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HEDGING CONTINGENT CLAIMS WITH CONSTRAINED
PORTFOLIOS!

By JAKSA CvITANIG AND I0ANNIS KARATZAS?

Columbia University and University of Pennsylvania

We employ a stochastic control approach to study the question of
hedging contingent claims by portfolios constrained to take values in a
given closed, convex subset of %#¢. In the framework of our earlier work
for utility maximization with constrained portfolios, we extend results of
El Karoui and Quenez on incomplete markets and treat the case of
different interest rates for borrowing and lending.

1. Introduction and summary. The celebrated papers of Black and
Scholes (1973) and Merton (1973) paved the way for pricing options on stocks,
based on the following principle: In a complete market (such as the one in
Section 2 of this article) every contingent claim can be attained exactly by
investing in the market and starting with a large enough initial capital.
Thus, the “fair price” of the claim is taken to be the minimal such capital.
This, in turn, is shown to be equal to the expectation of the discounted
value of the claim, under a new, so-called risk-neutral, probability measure
[Harrison and Pliska (1981); see also Harrison and Kreps (1979) and Cox and
Ross (1976)]. The argument that leads to this result, and to the associated
“valuation formulae”, is by now standard [e.g., Karatzas and Shreve (1988)
and Karatzas (1989)]; it is based on the martingale representation and
Girsanov theorems from stochastic analysis, and is reviewed for the sake of
completeness in Section 4 of this paper.

The foregoing argument fails, however, in an incomplete market, a proto-
typical example of which is a market in which claims can depend on stocks
that are not available for investment. The option pricing problem under
incompleteness of this type has been studied, among others, by Féllmer and
Schweizer (1991), who adopt a risk-minimization approach, and by Ansel and
Stricker (1992), Jacka (1992) and, most notably, El Karoui and Quenez
(1993). Using a stochastic control approach similar to that of the latter paper,
we attack here a more general problem: the hedging of contingent claims with
portfolios constrained to take values in a given closed, convex set K. The
model employed is a, by now, standard generalization of that in Merton
(1969, 1973). The framework and insights of Cvitanié and Karatzas (1992), in
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which we studied the constrained portfolio optimization problem, are essen-
tial in obtaining the main results. These can be summarized as follows:
Under appropriate conditions, it is possible to replicate contingent claims
even with constrained portfolios, albeit some additional consumption may be
necessary; the minimal initial capital that makes this replication possible is
equal to the supremum of the expected discounted values of the claim under
new probability measures in a suitably large family (Theorem 6.4); replica-
tion without extra consumption is possible only if the Black—Scholes replicat-
ing portfolio happens to take values in K (Theorems 6.6, 6.7); and the
associated wealth process is the minimal adapted solution of a backwards
stochastic differential equation with convex constraints. The main mathemat-
ical tool, namely, the martingale approach to stochastic control, is adapted
from Davis and Varaiya (1973), as reported in Elliott (1982).

The paper is organized as follows: The ingredients of the model are laid out
in Sections 2-5. In Section 6 we state and prove the main results. Section 7
deals with some special cases in which more explicit results can be obtained.
We discuss some possible extensions, as well as the issue of numerical
calculations, in Section 8. Finally, we show in Section 9 how to apply this
same approach in the (unconstrained) case of a market with different interest
rates for borrowing and lending. It turns out that in such a market a large
class of contingent claims, including European call options, is attainable. The
results of this section extend those in the recent preprint by Korn (1992);
compare also with Bergman (1991) and Jouini and Kallal (1993). These
results also provide a concrete example, with “explicit” solution, of an adapted
solution to a nonlinear, backwards stochastic differential equation in the
spirit of Pardoux and Peng (1990); cf. Remark 9.6 and Example 9.5. A pricing
method for the problem of Section 9, using utility functions, is proposed in
Barron and Jensen (1990).

2. The model. We consider a financial market .# that consists of one
bond and several (d) stocks. The prices P,(¢), {P,(t)}; ;. 4, of these financial
instruments evolve according to the equations

(2.1) dP,(t) = P,(t)r(t)dt, P,(0) =1,

d
(2.2) dP,(t) = P,(t)| b;(t) dt + j§1 o, (¢) AWO(2) ],

P(0) =p; € (0,2),i=1,...,d.

Here W =(W®,..., W)* is a standard Brownian motion in %#¢, defined
on a complete probability space (Q,%,P), and we shall denote by {7}
the P-augmentation of the filtration " = o(W(s); 0 <s <t) generated
» by W. The coefficients of .#, that is, the processes r(¢) (scalar interest
rate), b(¢t) = (b,(2),...,b,(2))* (vector of appreciation rates) and o(¢) =
{0,/ <, j<aq (volatility matrix), are assumed to be progressively measur-
able with respect to {#} and bounded uniformly in (¢, ») € [0,T] X Q. We
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shall also impose the following strong nondegeneracy condition on the matrix
a(t) & a(t)a*(t):

(2.3) £*a(t)éz ellEll®, VY (t, &) €[0,T] xz?

almost surely, for a given real constant & > 0. All processes encountered

throughout the paper will be defined on the fixed, finite horizon [0, T'].
We introduce also the “relative risk” process

(2.4) 0(t) = o '(e)[b(t) — r(e)1],
where 1 = (1,..., 1)*. The exponential martingale
- 1

(2.5) Zy(2) & exp[— [f6%(s)aw(s) = = [“lo(s)I’ ds]

0 27
and the discount process
(2.6) Yo(t) £ exp{—ftr(s) ds}

0

will be employed quite frequently.

2.1 REMARK. It is a straightforward consequence of the strong nondegen-
eracy condition (2.3), that the matrices o(¢), o*(¢) are invertible, and that
the norms of (o(£))~!,(o*(¢))~! are bounded above and below by & and 1/8,
respectively, for some § € (1, »); compare with Karatzas and Shreve [(1988),
page 372]. The boundedness of b5(-), r(-) and (o(-))"! implies that of 6(-), and
thus also the martingale property of the process Zy(-) in (2.5).

3. Portfolio, consumption and wealth processes. Consider now an
economic agent whose actions cannot affect market prices and who can
decide, at any time ¢ € [0, T'], the following points:

1. What proportion ,(¢) of his wealth X(¢) to invest in the ith stock
Q<i<d.

2. What amount of money c(¢ + k) — ¢(¢) = 0 to withdraw for consumption
during the interval (¢,¢ + ], A > 0.

Of course these decisions can only be based on the current information %,
without anticipation of the future. With 7 (¢) = (7(¢),..., m;,(¢))* chosen, the
amount X(¢)[1 — X¢_, m,(¢)] is invested in the bond. Thus, in accordance with
the model set forth in (2.1) and (2.2), the wealth process X(¢) satisfies the
linear stochastic equation

dX(t) = i ”i(t)X(t){bi(t) dt + i 0;;(¢) dW(j)(t)}

i=1 j=1

i=1
= r(t)X(t) dt — de(2)
+X(t)m*(t) o (t) dW,(t), X(0) =x >0,

(3.1) + {1 - i wi(t)}X(t)r(t) dt — de(t)
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where the real number x > 0 represents initial capital, ¢(¢) is the cumulative
consumption up to time ¢ and

(3.2) W(t) 2 W(t) + [‘6(s)ds, O<t<T.
0
We formalize the preceding discussion as follows.

3.1 DEFINITION. (i) An #%-valued, {Z}-progressively measurable process
m={m(®), 0 <t < T} with [T l7(®)|®dt < © a.s. will be called a portfolio
process. .

(ii) A nonnegative, nondecreasing, {#,}-progressively measurable process
¢ ={c(¢), 0 <t < T} with RCLL paths, ¢(0) = 0 and ¢(T') < « a.s. will be
called a consumption process.

