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TRANSIENCE OF MULTICLASS QUEUEING NETWORKS
VIA FLUID LIMIT MODELS!

By Sean P. MEYN
University of Illinois

This paper treats transience for queueing network models by consid-
ering an associated fluid limit model. If starting from any initial condition
the fluid limit model explodes at a linear rate, then the associated
queueing network with ii.d. service times and a renewal arrival process
explodes faster than any fractional power.

1. Introduction. There has been much recent interest in understanding
the dynamics of queueing networks and, in particular, their stability proper-
ties. Numerous techniques have been developed for verification of stability or
ergodicity using a variety of methods. Of interest to us in the present paper is
the recent approach based on a fluid approximation.

Rybko and Stolyar [15] have recently examined the stability properties of a
particular example by studying the properties of the associated fluid approxi-
mation. Dupuis and Williams [8] obtained results of this kind for reflected
Brownian motion, and these ideas were subsequently generalized in Dai [3]
and Dai and Meyn [4]. These results show how to demonstrate the stability of
the stochastic system by establishing the stability of a fluid approximation. In
this paper we establish a converse result to obtain criteria for transience for
stochastic queueing networks based on a fluid limit model.

Establishing transience of a queueing network appears to be at least as
difficult as proving ergodicity. Several papers have appeared recently in
which instability is established for a specific multiclass network (see, e.g.,
Kumar and Seidman [11], Lu and Kumar [13], Bramson [1] and Seidman
[16]). Interestingly, in these examples transience occurs even though the
usual load conditions are not violated.

The approach that we follow can be outlined as follows. For an associated
fluid limit model, if the trajectories grow without bound, then a certain
functional of the paths of the fluid model serves as a Liapounov function. In
Theorem 3.2 we show using weak convergence arguments that an analogous
functional W(n) for the stochastic queueing network satisfies the super-
martingale property

E.[W(n + 1)|7] < W(n) - n>0,|X(n)|=c,,

| X(m)["”
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where the number m > 1 captures the rate of explosion for the fluid limit
model, and c, is some positive constant. In Theorem 3.1 it is shown that this
then gives an almost sure rate of explosion of the total customer population
|X(n)| of the network and from this we conclude that the network is tran-
sient.

2. Network and fluid models. We consider a network composed of S
single server stations and K buffers which are located among the server
stations. We assume that there is a single exogenous arrival process with
ii.d. interarrival times {£(n), n > 1}. Customers at buffer £ require service at
station s(k). Their service times are also i.i.d., and are denoted {n,(n), n > 1}.
We assume that the buffers at each station have infinite capacity.

Routing is assumed to be Bernoulli, so that upon completion of service at
station s(k), a customer at buffer £ moves to buffer j with probability p, ;
and exits the network with probability 1 — X; p,;, independent of all previous
history. Moreover, the nth arrival to the network enters buffer & with
probability p, ,, again independent of the history of the process. We assume
that the network is open; that is, all customers eventually leave the network.

A simple example of such a network is the reentrant line, in which routing
is deterministic. An example is illustrated in Figure 1 consisting of two
machines and four buffers, with a single server at each machine. In this
example, K=4 and S = 2.

Throughout the first part of this paper, we make the following restriction:

£,m,,..., Mg are mutually independent, exponentially distributed, i.i.d.
sequences we set w, = 1/E[n,(1)] and A = 1/H £(D].

These assumptions have been imposed for ease of exposition; some discussion
on how the exponential assumption can be relaxed is included in
Section 5.

We will sample the process at virtual event times as in L1ppman [12] to
form a discrete-time process X = {X(n): n € Z,} evolving on X = Z%, where
X is simply the vector of buffer lengths. The resultmg process satlsﬁes the

X, (k) X0
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Fic. 1. A reentrant line.
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skip-free property
(1) |X(n) —X(m)| <In—m| forall n,m.

We consider exclusively scheduling policies which are state dependent, so
that the process X becomes a Markov chain. The norm | - | on the state space
X will be taken to be the standard /!-norm, so that |X(n)| denotes the total
customer population at the time of the nth sampling.

For each 0 =1,...,S we let C, = {k: s(k) = o}, and we define the nomi-
nal load at station o as
Ay
Py = T
keC, Mi
where {A,} are found by solving the traffic equations

)‘szpo,k+ZAjpj,k’ ].Sk _<.K.

