u/v < ¢, and v > v,

(15) fv,[.l.(z) =ezzpr(”,l’«)fu—z,#—l—r(z)~

Let now & refer to the event that in applying GREEDY we reach a point
where v > v, and 2u/v > ¢,. Lemma 1 tells us that

Pr(&) <exp{—vVnlnn}.
Now let
= X(a) + X(b)

where X(* counts the edges added before v < v,,. | Define a similar decompo-
sition for % except that if & occurs, then X, , = X(¥ and otherwise

n,m v, b

X,ff’; = Where v < v,. Then dropping the subscrlpts n and m,

E(er) _ E(er("))E(er("))
= (1 + o(1))E(e**)
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because X < v,. Similarly
E(e*¥) = (1 + o(1))E(e*¥"),
but
E(e*X”) = E(e*X|2)Pr(&) + E(e*X|Z)Pr(¥)
= O(exp( —vnlnn /2)) + E(ezx(a)lé—’)Pr(é;)
(since X@ = X@ if & does not occur)

= (1 + o(1))E(e**™).
Therefore, E(e”f ) ~ E(e?*¥). Hence it is sufficient to show that the asymptotic
distribution of X, , is as described in Theorem 1. But this is now easy. Let us
prove by induction that £, (2) = E(e?*v+) satisfies
(16) exp(—C,zlnv)g, (2) <f, (2) <exp(+C;zInv)g, ,(2)

for some constant C; > 0. If 2u/v > ¢, this is true by definition. Otherwise
if » <3, say, then u <3 and hence g, ,(z) and E(e**+) are both e°®.
Hence, by suitable choice of C;, (16) will be true for v < 3. Now, for v > 3,
from Lemma 2 there is a constant C, such that

exp(—Cyz/v)g, .(2) Sezzpr(v’/"’)gv—z,p,—l—r(z) <exp(+Cyz/v)g, .(2).

We will assume without loss that C; > 3C,. Hence, by induction, for » > v,
and 2u/v < ¢, we have [see (15)]

ﬁ,n(z) = ezzprﬂ—z,p—r—l
<exp(+CizIn(v—2))e* Y. p, &, 5 ., 1-.(2)

<exp(+C,zIn(v — 2))exp(+sz/v)g,,,M(z)
<exp(+Cyz(In(v - 2) +1/2v))g, .(2)
<exp(+Cyzlnv)g, .(2).

Similarly £, . = exp(—C,zInv)g, (2), proving (16).
Putting v=n and u =m in (16) gives (8) and completes the proof of
Theorem 1.

3. GREEDY on random trees. We will devote this section to the proof

. of Theorem 2. Our first task is to prove the claims about the mean and

variance of Y,, the number of edges in the matching produced by GREEDY
on a random tree. So for n > 1 let

fo(2) = E(z"™)
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denote the probability generating function for this random variable and let
Qk,d)={ac[k-1]"a, +a,+ - +a, =k - 1}.

The deletion of the edge e = {u, v} chosen in statement A produces two trees,
one containing u and the other v. If the degrees of u and v in those trees are
d and §, respectively, after deleting the edges incident to e in the original
tree, two forests of trees will be left, of sizes a € Q(k,d) and b € Q(n — &, )
for some k,d, 8, where the subtrees with sizes in a, b are associated with

different endpoints of e. Let 7 (a, b) denote the probability of the occurrence
of a particular unordered pair a, b. Now let

1 Bl 4 a1\ ((n—Fk)! 3 b1
p(a,b)= (n_l)nn—2 (Z)(EE ar! )( Y] I—I b1
=p(b,a).

Then for n > 2,

p(a,a)
7(a,a) 2
and
a,b) + p(b,a
LY CX)
2
for a # b.

EXPLANATION. There are (n — 1)n" " %(tree, chosen edge) pairs in total, (Z )
counts the choices for a set K of k vertices; k£ counts the choices for a vertex

k—1)!
uek, %I—[ﬁ’= 1(1/a,!) counts the ways of partitioning K \ {u} into the
subsets of cardinalities a € Q(k, d); T1¢_,a% ! counts the number of ways of
forming trees of sizes a,, a,, ..., a; and designating the vertices (roots) in the
trees that will be attached to u; the final factor in p(a, b) is constructed
similarly. When a = b there is a double counting, but there is none when
a #b.