(iii) Given a pair (w, ¢) as before, the solution X = X*™¢ of (3.1) will be
called the wealth process corresponding to the portfolio—consumption pair
(7,¢) and initial capital x € (0, ).

3.2 DEFINITION. A portfolio—consumption process pair (7, ¢) is called ad-
missible for the initial capital x € (0, «), if
(3.3) X®m(t)=0, VO=<t<T,
holds almost surely. The set of admissible pairs (7, c) will be denoted by
y(x).

In the notation (2.5) and (2.6), (3.1) leads to

Mo(£) 2 7o(£)X(8) + ['7o(s) de(s)
(3.4) )
=5+ [[70(5) X(5)7* (5) 7 (5) AWo(s).
0

In particular, the process M,(-) of (3.4) is seen to be a continuous local
martingale under the so-called risk-neutral probability measure (or “equiv-
alent martingale measure”)

(3.5) P°(A) 2 E[Z,(T)1,], Ae%.
If (m,c) € %,(x), the P%local martingale M,(-) of (3.4) is also nonnegative,
thus a supermartingale. Consequently,

(3.6) E°|yo(T)X*=™(T) + fOT'yO(t) dc(t)] <x, V(m, c)ew(x).

.Here, E° denotes the expectation operator under the measure P°. Under
this measure, the process W, of (3.2) is standard Brownian motion by the
Girsanov theorem [e.g., Karatzas and Shreve (1988), Section 3.5] and the
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discounted stock prices y,(-)P,(-) are martingales, because
d
dP,(t) = P(¢t)|r(¢)dt + X o,;(t) AW (¢) |,
(3.7) j=1
PZ(O) =pl’i = 1,...,d,
from (2.2) and (3.2).

3.3 REMARK. For any given (7, ¢) € %,(x), let X(-) = X*™°(:) and define
the “bankruptcy time”

(3.8) S £inf{t € [0,T]; X(¢) =0} A T.
Because the continuous process M,(-) of (3.4) is a P°-supermartingale, the

same is true of y,(-)X(-) and thus (e.g. Karatzas and Shreve (1988), Problem
1.3.29) for ae. w € {S < T},

(3.9) X(t,w) =0, Vtel[S(w),T].
On the other hand, the optional sampling theorem applied to M(-) yields

B 7o) X(T) + [ v(0) de(t)
S

and thus for a.e. w € {S < T, ,
(3.10) c(t,w) =c(S(w), w), /—ae. te(S(w),T],

where / denotes “Lebesgue measure”. It follows from (3.9) and (3.10) that
bankruptcy is an absorbing state for (7, c) €%/ (x). If the wealth X(-) be-
comes equal to zero before the end T' of the horizon, it stays there; no further
consumption takes place, and further values of the portfolio 7(-) become
irrelevant. In fact, we will allow the possibility of bankruptcy even if there is
no consumption at all; that is, we will allow wealth processes modeled by (3.1)
[possibly with c¢(-) = 0] for ¢ < S, where S is some stopping time and X(-) = 0
for S<t<T.

«73] < %(8S)X(S) as.

4. Hedging with unconstrained portfolios. Let us suppose now that
an agent promises to pay a random amount B(w) > 0 at time ¢ = T. What is
the value of this promise at time t = 0? In other words, how much should the
agent charge for selling a contractual obligation that entitles its holder to a
payment of size B(w) at t = T'?

For instance, suppose that this obligation stipulates selling one share of
the first stock at a contractually specified price q. If at time ¢ = T' the price
P (T, w) of the stock is below g, the contract is worthless to its holder; if not,
the holder can purchase the stock at the price ¢ per share and then sell it at
+ price P(T, o), thus making a profit of P,(T, w) — q. In other words, this
contract entitles its holder to a payment of B(w) = (P(T, w) — q)* at time
t =T; it is called a (European) call option with “exercise price” ¢ and
“maturity date” T'.
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To answer the question of the first paragraph, one argues as follows.
Suppose the .agent sets aside an amount x > 0 at time ¢ = 0; he invests in
the market .# according to some portfolio () and withdraws (possibly)
funds according to a cumulative consumption process c(-), but wants to be
certain that at time ¢ = 7' he will be able to cover his obligation, that is, that
X*m¢(T) > B will hold almost surely. What is the smallest value of x > 0
for which such “hedging” is possible? This smallest value will then be the
“price” of the contract at time ¢ = 0.

4.1 DEFINITION. A contingent claim is a nonnegative, $-measurable ran-
dom variable B that satisfies

(4.1) 0 < E°[yo(T)B] < .
The hedging price of this contingent claim is defined by

(4.2)  uy2inf{x > 0;3(m,c) €y(x) st. X»™(T) = Bas.}.

The following “classical” result identifies u, as the expectation, under the
risk-neutral probability measure of (3.5), of the claim’s discounted value.

4.2 PROPOSITION. The infimum in (4.2) is attained, and we have
(4.3) Ug = EO['YO(T)B]~
Furthermore, there exists a portfolio m,(-) such that Xo(-) = X*0m%() is
given by

(4.4) X0 =55 — E%[y,(T)B|%], O0<t<T.

(

PrOOF. Suppose X*™°(T') > B holds a.s. for some x e (0,) and a suit-
able pair (m,c) €,(x). Then from (3.6) we have x >z £ E°[y,(T)B] and
thus u > 2.

On the other hand, from the martingale representation theorem and one of
its well-known variants [cf. Karatzas and Shreve (1988), pages 182-184 and
375], the process

X,(t) & 1t) E'[y(T)BI%], 0<t<T,

(

can be represented as

(4.5) X,(t) = —%—[ [w* s) dW,( s)]
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for a suitable {F}-progressively measurable process y(-) with values in %¢
and [T ly(®)|I? dt < = a.s. Then

mo(t) £ W(U*(t))_ P (t)

is a well-defined portfolio process (recall Remarks 2.1 and 3.3) and a combari-
son of (4.5) with (3.4) yields X,(:) = X* "0 °(). Therefore, z > u,. O

In the sequel, we shall refer to u,, X,(-) and m(-) as the unconstrained
hedging price, price process, and portfolio, respectively. It should be noticed
that '

(4.6) X,(T) = Xpo™%(T) =B aus.

in Theorem 4.2. We express this by saying that the contingent claim is
attainable (with initial capital u,, portfolio 7, and zero consumption).

4.3 ExamMPLE. Constant r(-) =r > 0 and o(-) = o nonsingular. In this
case, the solution P(¢) = (P(2),..., P,(+))* is given by P/(¢) = h,(¢ — s, P(s),
o (Wy(t) — Wy(s)), 0 < s < t, where h:[0,0) X %% X Z >R is the function
defined by

(47) hi(t’pay;r) épiexp[(r_%aii)t +yi], i=1,...,d.

Consider now a contingent claim of the type B = ¢(P(T)), where o¢:
%% - [0,») is a given continuous function that satisfies polynomial growth
conditions in both || pll and 1/|| p|l. Then it is rather straightforward, using the
Feynman-Kac theorem [e.g., Karatzas and Shreve (1988), page 366] and It0’s
rule, to see that the processes X,(-) and () of Proposition 4.4 are given as

(48)  Xy(t) =T (P(T))IF] = U(T - ¢, P(2)),
P(t)(3/op)U(T = ¢, P(1))
(49)  m(t) = DT =, 7(0) . i=1,...,d,

respectively, where
eIzl /2t
et o(h(t,p,02;1))——75
fgd (h(t, p ) (2’7Tt)d/2

e(p), t=0,p cx?.
In particular, the unconstrained hedging price u, of (4.3) is given, in terms of
the function U of (4.10), by
(4.11) uy, = Xo(0) = U(T, P(0)).