It is clear that if the capacity constraint p, < 1is violated for any o = 1,..., S,
then the network will be transient; that is, P{|X(n)| — «} = 1 for all x. We
will adopt this as our definition of instability. Thus, in this paper we restrict
our attention to the case when the capacity constraint is satisfied for each o.

From the Markov chain X we can construct a continuous-time process
¢*(¢) as follows: If |x|¢ is an integer, we set

1
(2) *(t) = -I-HX(lxlt).

For all other ¢, we define ¢*(¢) so that it is continuous and piecewise linear
in ¢. In view of the skip-free property (1), we have, for any x,

3) |$(t) — ¢*(s)| < It —sl, ¢,520.
It follows trivially that for p > 0, T' < =, the family of random variables
(4) {I¢=(¢t)[":x # 0,0 < t < T} is uniformly integrable.

By (3) and (4) it follows that the processes {¢*: x # 0} are tight in the
function space C[0, «].
The fluid limit model is defined to be the set of all weak limits

® = {¢ ¢* -, ¢ as x - » along some subsequence}
= N {¢% Izl > n},
n=1

where the bar denotes weak closure. Any particular ¢ € ® is called a fluid
limit.

It is shown by Chen and Mandelbaum [2] and Dai [3] that any ¢ € @
satisfies a certain integral equation. For an M /M /1 queue where S = K = 1,
the fluid model ® consists of the single path

$(t) = max[0, $(0) — (p— )],  £20,
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where in this case ¢(0) = |$(0)| = 1. For the network described in Figure 1,
the following differential equations are satisfied:

¢1=A“T1#1,

d’z = '1,u,1 - Tzl’«z,
(5)

<153 = T2I~L2 - T3M3,

¢y = T3pg — Typy,
where Tk is interpreted as the proportion of time that a server is busy on
buffer k. Constraints on the variables T}, can be found through the particular
scheduling policy employed.

We will see in an example below that the set of solutions to these integral
or differential equations may be far larger than ®, since, in general, it is
difficult to characterize T, completely. Consequently, our results will be
strengthened if we focus on the true fluid limits.

For the exponential network described here, we have the following result
from [4]:

THEOREM 2.1. Assume the fluid limit model ® is stable, in the sense that,
for some fixed time t,, and for any ¢ € ®, we have ¢(t) = 0, t = t,. Then the
following hold:

(i) The transient moments converge to their steady-state values: for any
r>1,

EmE[Qu(1)] = E,[Q:(0)] <=
(ii) The first moment converges faster than any polynomial: for all n,

tim ¢7[E,[Q(1)] - E,[Q(0)]] = 0.

(iii) The strong law of large numbers holds: for all r,
1 r
lim — [‘Qf(s) ds = E,[Qu(0)],  Pras.
t—oe L 79

In the remainder of this paper we prove that a converse holds: if ¢(¢) - «
from any initial condition, then the process X(n) also explodes.

3. Transience of networks. The main result of this paper shows that
the Markov chain X is transient whenever the fluid limit model & is
unstable. The underlying idea is to construct a Liapounov function for the
fluid limit model, and from this construct a positive supermartingale
(W(n),Z,: n = 0) for the network of the form

(6) E[W(X(n +1))|%] < W(X(n)) —g(X(n)),

where %, = o(X(0),..., X(n)). The drift (6) will hold whenever X(n) is
“large” (when measured by W). This drift condition can also be expressed in
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the form

E[6'W(X(n)) - W(X(n))|Z] < —g(X(n)),
where 6! is the usual backward shift operator on sample space (cf. Meyn and
Tweedie [14]). It is this form that will be considered in the application below.
The idea of transferring a Liapounov function from a fluid model to the
network is also used in [8] and [4].

Note that (6) has the same form as Foster’s criterion; it is only the nature
of the set off which the drift occurs, and the use of the state dependent drift
—g(X(n)), that is different. Note, however, that Foster’s criterion gives
positive recurrence, while the result below implies transience if g takes on
strictly positive values.

We begin with the following general result, which is an extension of
Theorem 8.0.2G) of [14].

