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We investigate random distances in a random binary search tree. Two
types of random distance are considered: the depth of a node randomly
selected from the tree, and distance between randomly selected pairs of
nodes. By a combination of classical methods and modern contraction
techniques we arrive at a Gaussian limit law for normed random distances
between pairs. The exact forms of the mean and variance of this latter distance
are first derived by classical methods to determine the scaling properties, then
used for norming, and the normed random variable is then shown by the
contraction method to have a normal limit arising as the fixed-point solution
of a distributional equation. We identify the rate of convergence in the limit
law to be of the order �(1/

√
lnn) in the Zolotarev metric ζ3. In the analysis

we need the rate of convergence in the central limit law for the depth of a
node, as well. This limit law was derived before by various techniques. We
establish the rate �(1/

√
lnn) in ζ3.

1. Introduction. Distances between nodes in random combinatorial objects is
an interesting topic in the study of random structures and algorithms, it is related to
the cost of finger searches [see Seidel and Aragon (1996)] and also has applications
in many other scientific fields. For example, the collective sum of all such distances
in the graph underlying a molecule is known in chemistry as the Wiener index [see
Gutman and Polansky (1986) and Trinajstić (1992)].

In this paper we look at the distances between distinct pairs of nodes in
random binary search trees. The investigation starts with the derivation of mean
and variance by classical methods and leads to a normal characterization via
the contraction method. The study illustrates in a vivid manner the strength and
shortcomings of this method. In the course of the study, one needs to use results
on the asymptotic behavior of the depth of a randomly selected node in the tree.
The depth coincides up to an additive constant with the number of comparisons
required for a random successful search in the tree. While asymptotic normality
for the depth has been shown by various different analytic and probabilistic
techniques, the contraction method faces some difficulty in characterizing the
normal limit distribution underlying this random variable. The difficulty arises in
the degenerate nature of the distributional limit equation. Asymptotic normality
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with an estimate for the rate of convergence could, however, be proven via a subtle
application of the contraction method in Cramer and Rüschendorf (1996) under
some (still unverified) assumption. We will close this gap and transfer the rate of
convergence for the depth into a central limit law for the distance of random pairs
including a rate of convergence.

One might be able to go forward with classical methods in the study of the dis-
tance between a randomly chosen pair of nodes in the tree. Indeed, one is able
to use such classical methods to find the mean and variance of distances, and in
principle higher moments, too, in both exact and asymptotic form. However, soon
enough one realizes that there is a combinatorial explosion, and each higher mo-
ment is much more difficult to obtain than the one before: classical methods may be
prohibitive in this context. The way to surmount such difficulty is to formulate the
limit distribution of the (normed) distance as a fixed-point solution of a distribu-
tional equation involving the limit law of the (normed) random depth of a randomly
selected node serving as a toll distribution. Now, in this limit equation we have an
extra leg to go on; the normality of the toll will lead us in a simple way to demon-
strate the normality of the normed distance. Moreover, the method will provide
a rate for this convergence by making estimates explicit. The entire exercise will
then serve as an illustration of how classical techniques can go hand-in-hand with
modern contraction methods to arrive at limit laws in combinatorial structures.

2. The framework. A binary tree is a random structure of nodes each having
no children, one left child, one right child or two children (one left and one right).
Many sorting and other combinatorial algorithms are modeled by labeled binary
trees endowed with a search property. According to the search property, the label
of any node is larger than the labels in its left subtree and no greater than any label
in its right subtree. For definitions and combinatorial properties see Mahmoud
(1992), and for applications in sorting see Knuth (1998) or Mahmoud (2000).

Several models of randomness are in common use on binary trees. The uniform
model in which all trees are equally likely is useful in formal language studies,
compilers, computer algebra, etc. Kemp (1984) is a good source for this subject.
The random permutation model conforms more closely to sorting applications
and several other uses of binary search trees as data structures. In the random
permutation probability model, we assume that the tree is built from permutations
of {1, . . . , n}, where a uniform probability model is imposed on the permutations
instead of the trees. When all n! permutations are equally likely or random,
binary search trees are not equally likely. Several permutations may give the same
tree, and generally the model is biased toward shorter and well-balanced trees
rather than scrawny and tall ones, which is a desirable property for fast search
applications [see Mahmoud (1992)].

We study distances in binary search trees grown from random permutations.
The term random tree will refer to a tree built from a random permutation. A tree
grows from a permutation (π1, . . . , πn) of {1, . . . , n} as follows. The first element
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π1 is inserted in an empty tree and thus goes into the root of a new nonempty
subtree. Each subsequent element πj is taken to the left or right subtree according
as whether it is smaller or larger than the root. In the subtree, the element is
inserted recursively. The search continues until an empty subtree is found where
the element is inserted into a new node, just like π1 was initially inserted in the
root.

The chief objective is to study the distribution of �n, the distance between two
distinct randomly selected nodes in a random tree of size n, where again the pair
choice is uniform in the sense that all

(n
2

)
pairs are equally likely. A recursive

formulation for �n goes via Dn, the depth of a randomly selected node in a random
tree of size n, with random meaning all nodes are equally likely choices.