Now, the deletion of the edge e, chosen uniformly at random, produces a
forest of random trees, which—conditioned on their vertex sets—are inde-
pendently uniform. So, in distribution,

d 5
Y,=1+ Y Y, + )} Y,
i=1 j=1 "’

where the variables on the right side are independent.
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It follows then that we have for n > 2,

o

nel w d 5
17) fn(z)=§ Lry T ICRN ) (XS (AC
k=1 d=0 r= s=

=0 a€Q(d, k) beQ(5,n—k)

We can simplify the preceding expression by introducing two bivariate gener-
ating functions:

© - 1
Pine) - 5 20 f(z)
and
o nn—an(z) .
G(x,z) = ngl n! .

Observe that
J
F =x— .
(x,2) xaxG(x, z)

We multiply (17) by (n"~2(n — 1))/nDx" and sum from n = 2 to . The left
side becomes F(x, z) — G(x, z); the right side becomes

z(m 2 A )

2 d=0 d k=1lacQ(d,k) "= r

18
N
Il:oo

09
a-
-
o
m
=)
~
09
a-

So we have the equation

(18) F(x,2) — G(x,2) = xTexp{ZF(x, ).

Even though the equation appears to be extremely hard to solve in a closed
form, it is ideally suited to determine (asymptotically) the mean and variance
of Y,. For example, we will first use it to derive a differential equation (23)
for E(x) in terms of T'(x), the tree function [9] defined for |x| < e~!, which is
easily solved (24). Using Cauchy’s formula, we can now write E, as a contour
integral that we can then estimate. Now for the details.

Let E, = E(Y,) and

o n
E(x)= L E,—;
n=1
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Because E, = f,(1), we have

19 E oF 1
(19) (x) = —(x,1),
and if
E f‘,E 8 1
() = ¥ B~ e = Z5(x),
then
20 E g
( ) =X dx *
Also
0 n—1
F(x,1)= ) x" =T(x),
n=1 n!
the tree function referred to previously. It is well known that
(21) T(x) =x"®, |xl<e’?,
and so
dT T(x
(22) a_ T x| < et

de x(1-T(x))’
Differentiating (18) with respect to z gives

dF 4G x? oF
_ - =e2F(— +x2z——).
0z 0z 2 dz
Putting z = 1 and using (19)-(21) we obtain
dE P T2 [ x2 . ,dE
xdx I I x dx
or
1-1T2 4B E T2
and on using (22),
23 T1+T dE E r
+T)— —-E=—.
(23) (1+T)— 5

‘ Now E(0) = T'(0) = 0. Solving (23) with this initial condition gives

T2

)
2(1+T)

539
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We then apply (20) and (22) to obtain
T%(T + 2)
21+ T)’A1-T)

(24)
Thus
n! 1 T2(T + 2) dx

E =

"on"l 2mi [002(1 +T)’(1-T) «"*"’
1

where C, is a circle of small radius (less than e~ around the origin in the
complex x plane). We now make the substitution x = te~! and work in the
complex ¢ plane. (Because C, has a small radius the transformation is well
behaved.) Cancelling (1 — ¢) in the denominator and in dx = (1 — ¢)e* d¢,
we arrive at

n! 1 t2+ 2t e™

25 E, = —
(25) "ot 27 /;312(1 +¢)° "

b

where now C; is a simple contour around the origin in the complex ¢ plane
that does not enclose the point ¢ = —1. To estimate the integral, we use an
identity

1, (t-1)t L b, nril
- varm $ (P
’ 2m‘fcl gt EO i)V T

which follows from

1 ent m—1
— | —dt= ——— f > 1.
2mi Jo, t™ (m-1! o™
Putting u, = (n!/n""1)I,, we find in particular that
26 1 1 2 > 6
= , = —1, = - —+ -, = - = —,
(26) Ug=n Uy Uy n Us " n?

