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GREEDY LATTICE ANIMALS I: UPPER BOUNDS

By J. THEODORE COX,! ALBERTO GANDOLFI,? PHILIP S. GRIFFIN® AND
HARRY KESTEN *

Syracuse University, University of California, Berkeley, Syracuse
University and Cornell University

Let {X,: v e Z%} be an i.i.d. family of positive random variables. For
each set ¢ of vertices of Z¢ its weight is defined as S(¢) =X, .. X,. A
greedy lattice animal of size n is a connected subset of Z¢ of n vertices,
containing the origin, and whose weight is maximal among all such sets.
Let N, denote this maximal weight. We show that if the expectation of
X%(log* X,)?*° is finite for some a > 0, then w.p. 1 N, < Mn eventually
for some finite constant M. Estimates for the tail of the distribution of N,
are also derived.

1. Introduction. In this paper we investigate greedy lattice animals
(GLA), as defined in the abstract, and some similar structures. Before giving
formal definitions and going into the mathematics, we describe a number of
different problems which motivated us to this study. We expect that the
model fits a number of optimization problems and hope that, in any case, it
has an appeal on its own. After these descriptions, we give the definition of
GLA for a specific case which covers some of the above-mentioned problems,
and in this and a companion paper [Gandolfi and Kesten (1994)], we develop
some rigorous asymptotic results.

(a) Vertex greedy lattice paths (GLP). Let an abstract graph be given, and
suppose that to each vertex v is associated a random amount X,, measured
by a positive number, which we gain during the first visit to the vertex. (Note
that by “X is positive” we mean X > 0.) Suppose, further, that we start at a
fixed point, and that movements on the graph can only be done through the
edges and that we can visit only a fixed number n of vertices. Also, we decide
never to visit a vertex twice, because we can gain the amount associated with
a given vertex only once. What can we infer about the maximum total amount
which can be collected, from information about the distribution of the X,, at
least asymptotically as x — «?
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An answer can be given when the graph is the d-dimensional lattice Z¢
and the amounts at the various vertices are measured by ii.d. positive
random variables with common distribution F. In this case we discuss the
asymptotic dependence of the maximum total amount that can be collected at
n vertices on the behavior of the tail of the common distribution. If for some
a >0, [x%log* x)?"% dF(x) is finite, then the maximum total amount grows
at most linearly in n (see Theorem 1), and in fact, the growth is asymptoti-
cally linear [i.e., an analogue of the strong law of large numbers holds; see
Gandolfi and Kesten (1994)]. This result is reasonably sharp. Indeed if the
dth moment of F is infinite, then we have superlinear growth (in the weak
sense of Theorem 2).

(b) Vertex GLA. The title of this paper is meant as a description of the
following slightly different model. Assume again that we have a graph with
i.i.d. positive quantities associated with the vertices. However, this time we
are not restricted to following a self-avoiding path of n vertices. Instead we
impose the restriction that at most n distinct vertices may be visited during
the movements through the edges. In this case, it is likely that multiple visits
to some vertices are convenient (even though we still can collect the amount
at any given vertex at most once). The total amount we gather is thus
obtained by adding up the amounts associated with n vertices belonging to
some connected set containing the starting point. Such connected sets are
often called lattice animals (of size n), and the ones which have the highest
total amount are the greediest; thus, the title of our paper. Again, the same
asymptotic analysis can be carried out when the graph is Z¢, with the same
qualitative results as before. As to the constants in the linear growth for
vertex GLA and vertex GLP [which will be shown to exist in Gandolfi and
Kesten (1994)], Lee (1993) has shown that they are different in most cases
[they agree in some trivial cases, such as on Z; see Gandolfi and Kesten
(1994)].

(c) Edge GLA and GLP. Similar interpretations and results can be given
when the i.i.d. positive random variables are associated with the edges of the
graph, in which case we maximize the sums with the constraint of using at
most a fixed number of edges. In this paper, however, we discuss the vertex
case only.