We shall use standard notation. From algorithmics, we borrow the notation
H

(j)
n to denote the nth harmonic number of order j ; that is,

∑n
k=1 1/kj . As

customary, the superscript will be dropped when it is 1. We also use 〈x〉j to denote
the rising factorial x(x + 1) · · · (x + j − 1), and ∇ as the backward difference
operator, that is, for a sequence (hn), ∇hn = hn − hn−1. From probability theory

we need the symbols L= and
L−→ to denote exact equality and convergence in

distribution, respectively. The distribution or law of a random variable X will be

denoted by L(X). The notation
P−→ will mean convergence in probability, and

a.s.−→ will mean convergence almost surely. The Bernoulli random variable with
rate of success p per trial will be denoted by Ber(p), the normally distributed with
mean µ and variance σ 2 will be denoted by N (µ,σ 2) and the uniform on the
interval (a, b) will be denoted by unif(a, b). We will denote the Lp norm of X

by ‖X‖p . For measuring distances between probability distributions we use the
Zolotarev metric ζ3 given for distributions L(X),L(Y ) by

ζ3
(
L(X),L(Y )

) := sup
f ∈F3

|E[f (X)] − E[f (Y )]|,

where F3 := {f ∈ C2(R,R) : |f ′′(x) − f ′′(y)| ≤ |x − y|} is the space of all twice
differentiable functions with second derivative being Lipschitz continuous with
Lipschitz constant 1. We will use the brief notation ζ3(X,Y ) := ζ3(L(X),L(Y )).
Finally, C denotes a universal constant, which might be different from place to
place.

It is well known that convergence in ζ3 implies weak convergence. We recall that
ζ3(X,Y ) < ∞ if E[X] = E[Y ], E[X2] = E[Y 2] and E[|X|3],E[|Y |3] < ∞, and
we may assume that X,Y satisfy these conditions subsequently. The key property
being used is that ζ3 is a (3,+)-ideal metric; that is, for Z independent of (X,Y )

with E[|Z|3] < ∞, and c �= 0 we have

ζ3(X + Z,Y + Z) ≤ ζ3(X,Y ), ζ3(cX, cY ) = |c|3ζ3(X,Y ).

We will use the following bounds for ζ3:
1
6 |E[X3] − E[Y 3]| ≤ ζ3(X,Y ) ≤ 1

2 (‖X‖2
3 + ‖X‖3 ‖Y‖3 + ‖Y‖2

3)‖X − Y‖3,(1)
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where the right inequality holds for any choice of X,Y on a joint probability space.
For properties of this metric we refer the reader to Zolotarev (1976) and Rachev
(1991).

To develop results for �n, one has to go through the necessary catalyst Dn, and
therefore we shall take this up first. For the number Sn of comparisons exercised by

a successful search in the tree we have Dn
L= Sn − 1. We restate the results known

about Sn in terms of Dn and endow the limit law with the correct order of the rate
of convergence in ζ3, which will later be transferred into a rate of convergence
for �n. The moments and limit law for Dn were obtained by classic recurrence
and generating function techniques [see Mahmoud (1992), Section 2.5], as well as
various probabilistic techniques [see Devroye (1988, 1999)]. These results include

E[Dn] = 2(n + 1)

n
Hn − 4 = 2 lnn + O(1),(2)

Var[Dn] =
(

2 + 10

n

)
Hn − 4

(
1 + 1

n

)(
H 2

n

n
+ H(2)

n

)
+ 4 ∼ 2 lnn,

E[zDn] = 1

n(2z − 1)

[ 〈2z〉n
n! − 1

]
,(3)

D∗
n := Dn − 2 lnn√

2 lnn

L−→ N (0,1).

An estimate of the rate of convergence in ζ3 for this limit law was previously
discussed in Cramer and Rüschendorf (1996). For later use we extend their results
to the following.

THEOREM 1. The depth Dn of a randomly selected node in a random binary
search tree of size n satisfies

ζ3

(
Dn − E[Dn]√

Var[Dn] ,N (0,1)

)
= �

(
1√
ln n

)
.

A direct onslaught on Dn by the contraction method gives us a tantalizing result.
If the limit of D∗

n is Y , say, the contraction method yields the distribution of Y as
a fixed-point solution of the equation

Y
L= IY + (1 − I )Ỹ ,

where Ỹ
L= Y , I is a Ber(1

2 ) random variable and Y , Ỹ and I are independent. It
can be easily argued that any distribution satisfies this equation. Such degeneracy
of the fixed-point equation typically necessitates a refined use of the contraction
method [see Cramer and Rüschendorf (1996)].

Classical methods can aid us to obtain moments of �n in exact and asymptotic
form. By contrast, these same classical methods become much too complicated
to obtain the limit distribution of (normed) �n. So, the classic methods will
take us halfway to determining the scaling properties for appropriate norming
of �n. From there, the contraction method will provide a shortcut to the
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limit distribution. The method was introduced in the context of Quicksort by
Rösler (1991). Several extensions, using various probability metrics, were added
by Rachev and Rüschendorf (1995), and recently more universal contraction
theorems and multivariate extensions were added by Rösler (2001), Neininger
(2001) and Neininger and Rüschendorf (2002b); for a useful survey see Rösler
and Rüschendorf (2001). Contexts similar to our current setup where bivariate
contraction was used appear in the study of the Wiener index [Neininger (2002)].
The contraction method will give us the distribution of the (normed) distance
between random pairs as the fixed-point solution to the equation

X
L= IX + J X̃ + K

1√
2
(Y + Ỹ ),

with (X,Y ), (X̃, Ỹ ) and (I, J,K) being independent, where (X,Y )
L= (X̃, Ỹ ),

and (I, J,K) are mutually exclusive indicators, with marginal distributions like
that of a Ber(1

3 ) random variable, and Y , Ỹ are standard normal variates arising
as the limits of D∗

n , with convergence rate as in Theorem 1. Although we have
several dependencies here, as for example among the indicators, and that between
X and Y , the normality of Y , Ỹ and the interplay of these variables through
mutually exclusive indicators simplifies the outcome. One is able to get a limiting
Gaussian law. Our main result states the following.

