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ASYMPTOTIC BEHAVIOR OF LARGE DISCRETE-
TIME CYCLIC QUEUEING NETWORKS - -

BY VicTOR PESTIEN AND S. RAMAKRISHNAN
University of Miami

Assume that % jobs circulate clockwise through a cyclic network of n
single-server queues, where at each integer time instant the job at the
head of each queue moves with probability p to the next queue, indepen-
dent of the other jobs. The equilibrium distribution for the associated
Markov chain is determined, and an exact expression for the expected
number of busy servers is obtained. If n and %k are large, a simple
approximation for the proportion of busy servers is derived. In a second
model, where the queues have no waiting room and where movement of a
job occurs with probability p only if the next queue was empty, a similar,
simple asymptotic representation for the proportion of busy servers is
deduced. This representation readily yields a simple expression for the
asymptotic cycle time for a single job.

1. Introduction. Suppose n nodes, labelled 0,1,...,n — 1, are arranged
in a circle and that at each node there is a service queue. Suppose there are %
jobs, which move clockwise around the circle, waiting for and receiving
service at each node in succession. There might be more than one job at a
given node, but each node has only one server.

Jobs can move only at discrete times ¢, where ¢ is a positive integer. At
every time instant ¢ each job is at one of the nodes, and the following
movements occur simultaneously at each node m, independently of other
nodes: If the queue at node m is nonempty, then the job at the head of that
queue moves with probability p (0 < p < 1) to the tail of the queue at node
m & 1; with probability 1 — p there is no movement of jobs from node m to
node m & 1. (Here, ® means addition modulo n.)

Thus the n queues have independent geometric service times, each with
expectation 1/p, there is ample waiting room in each queue and the cyclic
network of queues is closed.

In Section 2 we model the behavior of this queueing network by means of a
discrete-time Markov chain where each state is an n-tuple describing the
number of jobs present at each of the n nodes. We derive the equilibrium
distribution for the chain and find that the equilibrium probabilities of the
states are weighted according to how many nodes are occupied (that is,
according to how many servers are busy). This unequal weighting is sharply
different from the continuous-time analogue of this model—a Gordon and
Newell network—where all states have equal weight.
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592 V. PESTIEN AND S. RAMAKRISHNAN

In Section 3 we study the model of Section 2 in the case where n and & are
large, and we estimate the asymptotic proportion of occupied nodes. If 2 and
n approach infinity in such a way that the ratio £/n approaches a constant
a, we prove that the proportion of occupied nodes converges in probability to
the constant

1+a—\/(1+a)2—4pa
2p '

This proportion serves as a measure of progress for the system at a given
time instant, and thus it can be used to estimate the average cycle time for a
job in the network.

In Section 4 we study a second model, where only one job is permitted at a
node at a given time instant. A job moves ahead to the next node with
probability p only if the next node was unoccupied. The equilibrium distribu-
tion for this model has been given in Pestien, Ramakrishnan and Sarkar
(1993), hereafter abbreviated PRS (1993), but here the methods of Section 3
are used to determine the asymptotic proportion of occupied nodes in the
system.

Although cyclic networks may at first glance appear rather special in
structure, they can be used to model other linearly-arranged systems where
the number of jobs in the system is constant over a long period and where a
job is always waiting to enter whenever another job leaves the system. [For
example, see Onvural (1990).] Most of the literature on queueing networks
pertains to continuous time, but there are synchronous communication sys-
tems that are more naturally described in a discrete-time setting. The survey
article by Kobayashi and Konheim (1977) gives an account of such models.
The paper by Boxma and Groenendijk (1988) is one of the more recent studies
in this direction.

