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ASYMPTOTIC RESULTS FOR LONG MEMORY
LARCH SEQUENCES

BY ISTVAN BERKES! AND LAJOS HORVATH
Hungarian Academy of Sciences and University of Utah

For a LARCH (“linear ARCH”) sequence (yy, 0,) exhibiting long range
dependence, we determine the limiting distribution of sums

> f(yn), X f(on) for smooth functions f satisfying E(yof'(vg)) # O,
E (o f'(00)) # 0. We also give an approximation formula for the above
sums, providing the first term of the asymptotic expansions of Y. f(yx),

> f(on).

1. Introduction. Since their introduction by Engle (1982) and Bollerslev
(1986), ARCH and GARCH sequences have been used extensively to model
financial time series, such as asset returns and exchange rates. A common property
of ARCH(p) and GARCH(p, g) sequences is that they are defined by finite
recursions and their autocorrelations decrease very rapidly, implying short memory
behavior of these sequences. Short memory behavior holds even for ARCH(00)
models defined by the infinite recursion

(1.1 Yk = OkEk,

o0
(1.2) of=a+) biyi;, kel
i=1

where (by) is a sequence of nonnegative numbers and (&) is an independent,
identically distributed sequence of random variables having suitable moments. In
fact, under reasonable conditions implying the existence of a covariance stationary
solution of (1.1)—(1.2), we automatically have

o0
> " ICov(yo, yi)| < 400
k=1

implying short range dependence of the sequence [compare with Giraitis,
Kokoszka and Leipus (2000)]. On the other hand, empirical evidence suggests
in many typical financial situations a much greater degree of persistence in the
process, indicating a long memory behavior of (y;). A model describing such long
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642 L. BERKES AND L. HORVATH

memory behavior was suggested by Giraitis, Robinson and Surgailis (2000). They
introduced a model called LARCH (“Linear ARCH”) defined by

(1.3) Yk = Ok&k,

oo
(1.4) or=a+) biyi. kel
i=1

As they showed, if a # 0, the ¢; are independent, identically distributed with
Egy=0, Es(% =1 and

o0
(1.5) Y b <1,
i=1
then (1.3)—(1.4) has a unique stationary solution admitting a Volterra expansion
o0 o0
(1.6) on=a+tay, bji - bjen—ji - En—ji——ji
k=1 ji o ju=1
and if
(1.7) bj~cjP, 12<B<1

then (o0,,) has long memory behavior. (Here ~ means that the ratio of the left- and
right-hand sides tends to 1.) In particular,

[N1]
N=C2=P 3N (5; —a), 0<r<l
j=1

converges, as N — 0o, not to the standard Brownian motion as it should be the
case in a short memory situation, but to the fractional Brownian motion W3,5_g.
Let us recall that {W,,(¢), > 0}, the fractional Brownian motion with parameter
y (0 <y < 1), is a Gaussian process with mean 0 and covariance

EW, ()W, (1) = $(Is[?Y + [t1? — |s —t|*").

See, for example, Samorodnitsky and Taqqu [(1994), Chapter 7].

The first profound analysis of a long memory situation in the probabilistic
literature is due to Taqqu (1975, 1979) and Dobrushin and Major (1979) in the
case of Gaussian processes. Specifically, they obtained the limit distribution of
sums Y f (&) for a centered stationary Gaussian sequence (&) with covariance
function ry ~ k™%, & > 0. The case o > 1 is classical: in this case the sequence (&)
has short memory and N~!/2 Z,[(A:Ill] f (&) converges weakly to a multiple of the
Wiener process for any f with Ef(§9) =0, Ef 2(50) < +o00. In the difficult case
0 < o < 1 the limiting behavior of ) f (&) depends essentially on f; specifically,
if Ef(&) =0, Ef 2(&9) < 400 and ¢, is the first nonzero term in the Hermite
expansion f(x) = Y cyH(x), then with suitable norming ay the sequence
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a;,I Z,[fitl] f (&) converges weakly to a process Z,,(¢) (Hermite process) defined
in terms of multiple Wiener integrals. For m = 1, Z(¢) is fractional Brownian
motion, but for m > 2, Z,,(¢) is non-Gaussian. In a subsequent paper Dehling
and Taqqu (1989) determined the asymptotic behavior of the empirical process of
(&x). In the short memory case o > 1 the limiting process is a Gaussian process
with mean 0 and covariance function R(x, y) =),z Cov(I{& < x}, I{§&, <y}).
which appears in many typical weakly dependent situations, but in the case
0 < < 1 we get a totally different type of limiting process, whose trajectories
are semi-deterministic, that is, are random multiples of a fixed deterministic
function.

Surgailis (1982) [see also Giraitis and Surgailis (1986, 1989, 1999)] extended
the Dobrushin—-Major—Taqqu theory to linear (moving average) processes defined
by

$n=2bjs,,_j, neZz,
Jjez
where {¢;,i € Z} are independent, identically distributed random variables with

Eegg =0, Ee(z) =1 and b; are real numbers with Zb? < 4o00. Long memory
behavior holds here if

bj~cjF, 12<p <1,

and Surgailis (1982) showed that the class of the limiting processes of aX,l X

Z,[fitl] f (&) is the same as in the Gaussian case, just the role of the Hermite
polynomials is played by another polynomial sequence, the so-called Appell
polynomials. Specifically, if f is smooth and m > 1 is the smallest integer with
E(f(’")(éo)) # 0, then the limiting process of a;,I Z,[fitl] f(&) is Z,(t). As a
consequence, we get the same asymptotic behavior of the empirical process of
the (&;) as in the Gaussian case.