THEOREM 3.1. Suppose that for the Markov chain X there exist positive
functions W and g on X, and ¢, > 0, such that (6) holds whenever X(n) €
A, ={x € X: W(x) < cy}. Then for all x,

(7 [P’x{ 2 g(X(n)) < 00} >1—c;'W(x).
n=0

PrOOF. Let
o =min(n > 0: X(n) € A ) = min(n > 0: W(X(n)) = ¢),

and define the adapted process {M,: n > 0} by M(0) = W(X(0)), and for
n>1,
(c-DA(n-1)
M(n) =W(X(n Ao))+ Y g(X(k)),
k=0

where the sum Y;' is interpreted as 0.
If o <n,then 0 — 1 <n — 1 also, so

o-1
M(n) = W(X(c)) + T g(X(k)) = M(c) on(o<n).

Using this identity and the drift inequality (6) gives, for n > 1,
E.[M(n)|Z, ]
=M(n—-1)1(o<n)

W(X(n)) + :;g(X(k))

<M(n—-1)1(c<n)

n—1
+(W(X(n -1)) —g(X(n-1)) + k;ﬂg(X(k)))]l(a'z n).
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After rearranging terms we see that E[M(n) | #,_,] < M(n — 1), and hence
(M(n), %) is a positive supermartingale.

From the martingale convergence theorem, there exists a random variable
M() such that the following hold:

(i) M(n) - M(®) as n — «, almost surely and in the mean;
(i) (M(n),%,; 0 < n < ») is a positive supermartingale.
From the definition of M(n), we evidently have
o—-1
M(©) = im W(X(n A o)) + X g(X(k))
n—=e k=0
(8) -1

> col(o < ») + UZ g(X(k)),
£=0

where we have used the assumption that W(X(n)) > ¢, if X(n) € A, .
From (8) and the supermartingale property (ii), we have

o—1
coP(o <) +E, k§0g(X(k))] < E,[M()] < E,[M(0)] = W(x).

From this bound we can infer

9) P(o<®) < o5 W(x),
(10) Ex[éog(X(k))ﬂ(ow)] < W(x).
We have from the second bound that

I(o=») kiog(X(k)) <o a.s.
These conclusions prove the theo;em. O

We may now state and prove our main result. In all of the applications we
have considered, we-have found that m, = 1 will suffice in the conditions of
Theorem 3.2. In this case, the fluid limit model “explodes” at a linear rate,
and the finiteness of the sum in (12) then implies that the process X(n)
explodes faster than any fractional power of n.

THEOREM 3.2. Suppose that for some my > 1, 8, > 0, for any ¢ € P,
(11) |o(T)| = b(T), T=0,

where b(T) = 8,TY ™. Then the Markov chain X is transient, and moreover,
for any m > my, g

(12) lim umx{ f _ oo} -1

<
e |1 1+ X(R)"
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PROOF. To construct a function W satisfying the conditions of Theorem

3.1, set W(x) = E,[#7’], where the random variable 77 is defined as
I X)T-1 .
= ¥ [1+]XO]+adX(n)] ",
n=0

where a and T are positive real numbers and m > m,. Here and in the
remainder of this proof, we interpret the sum Y2_, as ¥, ,.,, even if @ and
b are not integers.

The random variable 7" has the appealing interpretation

1 m

—| ds,
lﬁ-al¢x(8)|)
where the approximation becomes exact as |X(0)] — «. The right-hand side
can be interpreted as an approximation to a Liapounov function for the fluid
limit model. Indeed, define for ¢ € ®,

| X(0) " ' = /OT

T 1 "
7(4) =[] +a|¢(s)|) ds-

Assuming the fluid limit model is unstable in the sense of Theorem 3.2, we

can choose a and T so that Z(®'¢) < 7(¢) for any r > 0. Analogous to

Markov processes, the shift © is defined for ¢ € ® as (@'p)¢) = ¢(¢ + r).
Using the representation

7= ¥ [1+1X(0)] +adl X(n)[] "LIKOIT > )

we have

0l = i [1+]X()] +alX(n+1)]] " 1(X(Q)|T > n)]
n=0
|xlr m
- gi[yﬂxuﬂ+dXMH]-

We now break the difference 6% — % into three terms which are considered
separately: :

(13) 0'w-w=A+B+C,
where
(14) A= —[1+|X(0)| +a|X(0)[] ",
I x©)IT-1 .
B= z:i {([1+1 X)) |+ al X(n)]

15 " .
(19 141X+ alx(m)]] "),
. Ixwlr .

