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LIMIT THEOREM ON OPTION REPLICATION COST
WITH TRANSACTION COSTS

By SHiGEO KUSUOKA
University of Tokyo

Option replication in a discrete-time framework with transaction
costs and its limit is discussed. First the notion of an efficient strategy is
introduced, and then it is shown that an efficient strategy is the best
strategy if it exists. It is also shown that the limit of the cost for option
replication is given by a certain formula when the unit of time A¢ tends to
zero and the transaction costs tends to zero on the order of \/E .

0. Introduction. Several recent papers have discussed option replica-
tion in the presence of transaction costs [e.g., Leland (1985), Merton (1990),
Davis and Norman (1990). Boyle and Vorst (1992), Henrotte (1991) and
Grannan and Swindle (1993)]. In particular, Boyle and Vorst (1992) obtain
the “best” strategy to create a European call option in the multiplicative
binomial lattice model. However, it appears to be very difficult to find the best
strategy or to compute the cost for creating more general contingent claims,
even in this simple model. In the present paper, we study the asymptotic
behaviour of the replication cost in a setting closely related to that of Boyle
and Vorst (1992) and Leland (1985). Also, we show that “hidden preconsistent
price systems” play a key role in the proof.

1. Main results. Let (2, %, P) be a probability space. Let K > 1 and
{Zi}i-0.... k be a family of increasing sub-o-algebras of . We assume that
is trivial, that is, P(B) = 0 or 1 for any B € .%,, and that #(%) < ». We
consider two kinds of securities: bonds and stocks. We think of security 0 as
the bond and security 1 as the stock. We assume that the price P(k),
k=0,...,K, of security i, i =0, 1, is an %,-measurable positive-valued
random variable. We assume that the proportional transaction cost on sales
of security 1 is ¢y, ¢, € [0, 1), and the proportional transaction cost on
purchases of security 1 is c¢;, ¢; = 0. We also assume that there is no

transaction cost for trade of security 0. Let f: R — R be given by
(1-c¢y)z, ifz<O,

(=) = (1+¢c)z, ifz>0.

Then we obtain the amount —f(z)P!(k) if we sell security 1 in the amount
—2, 2 <0, and that it costs f(z2)P(k) to buy security 1 in the amount z,
z > 0, at time k. )
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OPTION REPLICATION WITH TRANSACTION COSTS 199

Let .7 be the family of adapted stochastic processes {I(k)},_, . x. We call
an element I €.7 a strategy. Here we think of the situation in which at time
k, we buy security 1 in the amount I(%) if I(2) > 0 and we sell security 1 in
the amount of —I(k) if I(k) < 0.

Let P(k; ) denote P°(k; w) 'PY(k; 0), k =0, 1,..., K, w € Q. For each
x=(x% x1)eR? and I €.7, let X(k; x, I) = (X%k; x, I), XX k; x, I)),

=0,1,..., K, be the adapted R2-valued process defined by

k
XO(k;2,I) =2°- lgf(l(l))ﬁ(l)
and
k
XY (k;x, 1) =x'+ ) I(1).
1=0

Then X(k; x, I) is the post-trade portfolio at time % if the initial portfolio is
x and the investment strategy is I.

DEFINITION 1.1. For each Y € L(Q; R?%, %, dP), the replication cost
7*(Y) = 7*(Y; ¢y, ¢;) of Y is defined by

7*(Y) = inf{x°P°(0); x° € R, there is an I €.7 such that
Y°<X%K;(x°0),I)and Y' < X'(K;(x°0),I) P-as.}.

The replication cost 7*(Y') is the minimum initial cost that one needs to
replicate the portfolio Y at time K almost surely.

DEFINITION 1.2. We say that I €.7 is an efficient strategy if
P(I(k+1)20,P(k+1) <P(k)1%)>0, Pas,

and
P(I(k+1)<0,P(k+1) <P(k)|%) >0, Pas.

forany £k =0,1,..., K — 1.
The following theorem is proved in Section 3.

THEOREM 1. Suppose that I €.7 is an efficient strategy. Then
m*(X(K;(x°,0),1)) =x°P°(0), x°eR.

REMARK. Boyle and Vorst (1992) show that European call options can be
realized by an efficient strategy in a multiplicative binomial lattice model.
However, our definition of replication cost is somewhat different from that of
Boyle and Vorst.
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From now on, we think of a special situation. Let O = {—1, DN and let &
be the Borel o-algebra on Q. Let Z,: O —» R, £ € N, he given by Z,(w) = w,,
o= (0, w,,...) € Q. Let P be the Bernoulli measure on () such that
P(Z,=-1)=P(Z,=1)=3%keN,and Z,, k=1, 2,..., are independent
under P. Let &, = {¢, Q} and F, = o{Z,,...,Z,}, k=1,2....

Now let r, o, u € (0, ®), T > 0 and c,, c; € [0, ®), and fix them through-
out this section, Also let r,, o,, u,, ¢;, €0, ©) and ¢, , €(0, 1), n =1,
2,..., be such that ‘

(1.3) m, — 0, <r, <u, + o, neN,
(1.4) lim (n~17) ', = r,
n—ow
(1.5) lim (n7'T) " 1, = 1,
(1.6) lim (" 'T) %0, = o,
n—w

(1.7) '}i_lg(n_lT)*lﬂco,n =Co

and

(1.8) ’}Er:o(n*lT)_l/zcl,n —c,.

For each n > 1, let
(1.9) PO(k; o) = exp(r,k)

and

, E=0,....,n, o €.

(1.10) Pl(k; ) = exp(an iZ(l) + u,k
=1

We consider a model in which the unit of time is n~ 7, the price of security i,
i =0, 1, at time (k/n)T is given by P/(k; ) and the maturity is 7. This is
equivalent to the n-step multiplicative binomial lattice model employed by
Cox, Ross and Rubinstein. We consider the case in which the transaction cost
coefficients are given by (c, ,, ¢, ,) € (0, 1) X (0, ©). We are interested in the
asymptotic behaviour of the replication cost 7, as n — o,

Let W,: R1*" - C([0, T']; R) be the linear interpolation operator given by

W, ({z(B)}e-0)(2) = ([_’;_f +1- _nT_t)z([_nT_t])
7 -[F){[F]
'for‘any t €[0, T), and

(112)  W((z(R))j-o)(T) =2(n),  {2(k)}ioo € RIM.

(1.11)
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Let y = ¢y + ¢; and let &, (o, v, r) be the set of probability measures @
on C([0, T']; R) such that {e "*w(¢); ¢ € [0, T']} is a positive martingale under
Q, Qw(0) =1)=1, and such that the quadratic variation {(logw); of
{log w(t); t € [0, T']} satisfies

(1.13) o(o— y)ydt <d{ogw); <o(o+ vy)dt, ¢te[0,T]for Q-as. w.

Then we have the following theorem.