Suppose now that C is the circle of radius 1 around the origin and £ is fixed.
On putting ¢ = e’?,

1, (¢-1)°
2mi fg t"

e™ dt

-

= 0([” [t~ 1et|"|1 — ¢|* de)

- O(e”/;)wexp(—n(l — cos 6))6* do)

because [1 — e’| < |0]. Now 1 — cos § > 62/4 for 6 <3/2 and 1 — cos § >
1 — cos3/4 for 3/4 < 6 < , and so substituting u = 6Vn we obtain
1, (t-1)"

o7 fc e dt

_ O(enn—(k+1)/2 fwe—u2/4uk du)
)

— O(enn—(k+1)/2)‘

(27)
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Hence
u, = O(n~*k-1/2),

It is easy to see that (27) remains valid if C has a circular dent of a
sufficiently small but fixed radius at ¢ = —1. We return to (25) and expand
the function (¢2 + 2¢)/(2(1 + ¢)?) around ¢ = 1 to obtain

t2+2t 3 Lt 3(t-1)7° (t-1° (¢-1%2t+3)
— == - + — :
2(1+¢)>° 8 8 32 16 32(¢ + 1)°
Integrating over the dented C and using (26) and (27) we obtain

_ 3 1 3 1 _1
E, = guy + 5u; — 33Uy + 16Uz + O(n77)
_ 3 1 -1

=gn—3 +0(rn ).

(Note that (2¢ + 3)/((¢ + 1)?) is bounded on the integration contour.) We now
estimate the variance of Y,. So let

Vn = E(Yn(Yn - 1)) =frIL,(1)a

v ivn . O°F )
(3) = Ewrar = S

and

nn—2

x”.

V()= XV,
n=1 " n!

so that V = x(dV /dx). Differentiating (18) twice with respect to z gives

9?°F  9%G oF oF \? 3%F
— = - =e?f[2x2— + 2x2z(— +x2z— |.
0z dz dz 0z 0z
Putting z = 1, we obtain
av V=T22E(E +1 av
—_— —_ + —
Y dx ( ) Yx |’
which becomes, on using (22),
av .
(28) T(1+T)ﬁ; -V =2T?E(E +1).

The boundary condition for V comes from V, = 0 (Y, = 0 always.) Integrating
(28) gives

V=

2T
o7 ) E((EG) + 1) ds

T*(6T2 + 13T + 8)
12(1 - TY(T + 1)*

(29)
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Now
n! 1 Vv
V = d
n nn—l 27ri-/;;'0x”+1 X
n! 1 1—t e™
30 = V—— dt
(30) nt1 Zwi[c/ ¢
1 dv e'”

Tt ZwLlet t”
It follows from (29) that
dv 9 139 11(1-1¢)
dt T 6a(1—1)° 384 96

(t — 1)%(44¢% + 211+ + 333t2 + 223¢ + 41)

384(t + 1)°
[The absence of a term (1 — ¢)~! is crucially important.] Now
1 1 et n e
dt = — —di
(31) 2 [Cl (1- t)z t" 2miJo, t" !
nn+ 1
T

where the first equality comes from integrating by parts. Thus using (26),
(27) and (30) we obtain
v 9 - 139 o(1
"~ " amn T O
Now
VarY, =V, —E:+E,
and the expression for Var Y, in the statement of Theorem 2 follows.

The equation (18) can be used, in principle, to find the higher moments of
Y,. Fortunately, there is no need for these increasingly arduous computa-
tions. Once we have established asymptotic linearity of the mean and vari-
ance, the asymptotic normality of Y, follows from the recurrence (17) for the
moment generating functions (cf. Mahmoud and Pittel [7]). For © € R let

gn(u) = E(e™)
be the moment generating function (m.g.f.) of Y, and let
h,(u) = exp{E,u + 1W,u?},

where
"W, =Vary,.

h,(u) is the m.gf. of a normal variable with the asymptotic mean and
variance of Y. In particular for n fixed and u — =,

