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A PROOF OF DASSIOS’ REPRESENTATION OF THE
a-QUANTILE OF BROWNIAN MOTION WITH DRIFT

By P. EMBRECHTS, L. C. G. ROGERS AND M. YOR
ETH-Zentrum, University of Bath and Université Paris VI

An explanation of a remarkable identity in law, due to A. Dassios,
concerning the a-quantile of Brownian motion with drift is given with the
help of Bertoin’s rearrangement of positive and negative excursions for
Brownian motion with drift.

1. Introduction. Let (B,, ¢t > 0) be a real-valued Brownian motion (BM)
starting from 0. More generally, for u € R, (B, + ut, ¢ = 0) is a Brownian
motion with drift u.

Let P* denote the law of (B, + ut, ¢ > 0) on the canonical space
(CR,, R), %), with (X,, t > 0), the process of coordinates, &, = o{X,, s < t}
its family of o-fields and % = o{X,, s = 0}.

Now, let 0 < a < 1, and define

M(a,t)(w) = inf{x: [O‘ds Lixores) > at}.

For fixed w, M(a, tX ) is the a-quantile of the function s - X (w), s <'t,
considered as a random variable on the probability space ([0, t]; ds/?),
equipped with the Borel o-field.

The aim of this paper is to give a proof of the following striking identity in
law.

THEOREM 1 (Dassios [6]). For every n € R, a € [0, 1], t = 0, one has

(law)
(1a) M(a,t) = sup X,+ inf X,

s<at s<(l-a)t
where X' is an independent copy of X, considered under P".

To our knowledge, Miura [14] and Akahori [1] were the first authors to
investigate the distribution of M(a, t), with the help of the Feynman-Kac
formula. Pursuing Akahori’s computations, Dassios obtained the remarkable
identity in law stated in Theorem 1.

In this paper, we shall avoid using Feynman-Kac computations and we
shall give two different proofs of Theorem 1. The first proof, which is
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presented in Section 2, is obtained as a consequence of the identity in law

(1b) ftds 1(X820)(12V)sup{s <t:supX, = Xs},

0 u<s
where X denotes Brownian motion with drift u. The second proof, which is
presented in Section 3, is obtained as a consequence of an extension of
Bertoin’s path decomposition of Brownian motion with drift by rearranging
its positive and negative excursions [2]; see also Vallois [15].

We now discuss briefly the interest of Theorem 1 and, more generally, that
of the study of M(«, ¢) in mathematical finance. In recent years, path-depen-
dent (or look-back) options have been developed; in particular, the so-called
Asian options involve knowledge of the distribution of (1/¢)/{ ds exp(B, + us).
Although some explicit description of this distribution has been obtained
(Geman and Yor [9] and Yor [18]), the results are nonetheless complicated.
Knowledge of the distribution of M(«, t), which, for example follows from
(1a), provides much simpler opportunities for developing path-dependent
options. The related computations of E[(M(a, t) — k)*] have been done by
Miura [14], Akahori [1] and Dassios [6].

There is no need to duplicate such computations here, and we simply refer
the interested reader to the above papers.

2. A first proof of Dassios’ identity (1a).

2.1. We first note that the identity (1a) may be amplified as follows (we
keep the notation from Theorem 1).

PROPOSITION 1. For every fixed t and «, one has

(law)
(M(a’t)!Xt) = (Sat +I(’1—a)t!Xat +X(,1—a)t)’

where
S,=supX, and I, = inf X].

s<u s<u

Proposition 1 is an immediate consequence of Theorem 1 and the following
lemma.