The purpose of our paper is to investigate the limiting behavior of sums
> f(on), X f(yn), where (y,, 0,) is a long memory LARCH sequence defined
by (1.3)—(1.4), where a # 0, ¢; are independent, identically distributed random
variables with Egg = 0, Es(% =1 and b; are positive numbers satisfying (1.7).
The strong similarity between linear sequences and the basic recursion formula
for LARCH sequences [see relation (1.21)] was exploited by Giraitis, Robinson
and Surgailis (2000) to determine the limit distribution of ) (o, — a). In fact, they
proved that the asymptotic behavior of ) (o, — a) is the same as that of > o},
where o, is the linear process defined by

o0
(1.8) of=Y bidy_j, nel,
j=1

where §; are i.i.d. random variables with & 2 £g000. We will see that this
phenomenon does not extend to Y f(o,) with general f: the variances of
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N | f(on) and XN, f(0¥) can grow with different speed and the sums have,
in general, different limit distributions. However, we will show that ) f(o,),
> f(yn) exhibit a long memory behavior, similar to that of Gaussian and linear
processes, if E (o, f'(0,)) # 0 and E (y, f'(y,)) # 0. In this case the variances of
the sums grow as CN3~2# and the sums, properly normalized, converge to the
fractional Brownian motion. More precisely, we have:

THEOREM 1.1. Assume that Egg = 0, Es(% =1, Elgg|’ < 400 for some
p > 4 and that (1.7) holds with

o0
p—1
(1.9) P=bl< s,
,,Zl " 36p)°leol?
where || - || denotes the L, norm. Let f : R — R be a twice continuously
differentiable function with
(1.10) Lf7 ()] < C(Ix* + 1), x €R,
where
(1.11) O<a<(p—4%2p).
Then
el DI0,1]
(1.12) N=CRPN(f(on) — Ef(00)) = ydW3o_p(t)
n=1

and

3/2 L] DI[0,1]
(1.13) N=OR=D N (F () — Ef (yn)) == y1dW3j2_p(0),

n=1
where
1 / 1 /

(1.14) Yy = ;E(Gof (00)), Y= ;E(yof (o))
and

_(BA=B28—D\'*  ac
(15 d_<(1—ﬁ)(3—2ﬁ)) A= b)17

Here a, b, c are from (1.4), (1.7), (1.9) and B(-, -) is the beta function.

In particular, we have

N
(1.16) N=C2=B) ™ (f(0,) — Ef (o)) —2> N (0, d*y?),

n=1
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N
(1.17) N~ S () = Ef () > N(O, d>D).

n=1

As a comparison, we note that for a long-memory moving average process (yy),
relation (1.13) holds with y;d replaced by const - E(f'(yp)). As a consequence,
there is a change in the behavior of the corresponding empirical processes, see our
remarks below. The appearance of E (o f'(00)) and E(yo f'(yo)) in Theorem 1.1
indicates a new situation: the connection with the Appell expansions, underlying
the structure of moving average processes, is lost. The fractional Brownian
limits in (1.12), (1.13) correspond to the main term in the asymptotic formulas
given by Theorem 1.2 below and become degenerate if E(opf'(0p)) = 0 or
E(yof'(y0)) = 0. To determine the limit distribution in these degenerate cases
would require finding the further terms in the asymptotic expansions of > f (o),
> f(yn), a problem we will not deal with in the present paper, although the path
of doing it is clearly indicated by the proof of our theorems.

Note that for large p we assume that b> = 3"°° | b2 is small. The actual bound
in (1.9) is needed for the moment estimates in Lemmas 2.4, 2.5 and is similar
to the bound on b required in Giraitis, Robinson and Surgailis (2000) for their
asymptotic covariance estimates. Observe also that for large p, relations (1.10)
and (1.11) permit polynomials f of degree ~ p/2 in our limit theorems. As a
comparison, in the case of linear processes, the existence of finite p moments of
the generating i.i.d. sequence permits to apply the corresponding limit theorem for
polynomials of order p/2 [see Avram and Taqqu (1987)].

We note finally that E(yg) = E(oogp) = 0 and thus for f(x) = x the y; in
(1.14) becomes 0 and thus the limit in (1.13) becomes degenerate. The explanation
is that the y, are orthogonal and thus Zf;’:l yp = Op(x/N). Clearly, we get a
nondegenerate limit if f(x) = x2k k eN.

While in the present paper we do not investigate the empirical processes
of (0,), (yn), their asymptotic behavior is easy to obtain heuristically from
Theorem 1.1. Let, for example, uy be the empirical process of {yi,..., yn}
defined by

N
1y ((—00,x]) = N"C2 P3N (I(y, <x) — P(ya < x)).

n=1
Relation (1.17) can be written equivalently as

+00
FOundx) 2 N©, d2yP).

In particular, with f(x) = e’* we get

(1.18) / e un(dx) == it—E(yge'™)Z
a

—00
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for any ¢ € R, where Z is a standard normal r.v. Assuming that yo has a density
¢(x) and introducing the process

§(x) = gw(X)Z, x €R,

it is easy to verify that the right-hand side of (1.18) is — ff:j e &(dx) and thus,
observing that £(x) and —&(x) have the same distribution, (1.18) suggests that

(1.19) pn (=00, x] £(x).

A similar heuristic suggests, in view of (1.13), the two-parameter convergence

D[—00,+00]
)T —>

d
(1.20) pine ((—o0, x]) — EX(P(X)W3/2—5(I)

in D ([0, 1] x [—o0o, +0oc]). However, the precise verification of (1.19) and (1.20) is
quite laborious, requiring the chaining technique employed in Dehling and Taqqu
(1989) and Ho and Hsing (1996) and will be postponed to a subsequent paper.

In contrast to the semideterministic limit process &(x) appearing in (1.19), the
empirical processes of ARCH and GARCH models in the short memory case
converge to nondegenerate Gaussian processes and the limit of p[y:((—00, x])
in (1.20) in the short term memory case is a Kiefer process exhibiting random
behavior in both parameters. See Berkes and Horvéth (2001).

We formulate now a stronger version of Theorem 1.1, which also reveals the
reason for the relations (1.12)—(1.13). For this purpose, we introduce some new
LARCH type sequences associated with (o,). Clearly, the sum of those terms in
the doubly infinite sum in (1.6) which contain €,,_,, but no ¢, with v >n — £ is

00 00
bgsn_g(l + Z Z bjl "'bijn_g_jl "'8n—é—j1—~~—jk>

k=1 ji,....jx=1

Oy_y¢—a 1
= beEn—z<1 + L) = —by&n—¢On—¢.
a a

Hence
(1.21) op—a=bie,_10,—1 +brep_n0,_2+---.

