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ASYMPTOTIC RESULTS FOR LONG MEMORY
LARCH SEQUENCES

BY ISTVÁN BERKES1 AND LAJOS HORVÁTH

Hungarian Academy of Sciences and University of Utah

For a LARCH (“linear ARCH”) sequence (yn,σn) exhibiting long range
dependence, we determine the limiting distribution of sums∑

f (yn),
∑

f (σn) for smooth functions f satisfying E(y0f
′(y0)) �= 0,

E(σ0f
′(σ0)) �= 0. We also give an approximation formula for the above

sums, providing the first term of the asymptotic expansions of
∑

f (yn),∑
f (σn).

1. Introduction. Since their introduction by Engle (1982) and Bollerslev
(1986), ARCH and GARCH sequences have been used extensively to model
financial time series, such as asset returns and exchange rates. A common property
of ARCH(p) and GARCH(p, q) sequences is that they are defined by finite
recursions and their autocorrelations decrease very rapidly, implying short memory
behavior of these sequences. Short memory behavior holds even for ARCH(∞)

models defined by the infinite recursion

yk = σkεk,(1.1)

σ 2
k = a +

∞∑
i=1

biy
2
k−i, k ∈ Z,(1.2)

where (bk) is a sequence of nonnegative numbers and (εk) is an independent,
identically distributed sequence of random variables having suitable moments. In
fact, under reasonable conditions implying the existence of a covariance stationary
solution of (1.1)–(1.2), we automatically have

∞∑
k=1

|Cov(y0, yk)| < +∞

implying short range dependence of the sequence [compare with Giraitis,
Kokoszka and Leipus (2000)]. On the other hand, empirical evidence suggests
in many typical financial situations a much greater degree of persistence in the
process, indicating a long memory behavior of (yk). A model describing such long
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memory behavior was suggested by Giraitis, Robinson and Surgailis (2000). They
introduced a model called LARCH (“Linear ARCH”) defined by

yk = σkεk,(1.3)

σk = a +
∞∑
i=1

biyk−i, k ∈ Z.(1.4)

As they showed, if a �= 0, the εi are independent, identically distributed with
Eε0 = 0,Eε2

0 = 1 and

∞∑
i=1

b2
i < 1,(1.5)

then (1.3)–(1.4) has a unique stationary solution admitting a Volterra expansion

σn = a + a

∞∑
k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
εn−j1 · · · εn−j1−···−jk

(1.6)

and if

bj ∼ cj−β, 1/2 < β < 1(1.7)

then (σn) has long memory behavior. (Here ∼ means that the ratio of the left- and
right-hand sides tends to 1.) In particular,

N−(3/2−β)
[Nt]∑
j=1

(σj − a), 0 ≤ t ≤ 1

converges, as N → ∞, not to the standard Brownian motion as it should be the
case in a short memory situation, but to the fractional Brownian motion W3/2−β .
Let us recall that {Wγ (t), t ≥ 0}, the fractional Brownian motion with parameter
γ (0 < γ < 1), is a Gaussian process with mean 0 and covariance

EWγ (s)Wγ (t) = 1
2 (|s|2γ + |t|2γ − |s − t|2γ ).

See, for example, Samorodnitsky and Taqqu [(1994), Chapter 7].
The first profound analysis of a long memory situation in the probabilistic

literature is due to Taqqu (1975, 1979) and Dobrushin and Major (1979) in the
case of Gaussian processes. Specifically, they obtained the limit distribution of
sums

∑
f (ξk) for a centered stationary Gaussian sequence (ξk) with covariance

function rk ∼ k−α,α > 0. The case α > 1 is classical: in this case the sequence (ξk)

has short memory and N−1/2 ∑[Nt]
k=1 f (ξk) converges weakly to a multiple of the

Wiener process for any f with Ef (ξ0) = 0, Ef 2(ξ0) < +∞. In the difficult case
0 < α < 1 the limiting behavior of

∑
f (ξk) depends essentially on f ; specifically,

if Ef (ξ0) = 0, Ef 2(ξ0) < +∞ and cm is the first nonzero term in the Hermite
expansion f (x) = ∑

ckHk(x), then with suitable norming aN the sequence
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a−1
N

∑[Nt]
k=1 f (ξk) converges weakly to a process Zm(t) (Hermite process) defined

in terms of multiple Wiener integrals. For m = 1, Z1(t) is fractional Brownian
motion, but for m ≥ 2, Zm(t) is non-Gaussian. In a subsequent paper Dehling
and Taqqu (1989) determined the asymptotic behavior of the empirical process of
(ξk). In the short memory case α > 1 the limiting process is a Gaussian process
with mean 0 and covariance function R(x, y) = ∑

n∈Z Cov(I {ξ0 ≤ x}, I {ξn ≤ y}),
which appears in many typical weakly dependent situations, but in the case
0 < α < 1 we get a totally different type of limiting process, whose trajectories
are semi-deterministic, that is, are random multiples of a fixed deterministic
function.

Surgailis (1982) [see also Giraitis and Surgailis (1986, 1989, 1999)] extended
the Dobrushin–Major–Taqqu theory to linear (moving average) processes defined
by

ξn = ∑
j∈Z

bj εn−j , n ∈ Z,

where {εi, i ∈ Z} are independent, identically distributed random variables with
Eε0 = 0,Eε2

0 = 1 and bj are real numbers with
∑

b2
j < +∞. Long memory

behavior holds here if

bj ∼ cj−β, 1/2 < β < 1,

and Surgailis (1982) showed that the class of the limiting processes of a−1
N ×∑[Nt]

k=1 f (ξk) is the same as in the Gaussian case, just the role of the Hermite
polynomials is played by another polynomial sequence, the so-called Appell
polynomials. Specifically, if f is smooth and m ≥ 1 is the smallest integer with
E(f (m)(ξ0)) �= 0, then the limiting process of a−1

N

∑[Nt]
k=1 f (ξk) is Zm(t). As a

consequence, we get the same asymptotic behavior of the empirical process of
the (ξk) as in the Gaussian case.

The purpose of our paper is to investigate the limiting behavior of sums∑
f (σn),

∑
f (yn), where (yn, σn) is a long memory LARCH sequence defined

by (1.3)–(1.4), where a �= 0, εi are independent, identically distributed random
variables with Eε0 = 0, Eε2

0 = 1 and bj are positive numbers satisfying (1.7).
The strong similarity between linear sequences and the basic recursion formula
for LARCH sequences [see relation (1.21)] was exploited by Giraitis, Robinson
and Surgailis (2000) to determine the limit distribution of

∑
(σn − a). In fact, they

proved that the asymptotic behavior of
∑

(σn − a) is the same as that of
∑

σ ∗
n ,

where σ ∗
n is the linear process defined by

σ ∗
n =

∞∑
j=1

bjδn−j , n ∈ Z,(1.8)

where δj are i.i.d. random variables with δ0
D= ε0σ0. We will see that this

phenomenon does not extend to
∑

f (σn) with general f : the variances of
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∑N
n=1 f (σn) and

∑N
n=1 f (σ ∗

n ) can grow with different speed and the sums have,
in general, different limit distributions. However, we will show that

∑
f (σn),∑

f (yn) exhibit a long memory behavior, similar to that of Gaussian and linear
processes, if E(σnf

′(σn)) �= 0 and E(ynf
′(yn)) �= 0. In this case the variances of

the sums grow as CN3−2β and the sums, properly normalized, converge to the
fractional Brownian motion. More precisely, we have:

THEOREM 1.1. Assume that Eε0 = 0, Eε2
0 = 1, E|ε0|p < +∞ for some

p > 4 and that (1.7) holds with

b2 =
∞∑

n=1

b2
n <

p − 1

3(6p)3‖ε0‖2
p

,(1.9)

where ‖ · ‖ denotes the Lp norm. Let f : R → R be a twice continuously
differentiable function with

|f ′′(x)| ≤ C(|x|α + 1), x ∈ R,(1.10)

where

0 < α < (p − 4)2/(2p).(1.11)

Then

N−(3/2−β)
[Nt]∑
n=1

(
f (σn) − Ef (σn)

) D[0,1]−→ γ dW3/2−β(t)(1.12)

and

N−(3/2−β)
[Nt]∑
n=1

(
f (yn) − Ef (yn)

) D[0,1]−→ γ1dW3/2−β(t),(1.13)

where

γ = 1

a
E

(
σ0f

′(σ0)
)
, γ1 = 1

a
E

(
y0f

′(y0)
)

(1.14)

and

d =
(

B(1 − β,2β − 1)

(1 − β)(3 − 2β)

)1/2
ac

(1 − b2)1/2 .(1.15)

Here a, b, c are from (1.4), (1.7), (1.9) and B(·, ·) is the beta function.