LEMMA 1. Let t > O be fixed. Consider two measurable functionals F and
G defined on C([0, t]; R). The following two properties are equivalent:

(law) .
(1) For every pn € R, F(X,, s <t) iy G(X,, s < t), where, on both sides,
X is considered under P*.
(ii) For a given u (e.g., w = 0), the identity in law
(law)
(F(Xs’ § = t)’Xt) i (G(Xs’ s = t)?Xt)
holds.
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COMMENTS. (1) To be explicit, Lemma 1 provides a proof of Proposition 1,
when it is applied to

F(X, s<t)= inf{x: ALY at}
0 o

and

G(X,,x<t)= sup X, + inf {(X,,,—X,,}

u<at u<(l—alt

sup X, + inf X.

u<at us(l-a)

(2) A moment’s thought shows that Lemma 1 follows from the
Cameron—Martin relationship:

2
net
Ply = exp( nX, — T) 'P,Oz.

2.2. As announced in the Introduction, our first proof of Theorem 1 rests
on the identity (1b), which is interesting in its own right. For convenience, we
shall use the following notation:

A = fOtdSI(sto) and 6, =sup{s<t: supXu=Xs}.
u<s

We now give the following proof.

aw)

Q
PROOF OF THE IDENTITY IN LAW (1B). A, = 6, under P*.
(1) Using Lemma 1, it is equivalent to show the identity in law

(law)
(A;LaXt) = (9t+’Xt)’

for every t > 0, under P°. From the scaling property of BM, we may even
restrict ourselves to ¢ = 1, and we will first show that, for x > 0,

(law) -
(2a) A = 67 under the law II, of the Brownian bridge BB, _, ,,

starting from O at time 0, and ending at x at time 1.
Introducing 7, = influ: X, = x}, we obtain

(law)
(2b) or = 7,+(1—1,)U,
where U denotes a random variable uniformly distributed on [0, 1], indepen-

dent of .

The identity (2b) follows easily from the fact that, under II,, 67 is
uniformly distributed, a well-known result noted by Vervaat [16] and Biane
(4], and that, conditionally on 7, = ¢, the process (X, ,, —x;u <1—-1)isa
Brownian bridge BB, _, , over the time interval [0, 1 — ¢].
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We now consider the left-hand side of (2a) under II,. We write

1
+ ~
A} = fo ds 1z .

where (X, = x - X, ,,0<s<1isaBB,,,. Thus, we deduce (using obvi-
ous notation) that
(law)

(20) A=A+ (-2,
where (2¢) now follows from the fact that, under II,, A; =1 - A{ is
uniformly distributed on [0, 1], another well-known result due to Lévy [13].

The identity in law (2a) now follows from (2b) and (2c).

(ii) To finish the proof of the identity in law (1b), we now remark that, for
the moment, we have obtained the following identity: for every Borel function
fiRx[0,1] » R,,

(2d). E°[f(Xy, AD) Lix,> 0] = E°[F( X1, 00) 1 x5 0)-
To end the proof, it now remains to show
(2d)- E°[f( Xy, AY) L x,<0p] = E°[ (X1, 61) 1(x, <0)]-

Since, under P°, X and (—X) have the same law, the left-hand side of (2d)_
is equal to

Eo[f( -X, Af)l(-xl<0)] = Eo[f( -X;,1 _Al_)l(X1>0)]
= Eo[f( -X;,1 - 01—)1(X,>0)] [by (2d), ]
=E0[f()fl,éf)1(;gvl<0)],

where the hats refer to the Brownian motion X, =X, ,—X,, t <1, which
satisfies, in particular, X; = —X,. Hence, we have finally proven {2d). O

2.3. We now prove Theorem 1 as a consequence of the identity in law (1b).

For simplicity, we take ¢ = 1 and we write M(a) for M(a, 1). We also note
Aj(x)=[¢ds 1x ., and A (x) = [§ds 1 x .. We simply write A, for
A;(0). Let x < 0, and define T, = inf{t: X, = x}. Then we have

P(M(a) <x) =P(A{(x) > a) =P([T1ds g, <y > a)
= fol_aP(Tx € du)P(A_, > )
(2e) = j:_aP(Tx €du)P((1-u) - Af_u > a) from (1b).