(d) PERT networks. A PERT network is a model for one of the following
situations. Suppose certain tasks are to be performed, or certain components
of a machine are to operate, or certain computers in a network are to execute
programs. For the sake of definiteness let us talk about tasks to be performed.
Suppose further that the tasks have some interdependencies so that a task
can be initiated only after certain other tasks are finished, and that each task
requires a random amount of time to be completed. This generates an
oriented graph, in which vertices represent the various tasks, and an oriented
edge from a vertex v to a vertex w indicates that the task at v has to be
completed before the task at w can be started. Also, there are no oriented
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circuits, because if tasks are to be repeated at different stages of the process,
each repetition is to be counted as a new task, and to be represented by a new
vertex. Oriented paths start from one of the starting vertices which have no
incoming oriented edges, and end at one of the objective vertices, that is,
those without outgoing edges (see Figures 1 and 2). The purpose of the
activity is to begin executing the tasks associated with the starting vertices
and, following the constraints indicated by the oriented edges, accomplish the
tasks associated with the objective vertices. For any specification of the times
of the individual tasks, it is easy to see that the total time needed to
accomplish all of the objective tasks is the maximum over oriented paths
leading from a starting vertex to an objective vertex of the total time
associated to the path. Estimation of this time and related questions are the
subject of the theory of PERT networks [see, e.g., Malcolm, Roseboom, Clark
and Fazar (1959), Bigelow (1962) and Fulkerson (1962) and references
therein].

The time to go from the starting to the objective vertex can sometimes also
be interpreted as the time for customers to pass through a queueing network.
Glynn and Whitt (1991) recently used the subadditive ergodic theorem and
results about the hydrodynamic limit for a certain interacting particle system
to great advantage in this context.

Results in the present paper and in Gandolfi and Kesten (1994) can be
applied to some examples of PERT networks. For simplicity, consider a
two-dimensional network as in Figures 1 and 2, with random times given by
ii.d. positive random variables associated with the vertices of the network
[the network in Figure 2 is basically the one occurring in Glynn and Whitt
(1991)]. In each example, all paths from the starting vertices to the objective
vertices have the same length (9 in Figure 1 and 5 in Figure 2), and our
technique can be applied to obtain asymptotic results as the size of the
network, that is, the length of the paths, gets larger. As before, if, for some
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a > 0, [x%(log’ x)?*% dF(x) is finite, then we have asymptotic linear growth
of the total time required to accomplish the objective tasks. As before, we
have an analogue of the strong law of large numbers. Again, superlinear
growth holds if the second moment of the X, is infinite. These results give a
theoretical framework for discussing the time behavior of large PERT net-
works; however, for a more careful analysis of PERT networks, a central limit
theorem would be of great importance.

(e) p-percolation. Menshikov and Zuyev (1992) introduced p-percolation.
Vertices of Z%, d > 2, are independently chosen occupied with probability p
or vacant with probability 1 — p. For 0 < p < 1, they say that p-percolation
occurs if with strictly positive probability there exists an infinite self-avoiding
path 7 = (0, x4, x,,...,) starting at the origin, such that

1
liminf —[# of occupied vertices among 0, x,,,..., %,_1] = p.
n->» N

It is not difficult to show that for p > 0 there is a critical probability p( p),
strictly between 0 and 1, so that for p < p(p), p-percolation does not occur
and for p > p.(p), p-percolation does occur. Menshikov and Zuyev (1992) give
various estimates for p.(p). The critical probability p.(p) can also be ex-
pressed in terms of the GLP model of (a). To see this, take X, = 1 or 0 with
probability p and 1 — p, respectively. Let M, be the maximumof X, ., X, as
m, ranges over all self-avoiding paths of n vertices starting at the origin 0 of
Z¢°. As will be shown in Gandolfi and Kesten (1994), M P = lim, , (1/n)M,
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exists w.p.1. Then, as we also show in Gandolfi and Kesten [(1994), Theorem
2], p-percolation occurs if and only if M‘?’ > p so that

p.(p) =inf{p: MP > p}.

(f) Directed polymers in a random environment. Imbrie and Spencer
(1988) discuss the following model: “A directed polymer system is a statistical
ensemble of walks or paths in Z¢ parametrized by time. The graph of the
walk in Z9*! is the ‘polymer’ which moves at a constant rate in the time
direction and so is called ‘directed’.” If one denotes a point of Z¢*! as (s, x),
with s € Z representing the time coordinate and x € Z¢, then the random
environment is an independent family of i.i.d. positive random variables
X, v For fixed n and x; € 74, x, =0, the probability of obtaining the
polymer path (0,0),(1, x,),...,(n, x,) is taken as p(n,x) = (1/Z)NI5X
if (0, x4,..., x,,) is a nearest nelghbor path on Z¢, and 0 otherwise, where Z
is the normahsmg constant

A n Z I—IX S, Xg)"

©,xy,...,x,) 0

a path on Z¢
Imbrie and Spencer were interested in the asymptotic behavior of Ellxn||2,
the mean square end to end distance of the polymer. Our theory has nothing
to say about this [and anyway Imbrie and Spencer (1988) consider only
bounded X . ), which is not very interesting for us]. Nevertheless, since the
polymers are concentrated around paths with high values of II{X, , , or of
Yllog(X, Jc) our question of how large the latter sums typically are is
vaguely related to directed polymers. Continuous analogues of these models
(without the independence for different times) have been studied in other
contexts [see Sznitman (1991) and some of its references].