In particular, we have

N−(3/2−β)
N∑

n=1

(
f (σn) − Ef (σn)

) D−→ N(0, d2γ 2),(1.16)



LONG MEMORY LARCH SEQUENCES 645

N−(3/2−β)
N∑

n=1

(
f (yn) − Ef (yn)

) D−→ N(0, d2γ 2
1 ).(1.17)

As a comparison, we note that for a long-memory moving average process (yn),
relation (1.13) holds with γ1d replaced by const · E(f ′(y0)). As a consequence,
there is a change in the behavior of the corresponding empirical processes, see our
remarks below. The appearance of E(σ0f

′(σ0)) and E(y0f
′(y0)) in Theorem 1.1

indicates a new situation: the connection with the Appell expansions, underlying
the structure of moving average processes, is lost. The fractional Brownian
limits in (1.12), (1.13) correspond to the main term in the asymptotic formulas
given by Theorem 1.2 below and become degenerate if E(σ0f

′(σ0)) = 0 or
E(y0f

′(y0)) = 0. To determine the limit distribution in these degenerate cases
would require finding the further terms in the asymptotic expansions of

∑
f (σn),∑

f (yn), a problem we will not deal with in the present paper, although the path
of doing it is clearly indicated by the proof of our theorems.

Note that for large p we assume that b2 = ∑∞
n=1 b2

n is small. The actual bound
in (1.9) is needed for the moment estimates in Lemmas 2.4, 2.5 and is similar
to the bound on b required in Giraitis, Robinson and Surgailis (2000) for their
asymptotic covariance estimates. Observe also that for large p, relations (1.10)
and (1.11) permit polynomials f of degree ∼ p/2 in our limit theorems. As a
comparison, in the case of linear processes, the existence of finite p moments of
the generating i.i.d. sequence permits to apply the corresponding limit theorem for
polynomials of order p/2 [see Avram and Taqqu (1987)].

We note finally that E(y0) = E(σ0ε0) = 0 and thus for f (x) = x the γ1 in
(1.14) becomes 0 and thus the limit in (1.13) becomes degenerate. The explanation
is that the yn are orthogonal and thus

∑N
n=1 yn = OP (

√
N). Clearly, we get a

nondegenerate limit if f (x) = x2k , k ∈ N.
While in the present paper we do not investigate the empirical processes

of (σn), (yn), their asymptotic behavior is easy to obtain heuristically from
Theorem 1.1. Let, for example, µN be the empirical process of {y1, . . . , yN }
defined by

µN

(
(−∞, x]) = N−(3/2−β)

N∑
n=1

(
I (yn ≤ x) − P (yn ≤ x)

)
.

Relation (1.17) can be written equivalently as∫ +∞
−∞

f (x)µN(dx)
D−→ N(0, d2γ 2

1 ).

In particular, with f (x) = eitx we get∫ +∞
−∞

eitxµN(dx)
D−→ it

d

a
E(y0e

ity0)Z(1.18)
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for any t ∈ R, where Z is a standard normal r.v. Assuming that y0 has a density
ϕ(x) and introducing the process

ξ(x) = d

a
xϕ(x)Z, x ∈ R,

it is easy to verify that the right-hand side of (1.18) is − ∫ +∞
−∞ eitxξ(dx) and thus,

observing that ξ(x) and −ξ(x) have the same distribution, (1.18) suggests that

µN

(
(−∞, x]) D[−∞,+∞]−→ ξ(x).(1.19)

A similar heuristic suggests, in view of (1.13), the two-parameter convergence

µ[Nt]
(
(−∞, x]) −→ d

a
xϕ(x)W3/2−β(t)(1.20)

in D([0,1]×[−∞,+∞]). However, the precise verification of (1.19) and (1.20) is
quite laborious, requiring the chaining technique employed in Dehling and Taqqu
(1989) and Ho and Hsing (1996) and will be postponed to a subsequent paper.

In contrast to the semideterministic limit process ξ(x) appearing in (1.19), the
empirical processes of ARCH and GARCH models in the short memory case
converge to nondegenerate Gaussian processes and the limit of µ[Nt]((−∞, x])
in (1.20) in the short term memory case is a Kiefer process exhibiting random
behavior in both parameters. See Berkes and Horváth (2001).

We formulate now a stronger version of Theorem 1.1, which also reveals the
reason for the relations (1.12)–(1.13). For this purpose, we introduce some new
LARCH type sequences associated with (σn). Clearly, the sum of those terms in
the doubly infinite sum in (1.6) which contain εn−	, but no εν with ν > n − 	 is

b	εn−	

(
1 +

∞∑
k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
εn−	−j1 · · · εn−	−j1−···−jk

)

= b	εn−	

(
1 + σn−	 − a

a

)
= 1

a
b	εn−	σn−	.

Hence

σn − a = b1εn−1σn−1 + b2εn−2σn−2 + · · · .(1.21)

Let f be a function satisfying (1.10), (1.11) and define the sequences
{σ (f )

n , n ∈ Z}, {σ̄ (f )
n , n ∈ Z} by

σ (f )
n = B1εn−1σn−1 + B2εn−2σn−2 + · · · ,(1.22)

σ̄ (f )
n = B̄1εn−1σn−1 + B̄2εn−2σn−2 + · · · ,(1.23)

where

B	 = E
(
f ′(σ0)ζ	

)
, B̄	 = E

(
f ′(y0)ε0ζ	

)
(1.24)
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with

ζ	 = ∑
r ≥ 1

j1, . . . , jr ≥ 1
j1 + · · · + jr = 	

bj1 · · ·bjr ε−j1 · · · ε−j1−···−jr−1 .(1.25)

That is, σ
(f )
n and σ̄

(f )
n are obtained from σn − a by replacing the coefficients bj

in (1.21) by Bj and B̄j , respectively. Now we have:

THEOREM 1.2. Under the assumptions of Theorem 1.1 we have

N∑
n=1

(
f (σn) − Ef (σn)

) =
N∑

n=1

σ (f )
n + CN3/2−β−εξN(1.26)

and
N∑

n=1

(
f (yn) − Ef (yn)

) =
N∑

n=1

σ̄ (f )
n + CN3/2−β−εηN(1.27)

for some C > 0, ε > 0 where Eξ2
N ≤ 1, Eη2

N ≤ 1. Moreover, the B	, B̄	 in
definitions (1.22) and (1.23) satisfy

B	 ∼ γ b	, B̄	 ∼ γ1b	 as 	 → ∞(1.28)

with the γ and γ1 in (1.14).