" Now we have

(0u<(1-u)—a) = (Siyoa=Si) = (Siouaz  sup X,

l-u—a<t<l-u
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Hence, we find, from (2e), that
(2f) P(M() <x) =P(Tx <1-a; sup X,> sup Xt).

T.<v<l-a l-a<t<l1
Define X, = X, _ o)1y — X1_q» % < a. Then X is a BM with drift u, which is
independent of (X,, « < 1 — «). Thus, we have, with obvious notation,

(2g) P(M(a) <x) =P(S~as sup (Xv—Xl_a);szl—a).
T,<v<l-a
To finish the proof of (1a), from (2g) it remains to prove the following
identity: for y < 0 and x < 0,
(2h) P(y < sup (X,-X,);T, < a) —B(T,, ., <a),
T,<v<a

where P is the law of BM with drift (— ). This follows from the fact that
XwEXa—w_Xa’ w=<a,

is a BM with drift (—u), together with the strong Markov property. Now,
from (2h), we have

B(Ty.o<a)=B(y+(~x) <8,) =P(y - inf X, <x),

which, plugged back into (2h) and (2g), proves that the laws of the negative
parts of both sides of (1a) are equal.

To finish our proof of (1a), it remains to show that the positive parts of
both sides of (la) are equally distributed. However, the result for positive
parts follows from the result for negative parts by changing u to — u, since,
with obvious notation,

M(a,t) 'Y —M_,(1-a,t)

and a similar identity in law holds for the right-hand side of (1a).

2.4. We end Section 2 with two remarks concerning the identity in law
(1b).

REMARK 1. In the case u = 0, it is well known that
(law) def
(2i) 6; = sup(u=<t:X,-0} (=g,).
This identity in law follows from the well-known Lévy representation of
reflecting Brownian motion,

(aw) )
(2)) (S, —X,;uz=0) = (IX,l,u > 0) under P°,

but neither (2j) nor (2i) extends to the general case u # 0.

REMARK 2. Some particular cases of the identity in law (1b) are explicitly
discussed in the literature: Imhof [10, Lemma 1] remarks that, for u <0,
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under P*, A} has the same distribution as 6. Furthermore, it is proven in
[10] that this common distribution is also that of 7(—Y), where
7(2) = infl¢: X, =z} and Y is exponential with parameter (—2u) and is
independent of X. This identity in law goes back, in fact, to Williams [17].
Another explanation of this result is given by Doney and Grey [8, page 660],
who represent X* and X~ as two independent processes, after time-chang-
ing them, respectively, by the inverses of A* and A~, Y = sup,, ((—X,) is
exponential, with parameter (—2 w).

3. A second proof of Dassios’ identity, using Bertoin’s path decom-
position.

3.1. An extension of Bertoin’s path decomposition [2] obtained for level
a = 0, to any level a > 0, will give a deeper understanding of Theorem 1.

Fix some a >0, and let A/ =[jds 1x._, and A =¢t—-A} =
Jo ds 1x < _,, with respective inverses (af, u > 0). Let [ denote the local
time of X at (—a). We fix ¢ > 0 and define

Yt = X(at) + H(ad).

THEOREM 2. Define
- Y*(A}) - Y' (A —u), u<A/,
“la+Y (u—-A})+Y(A}), A <u<t.

- (law
Then (X,,u <t) i (X,,u <)

PrOOF. (1) The case a = 0 is Bertoin’s result.

(2) The basic idea behind the proof is that for X a standard Brownian
motion and T an independent exponential variable, we can decompose
(X,, u <T), conditional on (inf, _; X, < —a) by splitting this process into
(X,, u < H_,), and the independent piece (X, =a + Xy ., u<T—-H_),
where H_, = inf{¢: X, = —a}, and then use Bertoin’s result on the (condi-
tioned) process (XDicr-m_,-

(3) Here are the details: Let (X,), . , be a Brownian motion independent of
the exponential random variable T with mean A~!. We shall provide two
decompositions of the path (X,), ., which correspond to the path decomposi-
tion we are concerned with.