(g) Random surfaces. A direct stimulus of our investigation was a ques-
tion by J. Bricmont and C. Newman. They investigated a variant of an Ising
model in three dimensions in which a question of the following type arose.
Consider “surfaces of plaquettes”, where a plaquette is a face (i.e., unit
square) of one of the unit cubes [a;,a; + 1] X [a,,a, + 1] X [aj, a5 + 1]
with corners on Z3. Assume that to each plaquette p is associated a random
weight X(p) with P{X(p) > x} decreasing slower than exponentially [e.g.,
like exp(—%Vx)]. How fast can the weight of surfaces of n plaquettes grow
with n? If the weights of surfaces in the Bricmont-Newman model could be
controlled by using i.id. random variables [along the lines of Fontes and
Newman (1993), Theorem 5], then our result would provide a linear upper
bound in 7. Indeed, let us identify plaquettes with vertices of a new graph G,
with two vertices of G having an edge between them if the corresponding
plaquettes have at least one point in common in Z3. Then a surface of n
plaquettes is a connected set (of a special kind) of n vertices on G. Even
though we do not state our theorem for this graph G, the proof still seems to

apply.
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(k) Random colorings. A direct relation with GLA has been used by
Fontes and Newman (1993) for several problems of the following kind. Let
{Y,, v € Z% be an i.i.d. family of random variables concentrated on a finite
set of points {cy,...,c;}, interpreted as colors. For each realization of the
random variables, Z% can be partitioned into clusters of equal color (clusters
are connected subsets of Z¢ with vertices all of the same color, and maximal
with respect to this property). Let e, be the first coordinate vector of Z¢ and,
for each realization of the colors, let

T, = min{k: there is a path form the origin 0 of Z¢ to ne,

using vertices from at most & distinct clusters}.

It was conjectured that u = limsup, . T, /n > 0 if and only if
(1.1) P(Y,=c;) <pJ(d), fori=1,...,1,

with p_(d) being the critical probability for independent site percolation in
7%, Kesten (1986) proves that (1.1) follows from w > 0, and Fontes and
Newman (1993) complete the proof of the conjecture by showing that (1.1)
implies w > 0. They, in fact, show that u > 0 follows from

1
(1.2) limsup sup — ). IC, /< w.p.l,

n-ox Qex,|lrl=n vew

where 7 runs over paths of Z¢ and |C,| is the number of vertices in the
cluster to which v belongs. A detailed, and nonobvious, geometrical analysis
shows that (1.2) itself follows from

1
(1.3) limsup sup — ) X2<w w.p.l,
n—oo  Qeé,|é|l=n n ve¢

where ¢ runs over lattice animals and {X: v € 7%} are ii.d. random vari-
ables distributed like |C,l. When P(Y, = ¢;) < p,(d), the distribution of the
cluster size for the ith color satisfies P(IC,| > n, Y, =¢;) < e %", for some
k; > 0 [see Aizenman and Barsky (1987) or Menshikov (1986)]. Therefore,
(1.1) implies that the distribution of X, satisfies P(X2 > n) <e */", for
some k > 0, and our Theorem 1 implies that (1.3) holds.

2. Definitions and statement of result. We introduce here a specific
example of GLA and GLP based on the d-dimensional integer lattice Z¢. We
shall regard Z¢ as a graph with vertex set V = {(n,,...,n,: n; € Z} and edge
set E = {{v,w}) v==wA),...,v(d), w=(w@),...,w(d) €V, |v(i) — w()
= 1 for exactly one i and = 0 otherwise}.

Throughout this paper c,, ¢;, ... denote constants whose precise values are
irrelevant to the calculation and whose value may change from appearance to
appearance. We also use the following notation:
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0 denotes the origin of Z%;
lvll = max, _; _ 4lv(@)];
Alx, 1) =TT1E [x() — 1, x(i) + 1];

lel = largest integer < ¢ and ¢* = max(0, ¢) for any real number c;
¢, V ey= max(cy, ¢y); ¢; A ¢y = min(ey, ¢y);
|A) = absolute value of A if A is a real number

cardinality of A if A is a set
size (to be defined later) of A if A a path, a lattice animal or a tree;
I(&) = indicator function of the event .

