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LARGE DEVIATION RATES FOR BRANCHING
PROCESSES—I. SINGLE TYPE CASE!

By K. B. ATHREYA

ITowa State University

Let {Z,}; be a Galton-Watson branching process with offspring distri-
bution {p;};. We assume throughout that p, = 0, p; # 1 for any j > 1 and
1<m=2Yjp;<» Let W, =Z,m™" and W = lim, W,. In this paper we
study the rates of convergence to zero as n — » of

d

Zn+1

—m

P (
for £ > 0 and a > 0 under various moment conditions on {p;}. It is shown
that the rate for the first one is geometric if p; > 0 and supergeometric if

p; = 0, while the rates for the other two are always supergeometric under
a finite moment generating function hypothesis.
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1. Introduction and summary of results. Let {Z, )] be a Galton—-Wat-
son brancing process with offspring distribution { p;}5. We assume throughout
that py =0, p;# 1forany j > 1land 1 <m = YLjp; <.

It is known [1] that Z,, ;Z;' - m w.p.1. and that W, = Z,m ™" converges
to a r.v. W w.p.1. The goal of this paper is to study the rates of decay as
n — o of

> e) and P(|W, - W[> &).

Besides being of some interest in its own right, this seems to be of some
importance in algorithmic tree structures in computer science (see [6] and
[8D. In [6] it is mentioned that the execution of a canonical algorithm for
evaluating uniform AND/OR trees in some probabilistic models can be
viewed as a branching process. The probability that the running time of this
algorithm deviates from its expected value corresponds to the tail probabili-
ties and large deviations associated with branching processes. Also, from a
statistical inference point of view the first quantity above is of some interest
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since Z,,,/Z, is a reasonable estimate of m. We establish the following
results:

THEOREM 1. Assume p,; > 0 and E(exp(6,Z,) | Z, = 1) < « for some 6, >
0. Then for all £ > 0, '

1 Zn+1
(11)  lim —P —m|> gZy=1| = X ¢(k, 8)q; <=,
n—© pl n k
where
(1.2) o(k,e) = P(IX’k —m|> a),

X, being the mean (1/R)LEX; of k i.i.d. r.v. {X,} with distribution {p}, and
{q,} is defined via the generating function Q(s) = ¥7q,s*, 0 < s < 1, being the
unique solution of the functional equation

13)  Q(s)) =pQ(s), f(s)=§p,~sf, 0<s<1,

subject to

(1.4) Q(0) =0, Q(s) <» for0<s<1l, Q(1)=oo.

The next theorem and corollary establish (1.1) under conditions weaker
than E(e%%1|Z, = 1) being finite for some 6, > 0. This is the main result of
this paper.

THEOREM 2. Assume that p; > 0 and that there exist constants C, and
r > 0 such that pym” > 1 and ¢(k, ) < C,/k" for all k, where ¢(k, &) is as
in (2). Then (1) holds.

COROLLARY 1. Assume p; > 0 and E(Z?"*°|Z,=1) <  for somer > 1
and & > 0 such that pym” > 1. Then (1) holds.

The next result shows that the rate of decay of P(Z,,,/Z, — m|> ¢)
when p,; = 0 is supergeometric.

THEOREM 3. Assume p, =0 and let k =inf{j: j> 2, p; # 0}. Assume
E(exp(6,Z,) | Zy = 1) < © for some 6, > 0. Then, for all &> 0, there exist
constants 0 < C(g) < © and 0 < X&) < 1 such that

Z
P( n+1

VA
The next result is needed in Theorem 6, which gives the rate of decay of
P(|W, — W| > &), and is also of interest in computer science (see [6] and [8]).

—-—m

> a) <C(&)(Me))*.

n
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THEOREM 4. Let E(exp(6,Z,) | Z, = 1) < = for some 6, > 0. Then 36, > 0
such that
C, = supE(exp(6,W,)) < .
n

The next result shows that the decay rate of P(|W, — W| > ¢) is supergeo-
metric.

THEOREM 5. Let E(exp(6,Z,)|Z, =1) < for some 6, > 0. Then there
exist constants C3 and A > 0 such that

P(lW-W,[>¢)<C, exp(—)\az/a(ml/B)n).