Let f be a function satisfying (1.10), (1.11) and define the sequences
{G,ff),n e 7}, {6,ff),n €Z} by

(1.22) o\ = Bien_104-1 + Bagn—20n-2+---,
(1.23) 61 = Biey—10u—1 + Bagn_20u_2 + -+,
where

(1.24) Bi=E(f'(00)&),  Be=E(f (o)eote)
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with
(1.25) o= Z bjj - bje_j e ji—vj
r>1
Jtreenjrz 1
JiHe A=t
That is, o(f ) and o*(f ) are obtained from o, — a by replacing the coefficients b;

in (1.21) by B; and B; j» respectively. Now we have:

THEOREM 1.2. Under the assumptions of Theorem 1.1 we have

N N
(1.26) Y (flon) — Ef(on) = > o\l + CN2P*gy
n=1 n=1
and
N N
(1.27) S (FOm) = Ef ) = Z ) L CN32Foy
n=1 n=1

for some C > 0, ¢ > 0 where ESN <1, EnN < 1. Moreover, the By, By in
definitions (1.22) and (1.23) satisfy

(1.28) By ~ yby, Bg ~ y1by as { — oo
with the y and y1 in (1.14).

Relations (1.26) and (1.27) are invariance principles for Z,I:/ 1 f(on) and

Z _1 f(yn) and reduce their study to those of Z (f ) Z f ). For the
original (o,), Giraitis, Robinson and Surgailis (2000) proved that

onp ¥ 10N
(1.29) N > (o —a) == dW3p_p(t)
n=1

with the d in (1.15). [Actually, they showed only the convergence of finite
dimensional distributions in (1.29), but the tightness follows from

N 2
E(Z(an — a)) ~CN*?
n=1

which, in turn, is a consequence of their Corollary 2.1, and Theorem 15.6 of Bil-
lingsley (1968). See the analogous argument for N~G/2=A) Ry, at the end of our
paper.] Using (1.28), the same proof shows that

(1.30) N-G/2- ﬂ>2 D 2O gy Wap(e)

n=1
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and

v D[0,1]
(1.31) N=CP=PIN G " dy Waya—p(t)

n=1

and thus Theorem 1.2 implies Theorem 1.1 (see Section 2).

2. Proof of the theorems. As we have already noted, the asymptotic behavior
of Y (o0, — a) is the same as that of )_o,*, where o, is the linear process defined
by

2.1 o) =b16p—1+b2bp_2+---, neZz,

where §; are i.i.d. random variables with &y 2 £00p. While this similarity does not
extend to Y f(o,), we will make an essential use of the theory of linear processes
in our arguments. In particular, we will utilize the martingale decomposition
technique used by Ho and Hsing (1996) to give an Edgeworth expansion of the
empirical process of long memory moving average processes.

Let us first note that

{8vl...8vr, I1<vi<--- <V, r:1,2,...}

is an orthonormal system and also that > b? < 1 implies that the sum of squares of
the coefficients in the sum in (1.6) is finite. Thus the series in (1.6) converges in L;
norm under any ordering of its terms. Since the above orthonormal system is also
complete, its L, sum is independent of the order of its terms. The same remark
will apply to all infinite sums of r.v.’s appearing in the sequel.

Let £y =o{e,, v < £} and

2.2) Xne = E(f(00)|Fa—t) — E(f(00)| Fui-1)-
Then

L
2.3) Z ne = E(f@)Fuet) — E(f @) Faer—1)

= f(on) — E(f(o'n”}vn—L—l)

since f(o,) is F,—1 measurable by (1.6). For fixed n and L — oo, the last con-
ditional expectation in (2.3) converges to Ef (0,,) by the martingale convergence
theorem and thus

(2.4) fn) —Ef(on)=)_ Xns.

=1

Our first lemma gives an approximation formula for X, ;.
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LEMMA 2.1. Under the conditions of Theorem 1.1 we have

(2.5) Xn,@ = E(f/(an)gn,i)an—ﬁsn—ﬁ + Rn,b
where
D
(2.6) o= ) bjibjea e ji—ej o Sk
r>1

Jiseeesjr=1
ik =t

and

Rn,@ = {E(f/(o'n)é‘n €|3Tn—2) - E(f/(o'n)gn Z)}Gn—isn—ﬁ
2.7) +epfol {(eh_y + DE(0al*¢2 o1 Fae)
+(enel?? + ey + DEG , + Elon "/ P7V¢2 | Fa_en)},

where c,, = Cp~12P/2E|eo|P/? with the C in (1.10), and 6] < 1.

For r = 1 we get the constant term by in (2.6). Actually, in the case when
oy = Z?"Zl bje,—;j is a linear process, the analogue of Lemma 2.1 holds with
{n.e = by and thus the effect of the nonlinear terms in (1.6) is given by the
nonconstant terms of ¢, ¢ in (2.6).

Adding (2.5) for £ = 1,2,... and n = 1,..., N and observing that the
coefficient E(f'(0,)¢n.¢) in (2.5) equals By in (1.24) by stationarity, we get, in
view of (1.22) and (2.4),

N

(2.8) Y (f(on) — Ef (on)) = Z o\ + Z Z Ry
n=1 n=14=1

Hence the proof of the theorems will be reduced to an asymptotic evaluation of
YN o ) and YN 3% | Ry.¢ which will be done in a series of lemmas.

PROOF OF LEMMA 2.1. We have seen above that the sum

o

2.9 Z Z bj, - -bjen—ji - En—ji—mjy

converges in L, with any ordering of its terms. Actually, this remains valid if £ > 1
and we replace ¢,_1, ..., &,—¢ by arbitrary real numbers uy, ..., uy. For example,
if &,_1 and &,_» are replaced by u| and u;, then the resulting series in (2.9) can
be broken into 4 series, according as their terms contain both #; and u;, only u,
only u; and none of uy, us, respectively. Factoring out uu;, u1, us, respectively,
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in the first 3 series, their convergence can be seen directly, in analogy with (2.9),
proving our claim. In other words, letting (formally)

o0 o0
(2.10) w(xl,xz,...)za—i-az Z bj - bjXj - Xji ot
=1 j1,ji=1

the expressions ¥ (uy, ..., U, En—¢—1, En—e—2, - . .) are well defined for any £ > 1
and any real uy, ..., uy. Clearly
on =Y (En—1,8n-2,...).