THEOREM 2. Let F: C([0, T']; R) » R? be a continuous function such that
there are C € (0, ®) and p € (1, ©) for which
. p - :
IF(w)IsC(1+ max Iw(t)l) , wecC(0,T];R).
te[0,T]

Then we have
lim m* (F(W,({P2(k; ))i_o)))
= sup{E?[Fy(w) + e ""w(T)F(w)]; Q € Py (0,7, 1)},
where F(w) = (Fy(w), Fi(w)); w € C(0, T1; R).
The proof is found in Section 6.

COROLLARY 1. Let F: C([0, T]; R) > R? be a continuous function such that
there are C € (0, ®) and p € (1, ©) such that

: , P
F(w)l<Cl|l1+ n t .
IF(w)l < C(1+ max lw(t))
Let G: C(0, T]; R) » R be given by G(w) = Fy(w) + e "Tw(T)F)(w), w €

c(o, T]; R).
(i) If G: C(0, T]; R) —» R is concave, then

lim 7 (F(W,((P2(ks ))io))) = E¥LG(w)].
Here @ is a probability law of {exp(¢B(t) + (r — 52/2)t); t €[0, T}, o=
(o(o+ yDV? and (B(t); t €0, T} is a standard Brownian motion.

(ii) If there is a convex function §: R > R such that G(w) = g§(w(T)),
w € C([0, T); R), then

lim mr (F(W,({PX(k; Mio)))

= f(21'rT)_l/2g”f eﬁp(gx +
R

j{ere o={(c(c—y)V 0}1/2.



202 S. KUSUOKA

REMARK. In the case of a European call option with the exercise price «,
we have G(w) = 0 V (w(T') — a). So we can apply Corollary 1. This result
naturally coincides with Lemma 1 in Boyle and Vorst (1992).

2. Preconsistent price systems. In this section, we introduce the no-
tion of preconsistent price systems following the ideas in Harrison and Kreps
(1979). Then we show that the replication cost 7*(Y') of the portfolio Y is the
supremum of preconsistent prices of Y.

ProrosiITION 2.1.

(1) f(az) = af(z),a>0,z€R.
(ii) flz) +f(2')=f(z+2"),z,z' €R.
(iii) f(z+2')=f(z) +f(2')ifz,2" 200rz,2z' <O0.

(iv) XO0k;x, 1)+ X%k; 2", I'") <X%k;x+x',1+1)
and
X'k;x, 1) + X (ks x', I') =X ks x + 2/, I+ ')
foranyk=0,1,...,K, x, x' €R%? and I, I' €.7.
(v) X(k;ax,al) =aX(k; x,1)
forany a >0,k =0,1,..., K, x € R? and I €.7.

PrOOF. Assertions (i), (ii) and (iii) are obvious. Assertion (iv) follows from
-assertion (ii) and assertion (v) follows from assertion (i). O

DEFINITION 2.2. A price system is a linear map 7 from L*(Q; R?, %, dP)
into R such that

w(X)>0
for any X = (X°, X') € L*(Q; R?, %, dP) such that
(2.3) X°P°(K) - f(-X')P(K) =0, P-as.
and
(2.4) P(X°P°(K) - f(-X")P'(K) > 0) > 0.

ProrosiTioON 2.5. (i) For any price system w, there is a unique
(p° pY € LN(Q; R?, F, dP) satisfying

(2.6) p'>0, Pas.,i=0,1,

and

(2.7) (1 -co)P(K)p® <p'<(1+c,)P(K)p®, P-as.
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(ii) Conversely, if (p°, p}) € LMQ; R2, F, dP) satisfies (2.6) and (2.7),
then the linear map w( ; p°, p'): L*(Q; R2, %, dP) - R given by

(2.8) w(X;p° p') =EP[XPD°+XD'], XeL'(Q;R? %, dP),
is a price system.

ProoF. (i) Since #(9’ ) < », there is a (p°, p!) € LX(Q; R?, %, dP) such
that m(X) = EF[ X% +Xl 1, X =(X° XY e L"(Q; R?, %, dP). Let £
L*(Q, %, dP) such that ¢ > 0 P-a.s. and P(&> 0) > 0. Then both (¢, 0), (0,
£) € L'(Q; R?, %, dP) satisfy (2.3) and (2.4), and so we have w((£, 0)) =
EP[£p°] > 0 and #((0, £)) = E[ £p'] > 0. This implies (2.6).

Let ¢ € L*(Q, F, dP) with £> 0 P-as. and let m > 1. Let X = (X°,

1) =(1/m -1 - ¢)P(K)E, £) € L(Q; R?, %, dP). It is obvious that

— f(=XY)YP(K) > 1/m. So we have 7(X) > 0, which implies that

EP[£(1 - co) P(K)p°] <E[£p'] + -n—zE”[p"]-
Letting m — o, we have
EP[£(1 - o) P(K)p°] < EP[ £p'].

This implies the first inequality in (2.7).
Also, let X = (X°, XY =Q/m + @ + ¢))P(K)¢, —¢£). Again, we have
X0 - f(—Xl)P(K) > 1/m P-a.s. This implies

- 1
E”[¢p'] < BP[£(1 + ¢)) P(K)p°] + —E"[°].

Letting m — o, we have the second inequality in (2.7).
(i) Assume that (2.6) and (2.7) are satisfied. Suppose that X € L*(Q; R?,
Fx, dP) satisfies (2.3) and (2 4). By (2.3), we have X0 0 _ A(—XYHP(K)p° > 0.
So we see that X%° + X%! > 0 and P(X%? + X! > 0) > 0. Therefore, by
(2.8) we have
7(X; p°, p*) = EP[X%° + Xp'] > 0.
This implies our assertion and completes the proof. O

From now on, we denote by 7( ; p°, p!) the price system given by (2.8) for
(p° pY) € LNO; R?, F, dP) satisfying (2.6) and (2.7).

DEFINITION 2.9. We say that a price system = is preconsistent if

(2.10) =((1,0)) = P°(0),
(2.11) (1 = ¢y)PY(0).< 7((0,1)) < (1 + ¢,)P(0)
and

(2.12) m(X(K;0,1)) <0, Ier
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For each (c,, ¢;) €[0, 1) X [0, »). Let &(c,, c;) be the set of all preconsis-
tent price systems for which transaction costs are given by (c,, ¢;).
The following proposition is obvious.

ProposITION 2.13. (i) P(c,, ¢;) is a convex set for any (cy, c¢;) €0,
1) X [0, «).

(i) P(cy, ¢;) €P(cy, ¢}) for any (cy, ¢p), (cp, ¢}) € [0, 1) X [0, ) such that
co < ¢y and ¢; < ci.