A very explicit computation for the function U is possible for d = 1 in the
case o(p) =(p — q)” ofza call option: with o = o; > 0, exercise price g > 0,
D(2) =1/V27)[?, e */?>du and

v, (t,p) & (l/aﬁ)[log(p/q) + (r+ a?/2)t],

dz, t>0,pex?,
(4.10) U(t, p) & ‘ P=Fs
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we have the famous Black and Scholes (1973) formula:
p®(v.(t,p)) —qe "' ®(v_(¢,p)), t>0,pe(0,x),

U
(412) UG p) =10 t=0,pe(0,%).

5. Convex sets and constrained portfolios. We shall fix throughout a
nonempty, closed, convex set K in %%, and denote by

(5.1) 8(x) = 8(xIK) 4 sup(—w*x):%d > F U {+x}
meK

the support function of the convex set —K. This is a closed, positively
homogeneous, proper convex function on #? [Rockafellar (1970), page 114]. It
is finite on its effective domain

K2 {xex? §(xIK) < )
={xex’;3BeFst. —m*x < B,Vm €K},

which is a convex cone (called the barrier cone of —K). It will be assumed
throughout this paper that the function

(5.2)

(5.3) 8(+1K) is continuous on K
and bounded from below on %%
(5.4) 8(x|K)=8,, Vxex? forsome s, .

5.1 REMARK. Condition (5.4) is obviously satisfied (with §, = 0) if K
contains the origin. On the other hand, Theorem 10.2 in Rockafellar [(1970),
page 84] guarantees that (5.3) is satisfied, in particular, if K is locally
simplicial.

5.2 ExaMPLES. The role of the closed, convex set K that we just intro-
duced is to model reasonable constraints on portfolio choice. One may, for
instance, consider the following examples, all of which satisfy the conditions
(5.3) and (5.4):

(i) Unconstrained case: K = %% Then K = {0} and 6 =0 on K. 3

(ii) Prohibition of short-selling: K = [0,%)¢. Then K = K and 6 = 0 on K.

(iii) Incomplete market: K = {mw E%’d, m; =0,V i=m+1,...,d} for
some fixed m €{1,...,d — 1}. Then K= {xeg?d; x,=0,Vi=1,...,m}
and §=0on K.

(iv) Incomplete market with prohibition of short-selling: K = {mw € %%,
m=20,Vi=1,...,mand m;=0,V i=m+1,...,d} with m as in (ii).
ThenK {xe%dx>0\7’z—1 .,m}and 8§ = Oon K.

(v) K is a closed, convex cone in %° Then K— {(x €%, 7*x >0,
V 7 € K} is the polar cone of —K and 6 =0 on K. This case obviously
" generalizes (1)—(iv). ' 3

' (vi) Prohibition of borrowing: K = {w € %% L% 7, < 1}. Then K = {x €
R x, = -+ =x,<0}and 8(x) = —x; on K.
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(vil) Rectangular constraints: K= X?_ | I,, I, =[a,;, B;] for some fixed
numbers —» < a; < 0 < B; < », with the understanding that the interval I,
is open to the right (left) if b, = « (respectively, if @, = —«). Then §(x) =
i1 (Bix; — a;x]) and K =% if all the o;’s and B,s are real. In general,
K={xex% x;20, V i €%, and x;<0, V j€S )}, where &, £ {i =

1,...,d/B;=}and & £ {i=1,...,d/a; = —}.

From now on, we consider only portfolios that take values in the given,
convex, closed set K c.%#?%; that is, we replace the set of admissible policies
y(x) with
(65) #'(x) £ {(7,¢c) €s(x); w(t, ) €K for /® P-ae. (t, w)}.

As in Cvitani¢ and Karatzas (1992), hereafter abbreviated as CK, consider
the class # of K-valued, {}-progressively measurable processes v = {v(¢),
0 <t < T} that satisfy E [{ |lv()|* dt + E [T 6(v(t)) dt < », and introduce
for every v € % the analogues

(5.6) 6,(t) = 6(t) + o7 (¢)v(2),
(5.7 Y (t) & exp[—jZ{r(s) + 8(v(s))} ds],

t 1 t 2
G5 70 2ew|- [0 W) 5 [ 1)l as).

(5.9) W,(t) 2 W(t) + jote,(s) ds

of the processes in (2.4)-(2.6) and (3.2), as well as the measure
(5.10) P*(4) LE[Z,(T)1,] =E*[1,], Aes,

by analogy with (3.5). Finally, denote by & the subset consisting of the
processes v €% for which the exponential local martingale Z,(-) of (5.8) is
actually a martingale. Thus, for every v €9, the measure P’ of (5.10) is a
probability measure and the process W,(-) of (5.9) is a P*-Brownian motion.

5.3 DEFINITION. A contingent claim B will be called K-hedgeable if it
satisfies

(5.11) V(0) £ sggE”[y,,(T)B] < o,

This definition will be justified in the next section. More precisely, it will be
shown there that for any K-hedgeable contingent claim B, there exists a pair
(7, c) €' (V(0)) such that XV© ™¢(T) = B, and that V(0) is the minimal
initial wealth for which this can be achieved.

5.4 REMARK. In the unconstrained case K =%¢ we have K = {0}, and
V(0) = E%[y,(T)B] is then the unconstrained hedging price for the contin-
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gent claim B, as in Proposition 4.2. In the framework of CK, the number
u, 2 E’[y(T)B] = Elv,(T)Z,(T)B] is the unconstrained hedging price for B
in an auxiliary market .#,. This market consists of a bond with interest rate
rOXt) £ r(t) + 6(v(t)) and d stocks, with the same volatility matrix
{0;{t)}1<; j-q as before and appreciation rates b{(¢) = b,(¢) + v(¢) +
8(v»(t), 1 <i < d, for any given v €9. Thus, the prices of these instruments
in #, are given, by analogy with (2.1) and (2.2), as

(5.12)  dP(t) = P&(8)[r(¢) + 8(v(t))] dt, P(0) =1,
dP{(t) = P(t)[{b:(t) + v(t) + 8(v(¢))} dt

(5.13) + i o,;(t) dWO(¢) |,
Jj=1

Pi(")(()) =p; € ((),oo),i= 1,...,d.

We shall show that the price for hedging B with a constrained portfolio in
the market .# is given by the supremum of the unconstrained hedging prices
u, = E’[y/(T)B] in these auxiliary markets .Z,, v €92.

5.5 REMARK. From Theorem 9.1 in CK we know that if the supremum in
(5.11) is achieved by some A €2, then the claim B can be hedged by a
constrained portfolio = and without consumption [i.e., with c(-) = 0]. This,
however, will not always be the case: The supremum in (5.11) is not attained
in general and neither is the supremum of u, = E[v,(T)Z,(T)B] over the
class /7, which is larger than 2. The situation should be contrasted with the
portfolio optimization problem of CK, where such an enlargement does
produce an existence result.

Let us mention, however, that the suprema of u, = E[y,(T)Z (T)B] over
the two classes & and # are the same; compare with Remark 6.11.

5.6 REMARK. In terms of the P*-Brownian motion W (-) of (5.9), the stock
price equations (2.2) can be rewritten as

dP,(t) = P,(t) (’(t) - Vi(t)) dt
(5.14) 4
+ .Z o;;(t) dWI(e)|, . i=1,...,d,

Jj=1

for any given v €9.

6. Hedging with constrained portfolios. We introduce in this section
the “hedging price” of a contingent claim B, with portfolios constrained to
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take values in the set K of Sections 4 and 5, and show that it coincides with
the number V(0) = sup, . , E*[y,(T)B] of (5.11).

6.1 DEFINITION. The hedging price with K-constrained portfolios of a
contingent claim B is defined by

(6.1) h(0) 2 inf{x € (0,0);3 (7,c) €x'(x),s8t. X*™°(T) >Basl},
) o, if the above set is empty.