The next result shows that, conditioned on W being positive, the rate of
decay of P(|Z,.,/Z, — m| > &) is supergeometric. A heuristic argument for
this is that W > a means that Z, > a'm” for large n where 0 < a' < a and
hence if ¢(k, &) decays exponentially with k, P(Z,,,/Z, — m|> ¢lZ, >
am™) should be of the order exp(—ca’m"), where c is a constant.

THEOREM 6. Let E(exp(6,Z,)1Z, =1) < ® for some 6, > 0. Then there
exist constants C, and A > 0 such that for all ¢> 0, a > 0, we can find
0 < I(g) < = such that

P( Zn+ 1
+ Cyexp(=Ma(l — v))*(m"*)")
for every 0 < y < 1 and hence (for y = 1) < (const.)exp(— N a/2)%/3(m!/3)).

—m|> e

W > a) < C,exp(—ayl(e)m™)

n

The generalization of the above results to the multitype case is contained
in Vidyashankar’s thesis [10].

The next section is devoted to some preliminary results. The proofs of the
above theorems are in the last section.

2. Some preliminary results. Let f(s) = X} pjsj, where { p;} is a proba-
bility distribution and 0 < s < 1. Let f,(s) = f(f(s)) and f,(s) = f((---(s))++)
be the nth iterate of f for n > 1. It is well known [1] that if f(s) = E(s%1 | Z,
= 1), where {Z,)] is a Galton-Watson branching process with offspring
distribution {p;}, then f,(s) = E(s%» | Z, = 1). In this section we study the
rate of convergence of f,(s) and its inverse g,(s) as n — .

PRrOPOSITION 1. For 0 <s < 1, f,(s) = q, where q is the smallest root in
[0,1] of f(s) =s. This g < 1L iffm =f'(1 —) = Ljp; > 1.

PROPOSITION 2. Let p, = 0 and p; > 0. Then q = 0 and there exists 0 < g,
< o such that
fa(s =
(2.1) lim (n) =Y q,s"=Q(s) <> for0<s<1

n—© pl 1




782 K. B. ATHREYA

with q; = 1. Further, Q(s) is the unique solution of the functional equation

Q(f(s)) =p1Q(s), 0=<s<1,
Q(0) =0, Q(s) #0 forx +#q.

Consequently, forall 1 <r,j < ,

P(Z,=jlZy=r)

(2.3) lirlln o =gq,; exists

(2.2)

where q,; satisfies £7q,;s’ = (L7q,s")" for 0 <s < 1.

For the proofs of Propositions 1 and 2, see [1]. Assertion (2.3) follows from
(2.1) since E(s%|Z, =r) = (E(s% | Zy = 1))" = (f,(s))". The next proposi-
tion shows that if p, and p, are both zero, then f,(s) decays at a supergeo-
metric rate. This is referred to as the Bottcher case in the literature (see [4]).
In this case we have the following proposition. Although most of this proposi-
tion is known (see [5] and [7]), we supply the proof below for completeness.

ProposITION 3. Let py = 0 = p,. Let k = inf{j: j > 1, p; # 0}. Then

(2.4) fo(s) = s¥pFH (R, ()",

where lim, R, (s) = R(s) exists uniformly in [0, 1], with R(0) = 1, R(1) < =,
Further,

(2.5) (i”((:)) )kn 51 for0<s<l,
and hence

(2.6) fu(s) ~ (i V/*=V)(pi/*-VsR(s))"".
Also R(-) satisfies the functional equation

(2.7) f(s)R(£(s)) = p4(sR(s))"

and is the unique solution of (2.7), subject to the condition R(0) > 0 and R(-)
is continuous in [0, 1].

ProOF. Since f(s) = Zﬁpjsj we may write f(s) = p,s*(1 + yg(s)), where
y=Q —p,)/p;, 8(s) = Z(;"=1:¢+1pj3j_k/(1 — pp)- Thus 0 < y < and g() is
a probability generating function.

By definition,

Fosa(s) = F(£u(9)) = Pal£())" (1 + v8(£u(9))).
Let A,(s) = (f,(s)Y*". Then h,(-) satisfies

huia() = (2a(1+ v8(£(5)))*" " ho(s),
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iterating which yields
n—1 1/R0*D
ho(s) = s TT (pa(1+ 78(£i(5)))
j=
and hence
(2.8) fu(s) = s*"pith -+ (R ()",

where R, (s) = TT720(1 + Yg(f(s)))l/k” Since 2 > 1 and g(1) = 1 we have,
for0 <s <1,

=<}

0<logR,(s) < (ij—lﬂ)(log(l + 7)) <o,
0

and hence R,(s) converges uniformly on [0, 1]. This proves (2.4).

