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SPREADING OF A PULSE TRAVELLING IN RANDOM MEDIA

By J. F. CLOUET AND J. P. FOUQUE

Ecole Polytechnique

This paper investigates the deformation of an acoustic pulse travel-
ling in a slab of random medium when its width is large compared to the
size of the random inhomogeneities of the medium. A limit theorem is
shown that explains how the shape of the transmitted pulse can be
obtained as a result of a deterministic Gaussian convolution of the initial
pulse. Since the random fluctuations are not supposed to be small, this
gives a new rigorous formulation of the O’Doherty—Anstey result, which is
well known in geophysical literature theory.

1. Introduction. In this paper we present a rigorous solution of a
problem arising in wave propagation in random media: this is the now
classical result from O’Doherty and Anstey which maintains that in proper
conditions a pulse transmitted through a random medium emerges with a
deterministic shape but at a random time. In fact their derivation was
essentially heuristic. Furthermore, it involved the summing of reflection
series and was implicitly for small reflection coefficients. On the other hand,
many numerical simulations agree with their prediction, even in the case
where the random noise is of the same order as the macroscopic fluctuations
of the medium.

This analysis takes place in the general framework, based on the separa-
tion of scales introduced by Papanicolaou and his co-workers (see, e.g., [2] for
the one-dimensional case and [1] for the three-dimensional case). We consider
here the problem of acoustic wave propagation in a one-dimensional random
medium when the incident pulse wavelength is long compared to the correla-
tion length of the random inhomogeneities, but short compared to the size of
the slab.

In this framework, it has already been proved in [1] (see also [3] for more
details) that when the random fluctuations are weak, the O’Doherty—Anstey
theory is valid, that is, the travelling pulse retains its shape up to a low
spreading; furthermore, its shape is deterministic when observed from the
point of view of an observer travelling at the same random speed as the wave,
whereas it is stochastic when the observer’s speed is the mean speed of the
wave.

We do not assume the fluctuations to be small, but as we are mainly
concerned with the shape of the transmitted pulse, we suppose that the
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1084 J. F. CLOUET AND J. P. FOUQUE

incident pulse has a constant amplitude but its energy is small. The methods
we use are based on those of [2] and [1]. We study the problem in the Fourier
domain and get stochastic equations. However, we derive a complex linear
stochastic differential equation which enables us to couple distinct frequen-
cies and to get a limit for the whole process in time.

Our main result consists in a complete description of the asymptotic law of
the emerging pulse. We prove a limit theorem which shows that the pulse
spreads in a deterministic way and that the emerging time is the sum of the
deterministic travel time corresponding to the effective medium and of a
Gaussian random variable properly scaled.

2. Problem formulation. We recall the main features of our model. We
shall only present the mathematical framework because it has been fully
described in [2]. We consider an acoustic wave travelling in a one-dimensional
random medium located in the region 0 < x < L, satisfying the linear conser-
vation laws

du op
p(x)g(x,t) + E(x,t) =0,

() 1 Jp u
mﬁ x,t) + E(x,t) =0.

Here u(x,t) and p(x,t) are, respectively, the speed and the pressure of the
wave, whereas p(x) and 1/(K(x)) are the density and bulk modulus of the
medium and admit the following representation:

p(x) = pux) (14 1( 5 .

Rt e )
= + vl
K(x) EKJ(x)\ = "\&?
Here p, and K, represent the slow varying deterministic parameters of the
medium, and n(x/e?) and v(x/e?) are the rapidly varying random coeffi-
cients describing the inhomogeneities. We shall use the acoustic impedance ¢
and the acoustic speed ¢ which are the macroscopic functions defined by

{(x) = Vpo(x)Ko(x) )
Ky(x)
Po(x) .

It is relevant to make a change of variable and to introduce a right-going
wave A and a left-going wave B in order to work with a hyperbolic system of
equations and to make our boundary conditions precise. So let

A=02p+ [V,
B=—-(1?p + (" u.

c(x) =

(2)
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With the notations

dln¢Y?
A= dx ’

x n(x/e?) + v(x/&?)
m(?) B 2 ’
(i) _ n(x/e%) — v(x/&?)