2. Equilibrium distribution in the ample-waiting-room model. To
describe the behavior of the cyclic queueing network given in the introduc-
tion, we use a discrete-time Markov chain with stationary transition proba-
bilities. The state space S of the Markov chain will consist of n-tuples
s =(8g, S1,---,8,_1), Where s; is the number of jobs present (length of the
queue) at node j. To be precise, let

n—1
S = {(so,sl,...,sn_l) €{0,1,...k}": Y s;=k|.
Jj=0
For each s in S, let
OCC(s) ={j:0<j<n-—1lands, >0},

so that OCC(s) is the set of occupied nodes for the state s.
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If s€S and A c OCC(s), define the n-tuples v4 = (vé,...,v2 ;) and
w4 = (wd,...,w )by

4a_ |1, ifjeA,
0, ifjeA,

and

. [1, fjeoleaA,
0, ifjoleA,

where © is subtraction modulo n. Further define the n-tuple s4 =

(s,...,s2 )by
sf =s; — vjA + ij.
Then s4 is the state that will result from s when A is the set of nodes at
which service has just been completed.
Next, the rules of motion given in the introduction lead us to define the
transition matrix P for the Markov chain as follows: If s and r are elements

of S, let
(2.1) P(s,r) = ) pHl(1 _p)IOCC(s)I—IAI’
A

where the summation is taken over all subsets A of OCC(s) for which r = s%.
If there are no such subsets, let P(s,r) = 0. (|| denotes cardinality.)

Each addend in expression (2.1) reflects the fact that in the transition from
s to r there has been movement at |A| of the occupied nodes and no
movement at |[OCC(s)| — | A| of the occupied nodes. It is easy to see that if
k < n, then for each r and s there is at most one set A such that A € OCC(s)
and r = s“. However, if £ > n, there could be more than one such set A. For
example, if 2 =4 and n =3 and if r =s =(2,1,1), then both A ={1,2,3}
and A = J satisfy r = s4. That is, movement could have occurred at all
nodes or at none of the nodes to transform s into r.

It is evident that the finite Markov chain with transition matrix P is
irreducible and positive recurrent. Therefore, as is well known, there is a
unique equilibrium probability distribution for P. That is, there is a unique
vector 7w on S such that

(2.2) w(s) = ), w(r)P(r,s) forall sin S,
re8
(2.3) w(s) >0 forall sin S
and
(2.4) ¥ m(s) = 1.
ses

Thus the equilibrium probability distribution for P can be obtained by first
finding a vector y that satisfies (2.2) and (2.3) and then normalizing it to
satisfy (2.4).
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THEOREM 2.1. Let y be the vector on S defined by

(2.5) y(s)=(1-p
Then

—loces)l
) .

y(s) = ), y(r)P(r,s) forallsin8S.

resS

ProOOF. For each s in S, let
PREOCC(s) = {j e 1: j € OCC(s)}.

So PREOCC(s) is the set of labels of nodes from which jobs might have just
moved at the previous time instant to create the state s. Certainly

(2.6) |PREOCC(s)| =|0CC(s)].
By (2.1) and (2.5),
Y y(r)P(r,s)

reS
—loccn) | | I
= Z (1 —p) Z plAl(l _p) OCC(r)l-1A|
res {A: AcOCC(r) and s=r4}
|A]
p
"k L ( 1 —p) '

r€S {A: AcOCC(r) and s=r4}

For a fixed s € S, note that there is a one-to-one correspondence between the
sets

{(r,A):reS, AcOCC(r)and r4 =s} and {A: A c PREOCC(s)}.
Therefore
D |Al
LryPro- T ()
res {A: ACPREOCC(s)} p

Now use the binomial theorem to conclude that

)— IPREOCC(s)|

’

p IPREOCC(s)|
L 7(0P(rs) - 1+ 12 —(1-
resS 1 - p

which by (2.6) equals (1 — p)~1°CC™I, o

COROLLARY 2.2. Define the vector m on S by
-loces)l
. (1-p)

m(s) = “TocceHl
Zs’ES(]' _p)