Keeping in mind that we will use the functions ¥ (xg, x2,...) only when there
exists an n such that x; = ¢,_; with finitely many exceptions, it is clear that the
sum of terms in the infinite sum in (2.10) containing x, but no x; with j < £ is

00 00
bg)Cg(l-l-Z bj --bjxeyj ---)Cg+j1+...+jk)
k=1 jp,oji=1

:ngg(l . Y (Xe41, Xeq2,-.0) — a)

a

1
= ;bzleﬂ(xul,xuz, S

On the other hand, the sum of terms in the sum in (2.10) containing x, is

Y (Xet1, Xe425-..) —a
Xe Z bji - bjXj - Xyt (1 + )

a
r>1
J1seees Jr=1
it +jr=
Clearly E(f(0n)|Fn—¢) is obtained by integrating f(0,) = f (¥ (én—1, En—2, ...))
with respect to €,—1, &,—2, - . ., En—¢+1, More precisely,

E(f(o—n)lyn—ﬁ)

+o0o +0oo
= [ T W e )G - dG ),
—00 —0oQ0
where G denotes the distribution function of gy. Similarly,
E(f(o—n)lyn—ﬁ—l)

=/_J:O.../_;oof(1p(u1,...,ug_1,v,8n—e—1»---))

xdG(uy)---dG(ue—1)dG(v).
Thus

+00 400
(211) X",Z :/—oo /—oo [f(w(ul’ e He=1s En—t; ))

—f(l//(ul, e, Up—1,V,Ep—¢—1, - ))] dG(ul) s dG(Mg_l)dG(v).
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Using a two-term Taylor expansion, the integrand in (2.11) becomes
fr(Wur,...,ue—1, 60—, ...))
X [W(”l» "'7”(-1’8}1—67 ) - W(Mlv ""u@—lv vvgn—e—lv )]
(2.12) 1
+5f @O ur, .. ue—1, Engs ..
- ’(//(Ml’ ceey u@—l’ U, 8}’!—6—1’ .. ‘)]27

where t* lies between v (11, ..., up—1,&n—g,...) and Yy, ..., Ug_1,V, En—p—_1,
...). By the above remarks on the structure of ¢ we see that

YUy, .o, Up—1,En—ty--) — (U1, .. s Ug—1, UV, Eq—p—1, .- -)
(2.13) =a(l+ (Y (en—t-1,..) —a)/a)(es—¢ —v)S

=0p—e(&n—t — V)8,

where
S=S(u1,...,l/tg_1)= Z bj]"'bjrujlujl-i-jz"'Mj1+~'+jr71'
r>1
Jlseees jr>1

Thus using fj(f.f’ dG(v)=1and ff:j vdG(v) =0, we see that the contribution of
the first term of the Taylor expansion ( 2.12) in the integral (2.11) is

/_;"O/_;OO (W@, ... w1, n—s,...))

X 0p—g(en—e —V)SUy,...,up—1)dGuy)---dG(ue—1) dG(v)

—+00 —+00 ,
=/ / fr(Wur,....ug—1, en—g,...)
—00 —00
X Oy pEn—¢S,...,ug—1)dG(uy)--- dG(ug—1)

=F f/(l//(é‘n_l, En—-2,.. )) Z bjl .. 'bjren—jl .. 'Eﬂ—jl—"'—jr—l ?'n_g

Bkt =t

X Op—g€n—¢

= E(f/(o—n);n,é|$n—6)6n—68n—6-
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Relations (2.13) and (1.10) show that the second term in (2.12) is at most
C o o
E{W(ul,---,Me—1,8n—e,---)| + Y@y, .. ue1,v, 8001, ..  + 1}
xanz_e(sn_g — v)2S2

and thus the contribution of the second Taylor term in the integral (2.11) is at most
I + I, + Iz, where

+00 +oo C
L= / / St g ) (e — S
x dG(uy) -+~ dG (ug—1)dG (v),

+00 +o0 C
2 22
L= / / Sttt v, et O (e — 0)S

xdGup)---dGue-1)dGv),

+00 o C )
h=[ e[ S0l ene— v S dGa) -+ dG (-1 dG (o),
Using fj(f.f’ vdG(v) =0, fj(f.f’ v2dG(v) = 1 again, we get

12 [T
h=4oi [ (ene—0vdG)

x/ / W@y, ... uoe—1,8n—p, .. )|*S"dGuy) - dG(up—1)
—00 —00

tor yep_ o+ DE(Y(Enat, -\ ety En—ts - NGr o Fas)

Yok (€2 y + DE(0a|“8 )| Fae)-
On the other hand, applying the inequality
byl < Il /s+Iylf/e s>1sT 4T =1
[see, e.g., Loeve (1977), page 157], we see that the integrand in 7 is bounded by

1 4 —4
3 T eS? ( |8n—e—Ulp/2+pTllﬂ(ul,---,ue—1,v,8n—e—1,---)|ap/(p_4))

=:J1+ ).
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The contribution of J; in the integral I is
S T 2 2
Zop [ [ Sene = ol2dG ) - dG 1) ()
p —00
2 +00 —+00 +00
=20k [l v2aGw [ e [T a6 - dG )

2 +00
= ,%_g/_ len —v|P2dG(v) - EC2,

2
5;2”/2 162 (Ec2,) / (en_tl?? + 1017/?) dG (v)

<cpop_o(len—el?* + DEL],,

where

1
¢, = —2P2E|go|P/?.
p

Here we used the inequality |x 4+ y|¥ <2¥~1(|x|¥ +|y]?) (y = 1), following from
the convexity of |x|”. On the other hand, the contribution of J; in the integral I,
is

p—4 +00 +00 -
—o,%_g/ / WUty s s s Enpt s 22 [P/ P
2p —00 —00

x $2dGuy) - dGup—1)dG )
P _402_
2p

P42
2p

E(1$(en—1,.. )P/ P2 | F o)

CE (o |*P/ Pk | F ).
Finally,
C +0o0 )
h=Soi Gt n [ [ S a6 a6

C
= 50'3—@(82—2 +DEg .