&2 2 ’

from (1) and (2), we obtain the system of equations for A and B:

=513 oll)
®) _0_(15[1 0] 1 m(?)

0 -1

n(%) k2
| oz) ozl

& &

The slab of medium we are considering is located in the region 0 < x < L and
at ¢ = 0 an incident pulse is generated at the interface x = 0 between the
random medium and the homogenous medium on the outside. According to
previous works [1, 2], we choose a pulse which is broad compared to the size
of the random inhomogeneities but short compared to the macroscopic varia-
tions of the medium. There is no wave entering the medium at x = L:

a0.0) - 1[=),
B(L,t) =0,

(4)

where f is a function with compact support and C* regularity. Note that the
energy entering the medium is &/f(¢#)* d¢ and so is small when ¢ is small. We
need to perform another change of variable adapted to our problem so that (3)
becomes centered. We are interested in the transmitted wave, that is,
A(L, 7(L)), where 7(L) is the travel time in the macroscopic medium defined
by

Moreover, in order to have a complete description of the transmitted pulse,
we study the process A(L, 7(L) + £0), ¢ (- ) that is, we open a window of
size ¢ in the neighborhood of the mean travel time. So let

a’(x,0) =A(x,7(x) + €0),

3 b°(x,0) = B(x, —7(x) + €0).
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The solution of (3) and (4) takes place in an infinite-dimensional space
because of the variable ¢. So we perform the Fourier transform:

4°(x, ) = [e*a*(x,0) do,

be(x,0) = [e b*(x,0) do.

In the frequency domain, with the change of variable (5), (3) and (4) become

(6) =i el emali)
s
where
I T R e ey
O ) ()
(8) . exp(—QLwT(:) )
(% 0) = Aw oefzesC) .

The transmitted pulse admits the integral representation
1
A(L,7(L) + s0) =a*(L,0) = E[e 4°(L, 0) do
As the problem (6) is linear, we can replace (7) by
a°(0,w) =1,
(9 .
b°(L, ) =0

and in that case the following representation holds for the transmitted pulse:
1 N

(10) A(L,7(L) +e0)=a®(L,0) = 2—/e"“""f(w)é8(L, w)do
o

[4¢ is now the solution of (6) and (9)].

We want to prove an asymptotic theorem for this quantity. Instead of
working with (4°(x, ), b°(x, w)), we will use its propagator, that is, the
matrix Y*¢(x, o) defined by

[és(x, )

be(x, w) b°(0, w)

a°(0,
=Y8(x,w)[ ( )],
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80 Y?(x, w) is solution of the linear differential equation
d 1
d—Yg(x, w) = (—Pa(x, w) + Q°(x, w))Yg(x, w),
x £

Y?4(0, w) = Id:.
If (a, B) is a solution of (6) and (9), then ( B, @) is another solution linearly
independent of the previous one, so we can write Y*(x, w) as

(12) Yo(x, ) = [“(x"") B(x,w)l.

B(x,w) a(x,w)
Now, since

xf 1
det Y*(x, ) = exp(trfo (;Pe(y, ®) + Q*(y, w)) dy) =1,

we have

(11)

la(x, )> = 1B(x, )P =1 Vax.

[de(%,w)] = Y(L,w)[és(g,w)]

From

we deduce that

1
(L

(L, ) a(L, »)’
(13)

54(0, w) = — L)

’ a(L,w)’

so we get the conservation of energy relation
(14) l6°(L, »)I* +16°(0, 0)|*> = 1,

which shows that 4°(L, w) is uniformly bounded.