Relations (1.26) and (1.27) are invariance principles for
∑N

n=1 f (σn) and∑N
n=1 f (yn) and reduce their study to those of

∑N
n=1 σ

(f )
n ,

∑N
n=1 σ̄

(f )
n . For the

original (σn), Giraitis, Robinson and Surgailis (2000) proved that

N−(3/2−β)
[Nt]∑
n=1

(σn − a)
D[0,1]−→ dW3/2−β(t)(1.29)

with the d in (1.15). [Actually, they showed only the convergence of finite
dimensional distributions in (1.29), but the tightness follows from

E

(
N∑

n=1

(σn − a)

)2

∼ C1N
3−2β

which, in turn, is a consequence of their Corollary 2.1, and Theorem 15.6 of Bil-
lingsley (1968). See the analogous argument for N−(3/2−β)R[Nt] at the end of our
paper.] Using (1.28), the same proof shows that

N−(3/2−β)
[Nt]∑
n=1

σ (f )
n

D[0,1]−→ dγW3/2−β(t)(1.30)



648 I. BERKES AND L. HORVÁTH

and

N−(3/2−β)
[Nt]∑
n=1

σ̄ (f )
n

D[0,1]−→ dγ1W3/2−β(t)(1.31)

and thus Theorem 1.2 implies Theorem 1.1 (see Section 2).

2. Proof of the theorems. As we have already noted, the asymptotic behavior
of

∑
(σn − a) is the same as that of

∑
σ ∗

n , where σ ∗
n is the linear process defined

by

σ ∗
n = b1δn−1 + b2δn−2 + · · · , n ∈ Z,(2.1)

where δj are i.i.d. random variables with δ0
D= ε0σ0. While this similarity does not

extend to
∑

f (σn), we will make an essential use of the theory of linear processes
in our arguments. In particular, we will utilize the martingale decomposition
technique used by Ho and Hsing (1996) to give an Edgeworth expansion of the
empirical process of long memory moving average processes.

Let us first note that{
εν1 · · · ενr , 1 ≤ ν1 < · · · < νr, r = 1,2, . . .

}
is an orthonormal system and also that

∑
b2
j < 1 implies that the sum of squares of

the coefficients in the sum in (1.6) is finite. Thus the series in (1.6) converges in L2
norm under any ordering of its terms. Since the above orthonormal system is also
complete, its L2 sum is independent of the order of its terms. The same remark
will apply to all infinite sums of r.v.’s appearing in the sequel.

Let F	 = σ {εν, ν ≤ 	} and

Xn,	 = E
(
f (σn)|Fn−	

) − E
(
f (σn)|Fn−	−1

)
.(2.2)

Then

L∑
	=1

Xn,	 = E
(
f (σn)|Fn−1

) − E
(
f (σn)|Fn−L−1

)
= f (σn) − E

(
f (σn)|Fn−L−1

)(2.3)

since f (σn) is Fn−1 measurable by (1.6). For fixed n and L → ∞, the last con-
ditional expectation in (2.3) converges to Ef (σn) by the martingale convergence
theorem and thus

f (σn) − Ef (σn) =
∞∑

	=1

Xn,	.(2.4)

Our first lemma gives an approximation formula for Xn,	.
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LEMMA 2.1. Under the conditions of Theorem 1.1 we have

Xn,	 = E
(
f ′(σn)ζn,	

)
σn−	εn−	 + Rn,	,(2.5)

where

ζn,	 = ∑
r ≥ 1

j1, . . . , jr ≥ 1
j1 + · · · + jr = 	

bj1 · · ·bjr εn−j1 · · · εn−j1−···−jr−1
D= ζ	(2.6)

and

Rn,	 = {
E

(
f ′(σn)ζn,	|Fn−	

) − E
(
f ′(σn)ζn,	

)}
σn−	εn−	

+ cpθσ 2
n−	

{
(ε2

n−	 + 1)E(|σn|αζ 2
n,	|Fn−	)(2.7)

+ (|εn−	|p/2 + ε2
n−	 + 2)Eζ 2

n,	 + E(|σn|αp/(p−4)ζ 2
n,	|Fn−	−1)

}
,

where cp = Cp−12p/2E|ε0|p/2 with the C in (1.10), and |θ | ≤ 1.

For r = 1 we get the constant term b	 in (2.6). Actually, in the case when
σn = ∑∞

j=1 bjεn−j is a linear process, the analogue of Lemma 2.1 holds with
ζn,	 = b	 and thus the effect of the nonlinear terms in (1.6) is given by the
nonconstant terms of ζn,	 in (2.6).

Adding (2.5) for 	 = 1,2, . . . and n = 1, . . . ,N and observing that the
coefficient E(f ′(σn)ζn,	) in (2.5) equals B	 in (1.24) by stationarity, we get, in
view of (1.22) and (2.4),

N∑
n=1

(
f (σn) − Ef (σn)

) =
N∑

n=1

σ (f )
n +

N∑
n=1

∞∑
	=1

Rn,	.(2.8)

Hence the proof of the theorems will be reduced to an asymptotic evaluation of∑N
n=1 σ

(f )
n and

∑N
n=1

∑∞
	=1 Rn,	 which will be done in a series of lemmas.

PROOF OF LEMMA 2.1. We have seen above that the sum
∞∑

k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
εn−j1 · · · εn−j1−···−jk

(2.9)

converges in L2 with any ordering of its terms. Actually, this remains valid if 	 ≥ 1
and we replace εn−1, . . . , εn−	 by arbitrary real numbers u1, . . . , u	. For example,
if εn−1 and εn−2 are replaced by u1 and u2, then the resulting series in (2.9) can
be broken into 4 series, according as their terms contain both u1 and u2, only u1,
only u2 and none of u1, u2, respectively. Factoring out u1u2, u1, u2, respectively,
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in the first 3 series, their convergence can be seen directly, in analogy with (2.9),
proving our claim. In other words, letting (formally)

ψ(x1, x2, . . .) = a + a

∞∑
k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
xj1 · · ·xj1+···+jk

,(2.10)

the expressions ψ(u1, . . . , u	, εn−	−1, εn−	−2, . . .) are well defined for any 	 ≥ 1
and any real u1, . . . , u	. Clearly

σn = ψ(εn−1, εn−2, . . .).

Keeping in mind that we will use the functions ψ(x1, x2, . . .) only when there
exists an n such that xj = εn−j with finitely many exceptions, it is clear that the
sum of terms in the infinite sum in (2.10) containing x	 but no xj with j < 	 is

b	x	

(
1 +

∞∑
k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
x	+j1 · · ·x	+j1+···+jk

)

= b	x	

(
1 + ψ(x	+1, x	+2, . . .) − a

a

)

= 1

a
b	x	ψ(x	+1, x	+2, . . .).

On the other hand, the sum of terms in the sum in (2.10) containing x	 is

x	

∑
r ≥ 1

j1, . . . , jr ≥ 1
j1 + · · · + jr = 	

bj1 · · ·bjr xj1 · · ·xj1+···+jr−1

(
1 + ψ(x	+1, x	+2, . . .) − a

a

)
.

Clearly E(f (σn)|Fn−	) is obtained by integrating f (σn) = f (ψ(εn−1, εn−2, . . .))

with respect to εn−1, εn−2, . . . , εn−	+1, more precisely,

E
(
f (σn)|Fn−	

)
=

∫ +∞
−∞

· · ·
∫ +∞
−∞

f
(
ψ(u1, . . . , u	−1, εn−	, . . .)

)
dG(u1) · · · dG(u	−1),

where G denotes the distribution function of ε0. Similarly,

E
(
f (σn)|Fn−	−1

)
=

∫ +∞
−∞

· · ·
∫ +∞
−∞

f
(
ψ(u1, . . . , u	−1, v, εn−	−1, . . .)

)
× dG(u1) · · · dG(u	−1) dG(v).

Thus

Xn,	 =
∫ +∞
−∞

· · ·
∫ +∞
−∞

[
f

(
ψ(u1, . . . , u	−1, εn−	, . . .)

)
−f

(
ψ(u1, . . . , u	−1, v, εn−	−1, . . .)

)]
dG(u1) · · · dG(u	−1) dG(v).