A self-avoiding path m of size n (on Z%) is a sequence 7 = (v,,...,v,) of n
vertices of Z? such that v, # v; for i #j and such that v; and v,,, are
adjacent on Z? for 1 <i < n — 1. Paths will always be taken self-avoiding
even if not explicitly mentioned. A lattice animal ¢ of size n € N is a
connected set ¢ = {vy,...,v,} of n vertices of 7%, that is, a set such that for
any two of its elements v; and v; it is possible to find a path 7 which contains
v; and v; and which is completely contained in ¢. A (abstract) tree is a graph
7, with vertex and edge set Z” and & say, such that

(2.1) 7 is conntected

and

(2.2) 7 has no circuits (or loops);

here (2.2) means that there are no sequences (v, ,...,v; ), with all v, distinct

and / > 2,v;  adjacenttov; for2 <j</and v adJacent tov; . lele size of
7 is the cardlnahty of its vertex set. Here we are interested mostly in trees
which are imbedded in Z¢, that is with #°c V and & c E. Note that for such
a tree, 7 is a lattice animal. It is easy to prove that given any lattice animal
&= {vy,...,v,}, there exists at least one tree 7 with vertex set {v,,...,v,}.
Any such tree is called a spanning tree of &.[See Bollobas (1979), Chapter 12,
Corollary 5.] For our purposes it will make no difference which spanning tree
is selected.

We denote by [1(/, n) and E(I, n) the collections of all paths 7 and lattice
animals ¢, respectively, of size n and contained in A(0,1); ITy(n) is the
collection of all paths 7 of size n with first vertex the origin and Ey(n) is the
collection of lattice animals of size n which contain the origin (note that
lattice animals are unordered sets, so that it is meaningless to talk about a
first vertex of a lattice animal).

To complete the description of GLA and GLP we introduce a family {X,:
v € V} of iid. positive random variables. X, is interpreted as a quantity of
some commodity located at v. The total weights of a path 7 or lattice animal
¢ are

(2.3) S(m)= ¥ X, and S(¢)= Y X,.

vew ve¢
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The principal quantities of interest in this paper are

M} := max ) X,= max S(m)

mell(n,n) yen mellln,n)
and
N¥:= max ) X,= max S(&).

§EE(n,n)U€§ é€B(n,n)
These are of course upper bounds for

M, = max S(w)

n

melly(n)
and
N, = max S(¢),
teEy(n)
respectively.

The common distribution of the X, is denoted by F, and P is the
probability measure on (the Borel o-algebra on) Q =I1,.[0,), which
describes the distribution of the {X,} (e, P =TI, F). Expectation with

respect to P is denoted by E.

Our principal result here is the following theorem, which gives an upper

bound on M and N/f.

THEOREM 1. If, for some a > 0,
(2.4) E{Xg(log* Xp)"" %} <,

then there exists a constant M < o such that
* *

(2.5) lim sup — < limsuan <M w.p.l.

n— o n— o

Proposition 1 in Section 3 will actually give more precise information about
the tail of the distribution of N}. Also, in Gandolfi and Kesten (1994) it will

be shown that

1
lim — max S(w) = lim —M,
n—->o n ‘n'Gl—Io(n) n—-o N
and
. . 1
lim — max S(¢) = lim —N,
n—-oo n fEEO(n) n—->o R

exist and are constant w.p.1.

The next, fairly trivial, result shows that the condition (2.4) is reasonably

sharp.

THEOREM 2. If
(2.6) E{X{} = =,
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then
(2.7 limsup — = limsup — = w.p.1.
n—>x n—ow n
If
d
2.8 —|1-F ) )
(28) e LA C)) L R
then
M, N,

(2.9) lim — = lim — =« w.p.1.

n-x N n—-o R

PrOOF. Since any path can be viewed as a lattice animal, we clearly have

N, >M, > max X,.
veA,ln/d]
It therefore suffices to prove

1
(2.10) limsup— max X, =
n— o n UEA(O,[n/dJ)
under (2.6) or

1
(2.11) lim — max X, =
n—o» N yeA,ln/d)D

under (2.8).
These, however, are standard consequences of the Borel-Cantelli lemma.
Indeed, if (2.6) holds, then for some constant ¢; > 0 and any A,
Y P{X,=Alvl} = Y Y. P{X,>A2+1}
v

k 2k <|v]l<2k*?