Let us denote by . the set of all {#}-stopping times 7 with values on [0, T']
and by ., , the subset of .% consisting of stopping times 7 s.t. p(w) < 7(w) <
o(w), Y o € Q, for any two p €.%, o €% such that p < o as. For every
T €% consider also the #-measurable random variable

(6.2) V(r) 2 ess fggE"[B’yo(T)exp{—fTTB(v(s)) ds} 37]

[notice the notational agreement with the definition (5.11)].
6.2 PROPOSITION. For any contingent claim that satisfies (5.11), the family

(6.2) of random variables {V(7)},_ ;. satisfies the equation of dynamic pro-
gramming:

(6.3) V() = ess sup E’"[V(G)exp{—ff&(v(u)) du} y] Voes .,

4 7,0

where 9, , is the restriction of 9 to the stochastic interval [, §].

6.3 PROPOSITION. The process V = {V(¢),%; 0 <t < T} of Proposition 6.2
can be considered in its RCLL modification, and for every v € D,

(6.4) Q,(¢) = V(t)exp(—ftB(v(u)) du),Z; 0<t<T,
D 0 .
is a P"-supermartingale with RCLL paths

Furthermore, V is the smallest adapted RCLL process that satisfies (6.4) as
well as

(6.5) V(T) = Byy(T) a.s.

The proofs of Propositions 6.2 and 6.3 will be given in the Appendix. The
following theorem can be regarded as the main result of the paper; it justifies
Definition 5.3.

6.4 THEOREM. For an arbitrary contingent claim B, we have h(0) = V(0).
Fur‘thgr{nore, if V(0) < o, there exists a pair (#,¢) € '(V(0)) such that
XVOm¢T) =B, a.s.
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Proor. We first want to show A(0) < V(0). Clearly, we may assume
V(0) < . From (6.4), the martingale representation theorem (cf. Proof of
Proposition 4.2) and the Doob-Meyer decomposition [e.g., Karatzas and
Shreve (1988), Section 1.4], we have for every v €9:

(66) Q) =V(0) + [Wr(s)dW,(s) ~AL(¢), 0s<t<T,

where ¢,(-) is an #%-valued, {%}-progressively measurable and a.s. square-in-
tegrable process and A () is adapted with increasing RCLL paths and
A, (0) =0, A(T) < » a.s. The idea then is to consider the positive, adapted
RCLL process '
V(t) Q)
Yo(t)  w(t)’
with X(0) = V(0), X(T) = B a.s. and to find a pair (#, &) € %'(V(0)) such that
X(-) = XV©O 7.¢(.), This will prove that A(0) < V(0).

In order to do this, let us observe that for any u €9, v € 2, we have from
(6.4),

0<t<T, Vveg,

(6.7) X(t) &

Q,(6) = QD)o [(5(x()) — 3(u(s))) ds
and from (6.6),
dQ,(¢) = exp| [{8(»(s)) = 5((s))) ds|
><[G_?u('f){ﬁ(v('f)) —8(um(t))} G_lt + gF () dW,(t) — dA,(2)]
(68)  —exp j:{&(v(s)) — 8(u(s))} ds|
X[ X()n(){8(v()) — 8(u(2))} dt — dA,(2)
+gr(8) o () (v(2) — u(t)) dt + gk (2) dW,(8)].
Comparing this decomposition with
(6.6') dQ,(t) = oy (¢) dW, () — dA,(2),
we conclude that

t//,,*(t)exp(];)ta(y(s)) ds) - ¢;(t)exp([()ta( u(s)) ds)

and hence that this expression is independent of v €2:

P (¢) exp(j:(s( v(s)) ds)

(6.9)
=X(t)yo(t)7*(t)o(t), YO<t<T,veED,

for some adapted, #%valued, a.s. square-integrable process # (we do not
know yet that 7 takes values in K).
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Similarly, we conclude from (6.8), (6.9) and (6.6') that
eXp(fOta(v(s)) ds) dA,(t) - 'yo(t)X'(t)[S(v(t)) + 7% (t)v(t)] dt

= exp( [[3(u(5)) ds | d,(0) = 7o(O) RO 5( u(e)) + #*(0) )]

and hence this expression is also independent of v € 9

(610) &(t) 2 [Ty}(5) dA,(s) = ['R()[8(v(5)) + v*(s)#(5)] ds

for every 0 <t <T, v€9. From (6.10) with »=0 we obtain &(¢) =
J6vo'(s)dAy(s), 0 <t < T, and hence

(6.11) ¢(-) is an increasing, adapted, RCLL process
with é(0) = 0 and é(T) < «© a.s. ’
Next, we claim that
(6.12) 3(v(t,w)) + v*(t, w)7(t,w) =0, /® P-a.e.,

holds for every v €. Then the arguments of CK, Theorem 9.1, lead to the
fact that

(6.12") (¢, w) € K holds /® P-a.e.on [0,T] x Q.

[These arguments need the continuity condition (5.3) and the assumption
that the set K is closed.] In order to verify (6.12), notice that from (6.10) we
obtain

A1) = [[u(s){de(s) + R(){8(v(s)) + v*(5)#(s)) ds)
< k[é(t) + ft{S(v(s)) + v*(s)#(s)} X(s) ds}, 0<t<T,veg,
0
for some k£ > 0. Fix v €92 and define the set F, 2 {weQ; s(v(t, w) +
v*(¢, 0)ir(t, w) < 0} for every ¢ € [0, T]. Let u(¢) 2 [v(£)1,. + nv()1p (1 +

Il#()ID~!, n € N. Then u €2 and, assuming that (6.12) does not hold, we get
for n large enough,

E[A(T)] < E[ké(T) + kaT(1 +Hlv() ) X() 15
X{8(v(8)) + v*(t)#(t)} dt]

+nE[k[OT(1 () )R 1p{8(v(2)) + v¥(£)7(2)) dt] <o,

a contradiction.
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Now we can put together (6.6)-(6.10) to deduce
d(%(2)X(t)) = dQ,(¢) = ¥ (t) dW,(¢) — dA,(?)
(6.13) = % (t)[—dé(2) - X(){8(v(2)) + v* (1) ()} dt
+X(8)#*(¢) o (¢) dW,(t)]

for any given v €. As a consequence, the process
M, (1) 2 () R(2) + [(0(5) dé(s)
(34) + [0 X()[3(x(5)) + v ()7(5)] ds
=V(0) +j:y,,(s))2(s)ﬁ'*(s)a(s) dw,(s), 0<t<T,

is a nonnegative, P*-local martingale. Reasoning as in Remark 3.3 we deduce
that (38.9) and (8.10) with ¢(-) = é(-) hold here as well, and that the values of
the portfolio #(-) on [S, TT are irrelevant if X(-) is now the process of (6.7)
and S the stopping time of (3.8).