THEOREM 2. The distance �n between two randomly selected nodes in a
random binary search tree of size n has mean value

E[�n] = 4(n + 1)

n(n − 1)
[(n + 3)Hn+1 − 3n − 3] = 4 lnn + O(1),

and variance

Var[�n] = 2

n2(n − 1)2

[
(2n4 + 194n3 + 534n2 + 294n)Hn

− (44n3 + 184n2 + 212n + 72)H 2
n

− (8n4 + 20n3 − 8n2 − 20n)H(2)
n

+ 15n4 − 190n3 − 337n2]
∼ 4 lnn.

Furthermore, the normalized random variable is asymptotically Gaussian:

ζ3

(
�n − E[�n]√

Var[�n] ,N (0,1)

)
= �

(
1√
ln n

)
,

in particular,

�n − 4 lnn√
4 ln n

L−→ N (0,1).
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The expression for E[�n] has already been given in terms of E[Wn], the mean of
the Wiener index of a random binary search tree, in Hwang and Neininger (2002).
We have E[Wn] = (n

2

)
E[�n].

Several consequences of bounds on the ζ3 convergence as in our Theorems 1
and 2 regarding other distance measures were discussed in Neininger and
Rüschendorf [(2002a), Section 3]. We could also give a convergence proof in the
Wasserstein metrics, which are more common in the context of the contraction
method. The reason we make use of ζ3 is to demonstrate how the rate of
convergence of Theorem 1 can be transferred into the rate of Theorem 2.

Toward our goals, the paper is organized as follows. Theorem 1 on Dn is proved
in Section 3 and used later in the analysis of �n. We return to �n in Section 4,
where the mean and variance are handled by classical recurrence methods, but
the distribution is obtained as a fixed-point solution of a limiting distributional
equation; convergence to that limit is shown via convergence in the ζ3 metric. The
core of the proof of convergence in the ζ3 metric is relegated to Section 5. Section 6
provides some discussion of the merits of the contraction method.

3. The depth of a random node. In a binary search tree generated from a
random permutation of {1, . . . , n}, select a node uniformly at random. Let the depth
of the random node be Dn. Condition on the label of the root, R. The outcome of
the random selection may fall in the left subtree, may be the root or may fall in
the right subtree. The left subtree has a recursive structure like a binary search tree
built from a permutation of {1, . . . ,R − 1}, and symmetrically the right subtree
has a recursive structure like that of a tree built from a random permutation of
{1, . . . , n − R}, but with labels upgraded by adding R to each. Thus,

Dn =



DR−1, with probability (R − 1)/n,

0, with probability 1/n,

D̃n−R, with probability (n − R)/n,

where (D1, . . . ,Dn) and (D̃1, . . . , D̃n) are independent and identically distributed.
This formulation will help us put the limit of the normed variable D∗

n in the form
of a fixed-point solution of a limiting distributional equation. The lack of a toll
term in that equation will put the contraction method in perspective.

To prove Theorem 1, we need an estimate of the third moment of Dn.
Differentiating the probability generating function three times [cf. (3)], and
evaluating at z = 1, gives us the third factorial moment E[Dn(Dn − 1)(Dn − 2)].
However, we also have the first and second moments and can therefore extract the
exact third moment. After a lengthy mechanical calculation, one finds

E[D3
n] = 2(n + 1)

n

[
4H 3

n+1 − 18H 2
n+1 + (49 − 12H

(2)
n+1)Hn+1

+ 8H
(3)
n+1 + 18H

(2)
n+1 − 62n + 49

n + 1

]
.

The following result ensues.
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PROPOSITION 1.

E
[(

Dn − E[Dn]√
2 lnn

)3]
= 1√

2 lnn
+ o(ln−1/2 n).

PROOF OF THEOREM 1. Lower bound. Using the left inequality in (1) and
that N (0,1) is a symmetric distribution we have

1

6

∣∣∣∣E
[(

Dn − E[Dn]√
Var[Dn]

)3]∣∣∣∣ ≤ ζ3

(
Dn − E[Dn]√

Var[Dn] ,N (0,1)

)
.

From the asymptotic relation of Proposition 1 we obtain ζ3((Dn − E[Dn])/√
Var[Dn],N (0,1)) = �(1/

√
ln n).

Upper bound. While Dn is the depth of a node chosen uniformly at random
we will also consider dn, the depth of the nth inserted node in the tree. Note that

with In being uniformly distributed on {1, . . . , n} we have Dn
L= dIn , where In

is independent of d1, . . . , dn. The upper bound for the rate of convergence of the
scaled dn is known: Cramer and Rüschendorf [(1996), Theorem 4.2] show

ζ3

(
dn − E[dn]√

Var[dn] ,N (0,1)

)
≤ C√

ln n
, n ≥ 3,(4)

with a constant C > 0. This rate of convergence can be transposed to the depth Dn

of a random node: We define, for k = 1, . . . , n,

mk := E
[
dk − E[Dn]√

Var[Dn]
]
, sk :=

(
Var

[
dk − E[Dn]√

Var[Dn]
])1/2

=
√

Var[dk]
Var[Dn] .

Let N be a standard normal variate independent of the tree. Note that sInN +
mIn has zero mean, variance 1 and a finite absolute third moment. Here,

Var[sInN + mIn] = 1 follows from the fact that (Dn − E[Dn])/√Var[Dn] L=
(dIn − E[Dn])/√Var[Dn] and sInN + mIn conditioned on In = k both have mean
mk and variance s2

k for k = 1, . . . , n. Thus also unconditioned they have equal
variances being 1. Therefore, using the triangle inequality we have the estimate

ζ3

(
Dn − E[Dn]√

Var[Dn] ,N (0,1)

)

≤ ζ3

(
dIn − E[Dn]√

Var[Dn] , sInN + mIn

)
+ ζ3

(
sInN + mIn,N (0,1)

)
,

(5)

where the right-hand side is finite. We show that both summands in (5) are of the
order O(1/

√
ln n) to finish the proof of Theorem 1.