> ¢, X 244P(X, > A2+ 1) = o,
k

while under (2.8), again for some constant ¢, > 0 and any A,

ZP{ max XU<A2’”1}5Z[F(Azk”)]”zw
k k

2k <|lvll< 2%+

< Y exp{—c,2*4(1 - F(A2*" 1))} <». O
k

The following remarks should give some more feeling for Theorem 1. If
(2.12) E{e™0} = [e* dF(x) <o

for some ¢ > 0, then (2.5) is easily verified. Indeed, the number of paths as
well as the number of lattice animals of size n in A(0, n) grows exponentially
in n. On the other hand, one has the standard large deviation bound for any ¢
of size n,

P{S(&) = Mn) < etMn[jetx dF(x)]
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which, for any fixed C, can be made smaller than C~" by taking M large, if
(2.12) holds. Of course this argument breaks down when F does not have
exponentially decreasing tail, so that (2.12) fails for all ¢ > 0. In such a case,
it is natural to consider the behavior of max S(¢) over a class of animals of
size n whose cardinality grows slower than exponentially in n. For instance,
Smythe (1973) considered the behavior of S(p) as p varies over boxes
¢ ,la;, b;], with size | p| =T1% (b, — a; + 1), with a; <0 <b;, a;,,b, €Z
(so that 0 € p). He obtained the following strong law of large numbers.

THEOREM (Smythe). If
E{|Xylog*1X,)* ™"} < e,

then
1
lim —S(p) =E{X,} w.p.l
lpl— ol
p a box containing 0
If
E{| X,llog*| X,)* ™"} = =,

then

1
lim sup —S(p)=> w.p.l.

Ipl=>= p abox containing 0 | pl

REMARK 1. Actually Smythe considered only boxes of the form IT{[0, b,],
b;=1,2,..., but this does not influence the result.

IDEA OF THE PROOF. In order to estimate S(¢) = L, . ,X,, it turns out to
be useful to estimate separately the contributions from the X’s with values in
intervals [0, 1) and [2%,2%*1), £ > 0. Write

(2.13) S(L,R;¢)= Y X,J(L <X, <R).
ve¢

We then estimate S(2%,2%*1; ¢) by covering ¢ by approximately 2| £|/1(| |, &)
cubes with sides of length 41(| £[, ), and by adding up all X’s with values in
[2%, 2%*1) in these cubes. The numbers I(| £, ) will be chosen suitably, in
most cases such that the expected number of vertices v per cube with
X, €[2*,2*%*1) is of order 1. It is easy to estimate the number of vertices v
with X, € [2*,2*%"1) in a union of cubes, since this number simply has a
binomial distribution. We must also take into account the number of ways to
choose the collection of cubes. This will be at most [C(d)]'é!/éL%) for some
constant C(d) which depends on the dimension d only. As we shall see, we
can choose numbers m(| £/, £) and a constant ¢ such that

Y [C(d)]"t'/l(]g]’k)P{a union of 2| £|/1(1 £, k) cubes of
3

(2.14) size [41(1£], k) + 1] contains more
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than em(| €1, k) vertices v with X, > Zk}

is small. This will guarantee that (with high probability) for each ¢ we only
have cm(| |, k) contributions to S(2%,2%*1; ¢). The final quantity to estimate
for S(¢) is then

(2.15) Y m(l €l k)2kH!
k

and our m’s will be such that this is bounded by M| ¢| for some M < o,

Some more technical comments on our choice of I(| £, 2) and m(| £[, 2) can
be found in the Remark at the end of Section 3.

3. Proving Theorem 1. We first show how to cover any lattice animal of
size n by at most 2n/l cubes with edges of length 4/. Then we choose our
m(n, k) and I(n, k) and show that (2.15) is of order |¢[. Finally we carry out
the probability estimate (2.14).

We remind the reader of the notation

d
(3.1) A(x,20) = TT[x() — 21, x(3) + 21].
i=1
LEMMA 1. Let ¢ be a lattice animal of size |¢| = nandlet 1 <1 < n.Then
there exists a sequence X;,...,X, € 7% of r +1 <1+ (2n — 2)/1 points such
that
r
(3.2) £c U AUx;,20)
0
and
(8.3)  Ix; 1 —x;ll = max |x;,(J) —x,(J) <1, O<i<r-1.
1<j<d

If 0 € &, then we may take in addition x, = 0.