(2.11)
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Using a two-term Taylor expansion, the integrand in (2.11) becomes

f ′(ψ(u1, . . . , u	−1, εn−	, . . .)
)

×[ψ(u1, . . . , u	−1, εn−	, . . .) − ψ(u1, . . . , u	−1, v, εn−	−1, . . .)]
+ 1

2f ′′(τ ∗)[ψ(u1, . . . , u	−1, εn−	, . . .)

−ψ(u1, . . . , u	−1, v, εn−	−1, . . .)]2,

(2.12)

where τ ∗ lies between ψ(u1, . . . , u	−1, εn−	, . . .) and ψ(u1, . . . , u	−1, v, εn−	−1,

. . .). By the above remarks on the structure of ψ we see that

ψ(u1, . . . , u	−1, εn−	, . . .) − ψ(u1, . . . , u	−1, v, εn−	−1, . . .)

= a
(
1 + (

ψ(εn−	−1, . . .) − a
)
/a

)
(εn−	 − v)S

= σn−	(εn−	 − v)S,

(2.13)

where

S = S(u1, . . . , u	−1) = ∑
r ≥ 1

j1, . . . , jr ≥ 1
j1 + · · · + jr = 	

bj1 · · ·bjr uj1uj1+j2 · · ·uj1+···+jr−1 .

Thus using
∫ +∞
−∞ dG(v) = 1 and

∫ +∞
−∞ v dG(v) = 0, we see that the contribution of

the first term of the Taylor expansion ( 2.12) in the integral (2.11) is
∫ +∞
−∞

· · ·
∫ +∞
−∞

f ′(ψ(u1, . . . , u	−1, εn−	, . . .)
)

× σn−	(εn−	 − v)S(u1, . . . , u	−1) dG(u1) · · · dG(u	−1) dG(v)

=
∫ +∞
−∞

· · ·
∫ +∞
−∞

f ′(ψ(u1, . . . , u	−1, εn−	, . . .)
)

× σn−	εn−	S(u1, . . . , u	−1) dG(u1) · · · dG(u	−1)

= E




f ′(ψ(εn−1, εn−2, . . .)
) ∑

r ≥ 1
j1, . . . , jr ≥ 1

j1 + · · · + jr = 	

bj1 · · ·bjr εn−j1 · · · εn−j1−···−jr−1

∣∣∣Fn−	




× σn−	εn−	

= E
(
f ′(σn)ζn,	|Fn−	

)
σn−	εn−	.
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Relations (2.13) and (1.10) show that the second term in (2.12) is at most

C

2
{|ψ(u1, . . . , u	−1, εn−	, . . .)|α + |ψ(u1, . . . , u	−1, v, εn−	−1, . . .)|α + 1}

×σ 2
n−	(εn−	 − v)2S2

and thus the contribution of the second Taylor term in the integral (2.11) is at most
I1 + I2 + I3, where

I1 =
∫ +∞
−∞

· · ·
∫ +∞
−∞

C

2
|ψ(u1, . . . , u	−1, εn−	, . . .)|ασ 2

n−	(εn−	 − v)2S2

× dG(u1) · · · dG(u	−1) dG(v),

I2 =
∫ +∞
−∞

· · ·
∫ +∞
−∞

C

2
|ψ(u1, . . . , u	−1, v, εn−	−1, . . .)|ασ 2

n−	(εn−	 − v)2S2

× dG(u1) · · · dG(u	−1) dG(v),

I3 =
∫ +∞
−∞

· · ·
∫ +∞
−∞

C

2
σ 2

n−	(εn−	 − v)2S2 dG(u1) · · · dG(u	−1) dG(v).

Using
∫ +∞
−∞ v dG(v) = 0,

∫ +∞
−∞ v2 dG(v) = 1 again, we get

I1 = 1
2σ 2

n−	

∫ +∞
−∞

(εn−	 − v)2 dG(v)

×
∫ +∞
−∞

· · ·
∫ +∞
−∞

|ψ(u1, . . . , u	−1, εn−	, . . .)|αS2 dG(u1) · · · dG(u	−1)

= 1
2σ 2

n−	(ε
2
n−	 + 1)E

(|ψ(εn−1, . . . , εn−	+1, εn−	, . . .)|αζ 2
n,	|Fn−	

)
= 1

2σ 2
n−	(ε

2
n−	 + 1)E(|σn|αζ 2

n,	|Fn−	).

On the other hand, applying the inequality

|xy| ≤ |x|s/s + |y|t /t, s > 1, s−1 + t−1 = 1

[see, e.g., Loève (1977), page 157], we see that the integrand in I2 is bounded by

1

2
σ 2

n−	S
2
(

4

p
|εn−	 − v|p/2 + p − 4

p
|ψ(u1, . . . , u	−1, v, εn−	−1, . . .)|αp/(p−4)

)

=: J1 + J2.
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The contribution of J1 in the integral I2 is

2

p
σ 2

n−	

∫ +∞
−∞

· · ·
∫ +∞
−∞

S2|εn−	 − v|p/2 dG(u1) · · · dG(u	−1) dG(v)

= 2

p
σ 2

n−	

∫ +∞
−∞

|εn−	 − v|p/2 dG(v)

∫ +∞
−∞

· · ·
∫ +∞
−∞

S2 dG(u1) · · · dG(u	−1)

= 2

p
σ 2

n−	

∫ +∞
−∞

|εn−	 − v|p/2 dG(v) · Eζ 2
n,	

≤ 2

p
2p/2−1σ 2

n−	(Eζ 2
n,	)

∫ +∞
−∞

(|εn−	|p/2 + |v|p/2) dG(v)

≤ cpσ 2
n−	(|εn−	|p/2 + 1)Eζ 2

n,	,

where

cp = 1

p
2p/2E|ε0|p/2.

Here we used the inequality |x +y|γ ≤ 2γ−1(|x|γ +|y|γ ) (γ ≥ 1), following from
the convexity of |x|γ . On the other hand, the contribution of J2 in the integral I2

is

p − 4

2p
σ 2

n−	

∫ +∞
−∞

· · ·
∫ +∞
−∞

|ψ(u1, . . . , u	−1, v, εn−	−1, . . .)|αp/(p−4)

× S2 dG(u1) · · · dG(u	−1) dG(v)

= p − 4

2p
σ 2

n−	E
(|ψ(εn−1, . . .)|αp/(p−4)ζ 2

n,	|Fn−	−1
)

= p − 4

2p
σ 2

n−	E(|σn|αp/(p−4)ζ 2
n,	|Fn−	−1).

Finally,

I3 = C

2
σ 2

n−	(ε
2
n−	 + 1)

∫ +∞
−∞

· · ·
∫ +∞
−∞

S2 dG(u1) · · · dG(u	−1)

= C

2
σ 2

n−	(ε
2
n−	 + 1)Eζ 2

n,	.

Collecting the terms, we get Lemma 2.1. �

We next give an asymptotic formula for B	 in (1.24). To this end we prove the
following elementary lemma.



654 I. BERKES AND L. HORVÁTH

LEMMA 2.2. If (1.7) holds and
∑∞

n=1 b2
n < 1, then∑

r ≥ 1
i1, . . . , ir ≥ 1

i1 + · · · + ir = n

b2
i1

· · ·b2
ir

≤ Cb2
n(2.14)

with some constant C > 0.

PROOF. Let b2 = ∑∞
n=1 b2

n < 1 and let Sn denote the sum in (2.14). Clearly,
for any fixed 1 ≤ 	 ≤ n−1 the contribution of the terms in Sn with i1 = 	 is b2

	Sn−	

and thus

Sn =
n∑

i=1

b2
i Sn−i ,(2.15)

where we put S0 = 1. Let further �N = S1 + · · · + SN for N ≥ 1. Then by (2.15)
we have

�N ≤
( ∞∑

i=1

b2
i

)
(1 + �N) for all N ≥ 1

and thus

�∞ ≤ b2

1 − b2 < +∞.