(32) ga(u) = h,(u)(1 + O(z?)).
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We must show that if u = 0(/Vn), then g,(u) = h,(u) as n — ». For
2<wv<nlet

o,= U Ulakd) xa,s)].

k+i=v-24d,
Then [see (17)]
d P)
(33) g (u)=e* Y m(a,b)[lg,(u)]]g,(u).
a,beQ, r=1 s=1
Substituting (32) into (33) we obtain
(34) g, (u)= Y m(a,b)7(v,a,b)(1+0(x?)),
a,beQ,
where

d 5
(v,a,b) = euﬂh“’(u) sllhb‘(u)

= h,(u)exp{ud(v,a,b) + ju’A,(v,a,b)},
(35) 4 s
1+ Y E, + » E, —E,

r=1 s=1

1Ay(v, a,b)] =

<A/(d+ 8)

for some absolute constant A;, and similarly,
d B
Z Wa,. + Z ‘4,b§I - WV
r=1 s=1
<A,d + 8).

Now (34) and (35) imply that as u — 0,

g, (u) =h,(uv) )Y m(a, b)(l +uld; + uP(A] +Ay))(1 + O(u?)).
a,beQ,

|A2(V, a, b)l =

Comparing with (32) we obtain two identities for E,,, W,, (m > 2):

(36) Y w(a,b)A(v,a,b) =0,
a,beq,
(37) bZQ w(a,b)(8%(v,a,b) + Ay(v,a,b)) =0.

From now on let u = v/ Vn , where v is a constant. Then consider
o(u)= ¥ m(a,b)r(v,a,b)
a,beq,
=7+ 7y,
where
T, = M m(a,b)r(v,a,bd).
d,Ss‘/n/Iogn
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The degree sequence of a random tree dy, d,,...,d, is such that d; — 1, d,
—1,...,d,— 1 have a joint distribution of the occupancy numbers in the
uniform allocation of » — 2 distinct balls in v distinct boxes (see, e.g., Moon
[9D. So in particular d; has distribution 1 + binomial(» — 2,1/v). Thus,

1

Pr(d, >d = [/n/logn]) < (;:?)(_)d_l

v
- exp{~(yTogm)).
But for u = O(1/Vn), 7(v, a, b) = eV and so
Ty = eV Pr(d or & > d)
= exp(~Q(Vrlogn)}.
Now if d, 8 < /n/log n then ulA; =0Q1/+logn),i=1,2, and so
7(v,a,b) = h,,(u)[l + uly(v,a,b)
+3u(A3(v,a,b) + Ay(v,a, b)) + R(u,v,a, b)],
where
|R(u,v,a,b)l <A,lulP(d + §)°
for some absolute constant A,. Applying (36) and (37) we obtain

o,(u) =h,(uv) Yy m(a, b)(l + ul; + %uz(Azl +A4,) + R)
d,Ss‘/n/logn
+h,(u) Y m(a, b)exp{ul, + ju’A,)}

= hu(u) + hu(u) Zﬂ-(a’ b)R
+h,(w) ) 7(a, b)(exp{uA1 + %u2A2}) - (1 +ul; + %uZ(AZ2 + Az)).

rest

Now the second sum is A, (u)exp{—Q(y/nlogn}. Also, where d,,, is the
maximum degree of a random tree,

Y m(a,b)R| < N 7(a, b)|R|

d,8<y/n/logn d,8<+/n/logn
<Au® Y w(a,b)(d+9)°
d,&s]/n/logn
<A Y w(a,b)(d+ 6)°
d,seQ,

< 8A,u’E(d},,)
< Au’(log n)®
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by an easy computation. Thus for some A, > 0,

{ A,(log n)3} a,(u) {A4(log n)3}
exp{— < —_— .

< < ex
ns/2 h,(u) P nd/2

It is precisely because of the possibility of bounding this ratio without having
to take absolute values first that we work with real u, avoiding the complex-
valued characteristic function.

We can now easily show that

Asv(logn)’|  g,(w) A4v(log n)”
exp s — 372 < hy(u) < exp —*nT/E‘—'— .