As a building block, we take ((Y,), _,; £), where ¢ ~ exp(Y21) and, given ¢,
(Y,), ., is a Brownian motion with drift 6 = V2, run until 7 = inf{¢: Y, = &)
Let ((Y}),.,; ¢') be an independent copy.

x = | Yo t<m,
t ' '
Y. . TSt<TH+ T,

(1) The process

is identical in law to (X,),_r. Indeed, it is clear that sup,_, X, ~ exp(6)
and, given that H, < T, (X,), .y, is distributed as a Brownian motion with
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drift 6, run until it hits a. The independence of the pre- and postmaximum
pieces of path is a general excursion-theoretic result, and the law of the
postmaximum piece comes from duality.

(i’) Let us introduce a process (Y;"), ., which is a Brownian motion with
drift 6, run until it hits ¢ > 0 and independent of Y and Y'. Conditional on
(¢' > a), we have

() iar = (F,),0
where
- Y, t<rT,
t Yi-nt+ Y, T<t<7",

which induces a corresponding decomposition of X':

Y,, t<r,
X = Yiim_pyté—a, T<t<Tt+71",
Yiirimopnyté—§& —a, T+ <t<Tt+7" + 7.

(ii) Coming back to our idea in (2) above, we decompose (X,); .7, condi-
tional on {inf, _, X, < —a} by splitting it at H_, = inf{t: X, = —a}. The
piece of path (X,),_y_ is identical in law to (-Y;"),_..; the piece of path
(¢ + Xy __+)i<r-n_, is independent and identical in law of (X,), _ 7, uncondi-
tioned.

We now use Bertoin’s result on the (conditioned) process

Xi=a+Xy ., t<T-H,=T".

. . def . . .
More precisely, with A# = [{ 1, x >, ds and their respective inverses a =

we generate processes
Zr = X’(aui) + %l(aui),
with respective lifetimes A*(T'"'). Now, according to Bertoin’s result,
(27 (A7) —Z7(Ap = 1))e<az

is the premaximum piece of path of a Brownian path fragment of duration 7",
and so has the law of (Y}), _..

Similarly, (Z7(A7, —t) — Z7 (A7), < a;. is the reversal of the postmaxi-
mum path, so again has the law of (Y}),_,. Comparing with the decomposi-
tion (i’) gives the result. O

3.2. We now deduce a number of consequences from Theorem 2. First, we
list some a.s. identities, which, thanks to Theorem 2, can be turned into
"identities in law:

() YHAD) = (X, V (—a)) + L1
() Y (A;) = (X, A (—a) — 31,;
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(i) A; = 6/ (a) = suplu <t: S, - X, < a};
Gv) 6/ (@) — 6 =T_,,on (T_, <t);
W) )gt = X, [this follows from (i) + (i)];
i) §, = (X, + )"+ 31, on(T_, <1),and 8, = (X, = (I, V ()" + 3L,
in general;  *
Gid S, - X, = (X, + a)* —(I, v (—a)) + 11,

Now we have the following corollary.

COROLLARY 2.1. For every a = 0, we let
t
Af =Al(a) = j;)ds 1(Xs>—a)

and
6/ (a) =sup{u <t¢:S, - X, <a}.
Then

(law)
Af(a) = 6/(a),

where both variables are considered under P*.

This corollary follows immediately from (iii) above and extends the result
of Proposition 1 to all a > 0.

COROLLARY 2.2 (Karatzas—Shreve trivariate identity [11]). Here, we de-
note A} = A} (0). The identity in law
(law)
(X; + 3, X7 + 3, A) = (8,8 - X,,6))

holds, where both variables are considered under P*.

