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MINIMAL POSITIONS IN A BRANCHING
RANDOM WALK

By CoLIN McDIARMID

Oxford University

We consider a branching random walk on the real line, with mean
family size greater than 1. Let B, denote the minimal position of a mem-
ber of the nth generation. It is known that (under a weak condition) there
is a finite constant vy, defined in terms of the distributions specifying the
process, such that as n — oo, we have B, = yn + o(n) a.s. on the event S
of ultimate survival. Our results here show that (under appropriate condi-
tions), on S the random variable B, is strongly concentrated and the o(n)
error term may be replaced by O(logn).

1. Introduction. We shall consider a branching random walk on the real
line, as for example in [4-6]. An initial ancestor, who forms the zeroth gener-
ation, is at the origin. She has children, the first generation, whose displace-
ments from the origin correspond to a point process Z on the line. Thus Z
is a random locally finite counting measure on the real line. These children
then behave like independent copies of the ancestor relative to their initial
positions, their children form the second generation and so on. When all dis-
placements are nonnegative we may interpret these displacements as times,
and we obtain a Crump-Mode—Jagers age-dependent branching process (see
[12]).

Denote the position of an individual v in the process by B(v). Let Z,(¢)
denote the number of individuals v in the nth generation with B(v) < ¢, and
let Z,, = sup, Z,(¢). [We shall consider only cases when Z,(¢t) is a.s. finite
for all ¢, though Z, may be infinite.] The event S of ultimate survival is the
event that Z, > 0 for all positive integers n. Let m = EZ;, the mean number
of children of an individual. We shall restrict our attention to the case that
1 < m < oo, so that the event S has positive probability. We are interested in
B, the infimum of the positions of the members of the nth generation. Note
that when we have an age-dependent branching process, then B, is the first
time of a birth in the nth generation. We set B, = +oo if Z,, = 0: we shall
impose conditions that ensure that B, > —occ if Z,, > 0. Let z,1,2,2,... be
an enumeration of the positions of the members of the nth generation. Thus
Z,(t) = {r: z,r <t}| and B, =inf,{z,,}.

Let F(t) = EZ(t) and let « = inf{¢: F(¢) > 0}. Observe that if « is a finite
number rather than —oc, then a simple translation brings us back to the case
of age-dependent branching processes. Our first theorem is for the case that
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a is finite, and it concerns the concentration on S of the random variables B,
around the median b,: we shall see that the sequence B, is “exponentially
tight.” In [18, 15] it is shown that if « is finite and P(S) = 1, then under a
moment condition the sequence B, is tight, and if displacements are bounded,
then an exponential bound as in (1) holds for any x > 0. [If displacements
are bounded, then we may clearly drop the restriction in (1) that x < n.] The
following theorem extends these results. '

THEOREM 1. Let m > 1, let « be finite and let b, be the median of B, on
S, say b, = inf{¢t : P(B, < t|S) > %}. Then there exist constants ¢ and § > 0
such that for each positive integer n and each 0 < x < n we have

1 .P(|B, = by,| > x| S) < ce™®*,

Suppose that m > 1 and « is finite. Then it follows from Theorem 1 and
a Borel-Cantelli lemma that there is a constant ¢ such that a.s. on S, for n
sufficiently large we have |B,, —b,| < clog n. Also, observe that P(B,, = an) is
the probability that the embedded Galton—Watson branching process formed
by the children with displacement exactly a survives at least to generation
n. Hence, if F(a) > 1, then by Theorem 1 we have b, = an + O(1) (see
[3, 13, 15, 24]). Similarly, if F(a) = 1, then P(B, = an) = Q(1/n), and so
b, = an + O(logn): under further conditions, it may be shown that b, =
an + O(loglogn) [8, 15].

The O, o notation is presumably familiar. Following the practice in com-
puter science, we write also x, = Q(y,) if y, = O(x,), and x, = O(y,) if both
%n = O(yn) and x, = Q(yn).

We shall be more interested in the case when F(a) < 1 (and a need not be
finite). Following [23, 4] we define functions ¢(#) and w(a), and the constant
v.For 6 > 0 let

#(0) = B( L exp(—0z1,)),
where the sum is over the children r of the initial ancestor. Note that 0 <
¢(0) < oo. If ¢(0) is finite for some 6 > 0, then for any real a let
w(a) = inf{e®¢(6): 6 > 0}
and define the time constant y by
v =inf{a : u(a) > 1}.