Proor. First we observe that it suffices to prove the lemma with the
lattice animal ¢ replaced by a path 7= (v,,...,v,_;) of length s <2n (7
will not be self-avoiding, though). To see this, let 7 be a spanning tree for &.
As mentioned in the introduction, such a spanning tree always exists. Then 7
has n vertices and hence (n — 1) edges. There then exists a path 7 which
contains all vertices of 7 and with at most twice as many edges as 7, and
hence with at most 2n — 1 vertices. To construct 7, one follows the procedure
of Harris [(1965), Section 6]. It is simplest to think of 7 as being imbedded in
the plane and to think of 7 as a path which starts at an arbitrary vertex, w,
say, and then “walks around the outside of 7” going in the clockwise direction
until it returns to w, after having visited all vertices (see Figure 3). When =
is covered by U;A(Ix;,21), then ¢ is also covered by this union, so that it
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Fic. 3. Example of a tree 7 (solidly drawn) and its associated path w (dashed). w successively
traverses the vertices Wo, Wy, We, Wy, W3, Wy, W3, W1, Wy, Ws, Wy, We, Wy, We, Wy.

indeed suffices to prove the lemma for .
Now let 7 = (v,,vy,...,0,_1) With s < 2n — 1. Then choose x; as the
unique point of Z¢ for which

(N <vy(J) <(x(J)+ 1)L, j=1,...,d,0<i<r=|(s-1)/1].

We claim that (3.2) and (3.3) hold for these x’s. To see (3.2), note that for
il<t<@G+ 1l

v, () = 2(NU =10, (J) = vu(DI + v (F) =% (N < 2,

so that v, € A(Ix,,20). (3.3) is immediate from our choice of the x; and the
fact that |v;,(j) — v, () < L.

As for the last statement of the lemma, this is really included in our proof,
for if 0 € £, then we may take w, and v, equal to the origin, and then our
choice of x, above automatically gives x, = 0. O

Next we introduce the I(n, 2) and m(n, k). In order to avoid dividing by
0 = log1, we take n > 2 from now on. For convenience we shall also assume
that the support of X, is unbounded; if X, is bounded w.p.1, then Theorem 1
is trivial. Define

(34) p(k) = P{X, > 2%},
(3.5) l(n,k) =|(p(k)""] An,
(3.6) b=1+ % [with a satisfying (2.4)].



GREEDY LATTICE ANIMALS I: UPPER BOUNDS 1163

Also choose a continuous strictly increasing function y(x) with inverse
function 8(x) such that

b b
(3.7) v(x)(iogx) 50 and v(x)(logi) loglogx (x - =)
while
(3.8) /[0 w)[S(x)]d dF(x) < .

Such a y exists by (2.4). [The second requirement in (3.7) will not be used
here, but only in Gandolfi and Kesten (1994); we can always satisfy this
requirement by replacing y(x) by y(x) V x(log x) ®(loglog x)"1/2] Then
take

IA

n n
if I(n,k) < — and 2*

i(n k)’ (log ) v,

IA

(3.9) m(n,k) = (logn)b, ifl(n,k)>Lband2k y(n),
(log n)

0, if 2% > y(n).

LEMMA 2. If (2.4) holds, then for some ¢, < ®,

(3.10) Y m(n,k)2¥ ' <con, n>2.
k=0

ProoF. Note that (2.4) implies
p(k) < 27%(klog2) * "EX¢(log* X,)*"°,
so that for ¢; = 1+(log 2){EX{(log™ X,)?*?}~1/4,
l(p(k))—l/dl > c12kk1+"/d.

Consequently, if ¥; denotes the sum over those % > 0 for which

n
(3.11) l(n,k) < m and 2% < y(n),
n
then, by (3.9) and (8.5),
Y m(n, k)2* < 3 2np/t2ktt
k>0
(3.12)

1
<4n|l1+ Y —k1794] <cyn.
r=1C1

Similarly, if ¥, is the sum over those 2 > 0 for which

(3.13) I(n,k) > ——— and 2" < y(n),
(log n)
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then
Y, m(n, k)2t <} 2F(log n)®
(3.14) 2k < y(n)
< 4y(n)(logn)" = o(n) [by (3.7)].
This implies (3.10) with