260 H. M. MAHMOUD AND R. NEININGER

First summand in (5). Conditioning on In, using (4), that s1 = s2 = 0, and that
ζ3 is (3,+) ideal we obtain

ζ3

(
dIn − E[Dn]√

Var[Dn] , sInN + mIn

)

= sup
f ∈F3

∣∣∣∣∣1

n

n∑
k=1

E
[
f

(
dk − E[Dn]√

Var[Dn]
)

− f (skN + mk)

]∣∣∣∣∣
≤ 1

n

n∑
k=1

ζ3

(
dk − E[Dn]√

Var[Dn] , skN + mk

)

= 1

n

n∑
k=3

ζ3

(
sk

dk − E[dk]√
Var[dk] + mk, skN + mk

)

≤ 1

n

n∑
k=3

s3
k

C√
ln k

= O

(
1√
ln n

)
,

(6)

since
√

ln n is slowly varying at infinity and the sk are uniformly bounded.
Second summand in (5). We will show below that ‖sInN + mIn‖3 is uniformly

bounded in n ≥ 1. Hence, by the right inequality in (1) we have

ζ3
(
sInN + mIn,N (0,1)

) ≤ C′‖sInN + mIn − N‖3

≤ C′(‖sIn − 1‖3 ‖N‖3 + ‖mIn‖3),

with a constant C′ > 0. We show ‖sIn − 1‖3 = O(1/
√

lnn) and ‖mIn‖3 =
O(1/

√
ln n). Note that this as well implies that ‖sInN + mIn‖3 is uniformly

bounded. We will use the well-known expansions E[dn] = 2 lnn+O(1), Var[dn] =
2 lnn + O(1) together with E[Dn] = 2 lnn + O(1) and Var[Dn] = 2 lnn + O(1).
We have

‖mIn‖3 = 1√
Var[Dn]

(
1

n

n∑
k=1

|E[dk] − E[Dn]|3
)1/3

∼ 1√
2 lnn

∥∥∥∥2 ln
(

In

n

)
+ O(1)

∥∥∥∥
3

= O

(
1√
ln n

)
,

since ‖ ln(In/n)‖3 → ‖ ln U‖3 < ∞ for a unif[0,1] distributed random variable U .
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Similarly we obtain

‖sIn − 1‖3 =
∥∥∥∥∥1

n

n∑
k=1

√
Var[dk] − √

Var[Dn]√
Var[Dn]

∥∥∥∥∥
3

= 1√
Var[Dn]

∥∥∥∥∥1

n

n∑
k=1

(√
2 lnk − √

2 ln n + O(1)
)∥∥∥∥∥

3

∼ 1√
2 ln n

∥∥∥∥∥1

n

n∑
k=1

(
2 ln(k/n)√

2 lnk + √
2 lnn

+ O(1)

)∥∥∥∥∥
3

≤ 1√
2 ln n

∥∥∥∥2 ln
(

In

n

)
+ O(1)

∥∥∥∥
3

= O

(
1√
lnn

)
.

This completes the proof of Theorem 1. �

4. Distribution of distances. In a random binary search tree generated from
a random permutation of {1, . . . , n}, select two nodes uniformly at random, all

(n
2

)
choices being equally likely. Let the distance between the two nodes be �n. This
distance has a recursive structure that relates to Dn. The two nodes may come
from the left subtree, from the right subtree, may involve the root and one node
from the left subtree, may involve the root and one node from the right subtree or
may be in different subtrees with a path connecting them passing through the root.
Conditioned on R being the root label, we have a recurrence:

�n =




�R−1, with probability

(R−1
2

)
(n
2

) ,

�̃n−R, with probability

(n−R
2

)
(n

2

) ,

(DR−1 + 1) + (D̃n−R + 1), with probability
(R − 1)(n − R)(n

2

) ,

DR−1 + 1, with probability
(R − 1)(n

2

) ,

D̃n−R + 1, with probability
(n − R)(n

2

) .

(7)

Here, (D1, . . . ,Dn) and (D̃1, . . . , D̃n) denote independent copies of random
depths; likewise (�1, . . . ,�n) and (�̃1, . . . , �̃n) are independent. It should be
noted, however, that (D1, . . . ,Dn) and (�1, . . . ,�n) are dependent.
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By right and left symmetries, we have the recurrence

E[�n] = 2(n
2

)E

[
�R−1

(
R − 1

2

)]
+ 2(n

2

)E
[
(DR−1 + 1)(R − 1)(n − R)

]

+ 2(n
2

)E[(DR−1 + 1)(R − 1)].

Define xn = (n
2

)
E[�n] to obtain the recurrence

xn = 2

n

n∑
r=1

xr−1 + 2

n

n∑
r=1

(E[Dr−1] + 1)(r − 1)(n − r + 1).

Plug in the exact expression for E[Dn] from (2). Difference nxn and (n − 1)xn−1

and rearrange in the form

nxn = (n + 1)xn−1 + 2
n∑

r=2

(2rHr−1 − 3r + 3).

The transformation yn = xn−1/(n + 1) linearizes the recurrence:

yn = yn−1 + q(n)

n(n + 1)
,

where q(n) = ∑n
r=2(2rHr−1 − 3r + 3). We unwind the recurrence under the

boundary condition y1 = 0, get the answer and clean up the sums in it and finally
obtain E[�n] as in Theorem 2.