PROPOSITION 2.14. Let (p° pl') e LXQ; R%, %, dP), p° >0, p' >0,
P-a.s. Then w( ; p° p') is a preconsistent price system if and only if the
following are satisfied:

(2.15) EP[p°] = P°(0);
(2.16) (1= co)P(R)EP[p°1%] <EP[p" 5]
<(1+¢,)P(k)E?[p°1%], Pas.,
foranyk =0,1,..., K.
ProoF (“Only if” part). (2.15) is obvious from (2.10), so we prove (2.16).
Let £k €{0,...,K} and ¢ be an .7,-measurable function, and let I(I) = 0,

1 #k, and I(k) = £ Then we see that X(K; 0, I) = (—f(£)P(k), £). So we
have

0> 7(X(K;0,1);p% p') = EF[~f(£)P(k)p° + &0}
= EP[¢E7[ p' 1] — F(£)P(R)EP[ p°153]].
This implies that for any .#,-measurable nonnegative function &,
EP[[EP[p*15:] - (1+ ) B(R)E?[p° 17]}] <0
and
EP[{EP[ p'15,] — (1 - co) B(R)EP[ p°157]}] = 0.

These imply (2.16).
(“If” part). Suppose that (2.15) and (2.16) are satisfied. Letting £ = 0 or K
in (2.16), we have

(1 —¢o)P(O)EP[ p°] <EP[p'] < (1 +¢,)P(0)E?[p°]
and
(1-c)P(K)p® <p' <(1+¢)P(K)p°.

These and (2.15) imply (2.7), (2.10) and (2.11). So we only have to check (2.12).
However, by (2.16) we see that for any I € #and k& = 0,..., K, we have

~f(I(k))P(R)E?[ p° 1 %] + I(R)E"[ p' 15] < 0.
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This implies that
EP[X°(K;0,1)p° + X}(K;0,I)p'| <0, Ies
So 7(-; p° p') is a preconsistent price system. This completes the proof. O
PROPOSITION 2. 17 Suppose that P(c,, ¢,) # ¢. Then for any Y € L(Q;
R2, %, dP),
7*(Y; ¢q, ¢;) = sup{m(Y); m €P(c,, cl)}.
PrROOF. Let Y L(Q; R?, %, dP). Let x° € R and I €.7 and suppose

that Y° < X° (K; (2%, 0), ) and Y! < X}(K; (x°, 0), I), P-a.s. Then we see
that for any precon51stent price system mr,

m(Y) < m(X(K; (x°,0), 1))
m((x°, O)) + 7(X(K;0,1)) <x°P°(0)
ThlS implies that 7(Y) < 7*(Y). Thus we have

7*(Y;co, 1) = sup{ﬂ-(Y); T €P(cy, €1)}.

Let A, = {Z € L*(Q; R?, %, dP); there is an I €.7 such that Z° < X°(K;
0,I)and Z! < XY(K;0, I) P-a s} Then, by Proposition 2.1, we see that A, is
a convex set containing 0. Now suppose that & < 7*(Y). Let A, ={Z e L"(Q;
R2, F, dP); Y° — bP%(0)™! < Z°, Y' < Z' P-as}. Then A, is a convex set.
Also by the definition of the replication cost, we see that A, N A, = ¢. Since
#(Fg) < =, there is a (p°, p') € LN(Q; R%, F¢, dP) \ {0} such that

|/\

(2.18) EP[Z2%° + Zb] <0, Z=(2° Z') €A,
and ‘ .
(2.19) EP[ZOpO +Zh'] =0, =(2° 2 e A,.

By (2.19), we see that p° > 0, p! > 0, P-a.s. Then a 31m11ar argument in the
proof of the only if part of Proposition 2.14 shows that ( p°, p') satisfies (2.16).
So we see that E”[ p°] > 0 and E”[ p'] > 0. So we may assume that E?[ p°]
= P%0). Let 7": L*(Q; R?, %, dP) - R be given by

7'(2) = E*(2%° + Z%'],  Z=(2°,2') € *(; R?, %, dP).
Then we see that
b=m'((bP°(0)7},0)) = 7'(Y) — ='(Y - (bP°(0) ", 0)) < 7'(Y).

Now let us take a 7" € %(c, ¢,). Then for any ¢ € (0, 1), (1 — &)7’' + en” €
P(cy, ¢y). This shows that b < sup{w(Y); 7 Eﬂ(co, ¢y} and so we have

m*(Y; ¢o, ¢1) < sup{m(Y); m €P(cq, 1)}

This completes the proof. O
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3. Proof of Theorem 1. Let G: R? X (0, ») - R be given by G(x; p)
= —x% — flaxV)p, x = (x°, x!) € R2, p € (0, ©). Then we have the following
proposition.

ProposiTiON 3.1. () If G(x; p) =0 and G(y; p) =0, then G(x +y;
p~)207 x,yER2,ﬁE(O,OO)

(i) Let x = (x° x1), y = (¥°, y1) € R? and p € (0, »).

@ If x*>2y'>0 and if G(x; p) =0 and G(y; p) =0, then G(x —y;
p)=0.

(b) If x'! <y' <0 and if G(x; p) =0 and G(y; p) =0, then G(x — y;
p)=0.

Gii)) If x = (2% 2D ER?, 1 >0,0<p’' <p <» and G(x; p) > 0, then
Glx; p)20. If x = (2% x) eR%, x> 0,0 < p’' <p <» and G(x; p) =0,
then G(x; p') > 0. If x = (2% x1) € R, x1 <0,0<p <p’ <x and G(x; p)
> 0, then G(x; p') = 0.

Proor. By Proposition 2.1, we have
G(x+y;p) = —(x°+5°) —f(=* +y)p
—(2%+ %) = (f(=) + f(»"))b.
So we have assertion (i). Also, if x! > y! > 0, we have
G(x —y; p) = —(x° —»°) —f(«' —y")p
= —(2°—y°) = (f(«") = f(¥")p
= G(x; p) — G(y; p)-

So we have assertion (ii)(a). The proof of assertion (ii)(b) is similar. Assertion
(iii) is obvious. This completes the proof. O

I\

PROPOSITION 3.2. Let x € R? and I €.#. Then
G(X(k+1;x,1I)—X(k;x,1); P(k+1))=0, Pas,k=0,1,...,K—1

ProorF. This is obvious from the fact that
X(k+1;x2,1)-X(k;x,1) = (—f(I(k + 1))I5(k + 1), I(k + 1)) O

PROPOSITION 3.3. Let x, x' € R? and I, I' €.%. Assume that the strategy I
is efficient and G(X(K; x, I) — X(k; x', I'); P(K)) = 0, P-a.s. Then for any
k=0,1,...,K, G(X(k; x, I) — X(k; x', I'); P(k)) >0, P-a.s.

Proor. We prove our assertion by induction on K — k. First by the
assumption, our assertion is true for £ = K. Suppose that our assertion is
true for 2 + 1. So we have

(34) G(X(k+1;x,I)-X(k+1;2,I'); P(k+1)) 20, P-as.
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By Propositions 3.1(G) and 3.2, we have
(85) G(X(k+1;x,1)-X(k;x',I'); P(k+1)) 20, P-as.