Collecting the terms, we get Lemma 2.1. [

We next give an asymptotic formula for By in (1.24). To this end we prove the
following elementary lemma.
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LEMMA 2.2. If (1.7) holds and "5 | b? < 1, then
(2.14) Y b} ---b} <Cb;

i1+--+ir=n

with some constant C > 0.

PROOF. Letb?=3Y"2,b2 < 1 and let S, denote the sum in (2.14). Clearly,
for any fixed 1 < £ <n — 1 the contribution of the terms in S,, with i} = £ is b%Sn_g
and thus

(2.15) Sp=_ b7Su_i,
i=1

where we put So = 1. Let further ¥y = S; +--- 4+ Sy for N > 1. Then by (2.15)
we have

o
Ty < (be)ﬂ +3y) forall N>1
i=1

and thus

b2
1 -5
Choose 8 > 0 so small that 52(1 +8) < 1. Let 8r = Sup; >, bf for t > 0, then g; is

nonincreasing and by (1.7) we have g,/ b,% — 1 as n — 00. Thus we can choose a
small 0 < & < 1 so that

Yoo =

< +o00.

2

(2.16) gnne (L +0by,  gne < b
for n > ng. Let C > 0 be so large that
2.17 C> S (1+2x0) —————

and that S, < Cbﬁ holds for 1 <n < ng. We show by induction that S,, < Cb% for
alln > 1. Indeed, if n > ng and S < Cb,% holds for 1 <k <n — 1, then we get, by
(2.15)—(2.17) and the induction hypothesis,

Sp=> biSu—i+ Y biSy_i

i<ne i>ne

. o0
< b? Sj+ bz)
_<§ l)"—ngg}én—l / <ts:lr?8 <Z )

J=0
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< b2C< max b?) + gne (1 + X0)

n—ne<j<n—1
<b*Cgnne + 8ne (1+ Too)
<b*C(1+8)b> + 832 (1+ Zoo) b2
< Cbh2.

This completes the induction step and the proof of Lemma 2.2. [

REMARK. The previous argument shows that for any 1 > 0 we have
n—1
Y biby_; <2(14+m)b*by  forn > no(n).
i=1

Indeed, let ¢, § denote the quantities introduced above and split the sum /,, on the
left-hand side of the last relation into 3 sums I, 1, I, 2, I3 containing the terms
i <ne,ne <i<n—ne,i >n—ne. Then we get, using the estimates above,

2 2 2
In,l <b 8n—ne> In,2 <Nng,e» In,3 <b 8n—ne>

so that
4
I, <2b°(1+8)by, + — nby, <2b*(1 +28)b},
&

for sufficiently large n since nb2 — 0 by (1.7). Since & can be chosen arbitrary
small, our claim is proved.
We can now prove the following.

LEMMA 2.3. We have
(2.18) Be ~ yby as £ — o0,
where y is defined by (1.14).

PROOF. The constant term of the sum ¢, in (1.25) (obtained for r = 1) is by
and thus we can write

Ge=be+ Y bjbibe i jienj e,
s>1
Jlseeesds =1
St e <t

::bg-{—{f.
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Next we observe that (1.10) implies by integration
If'@l<Ci+Cilx*, xeR,
for some constant C; > 0 and thus
Ef'(00)* < E(C1 + Ciloo|**")? < +o0

since 2a + 2 < p by (1.11) and E|og|” < 400 (see Lemma 2.5). Since the
sequence

{evl gy, s> 1<y << Vs}
is orthonormal, it follows that

Z Ez(f’((fo)a_j1 i) < +00
Jlseeesds =1

and thus for any § > 0 there exists a K (6) > 0 such that lims_, o K (§) = 400 and
(2.19) > E*(f'(00)e—jy - 6—jy—mj) <.
Ji e+ is = K )
Let £ > K (§) and write

1 2
t=6"+¢7,

where

(H _ ) ) . . . . .

G = > bjy - bjbe—ji—mjibji 8= ji—m s
s>1
Jireeesjs =1
J1t+-+ s < K@)

() _ . . . P . .

{ = Z bj - bjbp—j & e
s>1
Jlreves Js =1

K@ =j+--+js<t
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By the Cauchy—Schwarz inequality, (2.19) and Lemma 2.2, we get
[E(f'00)e”)]

< > 1bjy -+ bjbe—ji——j | [E(f'(00)E—j; -+ & ji—mj))|
s>1
Jiseeosjs =1
K@) <ji+-+js<t
1/2
2 2,2
= 2. by b
s>1
Jlseeen s =1
Jibet s <t
1/2
X Z Ez(f/((f())é‘_jl .- '8—j1—~-~—js)
s>1
Jiseeosjs =1
K@) <ji+--+Js
</Chy/3,
where C is the constant in (2.14). On the other hand, for every fixed j, ..., j; with
Jj1+ -+ js < K(5) we have
b¢—j—..—j, ~ by asf — o0
and thus
1
E(f'(00)¢,")
"\’ng Z bjl "'bjsf/(o’())é‘_jl & j—— as £ — oo.
s>1
Jire s =1
J1+ o+ s <K@
As § — 0, the last expected value tends to
oo —a
E[ X bjbjf0)e - emjj | = E( f/(00)>

657
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and thus

Go_af/(oo))bg as £ — oo.

E(f'(00)57) ~ E (
Since ¢¢ = ¢ + b, Lemma 2.3 follows. [

Lemma 2.3 describes the asymptotic behavior of the first summand in (2.5) and
it remains to estimate the remainder term R, ¢, which will be broken into several
steps. We first give some moment estimates for &, , and the tail sums of 5, in (1.6).
Asymptotic estimates for the moments and product moments of the sequence
(0,) were given in Giraitis, Robinson and Surgailis (2000) by using a diagram
formalism. In our estimates we will not use this technique. Instead, we will use
an induction argument combined with martingale inequalities, which will yield
the desired results quite simply, without combinational difficulties. Whether our
method is capable to give optimal constants [as the diagram technique in Giraitis,
Robinson and Surgailis (2000) gives asymptotically precise estimates] is unclear.