Then  is the equilibrium probability distribution for the Markov chain whose
transition matrix is P.
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Of course, continuous-time cyclic queueing networks have been studied
thoroughly. In particular, the continuous-time analogue of our discrete-time
large-waiting-room model was investigated by Koenigsberg (1958) and gener-
alized by Gordon and Newell (1967). The equilibrium distribution in such
networks is of so-called product form, and since all service times are exponen-
tial with the same parameter, all states have equal probability under the
equilibrium distribution. Thus there is a distinct difference between the
respective equilibrium distributions in the continuous-time and discrete-time
models. In our discrete-time model, Theorem 2.1 says that the equilibrium
probabilities of the states are far from being equal, as they are weighted
exponentially according to the number of occupied nodes. Some other differ-
ences between continuous-time and discrete-time models are mentioned by
Kobayashi and Konheim (1977) and by Walrand (1983).

We will now determine the expected number of occupied nodes (i.e., the
number of busy servers) under the equilibrium distribution.

LEMMA 2.3. For 1 <! < min{k, n}, let
S, = {s € 8:|0CC(s)| =1}.

Then
_[n)(k—-1
(27) si=(7)(5 2 1)
PrOOF. Observe that
n—1
S, = {(jO"”,jn—l): each j; > Oand ) j, =k
i=0

and exactly / of the j;’s are positive}

and use a standard counting argument [for example, see Johnson and Kotz
(1977)]. O

THEOREM 2.4. Let
E(I0CCl) = ¥ |0CC(s)|m(s),

se8S

the expected number of occupied nodes under the equilibrium distribution .
Then

spem (1) 1)‘(1 -p)"
9 Fose = zm‘”"’(?)(kf Ja-m

ProoF. Use (2.7) and (2.5). O
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3. Asymptotics in the ample-waiting-room model. Because of (2.8),
E(IOCC)) is the expected value of the random variable X, where X* has

probability function f* given by
kE—1 -
G)(izi)a-n"

spepo( )R a-m

~ for I such that 1 <! < minfk, n}. We can think of X* as the number of
occupied nodes (busy servers) in the network.

The purpose of this section is to estimate the proportion X*/n of occupied
nodes in the case where the cyclic network is very large. At a given time
instant, the average number of nodes at which service is successfully com-
pleted is p times the number of occupied nodes. Thus the proportion of
occupied nodes gives a measure of progress for the system at that instant. We
establish the following asymptotic result:

(81)  fHH=P[Xt=1]=

THEOREM 3.1. Suppose k = k, varies with n in such a way that

where a is a constant, and let

1+a—\/(1+a)2—-4pa

3.2
(3:2) ¢ o
Then X[ /n converges in probability to the constant ¢. That is, for each { > 0,
ky
lim P||— —qo>§]=0.
n—-o

Informally, Theorem 3.1 says that for very large networks in equilibrium,
the proportion of busy servers stays approximately constant, and the theorem
exhibits that constant ¢ in (3.2). It is interesting to note, for fixed «, that ¢
is an increasing function of p.

To prepare for the argument for Theorem 3.1, define for each pair of
positive integers k£ and n,

n+k+1—p—\/(n+k+1—p)2—4pnk

. 1% =
Notice that if
k
lim — = a,
’ n—-o N
then
1%n
lim — = ¢.

n-oo n
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Also notice that I* is a solution to the following equation in the variable :
(3.4) pl’+(-n—k—1+p)l+nk=0.

Now (3.4) is equivalent to

I+1 l 1

n-1 k-1 1-p

In the special case where [ is a positive integer, (3.5) is in turn equivalent to

e ()i a-p =2 (7o
and to

(3.5)

f2() =fr(l+1).
Further, define [’ * as the unique positive integer such that
IF<*<ik+1.