Choose δ > 0 so small that b2(1 + δ) < 1. Let gt = supi≥t b2
i for t > 0, then gt is

nonincreasing and by (1.7) we have gn/b
2
n → 1 as n → ∞. Thus we can choose a

small 0 < ε < 1 so that

gn−nε ≤ (1 + δ)b2
n, gnε <

2

ε2
b2
n(2.16)

for n ≥ n0. Let C > 0 be so large that

C ≥ 2

ε2 (1 + �∞)
1

1 − b2(1 + δ)
(2.17)

and that Sn ≤ Cb2
n holds for 1 ≤ n ≤ n0. We show by induction that Sn ≤ Cb2

n for
all n ≥ 1. Indeed, if n > n0 and Sk ≤ Cb2

k holds for 1 ≤ k ≤ n − 1, then we get, by
(2.15)–(2.17) and the induction hypothesis,

Sn = ∑
i≤nε

b2
i Sn−i + ∑

i>nε

b2
i Sn−i

≤
( ∞∑

i=1

b2
i

)
max

n−nε≤j≤n−1
Sj +

(
sup
i>nε

b2
i

)( ∞∑
j=0

Sj

)
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≤ b2C

(
max

n−nε≤j≤n−1
b2
j

)
+ gnε (1 + �∞)

≤ b2Cgn−nε + gnε (1 + �∞)

≤ b2C(1 + δ)b2
n + 2

ε2 (1 + �∞)b2
n

≤ Cb2
n.

This completes the induction step and the proof of Lemma 2.2. �

REMARK. The previous argument shows that for any η > 0 we have

n−1∑
i=1

b2
i b

2
n−i < 2(1 + η)b2b2

n for n ≥ n0(η).

Indeed, let ε, δ denote the quantities introduced above and split the sum In on the
left-hand side of the last relation into 3 sums In,1, In,2, In,3 containing the terms
i ≤ nε, nε < i < n − nε, i ≥ n − nε. Then we get, using the estimates above,

In,1 ≤ b2gn−nε, In,2 ≤ ng2
nε, In,3 ≤ b2gn−nε,

so that

In ≤ 2b2(1 + δ)b2
n + 4

ε4 nb4
n ≤ 2b2(1 + 2δ)b2

n

for sufficiently large n since nb2
n → 0 by (1.7). Since δ can be chosen arbitrary

small, our claim is proved.
We can now prove the following.

LEMMA 2.3. We have

B	 ∼ γ b	 as 	 → ∞,(2.18)

where γ is defined by (1.14).

PROOF. The constant term of the sum ζ	 in (1.25) (obtained for r = 1) is b	

and thus we can write

ζ	 = b	 + ∑
s ≥ 1

j1, . . . , js ≥ 1

j1 + · · · + js < 	

bj1 · · ·bjsb	−j1−···−js ε−j1 · · · ε−j1−···−js

=: b	 + ζ ∗
	 .
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Next we observe that (1.10) implies by integration

|f ′(x)| ≤ C1 + C1|x|α+1, x ∈ R,

for some constant C1 > 0 and thus

Ef ′(σ0)
2 ≤ E(C1 + C1|σ0|α+1)2 < +∞

since 2α + 2 ≤ p by (1.11) and E|σ0|p < +∞ (see Lemma 2.5). Since the
sequence

{
εν1 · · · ενs , s ≥ 1,1 ≤ ν1 < · · · < νs

}

is orthonormal, it follows that

∑
s ≥ 1

j1, . . . , js ≥ 1

E2(
f ′(σ0)ε−j1 · · · ε−j1−···−js

)
< +∞

and thus for any δ > 0 there exists a K(δ) > 0 such that limδ→0 K(δ) = +∞ and

∑
s ≥ 1

j1, . . . , js ≥ 1
j1 + · · · + js ≥ K(δ)

E2(f ′(σ0)ε−j1 · · · ε−j1−···−js

)
< δ.(2.19)

Let 	 > K(δ) and write

ζ ∗
	 = ζ

(1)
	 + ζ

(2)
	 ,

where

ζ
(1)
	 = ∑

s ≥ 1
j1, . . . , js ≥ 1

j1 + · · · + js < K(δ)

bj1 · · ·bjs b	−j1−···−js ε−j1 · · · ε−j1−···−js ,

ζ
(2)
	 = ∑

s ≥ 1
j1, . . . , js ≥ 1

K(δ) ≤ j1 + · · · + js < 	

bj1 · · ·bjsb	−j1−···−js ε−j1 · · · ε−j1−···−js .
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By the Cauchy–Schwarz inequality, (2.19) and Lemma 2.2, we get∣∣E(
f ′(σ0)ζ

(2)
	

)∣∣
≤ ∑

s ≥ 1
j1, . . . , js ≥ 1

K(δ) ≤ j1 + · · · + js < 	

|bj1 · · ·bjsb	−j1−···−js |
∣∣E(

f ′(σ0)ε−j1 · · · ε−j1−···−js

)∣∣

≤




∑
s ≥ 1

j1, . . . , js ≥ 1
j1 + · · · + js < 	

b2
j1

· · ·b2
js

b2
	−j1−···−js




1/2

×




∑
s ≥ 1

j1, . . . , js ≥ 1
K(δ) ≤ j1 + · · · + js

E2(
f ′(σ0)ε−j1 · · · ε−j1−···−js

)



1/2

≤ √
Cb	

√
δ,

where C is the constant in (2.14). On the other hand, for every fixed j1, . . . , js with
j1 + · · · + js < K(δ) we have

b	−j1−···−js ∼ b	 as 	 → ∞
and thus

E
(
f ′(σ0)ζ

(1)
	

)

∼ b	E




∑
s ≥ 1

j1, . . . , js ≥ 1
j1 + · · · + js < K(δ)

bj1 · · ·bjsf
′(σ0)ε−j1 · · · ε−j1−···−js




as 	 → ∞.

As δ → 0, the last expected value tends to

E




∑
s ≥ 1

j1, . . . , js ≥ 1

bj1 · · ·bjsf
′(σ0)ε−j1 · · · ε−j1−···−js


 = E

(
σ0 − a

a
f ′(σ0)

)
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and thus

E
(
f ′(σ0)ζ

∗
	

) ∼ E

(
σ0 − a

a
f ′(σ0)

)
b	 as 	 → ∞.

Since ζ	 = ζ ∗
	 + b∗

	 , Lemma 2.3 follows. �

Lemma 2.3 describes the asymptotic behavior of the first summand in (2.5) and
it remains to estimate the remainder term Rn,	, which will be broken into several
steps. We first give some moment estimates for ζn,	 and the tail sums of σn in (1.6).
Asymptotic estimates for the moments and product moments of the sequence
(σn) were given in Giraitis, Robinson and Surgailis (2000) by using a diagram
formalism. In our estimates we will not use this technique. Instead, we will use
an induction argument combined with martingale inequalities, which will yield
the desired results quite simply, without combinational difficulties. Whether our
method is capable to give optimal constants [as the diagram technique in Giraitis,
Robinson and Surgailis (2000) gives asymptotically precise estimates] is unclear.

LEMMA 2.4. For any n, 	 ≥ 1 we have

E|ζn,	|p ≤ Cb
p
	(2.20)

with some constant C > 0, independent of n, 	.