If k=1, (2.8) yields f,(s) = spiR,(s) and the convergence of R,(s) is
established by showing that for 0 < s < 1, yg(s) < ys and £ (f,(s)) < », thus
yielding a proof of (2.2).

Next, letting

(29) R(s) = TT(1+ ()",
we note that
R * 1
0<k” log( Rn((i)) ) = knjgn kj+110g(1 + 'yg(f;(s)))

-

< i Flog(l + v8(fusr(8)))-

For0 <s <1, fi(s) > 0.Also, g(0) =0and 0 < 1+ yg(f,,, (s <1+ v)
and Yj1/k"*! < o for £ > 1. Thus by the dominated convergence theorem,

R(s) _

R,(s)

For s =1, k" log(R(s)/R (s)) = 5k~ “*D(og(1 + v)) and thus is indepen-
dent of n. Next it is easy to see that R(') defined in (2.9) satisfies (2.7). To

prove uniqueness, if R(-) is another solution of (2.7) such that R(") is
continuous at 0 and R(0) # 0, then r(s) = (R(s)/R(s)) for 0 < s < 1 satisfies

(2.10) r(f(s)) = (r(s))",
so that for 0 < s < 1, r(s) = (r(f(s))V* = (r(£,(s))*". By continuity at 0,
r(f,(s) —» r(0) > 0 [since 0 <s>1=f(s) > 0] and hence for £ > 1,
(r(f(s)))l/k"—>1 = r(s)=1for0<s < 1. ;

Since r(s) is continuous at 1, 7(1) = 1 and so R(s) = R(s)for0 <s < 1. O

lim%" log
n

We shall have occasion to use the inverse function g(s) of f(s) defined by
f(g(s)) =s for0<s <o,
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For 0 < s < 1, g(s)is well defined and g(s) > s. Also since f(s) > s for s > 1,
g(s) is well defined for 1 < s < f(sy) and g(s) < s. Thus, the iterates g, of g
are such that they are nondecreasing in [0, 1] and nonincreasing in [1, f(s,)].
The next proposition shows that the rate of convergence of g,(-) is geometric.

PROPOSITION 4. Let f(sy)) < for some s, > 1. Then for 1 <s < f(s,),
g.(s)l1 and

(2.11) Q.(s) =m"(g,(s) —~ 1)L Q(s),
where Q(-) is the unique solution of the functional equation
(2.12) Q(f(s)) =mQ(s) forl<s<f(sy)
subject to

(2.13) ) 0 < Q(s) <-oo for 1 <s <f(sg),
Q(1) =0, Q(1)=1

The proof is similar to that of Theorems 1 and 2 of [1, page 40] and is
omitted.

It is also known (see [1], page 42) that for 0 <s < 1, g,(s)11 and m"(1 —
&,(8)) increases to a finite positive limit iff E(Z,log Z, | Z, = 1) < c.

3. Proofs of Theorems 1-4.
PrOOF OF THEOREM 1. This theorem is in [2].

ProOOF OF THEOREM 2. By conditioning on %, = 0(Z,, Z,,...,Z,),

\Y

&
—~——

I

§¢>(k, e)P(Z, = k).

By assumption,

¢(k,2)P(Z, =k) _C, P(Z, =k)

h = =h(k .
n(k) piz - kr piz n( )’ Say
By (2.3),
ha(k) = qrd(k, €) = h(k), say,
qp
(R C.—.
hn( )_> skr

If we show that
9

B S

LK, (k) » LC,
k k
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then by a slight modification of the Lebesgue dominated convergence theorem
(see [9], page 270), we get that
n+1

p(Z

—-m|> e

Z, - 1) = Y h(k) > Th(k) <.
k k

However,
1 P(Z,=k) E(Z,7)

k" pT p1

)»