3. Shape of the transmitted pulse. Let us define the correlation coef-
ficients of the noise by

a,, = foo[Em(O)m(x) dx,
(15) "
a, = [ En(0)n(x) dx.
0
Let 0, = [f dy/(c%(y)) and let Z; be a Gaussian variable such that
(16) EZ, =0, [EZ2=2a,0,.
Let G/(¢) be the Gaussian kernel given by

o 1 t?
t) = —————-exp| ———|.
1(f) 4ma, 0} exp 4a,0;

Our main result is the following theorem.
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THEOREM 3.1. The process (A(L,7(L) + €0))_y < , <. COnverges in distri-
bution as & goes to zero to the process (f* G(0 + Z;))_ ey <o,

This tells us that the pulse retains its shape during travel in the random
medium, but that there is a deterministic spreading due to the Gaussian
kernel and a random centering at Z; which do not affect the shape. As usual,
we first show the tightness, which is very easy because of the uniform
boundness of 4¢° and the spectral representation (10), and then we identify
the limiting distribution through all its moments by the use of a diffusion
approximation theorem.

LEMMA 3.2. The family of processes ((a®(L, 0))_o <)o, IS tight in
C[(—o0,); R] with the sup norm.

Proor. The quantity |a®(L, o )| is bounded by (277)'1f|f(w)| dow and the

modulus of continuity,
M*(8) = max |a®(L, oy) —a®(L, ay)l,
loy—ogl< 8
—®0< 0y, 09<®

is bounded by

& 1 y
M#(8) < '277f sup |1 — exp(ro(oy — 0,))l |f(0)l dw.

loy—ogl< 8
By Lebesgue’s theorem,
lim supP{M(8) > a} =0, Va>0,
50

which is enough for the tightness. O

We shall now characterize the limits of the finite-dimensional distributions
of the process (a°(L, 0))_,, . , <. by computing the moments E[a°(L, o)?* -+
a®(L, g,)P*] for all real numbers o; < --* < 0, and all integers p,..., p,.
We have

E[a*(L, 0y)™ -+ a*(L, a;,)"]

k

= (277)(*J§PJ)/exp(—b Y ijf)( I1 f(w]l))
1<j<k 1<j<k

(17) 151gpj lslspj

s ) 1
XE l—[ aS(L,wj) doi - dof*.
1<j<k
1<l<p;

Hence the quantity of interest is F[4°(L, w,) --* 4°(L, w,)], where w,..., o,
are n distinct frequencies. So we define an n-dimensional propagator

Y°(x, w)
Y=Y°(x, 0, 0g,...,w,) = s
Yo(x,w,)
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which satisfies

dY P( x x)Y x x v
— V¢ = — - 6‘+ - &
dx * & PPN b Q(x’a’az) ¥’
Y0=IdC2n,
with
P°(x, w,) |
x X
P(x’_$'—2)= s
g €
P(x, w,)
[Q°(x, 0y) ]
x X .
Q(x’_"—2')= . ’
g’ ¢ .
| Q°(x, w,) |

where P(x, w) and Q(x, w) have been defined in (8). We shall use a
diffusion-approximation theorem for (Y;?),.,. We recall the general result
from [5], Theorem 2.8. In our case, the variable x will play the role of a time
in the process (Y, . o, but, as usual, we shall denote it by (X)), o-

THEOREM 3.3. Assume that:

() (q,),s, is an ergodic Markov process with state space S (S being a
compact metric space, for example).
Gi) P(¢, h,q, x) and Q(t, h, q, x) are two smooth bounded functions from
R X R XS X R? to R?, periodic in h with period T, independent of t, q and
x.
(iii) EP(t,h, gy, x) = 0, where the expectation is taken with respect to the
unique invariant probability measure of (q,), o-

Then the solution of the ordinary differential equation with stochastic coeffi-
cients

X Lp(y! X) ! X)
= - ) &2 S+ s &2 ; )
(18) dt £ ( 2 g et @ g Qv S
XG5 =%

converges in distribution as & goes to 0 to a diffusion process whose infinites-
imal generator is given by

w1 .p,
f _%F(x)=f0ﬁ/; EP(t,h,qq, %)
(19) | V.[P(¢,h,q,,x) V. F(x)] dhdu
1
+— [CEQ(t, b, a0, %) - V,F(x) dh
T, Jo