Going further with second moment recurrence, use the conditional representa-
tion (7) to write(

n

2

)
E[�2

n] = 2

n

n∑
r=1

E[�2
r−1]

(
r − 1

2

)
+ 2

n

n∑
r=1

E
[
(Dr−1 + 1)2]

(n − r + 1)

+ 2

n

n∑
r=1

E[Dr−1]E[Dn−r ](r − 1)(n − r)

+ 4

n

n∑
r=1

E[Dr−1](r − 1)(n − r) + 2

n

n∑
r=1

(r − 1)(n − r).

Apart from the full-history summation, all the others involve only the first two
moments of Dn. These sums vary in complexity. Some of these sums are trivial,
like the last one. Other sums involve only E[Dn] or E[D2

n], so they can be
obtained in closed form from combinatorial identities for harmonic numbers. The
sum involving the cross product E[Dr−1]E[Dn−r ] needs special treatment. Upon
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plugging in E[Dn], we want to reduce
n∑

r=1

[2rHr−1 − 4(r − 1)][2(n − r + 1)Hn−r − 4(n − r)]

= 4
n∑

r=1

r(n − r + 1)Hr−1Hn−r − 8
n∑

r=1

r(n − r)Hr−1

− 8
n∑

r=1

(r − 1)(n − r + 1)Hn−r + 16
n∑

r=1

(r − 1)(n − r).

The last of these sums is trivial; the middle two are identical and are both obtained
from standard identities for harmonic numbers. The first sum suggests a squared
generating function. Let

an =
n−1∑
j=0

(j − 1)(n − j)HjHn−j−1,

and let A(z) = ∑∞
n=0 anz

n be its generating function. Then

A(z) = z

( ∞∑
r=0

(r + 1)Hrz
r

)2

.

Hence

A(z) = z

(1 − z)4 [z − ln(1 − z)]2.

The required sum an can be found by extraction of coefficients. [A similar sum
appears in Mahmoud and Smythe (1998).] One finds

an = 1

6
n(n + 1)(n + 2)(H 2

n−1 − H
(2)
n−1) + n − 1

108
(37n2 + 112n + 60)

− n − 1

18
(5n2 + 20n + 12)Hn−1.

So, the recurrence for the second moment of �n takes the telescopic form

n

(
n

2

)
E[�2

n] = 2
n∑

r=1

(
r − 1

2

)
E[�2

r−1] + νn,

where

νn = 8
3 (n2 + 3n + 2)H 2

n − 2
9(53n2 + 93n + 16)Hn + 1

27(475n2 + 492n + 5).

Following our previous steps in solving such a recurrence, let wn = (n
2

)
E[�2

n], and
difference nwn and (n − 1)wn−1. One obtains the iteratable recurrence

wn

n + 1
= wn−1

n
+ ∇(nνn)

n(n + 1)
,
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yielding the solution

E[�2
n] = n + 1(n

2

) n∑
j=2

∇(jνj )

j (j + 1)
.

Upon going through a lengthy process of combinatorial reduction, all via
elementary combinatorics, one gets

E[�2
n]=

2

n(n − 1)

[
(8n2+28n+20)H 2

n −(46n2+124n−54)Hn+(87n2+137n)
]
.

Finally the variance in Theorem 2 follows from E[�2
n]−

(
E[�n])2

.
Having determined the mean and variance of �n, we are in possession of

appropriate norming factors for centering and scaling. We try to go forward with
the contraction method. Let ILL, IRR, ILR , IL,ROOT , IR,ROOT be respectively
indicators of the following events; that the two nodes involved in �n are both
from the left subtree; both nodes are from the right subtree; the nodes come from
different subtrees; one is from the left, the other is the root; and one is from the
right, the other is the root. From the basic recurrence (7) we have a distributional
equation:

�n
L= �R−1ILL + �̃n−RIRR + (DR−1 + D̃n−R + 2)ILR

+ (DR−1 + 1)IL,ROOT + (D̃n−R + 1)IR,ROOT ,
(8)

where, for each n, (�̃n, D̃n)
L= (�n,Dn), and (ILL, IRR, ILR, IL,ROOT ,

IR,ROOT ,R) and the sequences ((�n,Dn)), ((�̃n, D̃n)) are independent. Note
that (�n, �̃n) and (Dn, D̃n) are dependent, because the vector (�n,Dn) [as well
as (�̃n, D̃n)] has dependent components being the random distance and the ran-
dom depth in the same random binary search tree of size n. Define the normed
random variables �∗

0 := �∗
1 := �∗

2 := 0 and, for n ≥ 3,

�∗
n := �n − 4 lnn

2
√

ln n
,

and analogously define �̃∗
n. So, the recurrence can be normed, for n ≥ 3, in the

form

�∗
n

L= ILL

√
ln(R − 1)

lnn
�∗

R−1 + IRR

√
ln(n − R)

ln n
�̃∗

n−R

+ (ILR + IL,ROOT )
1√
2

√
ln(R − 1)

lnn
D∗

R−1

+ (ILR + IR,ROOT )
1√
2

√
ln(n − R)

ln n
D̃∗

n−R

+ Tn,

(9)
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where the independence and dependence relations are handed down from (8).
Again (�∗

n, �̃
∗
n) and (D∗

n, D̃∗
n) are dependent; in the latter equation Tn is the

expression

Tn = 1

2
√

ln n

[
4ILL ln

(
R − 1

n

)
+ 4IRR ln

(
n − R

n

)

+ (ILR + IL,ROOT )

(
1 + 2 ln

(
R − 1

n

))

+ (ILR + IR,ROOT )

(
1 + 2 ln

(
n − R

n

))

− 2(IL,ROOT + IR,ROOT ) lnn

]
.