Suppose that m > 1 and that ¢(0) is finite for some 6 > 0. Hammersley
[19], Kingman [23] and Biggins [4] (see also [21]) have shown that, under
these conditions, the constant vy is finite, and B,/n — y a.s. on S as n — 0.
Our second theorem is a refinement of this result: it describes the behaviour

"of B, more precisely under further conditions (and gives us back the original
result by a standard truncation argument). Suppose that F(a) < 1. Then
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(see Lemma 2) it follows that w(y) = 1 and there is a unique finite 7 > 0
such that e™¢(7) = 1. We shall assume further that ¢(6) is finite in some
neighbourhood of 7. For an equivalent condition see (3.5) of [5]. In the case
of an age-dependent branching process (that is, @ > 0), these conditions must
hold if F(a) <1 and 1 < ¢(6) < oo for some 0 > 0 (see (2.3) of [23]).

Let us call theé special case in which the initial ancestor’s children must
appear all at a common (random) position a common branching random walk:
this is a generalisation of a Bellman—Harris age-dependent branching process.

THEOREM 2. Let m > 1, let F(a) < 1, let 7 > 0 be such that e™¢(7) =1
and suppose that ¢(0) is finite in some neighbourhood of T.

(a) There are constants ¢1 > 0 and 8 > 0 such that for each sufficiently large
integer n and each x > 0 we have

P(B, <yn-+cilogn —x) < e %%,

(b) Assume that at least one of the following conditions holds: (i) « is finite
and E(Z(n)?) is polynomially bounded [which is of course true if E(Z?2)
is finite]; or (ii) Z, < s a.s. for some constant s; or (iii) we have a common
branching random walk with E(Z%) finite. Then there are constants ca > 0
and & > 0 such that for each positive integer n and each 0 < x < n we have

P(B, > yn+cylogn + x| S) < e %%,

It would of course be nice if we could take ¢; = c3. It is interesting to note
that Biggins [5] has shown that, under conditions as described, B, — yn — oo
a.s. as n — oo.

Theorem 2 (a) will follow from a first moment argument, much as in [23,
4-7]. Bramson [9] refined the approach elegantly to obtain the “correct” con-
stant ¢ for branching brownian motion—we do not manage to do this here.
Our main effort is in proving part (b): we use a second moment argument,
following the lead of [9, 16]. The rest of this paper is devoted to proving The-
orems 1 and 2. The paper [9] on branching brownian motion may serve as a
model for attempts to improve the present work.

2. Proof of Theorem 1. Throughout, we let p =1 — q¢ = P(S), where S
is the event of ultimate survival. The following lemma is in fact true without
any restriction on m, but we are interested only in the case when m > 1 and
thus ¢ < 1.

LEMMA 1. Let m > 1. Then for any sufficiently large a and any sufficiently
,small n > 1 we have :

P(Zy(an) <n")=q+o(n™").
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PROOF. Let 0 < & < p/3. For b > 0 let Z(® denote the corresponding
Galton—Watson branching process, where we include only individuals with
displacements at most b, and let S® denote the event that this truncated

process survives. We may choose b sufficiently large that EZ (lb) =F()>1

and P(S®) > p— .
Take a = b. Then from a standard result on Galton—Watson branching
processes [1] (see also Lemma 4 of [14]), there exists ;1 > 1 such that

P(Zy(an) = n}) = P(Z\® > 7)) = P(S“) - ¢ > p—2¢ = p/3.

Now consider the process Z@ of fecund individuals in Z @) as in [1, 23].
Notice that E(Z{”) | S) = F(a) > 1, and thus P(Z{* > 2| S) > 0. It follows
by binomial tail bounds [11] that for some 0 < 6; < 1,

P(Z,(an) < 81n| 8) < P(Z® < 81n | S) = o(3}),
and so
P(Z,(an) < 81n) < q +0(87).
Hence
P(Z3,(2an) < 1) < P(Zy(an) < 81n) + P(Zy(an) < n7)"
<q+0(8})+(1— p/3)™".
Thus there exist 0 < 82 < 1 and 72 > 1 such that
P(Zy(an) < n3) < q+ 0(83).
Finally note that
P(Zn(an) <} |8) = P(Z,=018)=1-0(8})
for some 0 < 83 < 1, and so
P(Zy(an) < n3) = q + o(83). =
PROOF OF THEOREM 1. We know by Lemma 1 that there exist constants a,
¢ > 0 and n > 1 such that for each £ =1,2,...,
P(Zp(ak) <n*) <q+cenr