Let A be a nontrivial atom of 7, that is, A € %,, P(A) > 0, and if A’ €5,
and if A’ C A, then P(A’) =0 or P(A\ A’) = 0. Then by the definition of
efficiency, we see that there are nontrivial atoms A,, A, of #,,; such that
A, CcA A, CA and

I(k+1,0)>0, P(k+1,0)=P(k 0), ovci
and

I(k+1,0) <0, P(k+1,0)<P(k w), o€cA,.
There are two cases as follows:

Case 1. X' (k; x, I) > X¥(k; x', I') on A.
Case 2. XYW(k; x, I) < X'(k; x', I') on A.

In Case 1, we see that X' (& + 1; x, I) > X (k; x, ) > X*(k; x', I') on A,.

So by Propositions 3.1(ii)a), 3.2 and 3.5, we have
G(X(k; x,I) —X(k;x',1'); P(k+ 1)) 2 0 on A;.
So by Proposition 3.1(iii), we have
G(X(k;x,I) —X(k;x',I'); P(k)) 20 on A,.

Since A is a nontrivial atom, we have
(3.6) G(X(k;x,I) —X(k;x',1'); P(k)) 20 on A.
A similar argument works also in Case 2 and we have (3.6) again. So we see

that our assertion is true for k. This completes the induction. O

PROOF OF THEOREM 1. Suppose that y?eR, I' e and XU(K; (x°, 0),
I <XK; (y°, 0), I'), P-as., i =0, 1. Then we have G(X(K; (%, 0),
I) — X(K; (°, 0), I'); P(K)) > 0, P-a.s. So by Propositions 2.1 and 3.3, we
have

0 < G(X(0; (x°,0), I) — X(0; (5°,0), I'); P(0))

—{(%° = £(1(0)) B(0)) = (° = F(I'(0)) P(0))}

— f(1(0) — I'(0)) P(0) A

= (¥° —2°) = {£(1(0) = I'(0)) + f(I'(0)) — f(1(0))}P(0)
<y — 0. ‘

So we see that x°P°(0) < 7*(X(K; (x°, 0), I)). It is obvious that x°P°(0) >
7*(X(K; (x°, 0), I). So we have our assertion. O
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4. Preparations for the proof of Theorem 2. Henceforth, we place
ourselves in the setting of the last part of Section 1. Let #,(c, ,, ¢1,), n =1,
2,..., be the set of preconsistent price systems. First, we have the following
proposition.

PROPOSITION 4.1.  #,(cy,, ¢1,) # ¢, n > 1.

ProoOF. By (1.3), it is easy to see that there is a probability measure @,
equivalent to P such that {P,(k; w); £ =0, 1,..., n} is a martingale under
Q,. So we see that #,(0, 0) # ¢. Therefore, by Proposition 2.13(ii), we have
our assertion. [J

The following lemma is the main result in this section.

LEMMA 4.2. Let {m; n € N} € [T;_, Z(cy,, c1.,)- Then we have the fol-
lowing:
i) sup Wn(max{Pnl(k; ®);k=0,1,...,n) (1, 1)) <
nx1
and 7
sup wn(max{llog Pl(k; 0);k=0,1,..., n}p(i, 1)) < o,
nx1
(ii) For any increasing sequence {(n J5_i of integers, there is a subsequence
{(n));_1 of {n;)}]_; and some @ € %, (o, v, r) such that

lim wnl(F(Wnl({P,}l(k; w)}:’zo))) = E®[Fy(w) + e Tw(T)Fy(w(t))]

[ >

for any bounded continuous function F = (F,, F,): C((0, T]; R) > R2.

In order to prove this lemma, we make some preparations. Let 15n(k; )
=exp(o,LF  Z() + (p, —rk), k=0,...,n, o€ Q, and let (p?, p}) €
LYQ; R?, %, dP), n € N, be such that =, = 7(:; p?, pl). By Propositions 2.5
and 2.14, we have the following:

(4.3) pi >0, Pas,i=0,1.
(4'4) Ep[pr?] = 17
(1= con) Pu(k) < BP[ p2 1] " E7[ 0} 157]
<(1+e¢,)P,(k), Pas,

for any k& = 0, i,..., n. Let @, be the probability measure on () given by
dQ, = p? dP. Then it is well known that

Elg|7] =E?[p015] EP[gp1%], k=0,1,2,...,n,

for alny bounded measurable function g: } > R. Here we denote E®[-] by
E[]. Let M (k)=E,[(p) %], k=0, 1,...,n. Then we see that

(4.5)
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{M,(k)};_, is a positive martingale under the probability measure @, and
that
(1= o) Pu(k) < M, (k)
<(1+c¢,)P(k), @Q,as,k=0,1,2,...,n,
Now let y, = (1 — ¢y ,)"'(1 + ¢; ,) — 1. Then it is easy to see that

(4.6)

(4.7) (T/n) V?log(1+v,) > y=cy+c¢;, n— .

ProrosiTION 4.8. (i) Foranyn>1,k=0,1,...,n -1,
llog M, (k + 1) — log M, (k)| < 0, +log(1 + 3,) +lu, =1,
and
M, (k)" (M,(k + 1) = M,(k))| < aq,p,

where a, , = exp(o, + log(1 + v,) + [u, —r,l) — L.
(ii) There are sequences {a, ,},_, and {a, ,},_, such that

(4.9) lim (T/n) "a,,, = $o (0 = 7),

(4.10) lim (T/n) ta,, = 30 (0 +7),
n—>®

(4.11) E,[log M,(k + 1) — log M, (k) | %] < —la, , + (log(1 + v,))?
and

(4.12) E,[log M(k + 1) — log M (k) | %] = —la,, — (log(l + ,))?
foranyn>1,k=0,1,...,nand !l > 1withk +1 < n.

(i) supE,[max{M,(k); k= 0,1,...,n)""| <=
nx>1

and
sup B, [max{llog M,(k); & = 0, 1,...,n)>"]| <o

nx>1

for any m > 1.
(iv) There is a sequence f{ag,),_, of positive numbers such that
lim, . nay, <« and that

E,[(M,(k +1) = M (k)] < (a5,0)°
foranyn>1,k=0,1,...,nand > Lwithk + 1 < n.

PrOOF. Let Y, (k) = log M, (k) — log P,(k) — 3 log((1 — ¢y, X1 + ¢y ,)),
k=0,1,...,n Then by (4.6), we have

(4.13) Y, (k) < 3log(l +v,), k=0,1,...,n.
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Note that
log M, (k + 1) — log M, (k)
=Y, (k+1) - Y, (k) + {0, Z2(k + 1) + (p, —1,)}.

So (4.13) and (4.14) imply our assertion (i).