Again we will use the convention ln k = 0, for k = 0.
Before proving asymptotic normality for �∗

n via the contraction method we
will first have a heuristic look at recurrence (9). Several convergence relations
suggest that the limit X of �∗

n (if it exists) will satisfy a distributional equation.
The indicators converge as follows:

IL,ROOT
P−→ 0; IR,ROOT

P−→ 0;

ILL
L−→ I

L= Ber
(

1

3

)
; IRR

L−→ J
L= Ber

(
1

3

)
; ILR

L−→ K
L= Ber

(
1

3

)
,

with I, J,K being dependent, but mutually exclusive, with I + J + K ≡ 1. The

asymptotic behavior of R/n is like that of U
L= unif(0,1). Also ln((R−1)/ ln n) =

[ln((R−1)/n)+ ln n]/ lnn, which is asymptotically lnU/ ln n+1
P−→ 1. Similarly

ln(n − R)/ ln n
P−→ 1. Therefore the expression Tn converges in probability to 0.

By Theorem 1, Dn and D∗
n have a Gaussian tendency.

Thus, if the limit X exists, it is plausible that (9) will approach the limit equation

X
L= IX + J X̃ + K

1√
2
(Y + Ỹ ),(10)

where (X̃, Ỹ ) is an independent probabilistic copy of (X,Y ), the variates Y, Ỹ

are standard normal variates and the row vector (X, X̃, Y, Ỹ ) is independent of
(I, J,K).

We argue next that N (0,1) is the unique solution of (10) among all univariate
probability measures. Let θ(t) be the characteristic function of X. Since W :=
(Y + Ỹ )/

√
2 has a standard normal distribution, and (X, X̃,W) is independent
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of (I, J,K), we obtain

θ(t)=E
[
exp

(
it (IX + J X̃ + KW)

)]
= E

[
exp

(
it (IX +J X̃ +KW)

) | (I, J,K) = (1,0,0)
]
P

{
(I, J,K) = (1,0,0)

}
+ E

[
exp

(
it (IX + J X̃ + KW)

) | (I, J,K) = (0,1,0)
]

× P
{
(I, J,K) = (0,1,0)

}
+ E

[
exp

(
it (IX+, J X̃ + KW)

) | (I, J,K) = (0,0,1)
]

× P
{
(I, J,K) = (0,0,1)

}
= 1

3θ(t) + 1
3θ(t) + 1

3 E[exp(itW)].

Thus θ(t) = E[exp(itW)] and X
L= W

L= N (0,1). Note that the joint distributions
of (X,Y ), (X̃, Ỹ ) do not matter since I, J,K are mutually exclusive.

In the next section we will establish the asymptotic normality of �∗
n based on

these heuristic considerations by an application of the contraction method.

5. Asymptotic normality. In this section we prove �∗
n

L−→ N (0,1) with the
rate ζ3((�n − E[�n])/√Var[�n],N (0,1)) = �(1/

√
ln n).

We will use the notation σn := √
Var[�∗

n], σ̄n := √
Var[D∗

n], for n ≥ 0. Then
the expansions of the variances of �n and Dn imply σ 2

n = 1 + O(1/ lnn), and
σ̄ 2

n = 1 + O(1/ ln n).
Since the finiteness of ζ3 requires that the second moments of the quantities

compared coincide, we show

ζ3
(
�∗

n, σnN (0,1)
) = �

(
1√
ln n

)
.(11)

With σn → 1 and ζ3((�n −E[�n])/√Var[�n],N (0,1)) = σ−3
n ζ3(�

∗
n, σnN ) this

implies the remaining assertion in Theorem 2.

Upper bound in (11). To use the right inequality in (1) involving the L3 norm
of appropriate representation of the random variables we will model all quantities
on a joint probability space. We assume that for a unif[0,1] variable U we have
R = Rn = �nU� and that (I, J,K) is a vector such that a version of its conditional
distribution given U is given by

U2δ(1,0,0) + (1 − U)2δ(0,1,0) + 2U(1 − U)δ(0,0,1),(12)

where δp denotes the Dirac measure at point p. In particular this implies
L(I, J,K) = 1

3δ(1,0,0) + 1
3δ(0,1,0) + 1

3δ(0,0,1). We denote by N, Ñ,N ′, Ñ ′ standard
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normal random variables such that N , Ñ , N ′, Ñ ′, (ILL, IRR, ILR, IL,ROOT ,

IR,ROOT , I, J,K,U) are independent. We abbreviate IL,R∨ROOT := ILR +
IL,ROOT and IR,L∨ROOT := ILR + IR,ROOT and define the scaled quantities
Nn := σnN , Ñn := σnÑ , N ′

n := σ̄nN
′, Ñ ′

n := σ̄nÑ
′, which have finite ζ3 distances

to �∗
n and D∗

n , respectively. Moreover, we define Q2 := Q′
2 := 0 and (still using

the convention ln k = 0 for k = 0), for n ≥ 3,

Qn := ILL

√
ln(R − 1)

ln(n)
NR−1 + IRR

√
ln(n − R)

lnn
Ñn−R

+ IL,R∨ROOT
1√
2

√
ln(R − 1)

ln n
D∗

R−1

+ IR,L∨ROOT
1√
2

√
ln(n − R)

ln n
D̃∗

n−R + Tn,

Q′
n := ILL

√
ln(R − 1)

lnn
NR−1 + IRR

√
ln(n − R)

lnn
Ñn−R

+ IL,R∨ROOT
1√
2

√
ln(R − 1)

ln n
N ′

R−1

+ IR,L∨ROOT
1√
2

√
ln(n − R)

ln n
Ñ ′

n−R + Tn.