In particular, for v = 0, (6.13) gives

d(vo(t) X(2)) = —¥o(t) dé(t) + o(¢) X(2)F*(2) o () dWo(2),

(6.13") K X
2(0) = v(0), X(T) =B,

which is (3.1) for the process X(-) of (6.7). This shows X(-) = XV® #:¢(.) and

hence 2(0) < V(0) < o,

To complete the proof, it thus suffices to show A(0) > V(0). Clearly, we may
assume A(0) < », and then there exists a number x € (0,%) such that
X*™¢(T) > B a.s. for some (7, c) €%'(x). Then the analogue of (6.13) holds
and it follows from the supermartingale property that

w2 B (D)X T(T) + [Tn(6) de(t)

(614 + [T XD (8(v(0) +vH () (1)) ot
> E”[ By(T)],
’V v € 9. Therefore, x > V(0) and thus £(0) > V(0). O
6.5 DEFINITION. We say that a K-hedgeable contingent claim B is K-

attainable if there exists a portfolio process = with values in K such that
(7,0) €' (V(0)) and XVO ™%T) =B as.
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6.6 THEOREM. For a given K-hedgeable contingent claim B and any given
A €9, the conditions

{Q,\(t) =V(¢) eXP(—fOtS(A(u)) du),z; 0<t< T}

is a P*-martingale,
(6.16) X achieves the supremum in V(0) = sup E*[ By,(T)],
veED

(6.15)

and

(6.17) {

B is K-attainable ( by a portfolio m) and the corresponding
%()XVO™0(.) is a P*-martingale

are equivalent, and imply
(6.18) &(t,w) =0,8(AM¢, w)) + A*(t, w)7(t,w) =0, /@ P-a.e.
for the pair (7, ) € %'(V(0)) of Theorem 6.4.

PrOOF. The P*-supermartingale @,(:) is a P*-martingale if and only if
Q,(0) = E*Q,(T) « V(0) = EN By(T)] < (6.16).

On the other hand, (6.15) implies A,(-) =0, and so from (6.10), é(¢) =
— £ X(s)N 8(A(s)) + A*(s)7(s)] ds. Now (6.18) follows from the increase of ¢(-)
and the nonnegativity of 8(A) + A*7, because 7 takes values in K.

From (6.16) [and its consequences (6 15) and (6.18)], the process X() of
(6.7) and (6.13) coincides with X" #,0(.) and we have: X(T') = B almost
surely, and () X(-) is a P*-martingale. Thus (6.17) is satisfied with 7 = #.
On the other hand, suppose that (6.17) holds. Then V(0) = E* By(T)], so
(6.16) holds. O

6.7 THEOREM. Let B be a K-hedgeable contingent claim. Suppose that for
any v €9 with 6(v) + v*7 =0,

(6.19) Q,(*) in (6.4) is of class D[0, T'], under P”.

Then, for any given A\ €9, the conditions (6.15), (6.16) and (6.18) are
equivalent, and imply

B is K-attainable (by a portfolio m) and the correspondzng

(6.17) Yo (1) XV ™0(.) is g P-martingale

ProOF. We have already shown the implications (6.15) < (6.16) < (6.18).
To prove that these three conditions are actually equivalent under (6.19),
suppose that (6.18) holds. Then from (6.10), A,(-) = 0, whence the P*-local
martingale @,(-) is actually a P"-martlngale [from (6. 6) and the assumption
" (6.19)]. Thus (6.15) is satisfied.

" Clearly then, if (6.15), (6.16) and (6.18) are satisfied for some A €9, they
are satisfied for A = 0 as well, and from Theorem 6.6 we know then that
(6.17') [i.e., (6.17) with A = 0] holds. O
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6.8 REMARK. The conditions V(0) < « and (6.19) are satisfied (the latter,
in fact, for every v €9) in the case of the simple European call option
B = (P(T) — q)*, provided

(6.20)  the function x — 8(x) + x, is bounded from below on K.

The same is true for any contingent claim B that satisfies B < aPy(T) ass.,
for some a € (0, «).

Indeed, with u €2 fixed, we have from (6.3) in this case, for any 7 €.%,

V(r) < a eSngE”[PI(T)yo(T) exp(—ff&(v(u)) du)

Z] a.s.,

where, without loss of generality, we may take the supremum over all v €9
that agree with u on [0, 7]l. Now

exp{ ['1a(5) ds | () Pr(2)
(6.21)

- PO)exp| ['oi(s) dWi(s) = 5 [ as)

is a P*-martingale, for every v € 2. Thus

0< V('r)exp(—/:(?( u(s)) ds)

:

<a esssupE”[yO(T)Pl(T)exp(—fTS( v(s)) ds)
ved 0

= const E“[yO(T)Pl(T) exp(j(;T,ul( s) ds) Z]

Clearly from this, the family {V(7)exp(— [§ 8( u(s)) ds)}, c o is uniformly inte-
grable under P*.

< constexp(j;)TM1(S) dS)Yo(T)Pl(T)

6.9 REMARK. Note that condition (6.20) is indeed satisfied, if the convex
set

(6.20") K contains both the origin and the point (1,0, ...,0)

(and thus also the line segment adjoining these points), for then x; + 8(x) >
%, + 8upy . ,<1(—ax;) =x7> 0, V x € K. This is the.case in the Examples
5.2 (1)—(@iv), (vi), and (vii) with 1 < B; < .

6.10 REMARK. If the condition (6.20) is not satisfied, we have V(0) = « for
the European call option B = (P(T) — ¢)* with 8(-) > 0, r(-) > 0. In other
words, such constraints make impossible the hedging of this contingent
claim, starting with a finite initial capital.
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Indeed, from Jensen’s inequality we have E"[v(TXP(T) - ¢)*] >
(E*[y(T)P(T)] — ¢)*. But from (6.21),

B AD)] = B [exo - [[(5(0:() + ni(e)) ]

T 1,7 2
xoxp{ [7oi(s) aw(s) - 3 [Mon(o) I |
and for deterministic v,

: T
B (D)D) = oxp( ~ [[(5(0(5)) + () .
Thus, with 2, denoting the claés of nonrandom functions in &, we have
+
V(0) = supE,[n(T)(PA(T) ~ )" | > sup (B"[%(T)PT)] - q)

(6.22) r +
> sup (exp{—f (8(v(s)) + vi(s)) ds} - q) = oo,

VE.@d 0

The conditions (6.20) and (6.20') fail, for instance, in the case of rectangu-
lar constraints K = X%, [«;, B;] of Example 4.2(vii) with 8, < 1. They also
fail in the case of an incomplete market in which investment in the first stock
is prohibited, say with K = {7 eRtmy = =m, =0} for some 1 <m <d.
Then K ={x €%#% x,,,= =x,=0} and §=0 on K. (However, the
“option with a ceiling” B = min{(P,(T) — ¢)*, L} for some real L >0 is
bounded, thus hedgeable, for any constraint set K.)

In El Karoui and Quenez (1993) such problems are avoided by assuming
a priori the claim B to be hedgeable. Moreover, these authors work under the
(difficult to verify) condition, that the hedging of B can be done by a portfolio
7r(-) for which the process 7(-)X(:) is bounded.

6.11 REMARK. A slight modification of the proof of Theorem 6.4 shows
that

(623)  V(0) = supE*[By(T)] = sup B[ By,(T)Z,(T)]
veD veX

holds for an arbitrary contingent claim B. The straightforward details are
left to the diligence of the reader.

6.12 REMARK. As a referee points out, it is not necessary to think of the
process ¢ as cumulative consumption. Instead, it can represent, for example,
the cumulative cash surplus generated by the hedging portfolio 7, and this
surplus might be reinvested in the market rather than consumed.

The next result characterizes the process X(-) of (6.7) as the minimal
solution of a certain backwards stochastic differential equation (BSDE) with
convex constraints. It would be of considerable independent interest to de-
velop a general theory for such equations, perhaps by “combining” our
approach with that of Pardoux and Peng (1990).
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6.13 PROPOSITION. Suppose we have V(0) < ©, and let (X, m, c) be any
triple of # X %% X [0, ©)-valued, adapted process, such that c(-) has increas-
ing, RCLL paths, ¢(T) + [Lllw(s)I* ds < © a.s., and such that the BSDE

X(¢) =B+ (¢(T) —c(2))
6.24
(6.24) —fTX(s)[r(s)ds+ m*(s)o(s)dWy(s)], 0<t<T
t

and the convex constraint

(6.25) (X(t),m(t)) €[00) XK, 0<t<T

are satisfied almost surely. Then the triple (X, #, &) of the Theorem 6.4 solves
the problem (6.24), (6.25), and we have X(:) < X(-), a.s.