PROOF. We will use the fact that if p > 1 and {ξi,1 ≤ i ≤ N} is a martingale
difference sequence with E|ξi|p ≤ K (1 ≤ i ≤ N), then for any real numbers
c1, . . . , cN we have

E

(∣∣∣∣∣
N∑

i=1

ciξi

∣∣∣∣∣
p)

≤ ApK

(
N∑

i=1

c2
i

)p/2

,(2.21)

where Ap = (18p)p(p/(p − 1))p/2. Indeed, by Burkholder’s square function
inequality [see, e.g., Hall and Heyde (1980), page 23] the left-hand side of (2.21)
is bounded by

ApE

(
N∑

i=1

c2
i ξ

2
i

)p/2

,

which, by Minkowski’s inequality, cannot exceed

Ap

(
N∑

i=1

‖c2
i ξ

2
i ‖p/2

)p/2

= Ap

(
N∑

i=1

c2
i ‖ξi‖2

p

)p/2

≤ Ap

(
max

1≤i≤N
‖ξi‖p

p

)(
N∑

i=1

c2
i

)p/2

≤ ApK

(
N∑

i=1

c2
i

)p/2

.
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Let 1 ≤ s ≤ 	. Clearly the sum of terms in (2.6), where j1 = s is b	 if s = 	 and is

bsεn−s

∑
r ≥ 2

j2, . . . , jr ≥ 1
j2 + · · · + jr = 	 − s

bj2 · · ·bjr εn−s−j2 · · · εn−s−j2−···−jr−1 = bsεn−sζn−s,	−s

if 1 ≤ s ≤ 	 − 1. Thus

ζn,	 = b	 +
	−1∑
s=1

bsεn−sζn−s,	−s = b	 +
	−1∑
s=1

bsb	−sεn−sζ
∗
n−s,	−s ,(2.22)

where ζ ∗
n,	 = b−1

	 ζn,	. Noting that ζn−s,	−s contains only εν ’s with ν < n − s, it
follows that {

εn−sζ
∗
n−s,	−s , s = 	 − 1, 	 − 2, . . . ,1

}
is a martingale difference sequence. Next we note that by (1.9) and the Remark
after the proof of Lemma 2.2 we have

	−1∑
i=1

b2
i b

2
	−i ≤ (1 − δ)

p − 1

324p3‖ε0‖2
p

b2
	(2.23)

for some 0 < δ < 1 and 	 ≥ 	0. Observing that the distribution of ζn,	 does
not depend on n, one can find a constant C ≥ (1 − (1 − δ)1/2)−p such that
E|ζn,	|p ≤ Cb

p
	 holds for 1 ≤ 	 ≤ 	0 and all n. We show by induction that (2.20)

holds for all n, 	. Indeed, if 	 > 	0 and E|ζn,j |p ≤ Cb
p
j holds for 1 ≤ j ≤ 	 − 1

and all n, then for 1 ≤ s ≤ 	 − 1

E(|εn−sζ
∗
n−s,	−s |p) = E|εn−s |pE|ζ ∗

n−s,	−s |p ≤ CE|ε0|p(2.24)

and thus using (2.21)–(2.24) and the Minkowski inequality we get

‖ζn,	‖p ≤ b	 +
{
E

(∣∣∣∣∣
	−1∑
s=1

bsb	−sεn−sζ
∗
n−s,	−s

∣∣∣∣∣
p)}1/p

≤ b	 +
{
ApC(E|ε0|p)

(
	−1∑
s=1

b2
s b

2
	−s

)p/2}1/p

≤ b	 + (1 − δ)1/2C1/pb	 ≤ C1/pb	

by C1/p ≥ (1 − (1 − δ)1/2)−1, showing that E|ζn,	|p ≤ Cb
p
	 , completing the

induction step and the proof of Lemma 2.4. �

We now introduce partial sums and tail sums of σn defined by

σ̃ (	)
n = a + a

∞∑
k=1

∑
j1, . . . , jk ≥ 1

j1 + · · · + jk < 	

bj1 · · ·bjk
εn−j1 · · · εn−j1−···−jk
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and

σ̂ (	)
n = a

∞∑
k=1

∑
j1, . . . , jk ≥ 1

j1 + · · · + jk ≥ 	

bj1 · · ·bjk
εn−j1 · · · εn−j1−···−jk

.

LEMMA 2.5. We have

E|σ̂ (	)
n |p ≤ C1

( ∞∑
j=	

b2
j

)p/2

(2.25)

for some constant C1 > 0, independent of n, 	. In particular, E|σ0|p < +∞.

PROOF. Observe that the sum of terms in the infinite series in (1.6) containing
εn−	, but no εν with ν < n − 	 is∑

k ≥ 1
j1, . . . , jk ≥ 1

j1 + · · · + jk = 	

bj1 · · ·bjk
εn−j1 · · · εn−j1−···−jk−1εn−	 = εn−	ζn,	.

Thus

σ̂ (	)
n = a

∞∑
j=	

εn−j ζn,j .(2.26)

Recalling that ζ ∗
n,j = b−1

j ζn,j , the sequence
{
εn−j ζ

∗
n,j , j = 	, 	 + 1, . . .

}
is clearly a martingale difference sequence and, by Lemma 2.4, we have

E(|εn−j ζ
∗
n,j |p) = E|εn−j |pE|ζ ∗

n,j |p ≤ CE|ε0|p,

where C is the constant in Lemma 2.4. Thus by (2.21) we have for any L > 	

E

(∣∣∣∣∣
L∑

j=	

εn−j ζn,j

∣∣∣∣∣
p)

= E

(∣∣∣∣∣
L∑

j=	

bj εn−j ζ
∗
n,j

∣∣∣∣∣
p)

≤ C∗
(

L∑
j=	

b2
j

)p/2

,

where C∗ = ApCE|ε0|p . Letting L → ∞ and using Fatou’s lemma we get

E

(∣∣∣∣∣
∞∑

j=	

εn−j ζn,j

∣∣∣∣∣
p)

≤ C∗
( ∞∑

j=	

b2
j

)p/2

which is identical with (2.25) in view of (2.26). �
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LEMMA 2.6. Let r = 2p/(p − 2). Then

∥∥E(
f ′(σn)ζn,	|Fn−	

) − E
(
f ′(σn)ζn,	

)∥∥
r ≤ C2b	

( ∞∑
j=	

b2
j

)1/2

(2.27)

with some constant C2 > 0.

PROOF. Clearly, the left-hand side of (2.27) is not greater than∥∥E(
f ′(σn)ζn,	|Fn−	

) − E
(
f ′(σ̃ (	)

n )ζn,	|Fn−	

)∥∥
r

+∥∥E(
f ′(σ̃ (	)

n )ζn,	|Fn−	

) − E
(
f ′(σn)ζn,	

)∥∥
r =: I1 + I2.

Letting � = f ′(σn) − f ′(σ̃ (	)
n ), we get by the conditional Cauchy–Schwarz

inequality

|E(�ζn,	|Fn−	)| ≤ E1/2(�2|Fn−	)E
1/2(ζ 2

n,	|Fn−	) ≤ C3b	E
1/2(�2|Fn−	).

Here we used the fact that ζn,	 is independent of Fn−	 and thus by Lemma 2.4 and
the monotonicity of the Lp norm in p we have

E(ζ 2
n,	|Fn−	) = Eζ 2

n,	 ≤ (E|ζn,	|p)2/p ≤ C4b
2
	.

Thus

I1 = ‖E(�ζn,	|Fn−	)‖r ≤ C3b	‖E1/2(�2|Fn−	)‖r

= C3b	‖E(�2|Fn−	)‖1/2
r/2 ≤ C3b	‖�2‖1/2

r/2 = C3b	‖�‖r .
(2.28)

Now by (1.10) and the mean value theorem we get

|�| = |f ′′(ρn)||σn − σ̃ (	)
n | ≤ C5(|ρn|α + 1)|σn − σ̃ (	)

n |
≤ C5(|σn|α + |σ̃ (	)

n |α + 1)|σn − σ̃ (	)
n |,

where ρn lies between σn and σ̃
(	)
n . Lemma 2.5 implies that there is a constant

C6 such that ‖σn‖p ≤ C6, ‖σn − σ̃
(	)
n ‖p ≤ C6 for all n ≥ 1, 	 ≥ 1 and thus using

Hölder’s inequality and Lemma 2.5 again we get

‖�‖r ≤ C5
∥∥|σn|α + |σ̃ (	)

n |α + 1
∥∥
rp/(p−r)‖σn − σ̃ (	)

n ‖p

≤ C7

( ∞∑
i=	

b2
i

)1/2(∥∥|σn|α
∥∥
rp/(p−r) + ∥∥|σ̃ (	)

n |α∥∥
rp/(p−r) + 1

)

≤ C7

( ∞∑
i=	

b2
i

)1/2(‖σn‖α
rpα/(p−r) + ‖σ̃ (	)

n ‖α
rpα/(p−r) + 1

)

≤ C8

( ∞∑
i=	

b2
i

)1/2

(2.29)
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since rpα/(p − r) ≤ p by (1.11). Relations (2.28) and (2.29) together yield

I1 ≤ C9b	

( ∞∑
i=	

b2
i

)1/2

.(2.30)

On the other hand, σ̃
(	)
n and ζn,	 are independent of Fn−	 and thus

I2 = ∣∣E(
f ′(σ̃ (	)

n )ζn,	

) − E
(
f ′(σn)ζn,	

)∣∣ = |E(�ζn,	)| ≤ ‖�ζn,	‖r .