The key idea in the proof of Theorem 3.1 is that the probability function f* of
the random variable X* is increasing for ! < [* and decreasing for I > /*.
Moreover, for large n, the probability histogram of X* is sufficiently steep on
either side of lk

The next theorem is really a technical reformulation of Theorem 3.1:

THEOREM 3.2. Assume that lim, , (k,/n) = a, where a > 0, and suppose
£> 0 and A > 0. Then there exists a positive integer N such that if n > N
and if

|J| > n%/3A,
then
f,fn(iﬁn +J) &
TN AR
far(lar)
ProoF oF THEOREM 3.1 USING THEOREM 3.2. If @ =0, then ¢ =0 and

X*»/n is bounded above by %, /n, which converges to 0. Next assume a > 0,
and fix £ > 0 and ¢ > 0. Clearly n can be made large enough so

D=l ¢

n 3
and

L _ ¢
- n 3
Let A = {/3 and let

F={j:0 <% +j < min{k, n} and |j| > nA}.
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Then for n sufficiently large, Theorem 3.2 gives
[ Xy Iy

>{]<P

Finally, because the summation contains at most n addends and because
fia({*) < 1, we have
Xkn

P

-9 >¢

Before proceeding with the proof of Theorem 3.2, we need the following two
lemmas. The first lemma checks that I* is in the correct range.

LEMMA 3.3. For each k > 1 and each n > 1, I¥ < min(k, n}.

PROOF.
lk_n+k+1—p—\/(n+k+1—p)2—4pnk
2nk 4pnk -

=— |1+ 4/1- 5
n+k+1-p (n+k+1-p)
2nk nk )

< 1+ -—
n+k (n+k)
n+k—1v(n-k)°

B 2

=min{k,n}. O

LEmMMA 3.4. Suppose 1 < k < n. The integer [ [* is a “mode” for the random
variable X* in the sense that

fx(2) > fi(l+1)
’ for each positive integer I such that f,’f < ! < min{k, n} and
fr(l) <fi(l+1)

for each positive integer I such that 1 <1 < lA,’i



ASYMPTOTIC BEHAVIOR OF CYCLIC QUEUEING 599

ProOF. First, for any positive integer [ such that 1 <! < min{k, n},

fri+1)  (r=DE-1) 1

fry @+ yr 1-p
Now use (3.4) and (3.5) to get
37 fE(I+1) n—1 I*+1]|[k-1 1k
37 R |1+1 n=IF|| 1 BRI
It is easily verified that
3.8 nol Ll e ps

. . >
(38) I+1 n-1F i
and that
3.9 Bl b s
( . ) l k- lk 1 n .
Therefore,
fr(l+1)

>1 iff k>0
()

Also, observe that [* = [ if and only if f*(I + 1) = fF k(l ). Finally, note that by
the definition of l,’:, we have I* > [ if and only if [* >, for any positive
integer [. O

ProoF oF THEOREM 3.2. Use the notation b(x;m, ) for the binomial
probability (’;‘)0"(1 — 0)™~* and write (3.7) equivalently as

fr(l+1)  [b(1+1n,(k+1)/(n+ 1) ][ b(Lk—1,1/k)
R | b(Ln, (I +1)/(n+ 1)) b(1 - 1;k—1,1k/E) |

where, moreover, by (3.8) and (3.9), each expression within square brackets
on the right is less than or equal to 1 if and only if [ > lk
Thus for any integer J satisfying 1 < [* + J < mm{k n}

b(lk+ Jsn, 1k +1)/(n + 1))
b(f,’i;n,(l,’i +1)/(n + 1))

b(l,’: 1+J;k—1,1k/k)
b(* - 1,1k /k)

Fr(Ik +J)
fryy

(3.10)
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" Moreover, each expression within square brackets on the right side is at most
1, is a nondecreasing function of o for J < 0 and is a nonincreasing function
of J for J > 0. In particular,

frE+d)  b(l+d;n, (1 +1)/(n+ 1))
HON =7 (8% n, 1k +1)/(n + 1))