PrOOF. The first claim follows directly from (6.13). For an arbitrary
solution (X, 7, c) of (6.24), (6.25), It&’s rule applied to the analogue

M(8) £ 9(8) X(8) + [ 3 (5)de(s)

+j: y(s)X(s)[8(v(s)) + v*(s)m(s)]ds

of (3.4)', exhibits this nonnegative process as a local P*-martingale M (¢) =
X00) + [¢ v,(s)X(s)m*(s)o(s)dW,(s), hence a nonnegative P*-super-
martingale, for any v € 9. This last property is inherited by the process

Y% (8)X(t) = vo(t)X(t) exp {—ftﬁ(v(s))ds}, 0<t<T,
0
for all v € 2. But from Proposition 6.3 and (6.7), we have then
Y (DX() 2 V() = %()X(), as. o

7. Examples. Let us now illustrate the results of Section 6 by means of
some simple examples.

7.1 ExaMpPLE (No short-selling). In the case d = 1, K = [0, ) of Example
5.2(ii) and with r, o = o, positive constants, we have K = K, §(x) = 0 for
x>0, 8(x)=o for x <0, and so x + 8(x) =x >0 on K. Now take B =
o(P(T)), where ¢: #*— [0,%) is continuous, increasing, piecewise continu-
ously differentiable and satisfies ¢(p) < ap for some real a > 0. Then we
have from Remark 6.8 that V(0) < « and that condition (6.19) is satisfied. In
fact, from the “classical” theory of Section 4 (cf. Example 4.3), we know that

©(7.1) X(t) =e"V(t) =e "TDU(T — ¢, Py(2)),

. Q(T —t, Py(2)) (9/9p)U(T —t, Py(2))
(A 7Ty Y 7)) B Ty Y 0)) B

(%.2)
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where

—-£% /2t

@ e
U(t,p) 2 [ e(pe”¢+®)) dé,

V2t
e £7/2t 9

Q(t, p) éf_c;tlf(pe"(“5“) T d§=pEU(t,p)

(7.3)

with 6 =(r/o) — (0/2) and ¢(p) £ p¢'(p) =0 [hence Q(¢,p) > 0]. If
p¢e'(p) = ¢(p) holds everywhere on #Z, and p¢'(p) > ¢(p) holds on a set of
positive Lebesgue measure, then p(d/dp)U(t, p) > U(¢, p), whence

(74) w(t) > 1, 0<t<T.

For instance, this is the case of the European call option ¢(p) =(p —¢)”"
with exercise price ¢ > 0. Thus, the unconstrained hedging portfolio does not
require short-selling and the constraint K = [0,~) makes no difference. In
particular, the supremum V(0) of (5.7) is achieved for » = 0 and is equal to
the unconstrained hedging price u, of the option.

7.2 ExaMPLE_(No borrowing). Let d =1, K =(—x,1] as in Example
5.2(vi). Then K = (—»,0], 6(v) = —v, and consider the contingent claim
B = (P(T) — ¢)*. From (6.21) of Remark 6.8 we know that the process
exp([¢v(s) ds)y,(¢)P(t) is a P"-martingale, for every v € 2. Consequently,

:

On the other hand, in the notation of (6.22) we have by Jensen’s inequality,

V(t) Sessilgexp( —fotv(s) ds)E”[exp(j;Tv(s) ds)yO(T)Pl(T)

= yo(8)Py(t), O0<t<T.

(7.5)

Z]

di

V(t) = essi;g {exp( —fotv(s) ds)E”[exp(j;)Tv(s) ds)yO(T)Pl(T)

(7.6) —E”[exp(j;Tv(s) ds)yO(T)q

+

> ess Vs;g) {yo(t)Pl(t) - exp(ftTV(S) ds)qEv[Yo(T)IZ]}

d
= vo(2) Py(2)
for 0 < ¢t < T. The inequalities (7.5) and (7.6) imply

Yo(£) Po(), 0<t<T,

@0 W”={nwxﬂwv—@i (-,
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or equivalently
(7.8) dV(t) = vo(t)Py(t) o (t) dW,(t) — dAo(2),

where

0, <
(79) - A6l8) = yy(D)[P(T) = (P(T) - 0) ], =T
In particular, (7.8) implies X 2 V/y, = XV ™¢ with
(7.10) #(H) =1 &) = [%"(s) dAo(s).

In other words, in order to replicate B = (P,(T) — ¢q)* without borrowing,
one has to invest all the wealth in the stock, not consume before the
expiration date 7', and consume at time ¢ = T the amount

(7.11) &(T) = P(T) — (P(T) — q) = min(Py(T), q).

This example resolves two questions that can be raised in the context of
Theorem 6.4. First, it shows that the process V(-) is not, in general, a regular
P°-supermartingale, for if it were, A,(-) would be continuous [e.g., Karatzas
and Shreve (1988), page 28]. Second, it shows that, in general, the supremum
of (5.7) is not attained. Indeed, one has to let »= — in order to achieve
equality in (7.6).

7 .3 ExaMPLE (Option with a ceiling on a stock that cannot be traded). Let
= {x e%d x, =0}, B=(P(T)—-q)*AL for some real ¢ >0, L>0.

Then K={x€e®? xg=%5= - =x;,=0}and §=0on K. Assume deter-
ministic market coefficients. We want to verify
(7.12) V(0) = y(T)L

by first showing V(0) > y,(T)L and then proving the opposite inequality by
constructing a consumption process ¢ such that the wealth process corre-
sponding to the triple (y,(T)L,0, ¢) satisfies X(T') = B a.e. In the notation of
(6.22), we have

(7.13) V(0) = yo(T)Less s:@p E*1p r)-g> 1)
veZy

Define an %#%-valued process P)(-) = {P’( ) ; by
dpi(y)(t) = lsi(v)(t)["(t) - Vi(t)] dt
7.14 - d ‘ -
(719 +BO(8) X 0,(6) AWE(2), B(0) = P(0),
j=1

for i = 1,...,d and v €9,. Then a comparison of (7.14) with (5.14) shows
that P(”)( ) has the same distribution under P° as P(-) = {P,(-)}2, has under
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P* and thus

(7.15) E"1pry-g>1) = Eol(ﬁ{”><T)—q>L}-
Letting v -» —o, (7.13)—(7.15) imply

(7.16) V(0) = yo(T)L.

Next, define a consumption process ¢ by

0, t<Tort=T,P(T)—q>L,

(7.17) c(t) = .
Oz (P(T)—q)", t=T,P(T)-q<L.

Then the wealth process X(-) associated with the policy (y,(T)L, 0, ¢) is given
by X(¢) = (yo(T)/v,(¢))L for t < T and by

(7.18) X(T)=L-c(T) =B

for ¢ = T. This implies V(0) < y,(T')L by Theorem 6.4 and, in conjunction
with (7.16), leads to (7.12).

Consequently, the way to hedge a bounded option on a stock that is not
available for investment is to replicate the upper bound of the option by
investing in the bond only, and then to consume the difference at the
expiration date.

8. Extensions and ramifications.

1. As in Section 16 of CK, we can let the constraint set K depend on
(t, w) €[0,T] X Q in a nonanticipative way.

2. The hedging price V(0) can be regarded as an upper bound for the “fair
price” of the contingent claim; in the terminology of El Karoui and Quenez
(1993) it can be called the selling price. As in that paper, we could also
consider a lower bound, or the purchase price, by replacing the sup
operator by the inf operator.