(assuming that all the integrals are well-defined and finite).
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The theorem is also true under general mixing conditions on the coeffi-
cients, but we shall not enter into the details (see, e.g., [3] for the computation
of the infinitesimal generator with the averaging introduced by the periodic
variable in that case). We only assume that the processes m(x) and n(x) are
either ergodic Markov processes or bounded processes with enough decorrela-
tion so that the previous theorem applies and (Y?), (o 1 converges in
distribution as & goes to 0 to a diffusion process (Y,), (o, 1,;-

We would like to characterize (Y,), (o 1 as the solution of a stochastic
differential equation. This is not so easy, because Y;” is a complex-valued
matrix, so we have to consider separately the real and imaginary parts of
each coefficient. However, taking advantage of the linearity of the problem, it
is possible to simplify the computation.

The first step is to find a stochastic differential equation in the real case.
So let us adopt the following notation for matrices M(¢, h, q) and N(¢, &, q)
such that the product MN makes sense:

w 1
(MINY = [ — ["EM(t,h,q0)N(t,h,q,) dhdu,
o Ty’0
1 .7,
<M>t=ﬁf0 EM(¢,h,q,) dh.

We also denote transposition of matrices by the superscript 7. Then we have
the following lemma.

LEMMA 3.4. Let (Xf),c(o 1, be the R%valued random process solution of

ax; 1 (¢ Y ( ¢ )X
., = t’_, & F + t,_, g2 E,
(20) dt - ( - 902 | X7+ Q - q:/ t
X(;; =x0,

where P and Q are two d X d real matrices satisfying the hypotheses of
Theorem 3.3 (i), (ii) and (iii). Then there exist matrices P¥,1 <k <n, n < d?,
such that, for every vector x € R,

(21) (Px|(Px)"y, =% f Prx(Plx)"
k=1

and (Xf) converges in distribution to the diffusion process solution of the
stochastic differential equation

dx,

Y. PFX, dB} + ({PIP), + (@) X, dt,
(22) k
X, =x,,

where B, ..., B" are n standard independent Brownian motions.
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Proor. For f(x) € C2(R?) and F(x) € CL(R?, R?), we write

I%f
vif= ,
f ﬁxiaxj)lq j=<d
af
Vf = ,
f axi)lsisd
V| F 8Fj
W) = 0% )1<i j<aj
&ZkP’kxk
W{Px}ij= ———— =P,

13

so V{Px} = PT and
Px-V[Px-Vf] = Px- (V{Px}Vf + [V2f] Px)
= Px-PTVf+ Px-[V2f]Px
= (P*x)" Vf + tr( Px(Px)" V*f).
So in the linear case the generator (19) can be written
(23)  ZF(x) = tr((Pxl(Px)" ) V2F) + [((PIPYx)" +(Q,)"] VF.

There always exist matrices P} such that (21) holds for all vectors x in R?
(see [4]) and the solution of (22) which exists and is unique has (23) for its
infinitesimal generator. O

We turn now to the complex case.

LEMMA 3.5.  Suppose that (Z{),c o r, is @ C%-valued random process such
that

dz; 1 t . t .
(24) dt _P(t’ Z’qt/ﬁ)z‘ B R K
Zg=20,

where P and @ are two d X d complex matrices satisfying the hypotheses of
Theorem 3.3 (1), (ii) and (iii). We suppose that there exist complex matrices PF,
1<k <n,n<4d? such that for all C¢ vectors z, one has

(Pzl(P2)"y, = 1 ¥ Plz(Pt2)",
=1
=1

k
(25) ‘
(P2|(P2)" ) = 1 ¥ Ptz(PFz) .

k
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Then the law of (Zf) converges to the law of the diffusion process solution of
the stochastic differential equation

dZ,= Y P}Z,dB} + ({(PIP), + {Q)))Z, dt,

(26) k=1
ZO = 20 5
where B, ..., B" are n independent standard real Brownian motions.

ProOF. Let C €.#, ,,(C) and D €.4#,, ,(C) be defined by

1 L 0 . 1 0
co 0 0 D1 -t
o . . 0/ 2 1
0 1 S0 -
If z=(24,...,2)T and x = x(2) = (Rz,,J2z,,..., Rz, I2,)7, then
x =Dz + Dz,
z = Cx,
CD =1Ida,
CD = 0g..