LEMMA 2.4. Forany n,{ > 1 we have
(2.20) E|Znel” < Cby
with some constant C > 0, independent of n, £.
PROOF. We will use the fact thatif p > 1 and {§;, 1 <i < N} is a martingale

difference sequence with E|&;|” < K (1 <i < N), then for any real numbers
ct,...,CcN We have

2

N P N p/
ch‘éi >§ApK<ZCl‘2) ,
i=1 i=1

where A, = (18p)’(p/(p — 1))?/2. Indeed, by Burkholder’s square function
inequality [see, e.g., Hall and Heyde (1980), page 23] the left-hand side of (2.21)
is bounded by

(2.21) E(

N p/2
A,,E<chg;) |
i=1

which, by Minkowski’s inequality, cannot exceed

N p/2 N p/2
Ap<2 ||c?s,?||p/z) = Ap<Zc?||si||$,)
i=1 i=1

N p/2 N p/2
2 2
pr(lgg\,”Sng)(ZCi) §APK<Zci> )
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Let 1 <s < /. Clearly the sum of terms in (2.6), where j; = s is by if s = € and is

bsen_s Z bj2 cee bjrgn—s—jz o En—s—jp——jr = bsen—sCn—s,t—s

2t tjr=L—ys
if 1 <s <¢—1.Thus
-1 -1
(2.22) Cne = be + Z bsgn—sé-n—s,ﬁ—s =by+ Z bsbé—sgn—sé‘:_s,z_s,

s=1 s=1

where QT,Z = bg‘l;,,,g. Noting that ¢,_s ¢—s contains only ¢,’s with v <n — s, it
follows that
lenosty o ss=0—1,£-2,...,1}

is a martingale difference sequence. Next we note that by (1.9) and the Remark
after the proof of Lemma 2.2 we have

-1
(2.23) Y biby_; < (1-38)

i=1
for some 0 < § < 1 and £ > £(. Observing that the distribution of ¢, does
not depend on n, one can find a constant C > (1 — (1 — 8§)!/%)™7 such that
E|tnel? < be holds for 1 < ¢ < £y and all n. We show by induction that (2.20)
holds for all n, £. Indeed, if £ > £y and E|[g, ;|7 < be holds for 1 < j <¢ —1
and all n, thenfor 1 <s <f—1
(2.24) E(len—s¢y g 0-5|") = Elen—s|PE|¢, s ¢|" < CEleol”

and thus using (2.21)—(2.24) and the Minkowski inequality we get

W

=1 p/2y1/p
<bg+ {A,,C<E|80|P)(Zb§b§_s> }

s=1

p—1 b2
324p3eoll3

-1
Z bsbi—sgn—s ng—s,Z—s

s=1

En,ellp < be+ {E<

<be+(1=82C by < CV7by
by ClV/r>@a1—-0a -8V, showing that E|¢, ¢|P < be, completing the
induction step and the proof of Lemma 2.4. [J

We now introduce partial sums and tail sums of ¢,, defined by

[e.e]
=) o h . .
Oy —a—l—az bj - -bjn—j - En—ji——jp
k=1"ji,....jx=1
itk <t
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and

0
Al _ . . . . .
n —a Z Z bj, -+ -bjen—jiEn—ji—mjy-
it tje=t

LEMMA 2.5. We have
00 p/2
(2.25) E|691P <y (Z b§>
j=t

for some constant C1 > 0, independent of n, £. In particular, E|og|P < +00.

PROOF. Observe that the sum of terms in the infinite series in (1.6) containing
&,—¢,butno g, withv <n — £ 1is

Yo bibjen—ji e Enmt = Entne-

i =t
Thus

o0
(2.26) 60 =a en_jln.

j=t
Recalling that ;7 = bj_1 ¢n, j» the sequence

{an_jg,f!j,j =0,0+1,...}
is clearly a martingale difference sequence and, by Lemma 2.4, we have
E(len—;¢; ;1”) = Elea—;|PE|5} ;|7 < CEleol?,

where C is the constant in Lemma 2.4. Thus by (2.21) we have for any L > ¢

#(gem] )-o(;

L L 2

*
> en—jén.j > bjen—jt
={ j=t

P L r/
j=t

where C* = A ,CE|gg|”. Letting L — oo and using Fatou’s lemma we get
E(an_jé'n’j )SC*<Zb?>
Jj=t j=t

which is identical with (2.25) in view of (2.26). [
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LEMMA 2.6. Letr =2p/(p —2). Then
1/2

Q227 |E(f'(0n)ne) Fu-t) = E(f'(00)n,0) |, < Cabe (Z )

with some constant Cp > 0.

PROOF. Clearly, the left-hand side of (2.27) is not greater than
|E(f"©@n)6n,e Fae) = E(f Gy )en el Fa-o),
HIE(f' G el Fae) = E(f'@n)ene) |, = I + .

Letting A = /(o) — f’ (G,,E)) we get by the conditional Cauchy—Schwarz
inequality

|E(AGn el Fao)| < EVAA | Fam ) EV2 (G5 0| Fame) < C3beEVA (A% Fyy).
Here we used the fact that ¢, ¢ is independent of %;,_, and thus by Lemma 2.4 and
the monotonicity of the L, norm in p we have

E(y o Fae) = By ¢ < (E1Gn,e|")?'? < Caby.

Thus

0% I = | E(ALu | Fa-o) |y < Cabe|EV2(A | Fso) Iy
= C3by| E(A|Fo-o)ll,)3 < Cabell A% = Cabel| Al

Now by (1.10) and the mean value theorem we get
Al= 11" (o)llow = 501 < C5(1pul® + Dlow — 5,7
< Cs(lon|* +16,71* + Dlow — 6,71,
where p,, lies between o,, and 6 9 Lemma 2.5 implies that there is a constant

Cs such that [|o,]|, < Cé, [0 — “)n,, < Cg forall n > 1,£ > 1 and thus using
Holder’s inequality and Lemma 2.5 again we get

"(E)Hp

1Al < Csllonl* + 16,71 + 1| Jllow — 6,

- rp/(p—r
o 1/2
§C7<-Zbi2> (H|Gn| ”rl’/(l7 r)+”|6(e)| Hrp/(P—r)_{—l)

(2.29) ~ A\ Z
SC7<Zbi) (10 I pery p—ry + 154 U p—ry + 1)

0
§C8<Zbl‘2>
i—¢

1/2
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since rpa/(p —r) < p by (1.11). Relations (2.28) and (2.29) together yield

(2.30) I < Cgbg(Zbiz)

i={

1/2

On the other hand, 6,56) and ¢, ¢ are independent of ¥,,_, and thus

L=|E(f'6,¢ne) — E(f'(0n)tne)| = 1EALo)| < | AL el
Similarly to (2.28) we get || ALy ¢llr < C3b¢||All, and thus (2.29) yields
1/2

o0
I < C9be<zb,~2> :

i=¢

completing the proof of Lemma 2.6. [

We are now in a position to estimate the remainder term R, ¢ in (2.7). We prove
the following.