3. As for numerical calculations, we refer again to El Karoui and Quenez
(1993). It is shown in that paper, in the special case of “incompleteness”
constraints and constant r, o, that V(0) = (0, p), where Q(%, p) is the
pointwise limit Q(¢, p) = lim, _,,, @"(¢, p). Here we consider a contingent
claim of the form B = ¢(P(T)), for an appropriate continuous function ¢:
K->, of the vector P(t) £ (P(¢t),..., P, (t))* of stock prices at the
terminal time ¢ = T, and define

y(T)
%(¢)
with 9, £ (v €9; |lv(t, 0l < n, for /® P-ae. (¢, )}, n € N. Moreover,

from (8.1) and the dynamics (5.14) of the process P(-) under P?, the value
function @™ of (8.1) can be characterized in terms of the following Cauchy

(8.1) Q"(¢t,p) = sup E"[qv(P(T)) P(t) = p},O <t<T,pexi,

vEYD,

n
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problem for the associated HJB equation [cf. Fleming and Rishel (1975)]:

aQn 1 d d 192Qn d ¢9Qn
t5 L Yagpips——+r| Lp—— - Q"
gt 2,5/ 7T dp; dp; -1 9P
(8.2) o
+ max - X ypi—— —8(»)Q"| =0,
vek;lvll<n | 21 op;

0<t<T,p E%"i, Q™(T,p) = ¢(p), t=T,pE<9?‘i.

9. Hedging claims with higher interest rate for borrowing. We
have studied so far a model in which one is allowed to borrow money at an
interest rate R(-) equal to the bond rate r(:). In this section we consider the
more general case of a financial market .#* in which R(:) > r(-) without
constraints on portfolio choice. We assume that the progressively measurable
process R(-) is also bounded.

In this market .#* it is not reasonable to borrow money and to invest
money in the bond at the same time. Therefore, we restrict ourselves
to policies for which the relative amount borrowed at time ¢ is equal to
(1 — X ;m,(t))". Then, as in Section 18 of CK, the wealth process X =
X*™¢ corresponding to initial capital x > 0 and portfolio—cumulative con-
sumption pair (7, ¢) as in Definition 3.1, satisfies

dX(t) = r(¢)X(t) dt — de(t)

(9.1) FX(8)| 7 (8) o (£) dW,(2) — (R(2) — r(t))(l - f‘, m(t))_ dt].

i=1
We set 8(v(¢)) = —vy(¢) for v € 9, where

£ {V; v progressively measurable, #%valued process with

(9.2)
r-R<vy=+ =y;<0,/® [P’-a.e.}.

With this notation, the theory of the previous sections goes then through with
only minor changes. For instance, in Theorem 6.6 we have to replace (6.18) by

(9.3) é(t,0) =0, Y (t,w)=0, /® P-ae,

where (7, é) is the portfolio—consumption process pair of Theorem 6.4 and

. _
wrr(t) 2 [R(t) —r(t) + Vl(t)](l - ; 7Ti(t))
(9.4) ) ot

—vl(t)(l— Zﬂi(t)) , 0<t<T,

i=1

is ‘a nonnegative process. Similarly, Theorem 6.7 now takes the following
form.
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6.7* THEOREM. Let 7 be the portfolio process of Theorem 6.4, and suppose
that (6.19) holds for every v € D that satisfies V'™ = 0. Then, for any given
A €9, the conditions (6.15), (6.16) and (9.3) are equivalent and imply

B is attainable ( by a portfolio )
(9.5) and the corresponding process

XV m0(.) is g PA-martingale

for the process Aeo given by (9.6). Conversely, if (9.5) holds, then the
conditions (6.15), (6.16) and (9.3) are satisfied for some A €9; in particular,

for :
(9.6) At) =A(t)1,  A(t) 2 [r(t) — RO Lge a5 1)

Actually, in this case, we have the following existence result under a
condition analogous to (6.19).

9.1 THEOREM. If the process Q;(-) of (6.15) is of class D[0,T] under P4,
with A as in (9.6), then A is optimal; namely, (6.16) holds for A = A.

To prove Theorem 9.1, we need the following lemmas.

9.2 LEMMA. The set Z 2{Z(-); vE€D)} is a convex set of real-valued
processes defined on [0, T].

9.3 LEMMA. The set 2 2 {Z (T); v €D} is bounded in L*(P).
9.4 LEMMA. 2 is strongly closed in L*(P).

For Lemma 9.2 see, for example, Lemma 2.2 in Xu (1990). Lemma 9.3
follows from

1 2 2
2(1) - exp| - ["20,0) aW(0) - 5 "2 00" @t + [0

and the boundedness of 6,(-). Lemma 9.4 is a consequence of Theorem 4 in
Benes (1971).

Proor oF THEOREM 9.1. Let {y,; n € N} be a maximizing sequence in
(5.7); that is, lim,, _,, E*[v, (T)B] = V(0). By analogy with (6.14), we get

BB + [T (0 de(0) + [T, XO¥r (1) de| < V(0),
0 0

. VneN,
" with ¥¥»% as in (9.4) and é,#,X as in Theorem 6.4. This implies
lim, . E*[Jy, (t) dé(¢) = 0 and, because the family of processes {, (-); n €
N} is bounded away from zero, lim,, _, ., E[Z, (T)é(T)] = 0. By Lemmas 9.2-9.4,
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the set 2, is weakly compact in L2(P); hence, there exists v €2 and a
(relabelled) subsequence {v,; n € N}, such that lim, ,, E[Z, (T)c(T)]
E[Z,(T)&T)] = 0. It follows that &, w) = 0, /® P-a.e. and thus A of (9.6)
is optimal by Theorem 6.7*.

Theorem 9.1 implies that, under its conditions, the contingent claim B is
attainable in the market .#* with different interest rates for borrowing and
lending. In the case d = 1, B = o(P(T)) with ¢: #,— [0,%) as in Example
7.1 and with constant R > r, the condition of Theorem 9.1 is actually
satisfied (cf. Remark 6.8). If p¢'(p) > ¢(p) holds everywhere on &%, and
strictly on a set of positive measure, then we may take A =r — R and the
Black—Scholes formulae (7.1) and (7.3) remain valid if we replace in them r
by R. This follows from (7.4), which can be shown, in the present context,
either directly, or as in the following example.

9.5 EXAMPLE. Let us consider the case of constant coefficients r, R,{0;;}
= o. Then the vector P(¢) = (Py(2),..., P;(¢)) of stock price processes satis-
fies the equations

dP(t) = Pi(t)[bi(t) dt + f‘, i dWU’)(t)]
(9.7) e

= Pi(t)[(r —vy(t))dt + f‘, oy dW,,(j)(t)], l1<i<d,

for every v € [recall (2.2) and (5.14)]. Consider now a contingent claim of
the form B = o(P(T)) for a given continuous function ¢: #%— [0,%) that
satisfies a polynomial growth condition, as well as the value function

(98) Q(¢,p) 2 ng”[qP(T))exp(—jtT(r — Vl(s))ds) P(t) =p]

on [0, T] X %#%. Clearly, the processes X and V of (6.7) and (6.2) are given as

X(t) = Q(¢, P(t)), V(¢)=e"X(t), 0<t=<T,

where @ solves the semilinear parabolic partial differential equation of the
Hamilton-Jacobi-Bellman (HJB) type,

aQ 1 %Q

_Z E a;ipipj—— apl apj
(9.9) IQ
) + - — = =0, 0<t<T,pex?,
r—IIi’nsarisO (r—mv) Zi:pl o, Q p +

Q(T,p) = ¢(p), pEXL,
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associated with the control problem of (9.8) and the dynamics (9.7) [cf.
LadyZenskaja, Solonnikov and Ural’tseva (1968) for the basic theory of
such equations, and Fleming and Rishel (1975) for the connections with sto-
chastic control]. Clearly, the maximization in (9.9) is achieved by vi =
—(R = r)l,,.9/0p)= @ The portfolio #(-) of Theorem 6.7* and the pro-
cess )Atl(-) of (9.6) are then given, respectively, by