¥(n)(log n)" - dra ]
¢o = 4max —————— + 4 + 8(log 2) *{EX¢(log™ X,)* ") ]Elk b,

1/d

O

Next we start on the probability estimates.
LEMMA 3. Let y,,¥.,...,¥, be arbitrary points of 7% and r < (2n —
2)/l(n, k) with l(n, k) as in (3.5). Then there exists a c3 = c5(d) < o, which

depends on d only, such that for all ¢ > cg,

-
P{ U A(y;,2I(n, k)) contains more than

i=0
(3.15) cm(n, k) vertices with X, > 2’“}
bl

< ———

= P\ 21(n, k)
for all k which satisfy (3.11). Moreover, the probability in (3.15) is at most

c

(3.16) exp(—g(log n)b)
for all k which satisfy (3.13). Finally
(3.17) P{for infinitely many verticesv, X, > y(llvl)} = 0.

ProoF. To obtain the estimates in (3.15) and (3.16) we use the fact that

the number of vertices in

(3.18) U A(yi,2i(n, k))
i=0

is at most

3n

Ty > ) =352, b))

(r+1)(4l(n, k) +1)? <

Thus, if we set
N =N(n,k) =3-51(n, k)" 'n,
then the number of v in the set (8.18) with X, > 2* is stochastically smaller

than a binomial variable corresponding to NN trials with a success parameter
p(k). Consequently, by Chebychev’s inequality, the probability in the left-hand
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side of (3.15) is at most
exp( —cm(n, k))[1 —p(k) + p(k)e]”
<exp(—cm(n,k) + Np(k)(e — 1)).

We now treat separately the cases where (3.11) and (3.13) hold. If (3.11)
holds, then the right-hand side of (3.19) is at most

(3.19)

n

exp{—cl(nn,k) ) (U(n, k) p(k)(e — 1)}

(3.20) .
———(c—3-5% — 1)) .
Ty (e =3 e =)
This gives (8.15) for ¢ > ¢; = 6 5% e — 1).
If (3.13) applies, then the right-hand side of (3.19) is, by our choice of
m(n, k), at most

< exp{—

exp{—c(log n)® + 3.5dl(n7tk) (1(n, k) p(k)(e - 1)}

Also, since n(log n) " < l(n, k) < (p(k))~*/? by (3.13) and (3.5), we have

l(n’jk) (l(n,k))dp(k) < (log n)b.

Again (3.16) follows from ¢ > c; = 6 - 5% e — 1).
Finally, (3.17) follows from the Borel-Cantelli lemma and the simple
estimates

P{there is some v with 2/ < |lv[l < 2/*! and X, > 'y(llvll)}
< ¢,2%P{X, > y(27)}

and

Y 29P(X, 2 y(2) = [ dF(x) ¥ 2%
j=1 (0, )

y(2)<x

[ dF(x) ¥ 2%
[0, ) 27<6(x)

sz/ dF(x)[8(x)]" <= [by(38)]. O
[0, )

We shall now complete the proof by combining the three lemmas.

Proor oF THEOREM 1. First we note that we may ignore vertices v in
[—n,n]? with X, > y(n), since these occur w.p.1 for only finitely many ~ [by
virtue of (3.17)]. It therefore suffices to prove [see (2.13) for notation]

(321) Y P{(3¢c[-n,n] with|£]=n and S(0,y(n); €) > Mn} < o

for a suitable M.
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Next we have by obvious translation invariance that the summand in
(3.21) is at most
2n + l)dP{Elf such that 0 € ¢, |£] = n and S(0, y(n); £) > Mn}.
Furthermore, for any £ with || = n,

S(0,v(n); €) <8(0,1;6) + Y S(2k,241;¢)
k=0

2% < y(n)
<n+ Z S(2k’2k+1;§)'
k>0
2k <y(n)

If
S(2%,2%*1; ¢) < em(n, k)24 !
for all 2 > 0 with 2* < y(n), then
S(0,y(n);¢) < (1 +ccy)n

by Lemma 2. Thus, if we have M > 1 + cc,, then it suffices to prove that for
some large c,

Yn? Y, P{3&suchthatO e &,[£|=nand

k>0
(3.22) Ty

S(2%,2%+1; £) > em(n, k)2% 1} < o
Now fix n and & for the time being and let ¢ be a lattice animal with
0<c¢, |él=nandx, =0,Xx,,...,X, such that (3.2) and (3.3) hold and
2n — 2
I(n,k)’
Such x; exist by Lemma 1. Notice that we took x, = 0 as allowed by Lemma
1. Now clearly