Let ¢,(2) =1log(1 + 2) — z and ¢,(2) = ¢(2) + 22/2, z > —1. Let d,,=
suplle(2) —a,, <z <ag,} =0(n™") and d,, = sup{le,(2); —a,, <z <
ay,,} = O(n~3/%). Note that

log M, (k + 1) — log M, (k)
(4.15) = M,(k) " (M,(k + 1) — M,(k))
+ oMy (k) H(M,(k + 1) — M,(k))).

(4.14)

Therefore, we have
(4.16) |E, [log M,(k + 1) |#,] —log M,(k)| <d,,
and

llog M,(k + 1) — E,[log M, (k + 1) |.%,]

(4.17) N
- n(k) (Mn(k + 1) - Mn(k))l < 2dl,n'
So we have
|2E, [1og M,(k + 1) — log M,() | 5]
(418)  +E,[{1og M,(k + 1) — E,[log M,(k + 1) 1 5]} 15|

<2d,, +4d}, + 4d; ,a,, =0(n"3?) asn > =,

By (4.13) and (4.14), we see that
E,[(log M,(k + 1) ~ log M,(k) + Y,(k))’ 1%]

(4.19) ~{E,[Y(k + 1)’ 15] + o
+20,B,[Y,(k + DZ(k + 1) 17]}| < dj ..
Here dj, =|u, —r,l20, +log(1 + v,) + (u, — r,)?> = O(n=3/%). Combin-
ing (4.13), (4.16), (4.18) and (4.19), we see that there are positive numbers
dyn, n > 1, such that lim, ,, nd,, = 0 and that
|2, [log M,(% + 1) — log M, (%) 1 5]
' (4.20) +(E[Y.(k + D°15] - Y,(R)?)

+o2 + 20,E,[Y,(k + DZ(k + 1) 15]] < d,,.
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Note that by (4.13), we have
—a, log(1+ v,) <20,E,[Y,(k+ 1)Z(k + 1) | %] < 0, log(1 + v,).
So we have

2E,[log M,(k + 1) — log M, (k) | %]

< ~E,|Y,(k+ 1)’ 15| + Y, (k)
(4.21)
—lo,(0, —log(1+ v,)) +1d,,
< —loy(o, —log(1 + v,)) + ld, , + (log(1 + v,)/2)°
and

2E,[log M,(k + 1) —log M, (k) | %]
(422) > ~E,[Y,(k+ 1)’ 15] + Y, (k)" = lo,(0, + log(1 + ,)) — ld,,
~lo,(a, + log(1 + v,)) — id, , — (log(1 + v,)/2)".

These imply our assertion (ii).
By assertion (i), we have

I\

v

E,[M,(k +1)""]

;ffo(z}”)En[Mn(kf"’En

(2 <[ (M, (0) (MR + 1) - M (R)) 15|

{1 + 22':" (Z;n)ag’n}En[Mn(k)“].

Jj=2

IA

Since a,, = O(n"'/?) as n — », we see that sup, E,[M,(n)*"] < «. This
and Doob’s inequality imply the first part of assertion (iii).
Since we have

E,[(M,(k + 1) - M ())"] < af ,E,[max{M,(j);j=0,...,n}],

we have assertion (iv) by Burkholder’s inequality.
Let N,(k) = log M, (k) — E, [log M, (k)| #,_,], k =1,..., n. Then we have
by (4.14) and (4.16),

(4.24) Nlog M, (k + 1) —log M, (k) — N,(k + 1)l <2d,, = Oo(n™1)
and

(4.25) IN,(k+ 1)< (0, +log(1 + %) +p, —r,l) +d;, =0(n"?).
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Again by Burkholder’s inequality, we see that there is a constant C,, depend-

ing only on m such that
2m m
n
kE=1,. } }sCmEn { ZNn(k)Z} ]
E=1 )

Combining (4.24), (4.25) and (4.26), we have the latter part of assertion (iii).
This completes the proof. O

k
; N,())|;

(4.26) E, [max{

As a consequence of Proposition 4.8, we have the following proposition.

PROPOSITION 4.27. Let @,, n > 1, be the probability law on C(0,T]; R) of
{e"W,(AM,(k; )}f_oX2); t €0, T]} under Q,. Then the sequence {Q,; n € N}
is tight. Moreover, any cluster point of {Q,; n € N} belongs to QM(U v, ).

Proor. By Proposition 4.8(iii) and (iv), we see that there is a constant
C, € (0, ©) such that

E,[IW,({M,(%)}ez0) () = Wo({M,(B)}i—o)()I*] < Colt — sI?

for any ¢, s € [0, T'] and n > 1. This implies that {,; n € N} is tight.

Let Q be a cluster point of {Q,; n € N}. Then it is obvious that @(w(0) = 1)
= 1 and that {e "*w(?); ¢ € [0, T]} is a martingale under Q(dw). Moreover,
by Proposition 4.8(iii) we see that

supEQ"[max{Iw(t)I; t o, T]}p] <w, pe(l,»)
and

supEQn[max{llog w(t)l; ¢t €0, T]}p] <o, pe(l,o).

Let g: [0, T] X C([0, T1; R) - [0, ) be an arbitrary adapted bounded

continuous function. Here we say that the function g: [0, T'] X C(0, T];
— [0, ) is adapted if g(¢, -): C(0, T]; R) — [0, ©) is o{w(s); s € [0,

t]}-measurable for all ¢ € [0, T']. Then by Proposition 4.8(ii), we see that

limsupEQ"[g(s, w){(log(e ""w(t)) — log(e "w(s)))
+30(0—y)(t -9} <0
and
li'rLrLiO?fEQ"[g(s, w){(log(e "'w(t)) — log(e "w(s)))
_ +30(c+y)(t—9)}] =0
' for any s, ¢ € [0, T'] with s < ¢. This implies that
EQ[g(s, w){(log(e'"w(t)) - log(e'”sw(s))) + z0(0—y)(t - s)}] <0
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and
EQ[g(s, w){(log(e "w(t)) — log(e "w(s))) + sa(a+ y)(t —s)}] =0

for any s, t € [0, T] with s < ¢. Since {e "*w(¢); t € [0, T]} under Q(dw) is a
martingale, (log w); is the bounded variation part of the semimartingale
—21log(e "*w(t)). So we have

o(o— y)EQUOTg(t, w) dt] < EQUQTg(t, w)d(log w>t]
< oo+ 1B [T(t,w)

for any adapted bounded measurable function g: [0, T'] X C([0, T]; R) —
[0, »). This implies that (o — y)dt < d{log w); < o (o + y) d¢, Q-a.s. w. So
we see that @ € #,,(a, v, r). This completes the proof. O

ProoF OF LEMMA 4.2. First note that

(428)  m(X) = B[ p0X, + piX,] = E,[ X, + M,(n) X,]
for any X = (X%, X1) € L*(Q; R?, &,, dP). Also, we have

max{P}(k; w); £ =0,1,...,n}

< exp(nr, + log(1l + v,)) max{M,(k; ®); k= 0,1,...,n}

and

max{llog PYk; w);k=0,1,..., n}

<nr, + log(1 + v,) + max{log M,(k; w)l; £ =0,1,...,n}.