Similarly to (2.28) we get ‖�ζn,	‖r ≤ C3b	‖�‖r and thus (2.29) yields

I2 ≤ C9b	

( ∞∑
i=	

b2
i

)1/2

,

completing the proof of Lemma 2.6. �

We are now in a position to estimate the remainder term Rn,	 in (2.7). We prove
the following.

LEMMA 2.7. We have

‖Rn,	‖2 ≤ C10	
−(2β−1/2).

PROOF. (2.7) gives the decomposition

Rn,	 = J1 + J2 + J3 + J4

where

J1 = {
E

(
f ′(σn)ζn,	|Fn−	

) − E
(
f ′(σn)ζn,	

)}
σn−	εn−	,

J2 = cpθσ 2
n−	(ε

2
n−	 + 1)E(|σn|αζ 2

n,	|Fn−	),

J3 = cpθσ 2
n−	(|εn−	|p/2 + ε2

n−	 + 2)Eζ 2
n,	,

J4 = cpθσ 2
n−	E(|σn|αp/(p−4)ζ 2

n,	|Fn−	−1).

We estimate J1, J2, J3, J4 separately. Since εn−	 and σn−	 are independent and
E|ε0|p < +∞, E|σ0|p < +∞, we have

‖σn−	εn−	‖p = ‖σn−	‖p‖εn−	‖p ≤ C11

and thus letting r = 2p/(p − 2), Lemma 2.6, Hölder’s inequality and (1.7) give

‖J1‖2 ≤ ∥∥E(
f ′(σn)ζn,	|Fn−	

) − E
(
f ′(σn)ζn,	

)∥∥
r‖σn−	εn−	‖p

≤ C12b	

( ∞∑
j=	

b2
j

)1/2

≤ C13	
−(2β−1/2).
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On the other hand, Eζ 2
n,	 ≤ C14b

2
	 by Lemma 2.4 and the monotonicity of the Lp

norm, and thus by the independence of εn−	 and σn−	 and (1.7) we have

‖J3‖2 ≤ C15‖σ 2
n−	‖2

(∥∥|εn−	|p/2∥∥
2 + ‖ε2

n−	‖2 + 2
)
b2
	

= C15‖σn−	‖2
4
(‖εn−	‖p/2

p + ‖εn−	‖2
4 + 2

)
b2
	 ≤ C16b

2
	 ≤ C17	

−2β.

To estimate J2 we first use the conditional Hölder inequality and Lemma 2.4 to get∣∣E(|σn|αζ 2
n,	|Fn−	)

∣∣
≤ {E(|σn|αp/(p−2)|Fn−	)}(p−2)/p{E(|ζn,	|p|Fn−	)}2/p

≤ C18b
2
	{E(|σn|αp/(p−2)|Fn−	)}(p−2)/p

since ζn,	 is independent of Fn−	. Thus by the Hölder inequality and the
independence of σn−	 and εn−	 we have

‖J2‖2 ≤ C19
∥∥σ 2

n−	(ε
2
n−	 + 1)

∥∥
p/2

∥∥E(|σn|αζ 2
n,	|Fn−	)

∥∥
2p/(p−4)

≤ C20‖σ 2
n−	‖p/2‖ε2

n−	 + 1‖p/2b
2
	

∥∥E(p−2)/p(|σn|αp/(p−2)|Fn−	)
∥∥

2p/(p−4)

= C20‖σn−	‖2
p‖ε2

n−	 + 1‖p/2b
2
	

∥∥E(|σn|αp/(p−2)|Fn−	)
∥∥(p−2)/p

(2p−4)/(p−4)

≤ C20‖σn−	‖2
p(‖εn−	‖2

p + 1)b2
	

∥∥|σn|αp/(p−2)
∥∥(p−2)/p

(2p−4)/(p−4)

≤ C21b
2
	‖σn‖α

2αp/(p−4) ≤ C22b
2
	 ≤ C23	

−2β

since 2αp/(p − 4) ≤ p by (1.11). Finally, the estimate of J4 is the same as that
of J2, just α should be replaced by αp/(p − 4) in all steps and we get

‖J4‖2 ≤ C24b
2
	‖σn‖αp/(p−4)

2αp2/(p−4)2 ≤ C25	
−2β

since 2αp2/(p − 4)2 ≤ p by (1.11). Collecting the estimates for J1, J2, J3, J4 we
get Lemma 2.7. �

The following lemma is a variant of Lemma 6.4 in Ho and Hsing (1996).

LEMMA 2.8. We have

E(Rn,	Rn′,	′) = 0 if n − 	 �= n′ − 	′.

PROOF. Since Rn,	 = Xn,	 − B	σn−	εn−	 by (2.5), (1.24) and stationarity, it
suffices to show that for n − 	 �= n′ − 	′ we have

E(Xn,	Xn′,	′) = 0,(2.31)

E(σn−	εn−	Xn′,	′) = 0,(2.32)

E(σn−	εn−	σn′−	′εn′−	′) = 0.(2.33)
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Assume n′ −	′ < n−	. Then Xn′,	′ is Fn−	−1 measurable and thus the conditional
expectation of Xn,	Xn′,	′ with respect to Fn−	−1 is

Xn′,	′E(Xn,	|Fn−	−1)

= Xn′,	
[
E

(
f (σn)|Fn−	−1

) − E
(
f (σn)|Fn−	−1

)] = 0.

On the other hand, σn−	 is Fn−	−1 measurable by (1.6), and thus the conditional
expectation of σn−	εn−	Xn′,	′ with respect to Fn−	−1 is

σn−	Xn′,	′E(εn−	|Fn−	−1) = 0.

Finally, the conditional expectation of σn−	εn−	σn′−	′εn′−	′ with respect to
Fn−	−1 is

σn−	σn′−	′εn′−	′E(εn−	|Fn−	−1) = 0.

Thus (2.31)–(2.33) are valid. �

LEMMA 2.9. We have

E

(
N∑

n=1

∞∑
	=1

Rn,	

)2

= O(N3−2β−ε)(2.34)

for some ε > 0.

PROOF. In view of Lemma 2.8, relation (2.34) is equivalent to∑
1 ≤ n,n′ ≤ N

	,	′ ≥ 1
n − 	 = n′ − 	′

E(Rn,	Rn′,	′) = O(N3−2β−ε).(2.35)

By Lemma 2.7 and the Cauchy–Schwarz inequality we have

|E(Rn,	Rn′,	′)| ≤ ‖Rn,	‖2‖Rn′,	′ ‖2 ≤ C26(		
′)−(2β−1/2).

Thus to prove (2.35) it suffices to show that∑
1 ≤ n,n′ ≤ N

	,	′ ≥ 1
n − 	 = n′ − 	′

(		′)−(2β−1/2) = O(N3−2β−ε).(2.36)

We note that, as proved in Lemma 6.5 of Ho and Hsing (1996), we have, for any
integer m ≥ 1,

∞∑
j=1

1

(j (m + j))α
≤




Cm−2α+1, if 1
2 < α < 1,

C
log m

m
, if α = 1,

Cm−α, if α > 1.