For any nonnegative r.v. X and 0 < p < o,

1
EX?=E|—— ~tXgp-l gt
(T(p) fo ¢ )

1 )
= —— [ E(e”'*)tP~1dt.
F(10)](; (™)
Therefore,
E(ZT 1 wf (et
(Z)= ffn(n)tr_ldt
14 I'(p)Jo P1
1 1fn(s)
= —— k(s) ds,
F(p)fo p? (€)
where
llog s|" !
R(s) = —2 2L
Since (f,(s))/p} 1 Q(s), by the monotone convergence theorem
E(zZ," 1
T(p)———1 [ Q(s)k(s) ds.
141 0

So the proof will be complete if we show [ Q@(s)k(s) ds < «. Let g(s) = f~1(s)
be the inverse of f defined by f(g(s)) = s for 0 < s < 1. It follows that g,(s),
the nth iterate of g, satisfies f,(g,(s)) = s, g,.:(s) > g,(s)andfor0 <s < 1,
g.(8)11 and f£,(s)]0. Fix 0 < ¢, < 1. Then ¢, = g,(¢,)11. Also since @ satis-
fies (4),

QD)

I, = f:”“Q(s)k(s) ds =jt

_ [t k(g(uw))g'(u)du ., N k(g(u))g'(uw) y
_ftn_lQ(u) Py _ftn_lQ( M )( pik(u) )d

Since g'(w) = 1/(f'(g(w)) and [log sl/(1 —s) > 1 as s11, (k(g(w)/
(pk(w))g'(w) - 1/(p;m"), where m = f'(1). Thus, if p,m” > 1, then for
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any 0 <A <(p;m")7' <1 there exists an n, such that for u > g,(t,),
k(g(w)g'(w)/(p1k(w) < A. Thus, for n > n, + 2,

Ins)tIn—lz> Z InSInO+1 ZAJ.<OO
1

n=ng+2

= ['Q(s)k(s)ds <. O

PROOF OF COROLLARY 1. Since E(Z2"*?|Zy=1)<xfor r>1, §> 0, we

have that
2r

‘/,;(Xk —m)

g

C,=supkE
k
is finite and so by Markov’s inequality, ¢(k, ¢) < (1/£27)C,/k". O

PrOOF OF THEOREM 3. Since E(exp(6,Z,)|Z, = 1) < « for some 6, > 0,
for £ > 0, there exist C, and 0 < p, < 1 such that ¢(k, ) < C, p}* for all k.

Thus,
Z
P ( n+1

—-—m|> ¢

Z

n

Z, = 1) <C,3ptP(Z,=k|Z,=1)

= Cs fn( ps) *
Now use (2.6). O

PROOF OF THEOREM 4. Although it is possible to deduce this theorem from
the work of [3] we give the following proof due to its brevity and for the sake
of completeness. By hypothesis K = f(s,) < » for s, =e%. So f,(s) <K if
0 < f(s) < s, thatis, if 0 < s < g(s,). Similarly, f5(s) < K if0 < f(s) < g(s),
that is, if 0 < s < g,(sy). More generally,

f.(s) <K if0<s<g, 1(s).

Now, since W, = Z m™", E(exp(6W,) | Z, = 1) = f,(exp(6/m")). Thus
E(exp(6W,) 1 Z, =1) <K if 6 <m"log g,_+(sy). Since g,(sy)| 1, log g,(sy)
~ (g,(sy) — 1). By Proposition 4, f(s,) < «for 1 < s, implies m" log g, _(s,)
— mQ(s,), which is positive and finite. Since g,(sg) > 1forall n > 1, we can
choose

0, = infm"log g,_,(s,) and C, =K. ad

n

Proor oF THEOREM 5. First we need an estimate. Let ¢(6,) =
E(exp(,W)) < for all 6 < 6,. So, if {(W®}] are iid. copies of W and
S, = LW ® — 1), then for 0 < 6,,

k 1 ((0/Vk)e/ % —1) "
E(exp(O(Sk/\/E))) =(¢(%)e‘0/1fk—) = (1+Z( ( (O)Z/k) )92
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However, sup, . ;(¢(u)e ™ — 1)/u®| = ¢ < = since lim, _, (($(w)e™™ — 1)/u?
= 3(Var(W)) < . If 6, = min(6,, 1), then sup,, _ ,(¢(6/ VE)e 0/ Yk < oo —
C,, say. We have used the fact that for x > 0, (1 + x/k)* < e®.
Now we proceed with the proof the Theorem 5. We begin by noting that
(see Theorem 2 on page 55 of [1])
w - Wn = I}Im (Wn+k - Wn)
Z,

Z (W(j) — 1),

j=1

mn

where W is the limit r.v. in the line of descent initiated by the jth parent of
the nth generation. By conditional independence,

P(W-W,) >¢lZy,Z,,...,Z,) = y(Z,,m"),
where (%, n) = P(S, > 7). However,

p -p Sk n
(Sp=m) = (WZ_)

k
0
< exp( - % ) C, (by our estimate).