Further we may take a > |a|. Choose § with 0 < § < 1 such that §n%/2¢ > 1.
Note that there exists x¢ such that for any x > xo, if 2 = |x/2a], then

en* + exp(— pd*n*) < 6%
Forn=1,2,...and x > 0 let
b=b(n,x)=inf{t >0: P(B, <t|S) > 6*}.
Thus P(B, <b|S) < §* and )
| P(B, > b) <1— pd® < exp(—p&*).
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Now let x > x¢, let £ = |x/2a], and note that b + x + ka > ak + b, and so
P(B, >b+x) < P(Bpir > b+ x+ ka)
< P(Bjpin > ak +b)
< P(Zy(ak) < n*) + P(B, > b)"
< g +cn* +exp(—pd*n*)
< q+ &~

Suppose temporarily that ¢ > 0, and recall that for some 0 < §; < 1 we
have P(Z, > 0| S) = o(8}). Then

P(B,>b+x)> pP(B,>b+x|S)+q(1-0(87)).

Thus P(B, > b+ x| S) = O(8*) + o(8}).
We now know that (whether ¢ > 0 or not) there are constants xg, ¢y, ¢; and
0 < 6, 6; < 1 such that, for each n =1,2,... and all x > x,,

P(b(n,x) < B, <b(n,x)+x|8)>1-cod* —c167.

Let x1 > x¢ be such that c(6*' < % and let n; > 0 be such that ¢;87* < %. Then
for all n > ny and x > x1,

b(n,x) < b, <b(n,x)+x,
and then
P(|B, —b,| <x|8)> P(b(n,x) < B, <b(n,x)+x|S)

>1—coé* —c167.

The theorem now follows easily. O
3. Proof of Theorem 2(a). We shall use two lemmas.

LEMMA 2. Let m > 1, let F(a) < 1 and let ¢(0) be finite for some 6 > 0.
Then u(y) = 1, there exists a unique finite v > 0 such that e ¢$(7) = 1, and
for any positive integer n and any x,

EZ,(yn+x) <e™.
PROOF. For the first two parts of the lemma, see [23, 4]. Note also from

these references that for any 6 > 0 such that ¢(6) is finite, E(}_, exp(—02y,,))
= ¢(0)". Hence, for any such 6,

EZ,(an) < E(Zexp 6(an — zn,r)) = (exp(0a) $(0))",



MINIMA IN A BRANCHING RANDOM WALK 133

and so EZ,(an) < u(a)". Hence
x n
EZ,(yn+x) < ,u<7 + ;) <e™,
as required. O

LEMMA 3. Let m > 1, let F(a) < 1, let 7 > 0 be such that e™¢(1) =1
and suppose that ¢(0) is finite in some neighbourhood of 7. Then there exist
constants 0 < ¢1 < cg such that for any b > 0 and for any positive integer n,

cin Y2 < EZ,(yn +b) < can Y24(1 4+ b) e™.

The preceding lemma is quite loose, but it is in suitable form for our present
purposes.

PrOOF. We may argue as in [2, 4, 5, 23] to show the following. There is a
random variable X with mean 0, variance o > 0 and finite moment generating
function in a neighbourhood of the origin, such that we have

EZ,(yn+b) = f 1 (s _pjomi) €Xp(—Tan %) dG(2),

where G, is the distribution function of ¢~1n~/2 times the sum of n indepen-
dent random variables each distributed like X. We may now use, for example,
the Berry—Esséen central limit theorem (see, e.g., [17]). O

PROOF OF THEOREM 2(a). Let 0 < ¢ < 1/27. We shall see that we can take
8 =17/2. If 0 < x < 2clog n, then by replacing x by x/2 and using Markov’s
inequality and then Lemma 3, we find

P(B, <yn+clogn—x)<E Z,(yn+clogn —x/2)

< c/(n—(1/2—rc) log n) e—rx/2’

for some constant ¢’. If x > 2clog n, then by Lemma 2,
P(B, <yn+clogn —x) <exp(—(x —clogn)) < exp(—71x/2),

which completes the proof. O

4. Leading sequences. In order to be able to apply the second moment
method in the next section we shall focus on “leading” individuals. Call a
vector X = (x1,...,%,) € R" leading if for each j=1,...,n -1,

J n
in > in.
i=1 i=1

S |~.
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LEMMA 4. Let the random variables X1, X, ..., X, be exchangeable. Then

P((X4,...,X,) is leading) > %

PROOF. Given a vector z = (21,...,2,) € R", let z® denote the cycli-
cally shifted vector (zg,2g41,--.,2n,21,.-.,2k-1). Now fix any vector x =
(%1,...,%,) € R™ To prove the lemma it suffices to show that at least one of
the n vectors x® is leading.