‘These and Proposition 4.8(iii) imply assertion (i).
Now note that

max [W,((PL(k); & = 0,.... m})(6) = €™ Wo((My(R); £ = 0,...,n})(0)
< (7, + lexp(rT) — exp(nr,)| + r, exp(nr,))

X tn;gx}IW ({M,(k); E=0,...,n})(t)l.

So for any bounded continuous function F = (F,, Fl) C(0, T1; R) —» R?, we
have, by (4.28),

”"(F(Wn({Pnl(k; “’)}:=0))) — E%[Fy(w) + e"Tw(T)Fl(w)” ~o.

n— o

Thus by Proposition 4.27, we have assertion (ii), and this completes the proof
of Lemma 4.2. O
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5. Limit set of preconsistent price systems. Let & be the set of
probability measures @ on C([0, T']; R) such that. there is a sequence
{m )1 €IT,_1 #Scyn, €1 ,) such that

. n -r
lim m(F(W,({PX(k))1-0))) = B[ Fo(w) + e~ (T Fy(w)]

for any bounded continuous function F = (F,, F)): C(0, T]; R) > R%
Then we have the following proposition.

PROPOSITION 5.1. # is a closed convex subset in the space of probability
measures on C([0, T']; R).

The main purpose of this section is to prove the following lemma.
LEMMA 5.2. P =2,(c, v, r).

Let u be the standard Wiener measure in C([0, T']; R). For any w € C([0,
T]; R), let |wlcgoryr) denote max{lw(#)l; ¢ € [0, TT. Then | llcgo,riw) is a
norm in C([0, T]; R). Let &, = a{w(s); s € [0, t]}, t € [0, T]. Then we have
the following proposition.

ProposiTiON 5.3. Let g: [0, T]1 X C(0, T]; R) - [0, ») be a bounded
continuous function satisfying the following statements.

@ g, ):C(0, T]; R) > R is B,-measurable, t € [0, T].
(ii) There is a & > 0 such that g(¢t, w)> €[(0 V (c(d — y)) + &, o(o + )
—-81,tel0,T], w e C(O0, T]; R).
(iii) There is a constant C > 0 such that

lg(t,w) —g(t',w")l < C{lt —t'| + llw — w'lleqo,rim)}

for any t, t' €[0, T] and w, w' € C([0, T]; R). Let {X(¢t); t €[0, T} be a
stochastic process defined on the probability space (C([0, T1; R), %y, u) by

X(t,w) = exp(ng(s, w)dw(s) +rt — %ftg(s, w)® ds), te[0,T].
0 0
Then the probability law of {X(t); t € [0, T} under u belongs to 2.

PrOOF. For each n >1, let a,(k): QO > R and B,(k): Q> R, k=0,
1,...,n, be inductively given by
a,(0)=0, B,(0) =0,
B,(k) =B,(k— 1) + o7 (1 + 2a,(k)) "/
x{exp((1 + a,(k))0,Z(k) —a,(k — 1), Z(k — 1)
— +(/-Ln_rn))_1}’

a(k) = 3(o728((k ~ DT/n, W,((B,( A (£~ D))0)) 1)
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for £ = 1,..., n. Then we see inductively that B,(k) is ,-measurable, & = 0,
1,...,n, and that a,(k) is %,_,-measurable, & = 1,..., n. Also, we see that
there are an n; > 1 and C,; > 0 such that

(54) la, (k) < (20,) 'log(1+7y,), Pas,k=0,1,....,n,n>n,,
(5.5) -3 +~(202)_15 <a,(k), Pas,k=0,...,n,n2>ng
(5.6) IB,(k) —B,(k—1)|<C;n Y%, k=1,...,n,n>n
and
(5.7) la, (k) —a,(k — 1) <Cin Y2, k=1,...,n,n2n,.
Let q,(k), kR =1,...,n, n > 1, be given by
9.(k)
(58)  exp(a,(k - )0, Z(k — 1) - (m, - 1,)) — exp(—(1 + a,(k)))
exp((1 + a,(k))o,) —exp(—(1 +a,(k))o,)

Then by (5.5), we see that there is an n, > 1 such that q,(k) € (0, 1), P-ass.,
k=1,...,n, n > n,. It is obvious that ¢,(k) is &,_,-measurable.
Let

_ q,.(k, w), if Z(k, w) =1,
Go(k, @) = { " . - _
1-4q,(k, w), ifZ(k,w)=-1,

and let p?: Q — (0, ©), n > n,, be given by
py(w) = 2”kljltin(k; w).
Then we see that EX[ p°] = 1 and

k
EP[pd 7] =2*14.()), k=1,...,n.
=1
Also, it is easy to see that EF[(B,(k) — B,(k — 1))§,(k) | F_,1=0, k=1,
2,..., n. This implies that
(59) EP[(B,(k) —-B,(k-1))p°1F_1] =0, Ek=1,2,...,n.

Let @™, n >n,, be a probability measure on  given by Q"(dw) =
pAw)P(dw).
Let M, (k): O - (0,»), k=0, 1,...,n, n > n,, be given by

M, (k) = (1= co,)" (1 +cp,)""
k-1
x exp(on{ Y Z(1) + (1+ a,.(k))Z(k‘)} +h(p, - ))
=1
.Then by (5.4) we have ’
(1 —co,) Pi(k) < M,(k)exp(kr,)

(5.10)
<(1+¢,,)PNk), k=0,1,...,n,
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n < ngy. Note that
M, (k) "M, (k + 1) = exp((1 + a,(k + 1)), Z(k + 1)
~a,(k)o,Z(k) + (p, —1,))s
So we have

M,k + 1)

(511 ML) {1+ (1 + 2ay(k + 1) 2(By(k + 1)~ By(k))).

This and (5.9) imply that
EP[M,(k+1)p) 1] = E*[ ) 1 7] M, (k),

(5.12)
k=0,1,...,n,n = n,.

So we see that {M, (k); k=0, 1,...,n} and {B,(k); k=0, 1,...,n} are
F,-martingales under the probability measure ®'"™, n > n,. Moreover, by
(5.10) and Proposition 2.14, we see that 7, = 7(-; p?, M,(n)p?) is a preconsis-
tent price system.

By (5.8), we see that there is a constant C, > 0 such that

a,(k—1)Z(k—-1)+ (1 +a,(k))
aa(k) — 2(1 + a,(k))
<Cyn %,  k=1,...,n,n>=n,.

‘This implies that

2q,(k) — 1)Z(k - 1) an(k ~ 1)
(5.13) (2a,(k) = 1) 1+a,(k)
<2C,n" 12, k=1,...,n,n > n,.