We can apply the diffusion-approximation theorem to the real process X/ =
X(Z?):
ax;
dt
By (23) and (25), the diffusion matrix is
9 = ((DPC + DPC)x | ((DPC + DPC)z)"),
= D{Pz | (Pz)"),D" + D{Pz | (Pz)" ). D"

+ D(Pz|(Pz)"),D" + D(Pz|(Pz)"), D"

1
= —(DPC + DPC)X; + (DQC + DQC) X;.

— 1 ¥, [(DPtC + DFFC)«|[(DP}C + DP[C)x|"
k=1

and the drift vector is

7= (DPC + DPC | DPC + DPC), + {DQC + DQC),
= D{P|P),C + D{PI|P),C + D{(Q),C + D{(@Q).C.

Thus (X/) converges in law to X,, the solution of

dX, = ¥ (DP*C + DP[C)X, dB}
k

+(D{PI|P).C + D{PIP),C + D(@).C + D{@).C)X, dt.
Multiplying on the left by C gives (26). O
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Thanks to this lemma, it is now easy to see that the limit in distribution of
the process (Y,%), <o, 1) is the solution of the stochastic differential equation

dY, =P,Y:dB, + ¥ (Q!Y, dB! + Q*Y,dB}) + R.Y, dx,
(27) k=1
Y, =1Id,

where B, B,..., B", B,..., B" are 2n + 1 standard real Brownian motions
independent of one another and the matrices P, @%,...,Q", @%,...,Q", R are
defined as follows:

1. a,, and a, are the correlation coefficients (15). They measure the random-
ness of the medium.

2. The drift matrix is zero when only one of the density and the bulk modulus
is random:

_w% -
o}
a, — o,
R=——
(%) o2
w,
3. Each matrix Q" or @* acts only on Y(x, w,):
o 07
of Ve, [0« 0w, 0 0
* ¢(x)|0 0 ® O - O0Ff
LO O_
o ‘ 0
Q~k=l«‘/an 0o - 0 w, 0 0
c(x)|0 0 -w, O - OFf
LO ceo e e ces 0_

4. The matrix P is the only one that creates a coupling between distinct
frequencies:

51

_ w2ay, %

Toe(x)




1094 dJ. F. CLOUET AND J. P. FOUQUE

From (13), we need to compute

Ra, + 13 a,
(Ra)” + ()
From the stochastic differential equation (27) we get

V2a,
d(Ray), = — (%) w,Sa, dW, + ‘/(_)

1
a(L, wy) = = =

(S B, dBE — R, dé]:)

(Say)o = 0.

Now a long but straightforward use of It6’s formula leads to the following

equation for 4:
W2a, o wi(a, + a,
X ® 4(x, wy) dB, — “rlen + en) - )a(x, w,) dx
c(x) c(x)
+ F(Y(x, w,))(dBf — «dB}),
(0, w,) =1,
where F(Y(x,w,)) is only a function ofa, and B,. Now we compute
Ea(L, w,) - (L, w,)] for distinct frequencies. It6’s formula gives

dna(x ;) = X [1d(x, 0) di(x, ;)

i J*i

da(x, w,) =
(28)

+ 3 I é(x, w,)d{d(x, »,)d(x, w;))

ixjk*i,]j
waa,,;
- (l:[d(x,wi))Z(Wd(x w;) dB,
of(a, t @)

o()’
+(ITé(x, o)) Z(F(Y(x, 0,))(dBL - L dBL)

t i

L-‘/zamw L‘/2amwj
+(]_[é(x, o; )

i . i%j c(x) c(x)

a(x, w,) dx

dx.
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Therefore,

[Té(x, @) =

(a +a,)L0f +2a,X,,

o7 ‘ J[E[l_[a(x w,)] dx

This equation has a unique solution, but instead of solving it we can easily
see it is also satisfied by E[IT,a(x, w;)], where a(x, o) is a solution of

dE

W2a, 0 +
di(x, ) = """ G(x, w,) dB, — Ma(x wy) dx,
c(x) c(x)
d(0,w,) =1
and so

E[&(L, w,) -+ 4(L, w,)] = E[a(L, »,) - a(L, w,)].
Furthermore, we can solve (29) explicitly:
x dB,