~ . Pi(t)(9/9p;)Q(¢, P(t)) .
(9.10) ;(t) = Q(t, P(1) R i=1,...,d,
and .
(9-11) M(E) = (r - R)]'(Ziﬁ-,(t)z 1}

Suppose now that the function ¢ satisfies X, p,(de(p)/dp;) = ¢(p),
V p € %#%. Then the solution @ of (9.9) also satisfies the inequality

9Q(t, p)
(9'12) Zpi_
i op;
for all p eg?ﬁf, and is actually given explicitly as

Q(t, p) = EC~BN[e~BT-0(P(T))|P(t) = p]

>Q(t,p), 0<t<T,

- 2112
e‘R(T_t)f ¢(h(T —t,p,oz; R))(2mt) */* exp(— dz,
R4 2t

0<t<T,pex?,

(9.13)

¢(p)’ t=T7p€Ril—7

in the notation of (4.7) (recall Example 4.3). Indeed, it is straightforward to
check that, in this case, the function of (9.13) satisfies the inequality (9.12), as
well as the linear PDE

R 1 %Q oQ

— 4= p.a,,——— + R — —Q|=0, 0<t<T,pex?,
Jt 2 ;;pzpjaz‘]api &pj (;pzapl Q b +

Q(T,p) =‘¢’(p)’ peg:{,

and thus also the nonlinear equation (9.9). In this case the portfolio #(-)
always borrows: T¢ #(t)>1, 0<t<T (as), and thus A(¢)=r —R,
0<t<T.

9.6 REMARK. The pair of adapted processes (X, #), with X(-) = X*79(.)
as in Theorem 6.7*, satisfies

., _
dX(t) =X’(t)[r(t) — (R(t) - r(t))(l - E,l fri(t)) ]dt

+X(8)7*(t) o (£)dWy(t), O0<t<T,
X(T) =B,
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almost surely. This is a nonlinear backwards stochastic differential equation
in the spirit of Pardoux and Peng (1990); it admits an “explicit” solution in
the context of Example 9.5.

9.7 REMARK. We can also study the combined problem of hedging under
constraints and with higher interest rate for borrowing than for lending. In
that case, the hedging price can be shown to be equal to
SUD(,, e 9,x9, ELH, (T)B], where 9, is the set & of Section 5, 9, is the
set of (9.2) in this section, 6, (¢) 2 6(¢) + o * (&) v(¢) + u(t)] and

» Yo,
t
H,,(0) & exp| = ['Ir(s) + 5(3(5)) = (o)} ds
_fto* (s) dW(s) — 1ft 16, ()| ds|.
0 v, 1 2 0 v, 1
APPENDIX
We present in this Appendix the technical proofs of Propositions 6.2 and

6.3.

PROOF OF PROPOSITION 6.2. Let us start by observing that, for any 6 €.,
the random variable

J,(6) 2 E”{V(T)exp(—ff&(v(s)) ds) .79]

_E[2,(0)Z,(6,T)V(T)exp(~J;" 8(v(s)) ds)|%]
- E[Z,(0)Z,(0,T) %]

= E[Z,,(O,T)V(T)exp(—f:'é(v(s)) ds) z;]

depends only on the restriction of v to [6,T] [we have used the notation
Z(6,T)=(Z/(T)/Z,(0))]. 1t is also easy to check that the family of random
variables {J,(0)}, . , is directed upward; indeed, for any u € D, v €2 and
with A = {(¢, w); F(¢t, w) = J(¢, w)} the process A £ ul, + v1,. belongs to

- 2 and we have a.s. () = min{7,(9), 7,(0)}; then from Neveu (1975), page
121, there exists a sequence {1}, cy €2 such that {J, (6)}, <y is increasing
and

' (A1) V(e) = ]}im 1J,(0) as.



678 J. CVITANIC AND I. KARATZAS

Returning to the proof itself, let us observe that

V(r) = ess sup E”[exp(—ffeb‘(v(s)) ds)

veD,

.7,] a.s.

XE”{V(T)exp( —foTb‘(V(s)) ds)

< ess Vz;ETE”[exp( —/;08(1/(3)) ds)V(B)

To establish the opposite inequality, it certainly suffices to pick u €2 and
show that

(A.2) V(r) = E“[V(G)exp(—ffb‘( u(s)) ds) z]

holds almost surely.
Let us denote by M, , the class of processes v € that agree with u on

[z, 6]. We have

V(7) = ess sup E”[exp(—j;OB(v(s))ds - foT‘o‘(v(s))ds)V(T) z]

veEM, 4

= ess sup E”[exp(—/fob‘(v(s)) ds)

veM, o

XE”{exp(—foT8(V(s)) ds)V(T)IZ,} 9*]

Thus, for every v € M, ,, we have

V(r) 2E"[exp(—f108(v(s)) ds)J,,(O) 9:]

_ E[2,(1)2,(7,0)B{Z,(6, T)| F}exp(~ [8(v(5)) ds)J,(6)|]
E[Z,(7)Z,(7, 0) E(Z,(0,T) %I 7]

= E[zv(f, e)exp(—/:’a(u(s)) ds)JV(O)

/)

- E[zm x|~ ['5( () ds | ,(0) 9]

- .. =E#[exp(—f:)5(,u,(s))ds)Jv(G) 9«*]
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Now clearly we may take {v,}, <y € M, , in (A.1), because J,(6) depends only
on the restriction of v on [0, T, and from the foregoing inequality,

V(r) > lim TE"‘[exp(— IE0) ds)Jvk(e> f]

0 .
- B fexp( - [“a( uts)) ds) tim 10|
= E“[exp( —feﬁ( n(s)) ds)V(G) Z] a.s.
by monotone convergence. O
It is an immediate consequence of this proposition that
V() exp( - /75( v(u)) du)
0
(A.3) ,
> E"{V(G)exp( —f 8(v(u)) du) Z] a.s.
0

holds for any given 71 €%, § €7, 1 and v €9.

PROOF OF PROPOSITION 6.3 [Adapted from El Karoui and Quenez (1993)].
Let us consider the positive, adapted process {V(¢, w), %; t € [0,T'] N &} for
o € Q. From (A.3), the process

{V(t, ) exp(—fot8(v(s, w)) ds),z; te[0,T] N é’} for v €

is a P*-supermartingale on [0, T'] N &, where & is the set of rational numbers
and thus has a.s. finite limits from the right and from the left [recall
Proposition 1.3.14 in Karatzas and Shreve (1988), as well as the right-con-
tinuity of the filtration {Z}]. Therefore,
limV(s,w), 0<t<T,
A slt
V(t +, w) = se@
V(T, w), t="T,
limV(s,w), 0<t<T,
A st
V(t -, (1)) =\ se@
V(0), t=0,
are well-defined and finite for every w € Q% P(Q*) = 1, and the result-
ing processes are adapted. Furthermore [Karatzas and Shreve (1988)],

- V(¢ Pexp(— [{ 8(v(s)) ds), F;; 0 < t < T} is a RCLL, P*-supermartingale for
all v € 2. In particular,

V(t+) = E*[V(T)exp(—[(v(s)) ds)|%]| as.
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holds for every v €2, whence V(¢+) > V(¢) a.s. On the other hand, from
Fatou’s lemma we have for any v €9,
7

V(t+) = E[ lim V(t it )exp(—j;t+1/n8(v(u)) du)

n— o

1
< lim E”[V(t + —)exp( ft+1/n8( v(u)) du) t] <V(t) as.
n— o
and thus {V(¢ +),7,; 0 <t < T} and {V(¢), .7, t < T} are modifications of

one another.
The remaining claims are immediate. O
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