Also, by (5.11), we see that there is a constant C; > 0 such that
IM (k) "M (k+1) -1
(5.14) —{(1 + a,(k + 1))0,Z(k + 1) —a,(k)o,Z(k))}| < C3n" ",

Note that
EQ‘")[((I + a,(k +1))0,Z(k + 1) — a,(k) 5, Z(k))" I%]
= a2{(1+ a,(k + )" +a(k)?
~2(1 + a,(k + 1))a,(k)(2q,(k + 1) — 1)Z(k)}.
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So combining this with (5.11), (5.13) and (5.14), we see that there is constant
C4 > 0 such that

|EQ‘"’[(Mn(k)*1Mn(k +1) - 1) I?k] — 21+ 2a,(k + 1))’

<C/n 32, k=0,1,....,n —1,n > n,,

and

|E@7((B,(k + 1) - B,(k))’ 1] - 07%;
<Cn 3?2, k=0,1,...,n—1,n2n2.

So by (5.10) and Burkholder’s inequality, we see that the sequence of the
probability laws (W,({PXD}-,), W,(M (D}-,), W,(B,(D}-,) under Q,
n =n,, ny+ 1,..., is tight in the space of probability measures on C([0, T'];
R®). Let v(dP, dM, dB) be a cluster point of this sequence. Then by (5.9),
(5.10) and (5.11), we see that P(¢) =e"'M(¢), t € [0, T], v-as. (P, M, B),
{(M(t), B(¢)); t € [0, T]} is a martingale under v, {B(¢); t € [0, T']} under v is
a Brownian motion and that the following It6-type SDE is satisfied under v:

dB(t) =dB(t),

te[0,T].
dM(t)=M(t)g(t, B(-)) dB(2),

(5.15)

From these facts, we see that

lim WH(F(Wn({Przl(k)}:=0)))

n—oow
(5.16) = B’[Fy({P(2); ¢ € [0,T]})
+M(T)F\({P(t);t €[0,T]})]
for any bounded continuous function F = (F,, F,): C(0, T]; R) —» R2. Since
the coefficients of the SDE (5.15) are Lipschitz continuous, the uniqueness

theorem [e.g., Ikeda and Watanabe (1989), Chapter 4, Theorem 2.2] implies
that

rt t -
M(e) = exp ['a(s. BC)) dB(s) - 3 [8(s, BO)Y a5, < [0,7)
So the probability law of {(P(¢), M(¢)); t € [0, T]} under v and the probability
law of {(X(2¢), e "'X(2)); t € [0, T']} under w are the same. Thus by (5.16), we

have our assertion, and this completes the proof. O

. CoroLLARY 5.17. Let g: [0, T] x C(0, T]; R) - [0, ©) be an adaptéd
bounded measurable function satisfying

OV (a(o—17))) sg(t,w)z <o(oc+y),te[0,T], we C([O,T]; R).
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Let {X(2); t € [0, T} be the stochastic process defined in the probability space

X(t,w) = exp(ftg(s, w)dw(s) +rt — g}ftg(s, w)? ds), te[0,T].
0 0
Then the probability law of {(X(¢); t € [0, TT} under u belongs to .

ProOF. It is easy to see that there are bounded continuous functions g,,:
[0, T x C(0, T]; R) > [0, ©), m =1, 2,..., satisfying the following state-
ments:

® g, ): C(0, T]; R) » R is B,-measurable, ¢t € [0, T], m > 1.
Gi) g, (t,w)? €0V (c(c— YN+ mlo(ac Ay), olc+vy)—m oy, ¢
el0, T, weC(0, TI;R), m > 1.
(iid) 1g,(¢t, w) — g,,(¢', w <m{lt — t'| +llw — w'llcqorir)), ¢, t' €10, T,
w,w €C(0, TI;R), m > 1.
Gv) E“ [T 1g(t, w) — g, (t, wI* dt] > 0, m — .

Let {X,,(¢); t € [0, T']} be the stochastic process given by

X, (t,w) = exp(f(:gm(s, w)dw(s) +rt — %fotgm(s, w)® ds), te[0,T].

Then by Lemma 5.3, the probability law of {X,(¢); ¢ € [0, T]} under u
belongs to 2. Since E#[max{| X(¢) — X,,(t); ¢ €[0, T]}] - 0, m — o, we have
our assertion by Proposition 5.1. O

PrROOF OF LEMMA 5.2. Let {M(t); t €[0, T]} be an arbitrary positive
continuous martingale such that M(0) = 1, P-a.s., and that o(o — y)dt <
d{log M), < o(o + vy) dt, P-a.s. Let N(¢) be the martingale part of log M(#).
Then we see that log M(¢t) = N(¢) — 2({N),. Let {Z(¢); t € [0, T} be a stan-
dard Brownian motion independent of {N(¢); ¢t € [0, T]}. Let N, (¢) =1 —
m Y)N() + m™0Z(t), t €[0, T]l, m=>1, and let M,(¢t) = exp(N,(¢)
- XN, t €[0,T], m > 1. Then it is obvious that M, (0) = 1, P-a.s., and
that (m~202 Vv o(o — y))dt <d{log M,,); < o(o + v)dt, P-as. Moreover,
we see that Ef[sup, .o IM(#) — M, (£)’] - 0, m — o, for any p € (1, «).

Let g,,(t) = d/dt(N, ), ae. t € [0, T]. Then we see that g,(t) > m %2
Let B, (D) = [¢ g,(s)" 72 dN,(s), t € [0, T], ky, ,(8) = o, £ € [0, n'T) and
B () = (n/T) {2 0 0, 8n(8)/ 2 ds, t € [n™'T, T1. Then we see that

4
|-
and n - o for any p € (1, ©) and m > 1.

Fix m, n > 1 for a while. Let %, (¢) = o{B,,(s); s €[0, t]}, ¢t € [0, T]. For
any probability measure p on R, let F(:; p): R —> R be given by F(x; p) =
infly € R; x < p((—, y]}, x € [0, 1]. Then we see that the probability law
of F(¢; p) under Lebesgue measure d¢ on (0, 1) is p. Let p,(dy; w) =

EP[ sup
te[0,T]

M, (t) — exp(/otkm,n(s) dB,,(s) — %fotkm,n(s)z ds)
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Plk,, ,(0) € dy | B,(-) = w] and
Pe(AY; ¥1s-ees Vi1, W)
=Pk, ((k—1)n"'T)€dy|B,() =w

Epa((J—Dn7'T) =y, j=1,....,k = 1],
k =2,...,n. We define a map f,: (0, 1)* x C([0, T']; R) - R to be given by
fi( £, w) = F(&; pi(-5w))

and

(& w) =F(&; (s AlEw)ses oa(Ew),w)),  k=2,...n

Then we see that the probability law of (w, fi(¢, w),..., f,(£, w)) under
d§ ® du is the same as the probability law of (B,(), &k, ,(0),
man T, .k, ((n — Dn"'T)) under dP. Since o{B,(¢) — B L(kn 1T,
t E [kn‘lT T]} 1s 1ndependent of &k, G -Dn D), j=1,. k we see
that p,(dy; y1,..., Y41, W) is .gé’kT/n-measurable and so is fk( §, w).
Let f(t, w; €) = fi,./r|(§, w), t €0, T], and let -

X, (t) = exp(fotkmyn(s) dB,,(s) + rt — %jo‘km,n(s)2 ds), telo,T].