(16) C= Y [1+]xX()|+alX(n)[] "

n=1Xx0IT
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The first term provides a negative contribution, which we will show domi-
nates the remaining terms for suitable choices of a, T' and the initial
condition x.
The second term is bounded using the mean value theorem and the
skip-free property (1):
I xX©)T-1

B < Z_‘,l {[1 + (1X(0)[ - 1) +a|X(n)|] "

~[1+1X(0)| + ol X(n)[] "}

IxX©)IT-1 1
s L mllXO+alX(m[™

Multiplying both sides by |X(0)|™, we see that
I x©IT-1 | X(n)] -m-1
1+4ag———tt
X0 2 | X(0)]

From weak convergence, the family of random variables {|X(0)|" B: IX 0 eXx
is tight, and any weak limit may be bounded by a random variable of the
form

(17) |X(0)["B <

me[l + a|¢(s)|]_(m+1)ds
0

where ¢ is possibly random, taking values in ®. Since the right-hand side of
(17) is bounded, we have

(m+1)
Il;{r(r;)e?z}:[E [IX(O)I B] < sup {mf [1+ald(s)]]” ds }

< f [1+ab(s)] ™" Pds.
0
We now bound the third term. Since C < 0 when |X(1)| < |X(0)|, we only
have to consider the case where |X(1)| = |X(0)| + 1. It then follows that
C<(T+1)[1+]|X0)|+1+a(|X(n)-TH] "
Multiplying by |X(0)|™ and taking limits gives a bound on the final term:

limsup E, [IX(O)I C] < sup (T+D[1+ale(T)] "
I X(0)] -

<(T+)[1+ab(T)]™"
Putting these three bounds together gives

lim sup | X(0)|"E [OIW 7]
| X(0)] -

’(1'8) <-[1+a]™™+ mfo [1+ab(s)] ™" Pds

+(T+ 1)[1+ab(T)] ™.
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We may now specify a and T First, choose a so large that
o 1 .
mf [1+ab(s)] ™" Pds<=[1+a] ™.
0 3
This is possible -because of the larger exponent in the integrand on the
left-hand side. With «a fixed, choose T' so large that
(T+1) 1 1
——m ST
(1 + ab(T)) 3(1+a)

This is possible because of our assumption that m > m, > 1, and the defini-
tion of &(T).
Hence from (18) we have

(19) limsup | X(0)|" (PW(x) — W(%)) < — o ——w <0,
| X)) - 3 (1+a)
which shows that the conditions of Theorem 3.1 hold with
1
g(x) = const.——. O

(1 + =)™

4. Examples. We now give two examples to illustrate the application of
the results above. It will be seen that some care must be taken when working
with the fluid limit model.

Fluid integral equations do not characterize fluid limits. Here we give an
example of a network for which the differential equations used to describe the
fluid limits admit solutions which tend to 0, even though the weak limits
themselves always tend to o°.

Consider the network described in Figure 1 under the following conditions:

(i) The load conditions are satisfied:

A A A A
pp=—+—<1, pg=—+—<L1
R My ) M3
(ii) Buffers 2 and 4 have priority at their respective machines.
(iii) The orderings u; > pmq; pg > puy are satisfied, and

A A
— 4+ —>1.
2 My
Under (ii) and (iii), priority is given to slow queues, and this causes alternate
starvation of the machines, resulting in instability. This is shown in [13] for a
. deterministic model of the network. We give a proof of this result for the fluid
model using a Liapounov function approach.
' Before we begin, we note that for any ¢ € @, after either buffer 2 or 4
empties, these buffers can never again be active simultaneously until the
fluid limit model empties. For example, at the time that buffer 2 empties,
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buffer 4 becomes busy and is fed by buffer 3, which sends fluid to buffer 4
strictly faster than it can be processed. Since buffer 4 has priority over buffer
1, work to buffer 2 is completely cut off so that ¢4(¢) = ¢5(¢) = 0 until buffer
4 finally empties. At this time, work moves from buffer 1 to buffer 2, and an
analogous starvation of buffer 4 occurs. This phenomenon can be proved
rigorously following Lemma 5.1 of [7]. It follows that after some finite
transient, whenever the fluid limit model is nonempty, @,(¢)d,(¢) =
¢5(t)p(¢) = 0. The latter identity implies that