We proceed inductively, starting with g, = A4, to get the base case. Then by
(33),

E(e") < et bzﬂ m(a,b) 1‘[h () 1‘[hb(u)exp{ﬁ(aur a)}
< h,(u)exp {——4—(~—§—~)—(1+(V-2))}

and we have our upper bound for g,/A,. The lower bound is proved similarly.
Setting » = n, we have finally

s (log )"
uk, + su*wW, + O T

3 7 (logn)3
= — — y? -~ - 7
exp{8n+384u n+0( N .

Substituting u = v/ Vn we see that
E(e"¥-=C/®/ V) — exp(7v?/384 + O((log n)’ /Vn) )

for every real v and so (Y, — 3n)/ Vn converges to.#10,7,/192), together with
all its moments, and the proof of Theorem 2 is complete.

To illustrate the power of this result, notice that it leads, for instance, to
an asymptotic formula for E(Y,%), exact up to a remainder O(n®/2). A direct
computation would have required plenty of work, without giving a clear idea
of why the final result is so simple.

E(e*¥") = exp

4. Modified GREEDY on G, ,,. Here we give the proof of Theorem 3. In
fact, the method of proof of Theorem 1 carries over with only minimal
changes, so we will elaborate only the points of difference. The notation will
correspond to that in Section 2. We will use carets (“hats”) to indicate
quantities that differ from their counterparts in the proof of Theorem 1.
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Most importantly, of course, we have a different distribution for BAf, the
number of edges deleted at each step. Here it is possible that no edge is
deleted, because the random vertex choice may select an isolated vertex. We
could, of course, avoid this, but it is convenient to allow it in order to simplify
the analysis. Thus we must allow R = — 1. (Recall that the number of deleted
edges was R + 1.) We will determine the distribution of R. Clearly

)
(38) Pr(B=-1) =L
(W)
M
For R > 0, suppose that the first vertex selected has degree r; + 1 > 0 and
its chosen neighbour has degree r, + 1 > 0. There are

[ha)(7n?)

ways of selecting the (r; + ry + 1) edges attached to the chosen pair of
N,
m—ry—ro—1

[ [l |

vertices, and then ( ways of selecting the rest. Thus

== H
-
@ -, £ R

A
o ey

(N) r+1 r+1
n

where, in the last equality, we have made use of the simple combinatorial
identity known as Vandermonde’s convolution. Thus, using approximations
similar to those leading to (2), we obtain
1
1+0|—-|],
14

(42) Pr(R=r)= G (1 + o(r—z)), r>0.

(41) Pr(R=-1) =e¢

(r+1)! v
) From these we may obtain by straightforward computations,
E(R) = 26— ¢e™€ + 0(1/v),

(43) s
E(R?) = 4% — g% ¢+ 28— ¢+ 0(1/v),
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prov1ded that ¢ = O(1). We now let g, (2) = exp(r(zdQ2v/p) +
L2252/ w))), and we will derive the differential equations analogous to (6)
and (7) which ¢ and § must satisfy. We will show later that (in the complex
domain) these functions are analytic on an open region containing the
nonnegative real axis. Hence they and their derivatives are uniformly bounded
on the interval [0, ¢, ]. This will justify the Taylor expansions [cf. (9) and (10)]

(44) ¢3(§,)=¢3(§)+¢3'(A§)—2;(§—1—r)+0(—r—2),

7

(45) U(&) = 0(&) +d'(¢)= (f—l—r)+0

Hence [cf. (11)]
ln(ezgv—Z,p—l—r/éu,#)
=2(1-28(&) +24'(£)(¢-1-1))
+322(—20(£) +20'(£)(§-1-1r))
+0(r2z/v).