Then the probability law of

exp ftf(S,w; £)dw(s) +rt — %ftf(s,w, £)’ds|;te[0,T]
0 0

under d¢ ® du is the same as {X,, ,(¢); ¢ € [0, T]} under dP. So by Proposi-
tion 5.1 and Corollary 5.16, we see that the probability law of {X,, (¢); t €
[0, TT} belongs to 2. Since

lim lim Ef[max{{M(¢) - X, .(t);t<[0,T]}] =0,

m-—>® n— o

again by Proposition 5.1, we see that the probability law of {e"'M(¢); t €
[0, T]} under P belongs to . This shows that %, (o, v, r) c£. By Lemma
4.2, we have # c #, (o, vy, r). So this completes the proof of Lemma 5.2. O

6. Proof of Theorem 2 and Corollary 1. Let us prove Theorem 2. Let
F: C(0, T]; R) » R? be a continuous function such that there are C € (0, «)
and p € (1, ©) such that

F(w)l = C(1+ max lw(2)l) -
t<[0,T]

By Proposition 2.1, we see that there are subsequences {n;};_, and {m, J]_,
€ I17_1 #,(¢o,p,» €1,,,) such that

tim sup 7 (F(W, ((P2(ks ))io))) = lim m, ( F(W, ({PACRs D))

n—ow
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By Lemma 4.2, we see that there is a subsequence {n}};_, of the sequence
{n,}7_, and some @ € %), (o, vy, r) such that

lim m (F(W, ({BA(E; O)i_o))) = EOLFo(w) + e Tw(T) Fy(w)].
So we see that
tim sup 7 ( F(W,({PX(k; )}1-0)))
(6.1) n—>
< sup{EQ[Fy(w) + e "Tw(T)Fy(w)]; @ €2y (o, 7))}
On the other hand, by Lemmas 5.2 and 4.2(i), we see that for any
Q €2y(o, v, r), there is a {x,},_, € IT,_, #(cy,, ¢, ,) such that

lim m(F(W,({P}(k; l)};‘=o))) = E9[Fy(w) + e~ "Tw(T) Fy(w)].
This and Proposition 2.17 imply that
lim infa* (F(W,({P,(k; )};_,))
(62) 1}{111;1 m ( ( n({ 1( ’ )}k~0)))
> EQ[Fy(w) + e "Tw(T)Fy(w)], Qe€Py(o,v,r).
(6.1) and (6.2) imply Theorem 2, and this completes the proof of Theorem 2.
O

Now let us prove Corollary 1. First we prove assertion (i). It is sufficient to
prove

sup{EQ[G({e”w(t); te[o, T]})] ;QePy(a,y, r)} = EQ[G(w)].

Let {M(2); t € [0, T']} be a continuous martingale such that P(M(0) = 1) =
1 and OV o(oc— y))dt <d{og M), < o(o + y)dt, P-as. Let g(t)=
(d/dt){log M), ae. t [0, T], P-as. Let us take a standard Brownian
motion {Z(¢); t € [0, T']}, that is independent of & = o{M(2); ¢t € [0, T']}. Let
X,(¢) =e""M(t) and

r 1/2
X,(t) = e”M(t)exp(f0 (oc(o+ ) —g(s)) dZ(s)

t
—%[O(U(H y) —g(s))ds, ¢te[0,T].
Then it is obvious that X,(t) = EP[ X,(8) |#], t €0, T], P-a.s. Therefore,
Jensen’s inequality implies that
EP[G(X,(")] = B [G(E7[X,() 14])] < E”[a(X,())].
It is obvious that (log X,>; = o(o + y)t, and so by Doob’s theorem, we see

that the probability law of {X(T); ¢t € [0, T']} is Q.
The above observation implies that

EG(w)] 2 E°[G(w)], QeEPy(a,v,7).

So we have our assertion (1).
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Now let us prove assertion (ii). Let @ € %, (o, v, r). Then we see that
Qogw)r > o®T, Q-as. w. Let 7(w) = inf{t > 0; (logw); > g2T}. Then by
the representation theorem of martingales [e.g., Ikeda and Watanabe (1989),
Theorem 7.2], we see that logw(r) — rr+ o2T/2 is normally distributed
with mean 0 and variance o 2T. Then by Jensen’s inequality we have

E®[g(w(T))] < E%[&(e""E[e~Tw(T) 1.5])]

=[(27TT)_1/2§ explox + {rT — o7 exp _x_2 dx.
R - 2 2T

If we take as @ a probability law of {exp(aB(¢) + (rt — g?t/2)); t € [0, T},
the above inequality becomes an equality. So we have assertion (ii), and this
completes the proof of Corollary 1. O

REFERENCES

BoYLE, P. P. and VogsT, T. (1992). Option replication in discrete time with transaction costs. J.
Finance 47 271-293.

Cox, J. C., Ross, S. A. and RUBINSTEIN, M. (1979). Option pricing: A simplified approach.
Journal of Financial Economics 7 229-263.

Davis, M. H. A. and NoRMAN, A. R. (1990). Portfolio selection with transaction costs. Math. Oper.
Res. 15 676-713.

DELBAEN, F. and SCHACHERMAYER, W. (1992). A general version of the fundamental theorem of
asset pricing. Preprint.

GRANNAN, E. R. and SwINDLE, G. H. (1993). Minimizing transaction costs of option hedging
strategies. Preprint.

HARRISON, M. and Kgreps, D. (1979). Martingales and arbitrage in multiperiod security markets.
J. Econom. Theory 20 381-408.

HARRISON, M. and PLISKA, S. (1981). Martingales and stochastic integrals in the theory of
continuous trading. Stochastic Process. Appl. 11 215-260.

HARRISON, M. and PLISKA, S. (1983). A stochastic calculus model of continuous trading: complete
market. Stochastic Process. Appl. 15 313-316.

HENROTTE, P. (1991). Transaction costs and duplication strategies. Working Paper, Graduate
School of Business, Stanford Univ.

IKEDA, N. and WATANABE, S. (1989). Stochastic Differential Equations and Diffusion Processes,
2nd ed. North-Holland, Amsterdam.

LELAND, H. (1985). Option pricing and replication with transaction costs. J. Finance 40
1283-1301.

MERTON, R. C. (1990). Continuous Time Finance. Blackwell, Oxford.

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF TOKYO

7-3-1 HonGo, TOKYO, 113

JAPAN