LEMMA 2.7. We have

[ Ruella < Crot~=@F=1/2),

PROOF. (2.7) gives the decomposition
Ric=h+h+h+
where
J1 ={E(f (©0n)n.e| Fae) = E(f'(0n)n.e) }On—tn—e,
J2 = cpboy_q(en_g + DE(oul*¢7 | Fazo).
Jy=cpb0,_(enol?* + 7 +DEL,
Ja=cpfo,_(E(on| ™/ PV 3 | Foe).
We estimate Ji, J2, J3, J4 separately. Since &,_¢ and o, are independent and
E|eo|? < 400, E|og|P < +00, we have
low—ten—ellp = lon—ellpllencllp < Cri
and thus letting r =2p/(p — 2), Lemma 2.6, Holder’s inequality and (1.7) give

IJ1ll2 < ”E(f/(o—n)é‘nll?n—ﬁ) - E(f/(o—n)é-n,ﬁ)”r||O—n—68n—6||p
12

o
< Ci2b¢ (Z b?) < C3e G712,
j=t
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On the other hand, E gnz’ =C 14b§ by Lemma 2.4 and the monotonicity of the L,
norm, and thus by the independence of ¢, _, and 0;,_¢ and (1.7) we have

173112 < Cisliog_gll2(|len—el?/? |5+ ler_ll2 +2)b7
= Cisllon—eli(len—el 5> + len—ellf +2)b7 < Cisbi < C176F.
To estimate J> we first use the conditional Holder inequality and Lemma 2.4 to get
|Elon|“ 57 | Fa—o)]
<{E(|ou|*?/ P72 F,_ )} P2 PLE (15 )P | Fam )} P
< Cigb{{E(|oy [P/ P2 | F,,_ )} (P~ 2/P

since ¢, ¢ is independent of ¥,_,. Thus by the Holder inequality and the
independence of o;,_; and &, _¢ we have

12012 < Crollog_p(er_y + DI,/ ”E(|‘7n|a§r%,€|$"—5)w2p/(p—4)

< Coollog_¢llpr2llen_¢ + U p2bg |[EP2P (10" P21 F0 05 p—a

_ -2
= Caollon—cl3Ile2_¢ + Ul pabF | E(onl ™/ P =215 ) | & 20 sy

_ -2
< Coollon—el3 (len—c I3 + DbF o @P/ P2 200

< Ca1b? |0y 15ap/(p—ay < Cab? < Cy3t™%

since 2ap/(p —4) < p by (1.11). Finally, the estimate of J4 is the same as that
of J3, just @ should be replaced by ap/(p —4) in all steps and we get

2 ap/(p—4) —28
1 Jallz < Casbllonllyhra 7y < Cast

since 2ap?/(p — 4)? < p by (1.11). Collecting the estimates for Ji, Jo, J3, J4 we
get Lemma 2.7. [J

The following lemma is a variant of Lemma 6.4 in Ho and Hsing (1996).

LEMMA 2.8. We have
E(Ry¢Ry ¢) =0 ifn—0#n —1.
PROOF. Since R, ¢ = X;.¢ — Beon—een—p by (2.5), (1.24) and stationarity, it
suffices to show that for n — £ % n’ — ¢’ we have
(2.31) E(Xy, e Xy 1) =0,
(2.32) E(on—ten—eXn ¢) =0,
(2.33) E(on—ten—e0w—p&w—p) =0.
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Assumen’ —¢' <n—£.Then X, ¢ is F,—¢—1 measurable and thus the conditional
expectation of X, ¢ X, ¢ with respectto F,_¢_1 is

Xw 0 E(Xn e]l Fn—e-1)
= Xy ¢ [E(f (o) |Fr—e—1) — E(f(0n)|Fre-1)] = 0.
On the other hand, o,,_; is ¥,_¢—1 measurable by (1.6), and thus the conditional
expectation of 0,,_p&, ¢ X, ¢» with respect to F;,,_¢_1 is
On—tXn 0 E(€n—t|Fn—e—1) =0.
Finally, the conditional expectation of oy,_¢&,_¢0,_pe,y_p With respect to
Fn—e—11s
On—tOn—0'&n'—p E(en—g| Fn—e—1) = 0.
Thus (2.31)—(2.33) are valid. O

LEMMA 2.9. We have
2

N oo
(2.34) E ( 3y R,,,g> = O(N3726-9)

n=14¢=1

for some ¢ > 0.

PROOF. In view of Lemma 2.8, relation (2.34) is equivalent to

(2.35) > ERueRye) = 0N,

l<n,n <N
0,0 >1
n—0=n -1t

By Lemma 2.7 and the Cauchy—Schwarz inequality we have
|E(Rue Ry )| < I|Ru el2l| Ry 0 l12 < Cag(€) "1/,

Thus to prove (2.35) it suffices to show that

(2.36) Yoo @)y PR = o(NITHE),

1<n,n <N
60 >1
n—LC=n -0
We note that, as proved in Lemma 6.5 of Ho and Hsing (1996), we have, for any
integer m > 1,

Cm~2a+1 if%<a<1,
- logm
Yoy <10,
o Glm+ ) m

Cm™“, ifa>1.