Let s = Y" ;x; and let y = (y1,...,¥n), where y; = x; — s/n. Note that

»  yi =0. Now x® is leading if and only if y*) satisfies "]_; (y¥); > 0 for
each j =1,...,n; and it may be seen that this happens if and only if £ min-
imises over all j € {1,...,n} the sum Zf;ll yi (see[18], Section XII.6 Lemma 2,
and [16]). O

Given an individual v = v, in the nth generation, let v; denote the an-
cestor in generation j of v, and let the corresponding positions sequence
be (B(vi1), B(vy),...,B(v,)) and displacements sequence be (B(v1), B(v2) —
B(vi),...,B(v,) — B(v,_1)). Call v leading if its displacements sequence is
leading, that is, if the positions sequence satisfies B(v;) > (j/n)B(v) for each
j=1,...,n—1. Let Z%(t) denote the number of leading individuals v in gen-
eration n with B(v) < t. Thus Z%(t) < Z,(t): our plan is to give a lower bound
for Z7(¢).

LEMMA 5. For any positive integer n and any real t,

E(Z;(0)) 2 - E(Za(0))

ProoF. Fix a positive integer n and a real ¢. Let N be a positive integer.
Consider the altered branching random walk in which individuals are ster-
ilised so that they produce at most N offspring. Then enough further dummy
offspring are created with displacement +oco to make up to exactly N. Let
us use the notation Z »(t) and so on to refer to this new process. Now there
are exactly N” individuals in generation n. Pick one uniformly at random,
say v,. Then its displacements sequence (X1,..., X,) consists of independent
and identically distributed random variables. Hence by the last lemma,

E(Z(t)) = E(Z%(1))

= N"P((X4,...,X,) is leading, ZXi <t)

i=1

> NnP<in < t)
i=1

E(Z,(t)).

S~k =
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Now let N - c0o. O

It is easy to see that equality holds in Lemma 4 if, say, the joint distribution
is continuous. Thus if displacements are continuously distributed, then we also
have equality in Lemma 5 [noting that EZ%(¢) - EZ}(t) as N — oo].

5. Proof of Theorem 2(b). The following lemma is a basic tool in the
study of random graphs, where its use is called the second moment method.
It follows easily from the Cauchy—Schwarz inequality.

LEMMA 6. If the random variable X has finite mean EX > 0, then
P(X > 0) > (EX)%/E(X?).

To use this inequality for Z?(¢) we need an upper bound on the second mo-
ment. The next three lemmas handle the three cases in Theorem 2(b).

LEMMA 7. Suppose that « is finite, let a be any real and let b = a + |a|.
Then for any positive integer n,

n—1
E(Z:(an)®) < EZ}(an) + E(Z1(bn)*)E(Z,_1(an — a)) ¥ E(Z;(aj)).

Jj=0

PROOF. Let A denote the random set of leading individuals v in generation
n with B(v) < an, so that Z}(an) = |A|. Let D(v) denote the displacement
of a possible individual v from its parent. In the following sums the index j
will run from 0 to n — 1, w will denote a possible individual in generation j,
x and y will denote possible offspring of w with the position of x at most that
of y and u and v will denote possible descendants in generation n of x and y,
respectively. We have

E(IA*) - E(JA])
=ZZZZZZZP(u6A, ve A)
j w x u y v
=2 Y > > > PuecA, D(y)<bn)
j w x u y
xY P(veAluecA, D(y)<bn).

To see this last equation, observe that if the descendant v of y is in A, then
we must have

D(y) < B(v)—a(n—1)<an—a(n—1) < bn.

Now let v be a possible descendant of y, as in the last sum in the preceding
equation, and suppose that v € A. Then B(y) > ((j + 1)/n)B(v) and so the
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total displacement B(v) — B(y) of v from y satisfies
B() - B(») = "“L=1B() < (n ~ j - Da,

Thus we may bound the last sum as
Z PlveAlueA, D(y)<bn)<E(Z,_j_1(a(n— j—1))).
v

Hence E(|A|2) — E(|A]) is at most
2 E(Zn ja(aln—j- D)X Y TS P(uc A, D(y) < bn).
J w x u y

Now let W denote the number of children of w with displacement from w at
most bn, so that W has the same distribution as Z;(bn). Also suppose for
convenience that x and y run over 1,2,... with x < y. Then the foregoing
bound may be written as