Comparing these expressions with the representation of �∗
n in (9) and noting

that the dependence between �∗
n and D∗

n (and �̃∗
n and D̃∗

n) has no influence on
the distribution of the right-hand side in (9), we obtain E[Qn] = E[Q′

n] = 0 and
Var[Qn] = Var[Q′

n] = σ 2
n . Therefore, ζ3 distances between �∗

n, Qn, Q′
n and Nn

are finite.
By the triangle inequality we have

ζ3
(
�∗

n, σnN (0,1)
) ≤ ζ3(�

∗
n,Qn) + ζ3(Qn,Q

′
n) + ζ3

(
Q′

n, σnN (0,1)
)
.

We postpone the estimates of ζ3(Qn,Q
′
n) and ζ3(Q

′
n, σnN (0,1)) to later, where

we show

ζ3(Qn,Q
′
n) + ζ3

(
Q′

n, σnN (0,1)
) = O

(
1√
lnn

)
.(13)

Recall that we have

P(LL | R = k) = (k − 1)(k − 2)

n(n − 1)
,
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which, by conditioning on R and using that ζ3 is (3,+) ideal, implies

ζ3(�
∗
n,Qn) ≤ 2ζ3

(
ILL

√
ln(R − 1)

lnn
�∗

R−1, ILL

√
ln(R − 1)

ln n
NR−1

)

≤ 2

n

n∑
k=2

(k − 1)(k − 2)

n(n − 1)

(
ln(k − 1)

ln n

)3/2

ζ3(�
∗
k−1,Nk−1).

By (13) there exists a constant C > 0 such that ζ3(Qn,Q
′
n)+ζ3(Q

′
n, σnN (0,1)) ≤

C/
√

lnn for all n ≥ 2. Then we obtain by induction that ζ3(�
∗
n, σnN (0,1)) =

ζ3(�
∗
n,Nn) ≤ 3C/

√
lnn: The assertion is true for n = 2 since �∗

2 = 0 and σ2 = 0
and, for n ≥ 3, assuming the induction hypothesis, we have

ζ3
(
�∗

n, σnN (0,1)
)

≤ 2

n2(n − 1)
√

lnn

n−1∑
k=2

k(k − 1)
ln3/2 k

ln n

3C√
ln k

+ C√
lnn

≤ 1√
ln n

(
2

n2(n − 1)
3C

1

3
n(n − 1)(n − 2) + C

)

≤ 3C√
ln n

,

which gives the lower bound ζ3(�
∗
n, σnN (0,1)) = O(1/

√
ln n).

We still have to prove the asymptotic relation (13).

First summand in (13). The first summand ζ3(Qn,Q
′
n) is estimated using

Theorem 1. Since (σ̄n) is bounded we obtain from Theorem 1 the existence
of a constant C > 0 with ζ3(Dn,N

′
n) ≤ C/

√
ln n for all n ≥ 2. This implies,

conditioning on R and using that ζ3 is (3,+) ideal,

ζ3(Qn,Q
′
n) ≤ 2ζ3

(
IL,R∨ROOT

1√
2

√
ln(R − 1)

ln n
D∗

R−1,

IL,R∨ROOT
1√
2

√
ln(R − 1)

lnn
N ′

R−1

)

≤ 2

n

n∑
k=2

P(L,R ∨ ROOT )
1

23/2

(
ln(k − 1)

lnn

)3/2

ζ3(Dk−1,N
′
k−1)

≤ 1

n

n−1∑
k=2

ζ3(Dk,N
′
k) ≤ 1

n

n−1∑
k=2

C√
ln k

∼ C√
ln n

= O

(
1√
ln n

)
.
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Second summand in (13). Here we use the distributional identity

σnN (0,1)
L= σn

(
IN + J Ñ + K(N ′ + Ñ ′)/

√
2
)
.

The third absolute moments of Q′
n and Nn are uniformly bounded. By the right

inequality in (1) this implies that their ζ3 distance can be estimated up to a constant
factor by their L3 distance. Hence, for some C > 0,

ζ3
(
Q′

n, σnN (0,1)
) ≤ C

∥∥Q′
n − σn

(
IN + J Ñ + K(N ′ + Ñ ′)/

√
2
)∥∥

3

≤ C
∥∥Q′

n − (
IN + J Ñ + K(N ′ + Ñ ′)/

√
2
)∥∥

3

+ C‖N‖3|1 − σn|.
The expansion σn = 1 + O(1/ ln n) gives C‖N‖3 |1 − σn| = O(1/ lnn). For the
first summand in the latter expression we have∥∥Q′

n − (
IN + J Ñ + K(N ′ + Ñ ′)/

√
2
)∥∥

3

≤
∥∥∥∥∥ILL

√
ln(R − 1)

ln n
σR−1N − IN

∥∥∥∥∥
3

+
∥∥∥∥∥IRR

√
ln(n − R)

ln n
σn−RÑ − I Ñ

∥∥∥∥∥
3

+
∥∥∥∥∥IL,R∨ROOT

1√
2

√
ln(R − 1)

ln n
σ̄R−1N

′ − K√
2
N ′

∥∥∥∥∥
3

+
∥∥∥∥∥IR,L∨ROOT

1√
2

√
ln(n − R)

ln n
σ̄n−RÑ ′ − K√

2
Ñ ′

∥∥∥∥∥
3

+ ‖Tn‖3

=: s1 + s2 + s3 + s4 + s5.