(2.37) ifa=1,
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Fix m € Z and add those terms in the sum in (2.36) where n’ — n = m. Then
automatically ¢ — ¢ = m, that is, £¢’ = £(m + £). Clearly n’ can take at most
N values and once it is fixed, n is uniquely determined. Thus the sum of the
considered terms in (2.36) is not greater than

ad 1
Ng (E(m + ©)2P=172
and the total sum in (2.36) cannot exceed
as 1
(2.38) N DY > O

Im|<N £=1

Here the contribution of the terms with m = 0 is not greater than N X
>0 ¢~“B=D = O(N) by 48 — 1 > 1, which is smaller than the remainder
term in (2.36) if ¢ is small enough. Hence it suffices to consider the terms
with m # 0 and for reasons of symmetry we may assume m > (. Note that the
exponent 28 — 1/2 in (2.38) lies in (1/2,3/2). By (2.37) the inner sum in (2.38)
is O(m~“F=2), O (logm/m) and O (m~@F=1/2)) according as § <3/4, 8 =3/4
or B > 3/4, respectively. Thus the expression in (2.38) is at most

N
1 3
N> m= W=D = o(N**) if 5 < B < it
m=1
N logm > 3
(2.39) N = O(Nlog® N) if ==,
m=1 4
N p-12) 3
N m~— P = O(N) if - <B<1.
Y i<

A simple calculation shows that all remainder terms in (2.39) are O (N 3-2p-¢y if
¢ is small enough and thus (2.36) is proved. [J

PROOF OF THEOREMS 1.1 AND 1.2. Relation (1.26) of Theorem 1.2 is
immediate from (2.8) and Lemma 2.9. Letting

N

N
Ry =) (f(on) — Ef(on)) = > o\,
n=1

n=1
relation (1.26) and stationarity imply forany N > 1 andany 0 < <t <t <1,
E(IRNr) — Ring1lIR(Ne) — RineD)
< IRine1 — Rinej 21 RN — Rinvell2
(2.40) : ?
= IRine)— (N1 2 I R[N e~ (N2 2

< C2(qN1T = INn 2P (INnp] = [N P
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If n —t; < 1/N, then either [Nt] = [N#;] or [Nt] = [N1;] and thus the last
expression in (2.40) is 0; if r, — #; > 1/N, then the last expression in (2.40) is
at most

CX([Nt] — [INO D> <CE(N(ty—t)) + 1)

<4CH(N(t — 1)) .
Thus we showed that the process
Xn@®)=N"C2PRyy,  0<t<1, N=12,...
satisfies
E(lX _ _ 2 _ 3—25
N() = XNEDIIXN () — Xn(@)]) <4C7 (1 — 1)~ 7P,

and consequently we have for any A > 0
P(|X _ _ Zi _ 3-28
N = XN = A, [ XN () — Xn(1)] = 1) <4C 22—

The last relation implies by 3 — 28 > 1, and Theorem 15.6 of Billingsley (1968)
and its proof, that the sequence {Xy(¢), N =1,2,...} is tight in DIO0, 1].
By (1.30), the sequence

[Nt]
N=CR=P X6, 0<tr<1, N=1,2,...

n=1
is also tight and thus we can conclude the tightness of the processes in (1.12).
Finally, the convergence of the finite dimensional distributions in (1.12) follows
from (1.26), (1.30).

To prove relation (1.27) of Theorem 1.2 we use the decomposition, similar

to (2.4),

(2.41) FOD = EfGn) =3 Yue,

=0
where
Yn,( = E(f(yn)l:?n—ﬁ) - E(f(yn)l:?n—ﬁ—l)-
Note that the summation in (2.41) starts with £ = 0, but the contribution Zfl\’:l Yoo
of the ¥, 0’s in the sum Y (f (y,) — Ef (yn)) is

N

Y (SO = E(f O Fac1)) = Op(N'/?) = 0p(N>/>7F7%)

n=1
if € is small enough, since { f (v,) — E(f (yn)|Fun—1), n > 1} is a square integrable
martingale difference sequence [the finiteness of E f 2(y,,) follows from the fact
that | f(x)]| < C'|x|%*2 for sufficiently large x by (1.10) and 2e +4 < p by (1.11)]
and hence it is orthogonal. For £ > 1, Y, , satisfies the following approximation
formula, analogous to Lemma 2.1. [
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LEMMA 2.10. Under the conditions of Theorem 1.1 we have, for £ > 1,
(2.42) Yoo = E(f' (Yn)&nln,e)On—ten—t + Ru e,
where
Rue ={E(f' On)entn.el Fae) = E(f' n)entn.e) }on—ten—e
+ 00, {(en_g + DE (ol | Fao)
+ (len—el”? + en_y + 2 E(entn o)
+ E(Jon|*P/PVeRe) | Fame),

(2.43)

where 0| < 1 and c* is a positive constant depending on p and the se-
quence (&y).

Note that the terms in (2.42) and (2.43) are the same as in (2.5) and (2.7),
just f'(oy) is replaced by f'(y,) and &, ¢ is replaced by &,¢, ¢. The proof of
(2.42)—(2.43) follows from that of Lemma 2.1. Since y, = ¢,0,, = &, ¥ (-1, ...),
formula (2.11) gets replaced by

Yoo =/+oo"'/t:o [f (wow (ur, ... ,upg—1,€n—,...)
(2.44) —fuo(ui, ..., ug—1,v,8n—p—1,...))]
X dG(ug)dG(uy)---dG(ue—1)dG(v)
and thus (2.12) becomes

Fuow(uy, ..., ue—1,€n—,...))

x[Y@uy,...,ue—1,80—¢,...) =YWy, ..., ug—1,0,8q¢—1,...)]ug
(2.45) Lo
+5 @O, w1, Engs )
_W(ula""u@—lvv’gn—e—la"')]zu%'

Using (2.44) and (2.45) instead of (2.11) and (2.12), the proof of Lemma 2.1 yields
(2.42) and (2.43) with obvious changes.
Similarly to (2.18), we have also

Bg’vylbg as { — o0

(the proof is the same) and Lemma 2.6 remains valid with o,, replaced by y,
and ¢, ¢ replaced by €,¢, ¢; the proof is again similar, with &,fe) replaced by
y,(f) =gy 6,@. The remaining changes in the argument leading to (1.26) are obvious
and we get (1.27). The implication (1.27) = (1.13) can be proved in the same way

as (1.26) = (1.12). U

Acknowledgment. The authors are indebted to the referee for his valuable
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