@) ZZE(Zn,1(a(n J- 1)))ZZP(W>y)ZZP(u€AIW>y)

w y=2

Let f(w) denote the expected number of descendants v of w in generation
n — 1 with B(u) < an — a. Then for each j, w, y, x we have

YD PucA|W=y) < f(w),

because the displacement of x from w is at least «. Hence

E(JA)?) - E(|A))

< 2ZE(Zn j-1la(n—j— 1)))ZZ(y - 1DP(W = y) f(w)

w y=2

_2ZE(Zn j-1(a(n —j —1)))Z(y—1)P(W>y)EZn 1(an — a)

y=2

< ZE(Zj(aj)) E(Z1(bn)*)EZ, 1(an — a),
J

because

Zi(y—l)P(WZ y) < E(W?) = E(Z1(bn)*) (< o). =

y=2

LEMMA 8. Assume that Z; < s a.s. for some constant s. Then for any posi-
tive integer n and any a,

. n—1
E(Z%(an)?) < Ez:;(an)(1 +(s-1) EZj(aj)>.
Jj=0
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PROOF. We may assume that each individual has s possible children, pre-
sented in a random order. We use notation as in the proof of the last lemma,
except that we take x and y distinct but in either order. Then we see as before
that

E(1A?) - E(1A))

DD BBRLL cA)TPweAlucd

< éE(Zn—j—l(a(n -J- 1)));;;;P(u €A)
<(s-— l)gE(Zn-j_ﬂa(n -J- 1)));;;P(u €A)
=(s—1) ;E(Zn—j—l(a(n —J—1))EIA|

and the lemma follows. O

Given a common branching random walk, let D denote a typical dis-
placement of (all) the children of a given individual. Observe that ¢(6) =
EZ, E(e D) for any 6 > 0.

LEMMA 9. Suppose that we have a common branching random walk. Let
m > 1, let F(a) < 1, let ¢(0) be finite for some 6 > 0 and assume that E Z2% is
finite. Then for any positive integer n,

. n—-1
E(Z%(yn)®) < EZ%(yn) + EZ} ¢ Ee™™” Y E(Z;(v)).

=0

PROOF. Minor changes in the early parts of the proof of Lemma 7 lead
to the inequality (2) given there, except that now a =y and W denotes the
total number of children of w. Let f(w,x,d) denote the expected number of
descendants u of the possible child x of w such that B(u) < yn, given that w
has at least x children and the displacement of child x from w is d. Observe
that this does not depend on x, and let f(w) = Ef(w, x, D). Thus for each j,
w, y, x we have

S PlueA|W=y) <) P(Bu)<yn|W=zy)=fw).

So we have
E(JA%) - E(JA])

< 2Y E(Zo_jalyin— = D) L3 PW 2 )y =D fw)
J

w y=2

< B2} Y B(Zoojay(n— = D) Y Fw),
J w
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as in the proof of Lemma 7. However,
Z f(LU) = EZ f(w, 1, D) = EZn_l('yn — D) < EeT(’Y—D)
w w

by Lemma 2, and this completes the proof. O

PROOF OF THEOREM 2(b). If case (i) holds, let j > % be such that
E(Z:1((y +ah)n)?) = O(n).
Then in each case, by Lemmas 3, 7, 8 and 9 we have
E(Z;(yn)*) = O(n').
Hence by Lemmas 6, 5 and 3,
P(Z,(yn) > 0) > P(Z,(yn) > 0)
_ (EZ3(yn))?
E(Z3(yn)?)
_ o " (EZy(yn))*
= —
— Q(n_(j+3)).
Thus
P(B, > yn) <1—cin~U*) < exp(—cin~(+9)

for some constant ¢; > 0. We may now argue much as in the proof of The-
orem 1. Let a > |y| and 7 > 1 be as in Lemma 1. Let the constant ¢y be
2a(j + 4)/(logn) and let £ = |x/2a]. Note that yn + x > ak + y(n — k) and
that n=(*3»* > n/n if x > cylog n. Hence
P(B, > yn+x) < P(Z4(ak) < 1*) + P(By_y > y(n — k)"

<g+n* +exp(—cinVpt)

< g+n7" +exp(—(c1i/n)n),
if x > celog n. However,

P(B,>yn+x|8)= P(Z,=0|8)=1-o(e")

for some 8; > 0. It follows that there exist constants c3 and 82 > 0 such that
for x > cologn,

P(Bn > yn +x | S) < C3(e_62x +e_82Tl),
and part (b) of the theorem follows. O
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comments, including drawing several references to my attention.
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