S(2k,2k+1;§)

r<

3.23
(323) < Zk“(number of ve |JA(x,,2l(n,k)) with X, > 2’“).

i<r

Therefore, if % satisfies (3.11), then the probability appearing in (3.22) is at
most

P{EI x,=0,x,,...,%, satisfying (3.3) and r < (2n — 2) /l(n, k)

such that there are more than cm(n, k) vertices

(3.24) ve U A(Ix,,20(n, k)) with X, > 2k}

< [number of choi_ces forx, = 0,x,,...,X, which satisfy (3.3)

and r < (2n — 2)/l(n,k)]exp(—cn/(2l(n,k))) [by (3.15)].
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Finally we note that the number of choices for x, = 0,%4,...,x, which
satisfy (3.3) is at most 39", since for given x, there are at most 3¢ choices for
X,, 1 so that (3.3) holds. Therefore, (3.24) is at most

cn c
(3.25) 3(2d"/l(”’k»exp(—m) < exp(—z(log n)b)

for k satisfying (3.11) and ¢ > some c5 = c5(d).
In the same way we see from (3.16) that for any %2 which satisfies (3.13)
and ¢ > c;, that the left-hand side of (3.24) is at most

3(2dn/l(n,k))exp( _ i(lOg n)b) < g2d(log n)® exp( _ E(log n)b)
2 2

(3.26) c

< exp( - Z(log n)b).

Using these bounds for (3.24), and hence for the probability in (3.22), we
see that the sum in (8.22) is at most

c

Yond Y exp(——(logn)b)s Y nd

n k>0 4 n
2k <y(n)

since b > 1 [see (3.6)]. O

log n

C
log 2 exp(_ 7 loe n)b) <

For a sequel to this paper [Gandolfi and Kesten (1994)] it is useful to
separate out the following explicit estimates which are contained in our
proofs.

PROPOSITION 1.  Assume that (2.4) holds. Then there exist constants ¢, < ®
and ¢ = ¢(d) < « such that for all c > ¢ and n > 2,

(3:27) P{lmax Y (X, Ay(n))>(1+ ccO)n} < exp(——;-(log n)”"/d)

£l=
Eg"veg

and for some cg, c; < ®,

[€l=n

1
P{maxS(—zglog n,y(n); §)
0e¢

(3.28)

> cen[(log log n)
n

~asa, Y(n)(log n)tt? ]}

< exp( —c4(log n)1+a/d).

ProoF. The proof of (3.27) is essentially the same as for Theorem 1.
Indeed

L (X, A y(n)) > (1 +ceo)n

vE¢
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can occur only if the event in (3.24) occurs for some & > 0 with 2* < y(n) =
o(n(log n)~%). There are at most 1 + (log n)/log2 such values of 2 and for
each such %, the right-hand side of (3.24) is at most exp(c(log n)?/4) when
¢ > ¢ [see (3.25) and (3.26)]. This implies (3.27).

As for (3.28), assume that for some £, (3.2) holds and

(number of vertices in |J A(Ix,,2I(n,k)) with X, > 2*| < cym(n, k)
0

for all £ satisfying

1
(3.29) Zglog n <2k < y(n).
Then, as in (3.12) and (3.14),
1
S(ﬁlog n,y(n);f) < Y csm(n,k)2k+!

k satisfying (3.29)

1
< 4czn Y c—kfl’“/d + 4cgy(n)(log n)°
2%>(1/4d)logn 1

~asa, Y(n)(log n)}

< cen{(loglog n)
n

Thus, the event in the left-hand side of (8.28) can occur only if the event in
the left-hand side of (3.24) with ¢ = ¢5 occurs for some % satisfying (3.29).
Therefore, (3.28) also follows from (3.25) and (3.26). O

REMARK. In order to make (38.24) small we must take m(n, k) at least of
the order n/l(n, k) for the k satisfying (3.11) [see (3.25), which in turn relies
on (3.19)]. Since we want to make m(n, k) small to get a good estimate (see
Lemma 2), it appears that one wants to choose I(n, k) as large as possible.
However, the estimate (3.20) works only if (I(n, £))?p(k) is of order 1 so that
(3.5) seems the best choice for I(n, ). Then the choice of m(n, k) for the %’s
satisfying (8.11) also seems best possible. There is somewhat more leeway,
though, in the choice of m(n, k) for the other &’s.
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