(46)

A similar calculation leads to
ln(gAv—l,p,/é'u,p,)

=2(£4'(€) — $(&)) + 322(&b'(€) — w(&)) +O(z/7).
Now (cf. Lemma 2) we must examine

—l(é'u—l,u/é'y,y) + Z ﬁr(engv—Z,p,—l—r/gv,y.)'

r=0

(47)

As in the proof of Lemma 2, we may ignore r > n!/? in this sum. [Note that
the estimate in (4) remains valid here.] Then we expand uniformly for
r < nl/3, giving

A A

pa(1+2(68 = 8) + 32*((66 - )" + (&' - §) + O(z/m)))

+ Zp,(1+z 1-2¢+2(6-1-r)¢)
(48) r=0

12 ((1-28+2(6-1-1r)d)
—2f+2(6-1-r)f')+ O(rzz/v)).

* We need this quantity to be (1 + O(z/v)). The conditions for this are clearly
that the coefficients of z and z? in (48) must be zero. The coefficient of z is

e é(¢d' —d)+ (1 —e€)(1— 24 +2£4") — 28'E(R).
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Equating this to zero, substituting for E(R) using (43) and rearranging gives

(49) €'+ b= .

Similarly, the coefficient of z? is
e f((£6 = d) + (&b = B)) + (1= e ) ((1 - 28 + 2687)" — 26+ 269)
- 4(1- 24 + 264" )$'E(R) + 4E(K2)($")" - 20 "E(R).

Again equating this to zero, substituting for E(R) and E(E?) using (43) and
rearranging gives

e ¢

Ao 1-e7f R A2 AN
&y +¢f_2—_e_—§(1—2¢+2§¢) + z_e_g(&ﬁ - )
50 4£2 — g2 6 4 28— ge~t
( ) + 2_e_£ (24)/)2

—4£(1 -2 +2¢4") 0"

We have the initial conditions $(0) = §(0) = 0. Equation (49) clearly has
solution

A~ 1 & 1—e* 1
51 == = —(¢(-In(2—e¢
(51) #(£) ffoz—e"‘dx 2§(§ n(2 —e%)),
as claimed in the statement of Theorem 3. Now consider (50). If its right-hand
side is denoted by u(¢), then it is clear that u(0) = 0. Then (50) has the

solution
. 1 .
G(€) = E[Ou(z)dz,

such that (0) = 0. Also, () = 0 because Jou(z) dz converges. The rest of
the proof of Theorem 3 closely follows the lines of Theorem 1, as the reader
may check.

5. Modified GREEDY on random trees. We now consider the proof of
Theorem 4. The proof is similar to that of Theorem:2 and so we will give
somewhat fewer details. We use the same notation as that in Section 3 except
that we will put a caret (hat) over the corresponding quantity. Then as in (17)
‘we have, for n > 2,

n-1 « © d )
fz)=22 L Y ¥ ) %(a,b)gﬂ,(z)sl:llﬁs(z),

k=1d=06=0aecQ(d, k) beU(5,n—k)
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where now

(a,b)

1 (h_9 (k—1)! 4 ga1
=nn-1(z—1)Z Z((az+1)1,=n1 )

|
v+l w#v a,:

n—k—1)! 8 pbe~1
X(( 51 )U )

EXPLANATION. n"~! counts (tree, chosen vertex) pairs; v denotes the
chosen vertex; vw is the chosen edge; having fixed v, w, there are (Z - f)

choices for the vertices of the trees attached to v; in the tree in question v has
degree d + 1 and 1/(d + 1) is the probability that vw is the chosen edge.
The remaining terms count the number of possible forests on the remaining
vertices.

Putting

F(x,z) = i _—x

{23

we obtain the equation

ZZH

(d"‘ DT s m =

o bb—l z
5 Z fb( ) ,,s)

k=1bcQ(s,k)s=1

d arlf(z) )

Il

b

+

®

[\V]

N
A
|M8

2| =

)

S!

I~
i

A eF -1\ .
F=x+ x2z( = )eF
F
or
(52) F? = xF + x%z(e%f — eF).