The existence of upper bounds, exponentially decreasing in ||, is well known
for the ratio of binomial probabilities on the right of (3.11). For example, it
follows from relation (VI1.3.9) in Feller [(1968), page 183], together with the
remark after (VII.3.2) in the same reference, that

b(l+Jsn, (1 +1)/(n+1 J*?
(n"k' nk(n )/(n ))==eXp'- + &
b(lkn, (I +1)/(n + 1)) 2np,q,
where p, = (I¥ + 1)/(n + 1) = 1 — g,, and where
|lJ1? 2|J]|
7 T .
(nP,q,)"  MPndn

(3.11)

(3.12)

[€;1 <

Therefore, we have
b(f,’f +d;n, (I +1)/(n+ 1)
b({¥;n, (I +1)/(n + 1))
J? | 2|J|

2np,q, " (np,a,)’ " nann).
It follows from (3.11) and (3.13) that for A > 0, if |J| > n?/3A, we have

FE(+d) (In?2A))°  (n?%A)°  2(n?/%A)

R { T, (ma) e, }

The hypothesis lim, . (k/n) = @ > 0 implies lim,_,, p, = ¢ > 0. So given
£ > 0, the right side is bounded above by &¢/n for sufficiently large n. O

(8.13)

< exp| —

REMARK 1. The foregoing arguments can be refined to establish the
asymptotic normahty of the sequence X*. More precisely, it can be shown
that (X* — %)/ Vn converges in law to the normal distribution with mean
0 and variance [1/(¢(1 — ¢)) + a/(¢(a — @)]"!. (The hypothesis « > 0
guarantees that 0 < ¢ < min(1, a}.)

To see normality, first note that an argument similar to the one for (3.12)
,yields

3 '14) b(It -1+ J;k—1,1k/k) J? e
’ s(BE-LE-1iik) 0\ 2k-Duw, [
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where u, = 1*/k = 1 — v, and where
|J1° 2|J|
[(k - Du,p,]? Tk Duw,”
So by (3.10), (3.12) and (3.14), we have
FE(EE+J)
2 (57)

2 1
=eXp{—J—[ + 2 ]}eXP{fJ"‘ &)
2n| p,q, (k- 1u,v,

Because lim,, , (k/n) = a, we have lim, ,,, p, = ¢ and lim, _, u, = ¢/a.
Moreover, for any pair of real numbers a and b such that a < b, the upper
bounds on |£;| and | ;| imply that

lim sup &+ &l=0.
n=% g <d<byn

As a consequence, (3.15) yields
) 1 fE(r+d)
lim E f'ﬁ
R e <d<bym VI fn (ln)
1 J2[ 1 n
= lim Y —exp{ — ———[ + ] .
7T am<d<bym ‘/;"— { 2n Prq, (k - l)unvn

Equivalently,

FEIRS

(3.15)

1 fEE+d) e x
3.16 i —_— = - — | dx,
(3.16) n‘i‘zoaﬁibﬁ\/; A fae"p( 20'2)

where

g~ = .
e(1-9¢) o(a—9)
Thus the assertion of asymptotic normality of X* would be proved if we show
that

1
3.17 lim ———— = 0v/27.
(3.17) n-o Vn rE(1%)
Of course, since ¥, f*({* + J) = 1, it easily follows from (3.16) that
1 o x2 "
(318) llﬂlilfmk—)' = f_wexp(— -2—0_*2-) dx = 0'\/2—'7;
On the other hand, for each A > 0, by Theorem 3.2,
FE(f%+J)

1
lim sup ——=——x+— = limsup —_—,
now VnfE(I%) n-e |J|s§2/3A nfi (L)



602 V. PESTIEN AND S. RAMAKRISHNAN

which, by an argument similar to that of (3.16), implies that

) 1 © x?
111:1_)8:011) Wk(iT) < f_wexp(— 9072 ) dx

xlimsup[ sup exp(|§J+§JI)].

n—o |J|Sn2/3A

Finally, verify from the upper bounds of |£,;| and |¢;| that

lim{limsup[ sup exp(|¢; + QI)]} =1,

AL0 n—o |J|sn2/3A
so that

(3.19) lim_:e;:)lp 1/_fk( D < oV27.