9 x dy
a(x, wk)—exp(bwk‘/Za fc(y) wkanf W)

We can now conclude: Z, = /2a,, [¢ dBy/(c(y)) is a centered Gaussian
variable with the correct variance (16) and

1 A
%fexp(—Lwa')f(w)d(L, w) do

1
[f(t) o Jexp(ra(t — o + Z,))exp(~ w’a,0,) do dt

(t— o+ Z;)°
\/47701 T, ff(t)exp 4a,0;

=f+G(o+ Zy).

dt

Hence,
lim E[A(L,7(L) + £07)™ -+ A(L,7(L) + e0;,)""]

= [E[f*GL(CH +Z)" e [ Gy + ZL)pk],

which is enough to conclude the proof of Theorem 3.1 because we know
already that the process is tight.

The description of the shape of the transmitted pulse is now complete:
There is a deterministic spreading due to the convolution by the Gaussian
function G; and a stochastic translation by a Gaussian variable which does
not affect the shape.

REMARK 3.6. We have in fact proved a stronger result because it is easy to
see that the tightness of the process (Y,’), <o, 1, implies that of the process
A(x,7(x) + £0), < (0,1, and so the field A(x,7(x) + £0), c;_7 1), xeq0,1] COD-
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verges in distribution to f * G, (o + Z,), where G, is the Gaussian kernel and
Z, is the diffusion process defined by

REMARK 3.7. With the chosen normalization of the incident pulse, the
only observable signal is the coherent transmission whose amplitude is of
order 1. Indeed, if we observe the transmitted signal far from the mean
arrival time of the pulse, that is, if we look at

A(L, ~(L : “)Aw)as(L, 0) d
(L,7(L) +1) = 5 [exp —LT)f(w)a( , 0) do
for t strictly nonnegative, then

EA(L, T(L) +t)"

- % ) /exp(_L

)l_[f( )lEl_[a(L w;)dw;  do,

e e I 1
X [EH(dS(L, ®) —4(L,0))dw; - do

n-

The first term goes to zero as & — 0 due to the boundness of d(L, w) and the
regularity of 7, and the second term goes to zero because of the convergence
result previously proved. The study of the reflected signal, defined for ¢
positive by

B(0,¢) = %fexp(—b%t)f(w)ég(O, w)do

can be deduced from the previous analysis. If we want to work with forward
stochastic differential equations, we make the change of variable

a°(x,w) =a°(L — x, w),
be(x,w) =b°(L — x, »).

Then we find an equation satisfied by the limit in distribution of the propaga-
tor matrix Y°(x, w,,..., w,) for (@°, b¢) with distinct frequencies and we find
the following stochastlc dlfferentlal equation for b(x, w,):

L2—V2ab(x ) dB,, — @ (2t +0"‘)13(x wy,) dx
c(x) e(x)’
+ F(Y(x, w,))(dB! -« dBY),

b(0, w,) = 0.

db(x, w,) =
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The equation for the moments is then

d[E[l;[l;(x, wj)] ! ((Zam + o) Lot - 8a, T ijl)

. c(x)? j*l

[Th(x, wj)] dx,

XE

E[l}lé(o, wj)] =0,

lim E[];IGE(L, wj)] = 0.

-0

Hence B(0, t) converges in probability to zero.

REMARK 3.8. Although the amplitude of the reflected pulse is of order less
than 1 and cannot be observed in the limit, its contribution to the outcoming
energy is nonzero because the energy of the coherent transmission is less
than the total incoming energy [remember the conservation of energy relation

(14)]
JA(L,7(L) + t)*dt _ JA(L,7(L) + &t)” dt

Jf(¢/e)* dt JF(2)* dt >0
J(w) exp(10Z;, — w’a,0,) do <1
[f(w)z do ’
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