Unlike GREEDY, this is not a differential equation. As a partial check, set
z = 1 and notice that F(x,1) = T'(x), so that (53) becomes

T? = xT + x%(e?T — 7).
This is certainly correct because T = xe”; see (21). Differentiating (52) with

respect to z gives

N N d N R
2F— =x— +x2(e?F —ef) + xzzz(2e2F —ef)
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or
oF xz(eﬁ‘ - eﬁ)
(53) — = — < —.
dz  2F —x — x%2(2e%F — ef)
Now
F(x,1) = T(x)
and
aFA n o] n n—1 .
—a;(x,l) =E(x) = n§1En y x",
where

E, = E(Y,).
So putting z = 1 in (53) we obtain, using (21), that

xZ(e2T _ eT)

E =
2T — x — x%(2e27 — eT)
(54)
T —Te T
S 2-e Y1 -T)"
Thus
R n! 1 T — Te T dx
E,=—= / -T +1
n" "t 2mwile,(2-e 7)1 -T) x™
n! 1 1—ete™

n" 1 2mi fclz —e "

Here C, is a circular contour in the x plane, of radius less than e~!. (Notice
that [2 — e 7| is bounded away from zero in the closed disk |x| <e™!.) As
for C,, it consists of two circular arcs L, and L,, where L, = {t = ¢'’:
—m/2 < 0 < m/2, and L, passes through the points e *"/2 and the point ¢,
on the negative real line, such that —In2 < ¢, < 0. The contribution of L,
to the value of E, is O(n* %(elt,)~"), which is exponentially small, provided
that |¢,| is sufficiently close to In2 (because eIln2 > 1.) We now expand
(1 -e7%)/(2 —e ) around ¢t = 1 to obtain

1—e! e—1

e e(2e +1)
= +
2—et 2e — 1 (2e — 1)

2(2e — 1)3(t -

2(t_1)_

e(4e® + 8e + 1)
6(2¢ — 1)*

where ¢ is bounded on L,.
While integrating the first four summands we can, and do, extend the
integral over the whole unit circle, making an exponentially small error. So

(t—1)°+ (¢ — )*s(2),




PERFORMANCE OF GREEDY MATCHING ALGORITHM

using (26) and (27) we now obtain
P e—1 e e(2e +1)
= u, + u; — u
"2 -1"° (2e-1)% " 22e-1)° "

e(4e® + 8e + 1) 1
(55) - —us + 0[]
6(2¢ — 1)
e—1 3e — 2¢? 1
e
2¢ -1 2(2¢ - 1) n
as claimed.

551

We continue by estimating V, = E(Y,(Y, — 1)). Differentiating (52) twice

with respect to z gives

A 2 A A A A

oF . J°F 92F oF J2F

2l — | + 5 2
0z 0z 0z

P =x— +x2(2e2ﬁ—eﬁ)(2$ +z—)
A2
+ x2z(£) (4e2F — eF),
0z
Putting z = 1 and using (21) we obtain
2E2 + 2TV =2V + x2(2ezT - eT)(zﬁ + ‘7) + x2E"v2(4eZT _ eT)
=Te TV + T%(2 - e H2E+ V) + E2T2(4 — e T),

where
n n [e2] n nn—l
V=V(x) = ngl o
Thus
. T?E?(4—eT) +2T2E(2 — e T) — 2K2
(56) V= .

T(1-T)2-eT)
Also, as in (30),

57 v n! 1 1- tve"t J
= — dt.
(57) "ontl 2w —/;31 ¢ t"

It follows from (54) and (56) that in terms of ¢,

1-¢ ., (e—1)2 1 1 — 5e + 17e% — 20e® + 8e*
= +
t 2e — 1) (1-1)? (2e — 1)*

+a(l—¢) + (¢ - 1)°B(2),

where a is an absolute constant and B is bounded on C,. Thus, using (26),
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(27) and (57),
5 e—1)\° , 1-5e+ 17e* — 20e® + 8e*
- (e
2e -1 (2¢ — 1)
Using this and (55) we obtain the variance estimate given in the theorem.
We finally consider asymptotic normality. Fortunately, no work is needed.
If we examine the proof of asymptotic normality in Theorem 2 we see that all

we need do is replace 7(a, b) by 7(a, b) throughout to obtain the result for
MODIFIED GREEDY.

n + 0O(1).
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