(2.37)
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Fix m ∈ Z and add those terms in the sum in (2.36) where n′ − n = m. Then
automatically 	′ − 	 = m, that is, 		′ = 	(m + 	). Clearly n′ can take at most
N values and once it is fixed, n is uniquely determined. Thus the sum of the
considered terms in (2.36) is not greater than

N

∞∑
	=1

1

(	(m + 	))2β−1/2

and the total sum in (2.36) cannot exceed

N
∑

|m|≤N

∞∑
	=1

1

(	(m + 	))2β−1/2
.(2.38)

Here the contribution of the terms with m = 0 is not greater than N ×∑∞
	=1 	−(4β−1) = O(N) by 4β − 1 > 1, which is smaller than the remainder

term in (2.36) if ε is small enough. Hence it suffices to consider the terms
with m �= 0 and for reasons of symmetry we may assume m > 0. Note that the
exponent 2β − 1/2 in (2.38) lies in (1/2,3/2). By (2.37) the inner sum in (2.38)
is O(m−(4β−2)), O(log m/m) and O(m−(2β−1/2)) according as β < 3/4, β = 3/4
or β > 3/4, respectively. Thus the expression in (2.38) is at most

N

N∑
m=1

m−(4β−2) = O(N4−4β) if
1

2
< β <

3

4
,

N

N∑
m=1

logm

m
= O(N log2 N) if β = 3

4
,

N

N∑
m=1

m−(2β−1/2) = O(N) if
3

4
< β < 1.

(2.39)

A simple calculation shows that all remainder terms in (2.39) are O(N3−2β−ε) if
ε is small enough and thus (2.36) is proved. �

PROOF OF THEOREMS 1.1 AND 1.2. Relation (1.26) of Theorem 1.2 is
immediate from (2.8) and Lemma 2.9. Letting

RN =
N∑

n=1

(
f (σn) − Ef (σn)

) −
N∑

n=1

σ (f )
n ,

relation (1.26) and stationarity imply for any N ≥ 1 and any 0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E(|R[Nt] − R[Nt1]||R[Nt2] − R[Nt]|)
≤ ‖R[Nt] − R[Nt1]‖2‖R[Nt2] − R[Nt]‖2

= ‖R[Nt]−[Nt1]‖2‖R[Nt2]−[Nt]‖2

≤ C2([Nt] − [Nt1])3/2−β([Nt2] − [Nt])3/2−β .

(2.40)
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If t2 − t1 < 1/N , then either [Nt] = [Nt1] or [Nt] = [Nt2] and thus the last
expression in (2.40) is 0; if t2 − t1 ≥ 1/N , then the last expression in (2.40) is
at most

C2([Nt2] − [Nt1])3−2β ≤ C2(
N(t2 − t1) + 1

)3−2β ≤ 4C2(
N(t2 − t1)

)3−2β
.

Thus we showed that the process

XN(t) = N−(3/2−β)R[Nt], 0 ≤ t ≤ 1, N = 1,2, . . .

satisfies

E
(|XN(t) − XN(t1)||XN(t2) − XN(t)|) ≤ 4C2(t2 − t1)

3−2β,

and consequently we have for any λ > 0

P
(|XN(t) − XN(t1)| ≥ λ, |XN(t2) − XN(t)| ≥ λ

) ≤ 4C2 1

λ2 (t2 − t1)
3−2β.

The last relation implies by 3 − 2β > 1, and Theorem 15.6 of Billingsley (1968)
and its proof, that the sequence {XN(t), N = 1,2, . . .} is tight in D[0,1].
By (1.30), the sequence

N−(3/2−β)
[Nt]∑
n=1

σ (f )
n , 0 ≤ t ≤ 1, N = 1,2, . . .

is also tight and thus we can conclude the tightness of the processes in (1.12).
Finally, the convergence of the finite dimensional distributions in (1.12) follows
from (1.26), (1.30).

To prove relation (1.27) of Theorem 1.2 we use the decomposition, similar
to (2.4),

f (yn) − Ef (yn) =
∞∑

	=0

Yn,	,(2.41)

where

Yn,	 = E
(
f (yn)|Fn−	

) − E
(
f (yn)|Fn−	−1

)
.

Note that the summation in (2.41) starts with 	 = 0, but the contribution
∑N

n=1 Yn,0

of the Yn,0’s in the sum
∑N

n=1(f (yn) − Ef (yn)) is

N∑
n=1

(
f (yn) − E

(
f (yn)|Fn−1

)) = OP (N1/2) = OP (N3/2−β−ε)

if ε is small enough, since {f (yn) − E(f (yn)|Fn−1), n ≥ 1} is a square integrable
martingale difference sequence [the finiteness of Ef 2(yn) follows from the fact
that |f (x)| ≤ C′|x|α+2 for sufficiently large x by (1.10) and 2α + 4 ≤ p by (1.11)]
and hence it is orthogonal. For 	 ≥ 1, Yn,	 satisfies the following approximation
formula, analogous to Lemma 2.1. �
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LEMMA 2.10. Under the conditions of Theorem 1.1 we have, for 	 ≥ 1,

Yn,	 = E
(
f ′(yn)εnζn,	

)
σn−	εn−	 + R̄n,	,(2.42)

where

R̄n,	 = {
E

(
f ′(yn)εnζn,	|Fn−	

) − E
(
f ′(yn)εnζn,	

)}
σn−	εn−	

+ c∗θσ 2
n−	

{
(ε2

n−	 + 1)E(|σn|αε2
nζ

2
n,	|Fn−	)

+ (|εn−	|p/2 + ε2
n−	 + 2)E(ε2

nζ
2
n,	)

+ E(|σn|αp/(p−4)ε2
nζ

2
n,	|Fn−	−1)

}
,

(2.43)

where |θ | ≤ 1 and c∗ is a positive constant depending on p and the se-
quence (εn).

Note that the terms in (2.42) and (2.43) are the same as in (2.5) and (2.7),
just f ′(σn) is replaced by f ′(yn) and ζn,	 is replaced by εnζn,	. The proof of
(2.42)–(2.43) follows from that of Lemma 2.1. Since yn = εnσn = εnψ(εn−1, . . .),
formula (2.11) gets replaced by

Yn,	 =
∫ +∞
−∞

· · ·
∫ +∞
−∞

[
f

(
u0ψ(u1, . . . , u	−1, εn−	, . . .)

)
−f

(
u0ψ(u1, . . . , u	−1, v, εn−	−1, . . .)

)]
×dG(u0) dG(u1) · · · dG(u	−1) dG(v)

(2.44)

and thus (2.12) becomes

f ′(u0ψ(u1, . . . , u	−1, εn−	, . . .)
)

×[ψ(u1, . . . , u	−1, εn−	, . . .) − ψ(u1, . . . , u	−1, v, εn−	−1, . . .)]u0

+1
2f ′′(τ ∗)[ψ(u1, . . . , u	−1, εn−	, . . .)

−ψ(u1, . . . , u	−1, v, εn−	−1, . . .)]2u2
0.

(2.45)

Using (2.44) and (2.45) instead of (2.11) and (2.12), the proof of Lemma 2.1 yields
(2.42) and (2.43) with obvious changes.

Similarly to (2.18), we have also

B̄	 ∼ γ1b	 as 	 → ∞
(the proof is the same) and Lemma 2.6 remains valid with σn replaced by yn

and ζn,	 replaced by εnζn,	; the proof is again similar, with σ̃
(	)
n replaced by

ỹ
(	)
n = εnσ̃

(	)
n . The remaining changes in the argument leading to (1.26) are obvious

and we get (1.27). The implication (1.27) ⇒ (1.13) can be proved in the same way
as (1.26) ⇒ (1.12). �
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