The assertion (3.17) follows from (3.18) and (3.19).

REMARK 2. In the theory of continuous-time interacting particle systems,
as pointed out in Liggett [(1985), page 415], “Results..., which give the
asymptotic profile of the disturbance in a system, are sometimes referred to
as being hydrodynamical in nature.” Thus the conclusions of Theorem 1 and
Remark 1 may be regarded as hydrodynamical. For the continuous-time
analogue of our discrete-time ample-waiting-room model, since all states have
equal probability under the equilibrium distribution, the probability function
of X* is given by (3.1) with p = 0, which is a hypergeometric distribution
with

kn(k — 1)(n — 1)
(n+k-1(n+k-2)
Therefore, in continuous-time, X* /n converges in probability to a/(a + 1) if
k/n — a as n - ». The constant a/(a + 1) is easily seen from (3.2) to be the
limit of ¢ as p decreases to 0. In this sense, our results for the discrete-time

model may be viewed as refinements of corresponding calculations for the
continuous-time model.

E(X}) = and Var(X}) =

n+k-1

4. Asymptotics in the no-waiting-room model. We now discuss a
second discrete-time model, where again there is a closed cyclic network with
n nodes and & jobs which circulate the network in a clockwise direction. This
time, however, assume that 2 < n and that the maximum queue length at
each node is constrained to be 1. That is, there is no “waiting room” for a job
at a node. We assume that if a job would complete service at a node but the
next node is occupied at that instant, it must repeat service at the previous
node at the next instant. In continuous-time networks, such a constraint is
called “communication blocking;” see, for example, Tsoucas and Walrand
(1989). A survey of various blocking protocols is given by Onvural (1990). A
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discrete-time model with a blocking protocol different from ours is studied by
Chen and Shepp (1991).

We assume here that at each time instant ¢ = 1,2, ... a job located at node
J can move only if node j © 1 does not have a job; if the job can move, it will
move, independently of other jobs that can move, with probability p (0 <p <1)
to node j + 1, and it will stay at station j with probability 1 — p. This model
is introduced in a computing setting by Berman and Simon (1988), who use
the colorful analogy of frogs leaping from stone to stone in a pond where the
stones are arranged in a circle. In PRS (1993), the model is formalized as a
Markov chain with state space the set of n-tuples of 0’s and 1’s for which
exactly % entries are 1. For a state s, the set OPP(s) is the set of nodes j such
that the jth entry of s is 1 and the (j @ 1)st entry of s is 0. At each node of
OPP(s) there is an “opportunity” for the job at that node to move ahead. The
equilibrium distribution for this model is given [PRS (1993), Theorem 2.1] by

(s) = (1-p
ZreS(l _p)—lopp(r)l

In PRS [(1993), Proposition 3.1], the following expression for the expected
number of “opportunities” under the equilibrium distribution 7 is derived:

mintk,n-ky[ B — 1 k-1 -
Zl=1(k’ k)(l_l)(n l1—-1 )(1—}7) !
; Lik—1\(n-k-1 S
min(k,n—k)___ n _ 1
Zl’=1 l, (ll _ 1)( ' -1 )(1 p)
We can rewrite E(|OPP)) equivalently as

min(k,n— k _k_l -
spykeb(R) ("B a -

min(k,n— k —-k-1 -
Zl’=(1k’ k)(l/)(n ' —1 )(1 _p) !