Thus,
P(W-W,>¢e)=Ey(Z,,m)
<C,E exp( bam’e
—_——
1
=C,E exp(—@zam”/2 A ))
For A > 0,

E(exp(—)t(l/\/Wn))) = )\f:e"‘"P( . < u) du

® 1
= )t/ e‘)“‘P(Wn > ——2) du
0

® 0
< /\le e_)"‘exp( - —;) du (by Theorem 4)
0

u
e 0,1*
= le e“exp(— ;2 )dt.
0

Thus,

® BIA?L
P(W-W,>¢) < Czclf e ‘exp| - 2 dt,
0
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where A, = 0,em"/2. However, for A > 0,

o © Az
I(A) = [ ete ¥/ de = [*V 4 <exp|——5——| + e ™.
) /(.) /;) fk(A) AR

Choose £(A) = A%/3, Then I(A) < 2exp(—A2%/3). Thus
P(W-W,>¢) <2C,C, exp(‘l/@:(‘)ze=:m”/2)2/3 =C, exp(—A(ml/B)n82/3),

where C; = 2C,C,, A = (;/6; 6,)*/°. Similar arguments hold for P(W, — W
>e) 0O

PRrOOF OF THEOREM 6.

—-—m| > &€

Wza)

1
P(W > a)

Zn+1
Z

oo

|

—m

>8,W2a)

Zn+1
Z

n

-m >a,Wn5a'y,W2a)

Zn+ 1

—-m >e,anay,W2a))

=pa(an1 + a’nZ) say,
where 0 < y< 1 and p, = 1/(P(W > a)). Clearly,
Zn+ 1

-m >8,Wn2a7)

n

a9 SP(

= C,exp(—I(&)aym™"),

where C, and I(¢) are such that P(IX,|> &) < C,e™® and X, = (X,
+ -+ +X,)/k, {X,} being ii.d. as Z; — m with Z;, = 1. [Such a C, and I(¢)
exist by Chernoff type bounds since E(exp(6,Z,)) < » for §; > 0.] Now

anISP(W_Wn *>—a(1_ 7))
< Cyexp(—A(a(1 - y))2/3(m1/3)n) (by Theorem 5),
P(
< pu(Cyexp(~I(#)aym") + Cyexp(~A(a(1 - 1)) *(m!/)")).
Since the only condition on vy is that 0 < y < 1 and the second term goes to
zero slower than the first term, we can say that there exist C; and A (C; may

Zn+1
Z

-—m| > ¢

Wza)
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depend on v) such that

P( Zn+1

REMARK. Let I;(-), i = 1,2, be two functions from (0, ) to (0, ®) such that,
for each x > 0, if

1 n
Gni( ) =P(; YX,-m >x), i=1,2,
Jj=1

—m|> eW> a) < Cyexp(—A(a(1 - 7))2/3(m1/3)n). o

n

where {X, j};-‘;l are ii.d. with distribution { pj}°°, and {X, j}}°=1 are 1.i.d. with
distribution the same as W, then n~!log ¢,,(x) > —I(x), i = 1,2. A suffi-
cient condition for this is that £;p;s’/ <  for all s > 0.

By conditioning on %, = ¢(Z,,Z,,...,Z,), we see that for any ¢ > 0,

Zn+1
P( Z -m> E}Yn) = ¢z.1(¢)

P(W-W,>e¢elF,) = ¢z ().

Since Z,/m" - W w.p.1, we see that an almost sure large deviation result
holds: On the set {W > 0},

1 VA
logP(( ;H —m) > g

n
m n

and

Zz) - —WI(¢)
and

1

;;;log P(W-W,)>¢ |Z,) > —WI,(¢).

Thus on almost all sample paths in {W > 0}, the large deviation probabilities
decay at the same supergeometric rate and yet overall unconditionally the
rate is only geometric as asserted by Theorem 2. This interesting sharp
contrast between conditional and unconditional large deviation rates was
pointed out to us by the referee.
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