LI(y(2) > 0) + L(gy(t) >0) < 1.
Define the work destined for buffers 2 and 4 as follows:

Wy () = (01(2) + b2(2))/ 12>
Wy(t) = (61(2) + da(2) + b3(2) + bu(t))/ s

For example, the quantity W,(¢) is the total amount of time that buffer 2
must spend to process the fluid which is in the system at time ¢. Letting
V(¢) = W,(¢) + W,(¢), we have from the previous arguments that after buffer
2 or 4 first empties, for almost every ¢,

th A 1 t>0+/\ 1 t) >0 /\+A 1>0
— =— — —_ = >— 4+ — - .
V(0 = o = L(a(t) > 0) + —= = 1(4(t) > 0) = =+ -

On integrating both sides of this inequality, one sees that the conditions of
Theorem 3.2 are satisfied with m, = 1, and hence the original stochastic
queueing network is transient.

The fluid model differential equations are given by (5). Because of the form
of the buffer priority policy, T5(¢) = 1 if ¢4(¢) > 0, and T,(¢) = 1 if ¢,(¢) > 0.
It is easy to construct solutions to these equations which tend to 0 if the
constraint that ¢,(t)¢,(¢) is eventually 0 is removed. When attempting to
establish transience through the fluid limit model, we see that one must be
careful to eliminate any extraneous solutions to the fluid limit differential
equations.

Drift vectors do not characterize fluid limits. For a network of the form
described here, it is popular to address stability through an analysis of the
drift vectors defined by

A(x) = E[X(k + 1) - X(k)|X(k) =x], axeX

Two examples of skip-free random walks on Z3 are analyzed in [9], for which
stability can be addressed using a fluid model following the approach de-
scribed in this paper. The vector field A(x) is identical in these two examples,
yet one is transient with the process exploding along the x, axis, and the
other is positive recurrent. The fluid limit models are of course very different.
In the stable case, the fluid model approaches 0 along the x, axis, while for
the unstable model, the fluid limits explode at a linear rate along this axis.

Hence, the drift vectors do not describe the motion of the fluid limit model.
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5. Generalizations and conclusions. The assumptions imposed in
Theorem 3.2 are just what one would expect from an unstable network,
particularly with the choice of m, = 1. If the network is unstable, then a
linear rate of explosion seems reasonable; and if the network explodes from
one initial condition, then, by irreducibility, one would expect the same
behavior from all initial conditions. This is precisely what is observed for the
M/M/1 queue when p > 1, and more elaborate examples are treated in
[5]-[7] and [10].

The main difficulty with this result is in verification. Ideally, the result
would state that the queueing network is transient if the fluid limit model
explodes from just one initial condition. Extensions in this direction are
currently under investigation.

We have restricted to state dependent policies, but this can often be
relaxed. More complex scheduling policies can be treated as long as a Markov
state process and a corresponding fluid model may be constructed. We refer
the reader to [4] for further discussion.

One strong assumption imposed in this paper is the distributional condi-
tion on the arrival and service processes. This is not essential, although it
does greatly simplify the exposition. To generalize Theorem 3.2 to general

ii.d. services with a single renewal input, sample the process at the arrival

epochs to form a general state space Markov chain X(n) = (22:;

Q(n) denotes the buffer of queue lengths, and R(n) denotes the vector of
residual service times, all at the time of the nth arrival. Sampling in this way
preserves the upper bound,

), where

Q(n+m)—-Q(n) <m, nmelZ,,

and a stochastic lower bound may also be found. A fluid limit model may be
constructed as before, although it is slightly more complex due to the fact
that the residual service times introduce a delay [4]. In spite of this added
complexity, the proof of Theorem 3.2 goes through in essentially the same
way as presented here.

The assumptions of Theorem 3.2 can be verified under general conditions
by solving an associated linear program [6, 7]. Although this method com-
pletely characterizes stability for all of the examples that we have investi-
gated, it is not known if this approach characterizes stability in general. Such
issues are also currently being explored.
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