PrOOF. This identity in law follows from (iii), (v) and (vii), where we take
a = 0. Hence, we obtain

Af =6/, X, =X, and S,-X; =3L,.

It remains to use Theorem 2 to conclude the proof. O

COMMENT. An explicit formula for the density of the trivariate distribu-
tion featured in Corollary 2.2. is proven in detail in the Karatzas and Shreve
book [11].

In their research paper [12], Karatzas and Shreve explain the identity in
law via a Sparre-Andersen type pathwise decomposition. Bertoin and Pitman
[8] discuss a number of closely related path decompositions which transform
the Brownian bridge into the Brownian meander and/or the Brownian
excursion. The main difference between Bertoin—Pitman [3] and our paper is
.that in [3] the authors are interested, in particular, in path transformations
of the Brownian bridge, whereas in the present paper we are interested in
pathwise transformations of Brownian motion (X,, u <t), which keep the
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end value X, fixed. This allows us, thanks to Lemma 1, to obtain results
which are valid for Brownian motion with any constant drift and to deduce
some of the results of Bertoin—Pitman by conditioning on X, = 0.

4. Some remarks on Akahori’s generalized arcsine formula. As a
first step in his computation of the distribution of M(«, ¢) under P*, Akahori
[1] derived the following formula for the distribution of A™(¢) = [f ds 1 x ),
under P*, for u > 0:

PH(A~(t) € ds)
(4a) _ ds o+ fw exp(—pn2u/2) du)(/oo exp(—u?v/2) dv

2 3 3

—s 2mu s 2mwv

from the time-honored Feynman—Kac method. [In the case u < 0, we use the
symmetry of the distribution of Brownian motion, which gives
PYA (t)eds) =P *(t —A(t) €ds)l]

An interpretation, and an explanation of (4a) in terms of “plain” Brownian
motion, that is, Brownian motion without drift, may be given as follows:

(a) We first remark that, from the Cameron—Martin—Girsanov theorem
and the well-known fact that under P°, (1/t)A(¢) is arcsin distributed on
[0, 1], we have

2 PH(A~ d
exp( uX, — %t)‘A‘(t) = s] = m/s(t —s) ( c(i.ts) € ds) .
(b) Combining formulae (4a) and (4b), we obtain
(4c) E°[exp(uX,)|A (¢) =s] =H,(w/t —s)H_(wu/s) foru >0,

where

(4b)  E°

2

v 1 - dx v2x
H+(v)=\/§;1/exp(?)+—2~fo——————— p(— ),

(1+ x)3/2 ox

1 = dy v2y
- H - [ — - .
- =3 (1+9)? eXp( 2 )

Next we state the following elementary lemma.

LEMMA 2. Let v > 0 and denote by m, a Rayleigh variable, that is,

2
Then, one has H,(v) = E[exp(vm,)] and H_(v) = E[exp(—vm,)].

P(m, < dp) =dppexp(—f—), p>0.

The proof of Lemma 2 is left to the reader.
We immediately deduce from (4c) the following:
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PROPOSITION 3. Under P°, conditionally on A (¢) = s, one has

(law)
(4d) X, = Vt—smy, — Vsm,

where m, and m'; are two independent Rayleigh variables.

We now explain and complete the identity in law (4d). We write
X, = (Xt+ + %lt) - (Xt_ + %lt)’

and, from Corollary 2.2, we see that the identity in law (4d) may be reinter-
preted as follows: conditionally on 6; = u, the law of the variable

X,=8,-(S,—X,) isthatof Vum, — /(¢ —u) m).

This follows from Denisov’s path decomposition of Brownian motion (X,
u < t) before and after 6, , in terms of two independent Brownian meanders
([7]; see also Biane and Yor [5]); in particular, we deduce from Denisov’s
result that

def 1 , def St - X,
m, = S, m; =

0 Vt+6F

m, and m/, are Rayleigh variables and 6, is arc-sine distributed on [0, ¢].

and 6; areindependent,
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