Thus E(IOPP)) is the expected value of the random variable Y%, where Y*
has probability function g* given by

i G0N
E?ﬁ:gk,n—k)(ﬁ)(n;’iz 1)(1 Y

for [ such that 1 <! < min(k,n — k). &
The similarity between this probability function g and the probability
function f* of (3.1) allows us to get the following asymptotic result:

- loPP(s)!
)

E(IOPP|) =

(4.1) E(IOPP)) =

(42) gh(l)=P[vt=1]=

THEOREM 4.1. Suppose k = k, varies with n in such a way that
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where B is a constant, and let

1-/1-4pp(1 - B)
4.3 = .
(43) v s
Then Yt»/n converges in probability to the constant Y. That is, for each
>0,
Y kn

lim P

n-o

—¥

| -o

ProOF. Use Theorem 3.1, replacing n of that theorem by % and replacing
k of that theorem by n — k. O

One of the main results in PRS (1993) obtains an exact expression for the
long-run average cycle time for a job. This answered a question that was
posed and left open in Berman and Simon (1988). The progress of the system
at a given instant can be measured by how many jobs successfully move from
one node to the next at that instant. On the average, the number of successful
moves is pE(|OPP|). Not surprisingly, it follows [see PRS (1993) for details]
that the long-run average cycle time T(n, %, p) for a job is the long-run
average time for nk units of progress of the system, namely,

(44) T(n,k, p) = nk/( pE(IOPP])).

Thus for the model of this section, (4.1) together with (4.4) gives a complete
characterization of long-run average cycle time.

On the other hand, for the large-waiting-room model of the previous
sections, the same reasoning given in PRS (1993) for (4.4) can be applied
together with (2.8) to describe explicitly the long-run average cycle time. In
ring networks, the existence of long-run average cycle time as a constant
depending only on the initial configuration has been proved under very
general hypotheses by Bambos (1992). (See also references contained there.)

In the continuous-time case, without blocking, characterizations of the
cycle time for cyclic exponential queueing networks have been obtained. See
Chow (1980), Schassberger and Daduna (1983) or the survey by Boxma and
Daduna (1990). In certain continuous-time cyclic networks with blocking,
results on cycle time have also been given [for example, see Balsamo and
Donatiello (1989)].

One drawback to our representations for cycle time based on (4.1) and (2.8)
'is that the combinatorial formulas in (4.1) and (2.8) are quite complicated.
Using moment-generating functions, a somewhat unsatisfactory attempt to
approximate the expression in (4.1) was made in PRS (1993). In particular,
the paper left open the question of obtaining a simple expression in the
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no-waiting-room model for the limit of the long-run progress of a job in unit
time, namely,

(4.5)

n
T(n,k,p)’

as n > o, k > » and k/n — B. Earlier, in the special case where g = 3,
Piotr Berman (personal communication) has studied the problem empirically
and has conjectured that the limit of (4.5) was 1 — {1 —p.

Here, Theorem 4.1 answers the question and says that the limit of (4.5) is

py _1-y1-4pp(1-B)
B 28 ‘

In the special case where B = 3, this limit is 1 — y/1 — p, which confirms
Berman’s conjecture.

The no-waiting-room model can be viewed as a discrete-time version of the
“exclusion process” in the theory of interacting particle systems. See Liggett
[(1985), Chapter VIII] for an account of the exclusion process. In the absence
of any “interaction” with other jobs, the long-run progress of a job in unit
time would be p. Thus, the presence of interaction slows down the system by
a factor of ¢/B. Reasoning similar to that in Remark 2 of Section 3 allows
us to view this result as a refinement of a corresponding result in contin-
uous time. The “slow-down factor” for the continuous-time analogue would,
therefore, be given by

This answer agrees with the conclusions of theorems of Spitzer and of Kesten
[see Liggett (1985), Corollaries VII1.4.6 and VIIL.4.9]. These are results for
exclusion processes on the lattice of integers and may be regarded as varia-
tions of the continuous-time analogue of the no-waiting-room model.

Acknowledgment. We are grateful to the referee for providing detailed
comments, proposing a more appropriate title for the paper and suggesting
that we present the relation between our results and the theory of interacting
particle systems.
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