We have to show sr = O(1/
√

ln n), for r = 1, . . . ,5. Clearly, s1 = s2 and s3 = s4.
Since for all terms arising subsequently we only have to reach the order of the
worst term, we will occasionally take the liberty to use some simple estimates not
being tight.

Estimate of s1, s2. We have

s1 = ‖N‖3

∥∥∥∥∥ILL

√
ln(R − 1)

ln n
σR−1 − I

∥∥∥∥∥
3

≤ ‖N‖3

(∥∥∥∥∥
√

ln(R − 1)

lnn
(ILLσR−1 − I )

∥∥∥∥∥
3

+
∥∥∥∥∥I

√
ln(R − 1)

ln n
− I

∥∥∥∥∥
3

)

≤ ‖N‖3

(
‖σR−1 − 1‖3 + ‖ILL − I‖3 +

∥∥∥∥∥
√

ln(R − 1)

ln n
− 1

∥∥∥∥∥
3

)
.
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From σn = 1 + O(1/ ln n) we obtain

‖σR−1 − 1‖3 ≤
(

1

n

n−1∑
k=0

(
C

1 ∨ lnk

)3)1/3

= O

(
1

ln n

)
.

For the estimate of ‖ILL − I‖3 = ‖ILL − I‖1/3
1 we recall that for the conditional

expectations we have almost surely

E[ILL | U ] = (�nU� − 1)(�nU� − 2)

n(n − 1)
, E[I | U ] = U2,

where (12) is used. This implies

‖ILL − I‖1/3
1 =

(
E

∣∣∣∣ (�nU� − 1)(�nU� − 2)

n(n − 1)
− U2

∣∣∣∣
)1/3

= O

(
1

n1/3

)
.

The expansion
∑n−1

k=1

√
ln k = n

√
ln n + O(n/ ln n) implies

∥∥∥∥
√

ln(R − 1)

ln n
− 1

∥∥∥∥
3
=

(
1

n

n∑
k=1

(
1 −

√
ln(k − 1)

ln n

)3)1/3

=
(

1

n

n∑
k=1

(
1 −

√
ln(k − 1)

ln n

))1/3

= O

(
1

ln3/2 n

)1/3

= O

(
1√
ln n

)
.

Together we obtain s1 = s2 = O(1/
√

lnn).

Estimate of s3, s4. Adding and subtracting appropriate terms, estimating as for
the case of s1, s2 and noting 1/

√
2 ≤ 1 we find

s3 =
∥∥∥∥∥IL,R∨ROOT

1√
2

√
ln(R − 1)

ln n
σ̄R−1N

′ − K√
2
N ′

∥∥∥∥∥
3

≤ ‖N ′‖3

(
‖σ̄R−1 − 1‖3 +

∥∥∥∥IL,R∨ROOT − K

∥∥∥∥
3
+

∥∥∥∥∥
√

ln(R − 1)

ln n
− 1

∥∥∥∥∥
3

)
.

All three summands can be estimated as in the case of s1, s2, since we have
the analogous expansion σ̄n = 1 + O(1/ ln n). Hence, we obtain s3 = s4 =
O(1/

√
ln n).
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Estimate of s5 = ‖Tn‖3. A direct calculation yields

∥∥∥∥ ln
(

R − 1

n

)∥∥∥∥
3

3
≤ 1

n

n∑
k=1

(
ln

(
k − 1

n

))3

= 1

n

(
6n + O(1)

) = O(1),

and in particular ‖1 + ln((R − 1)/n)‖3 = O(1). Furthermore we have
P(L,ROOT ) = (n − 1)/(2n2) = O(1/n). Altogether this implies

‖Tn‖3 ≤ 1

2
√

ln n

[
4
∥∥∥∥ ln

(
R − 1

n

)∥∥∥∥
3
+ 4

∥∥∥∥ ln
(

R − 1

n

)∥∥∥∥
3
+

∥∥∥∥1 + ln
(

R − 1

n

)∥∥∥∥
3

+
∥∥∥∥1 + ln

(
n − R

n

)∥∥∥∥
3
+ (

P(L,ROOT )
)1/34 lnn

]

= O

(
1√
ln n

)
.

Putting together the estimates for s1, . . . , s5 we obtain ζ3(Q
′
n, σnN (0,1)) =

O(1/
√

lnn), which finishes the proof of expansion (13) and thus yields the upper
bound ζ3(�

∗
n, σnN (0,1)) = O(1/

√
ln n) in (11).

Lower bound in (11). Using the left inequality in (1) and that σnN (0,1) is a
symmetric distribution we obtain

1
6 |E[(�∗

n)
3]| ≤ ζ3

(
�∗

n, σnN (0,1)
)
.

To determine the rate of convergence of �∗
n, we need its third moment. Here we

shall abandon the general strategy of finding asymptotics via exact solutions, as
an exact estimate here is exceptionally demanding. We shall set up a recurrence
for this third moment, and it will be sufficient for our purpose to solve it
asymptotically.

From the recurrence (7), and various independencies, one finds(
n

2

)
E[�3

n] = 2

n

n∑
r=1

(
r − 1

2

)
E[�3

r−1]

+ 1

n

n∑
r=1

(
E

[
(Dr−1 + 1)3] + 3E

[
(Dr−1 + 1)2]E[Dn−r + 1]

+ 3E[Dr−1 + 1]E[
(Dn−r + 1)2] + E

[
(Dn−r + 1)3])

× (r − 1)(n − r)

+ 2

n

n∑
r=1

(
E[D3

r−1] + 3E[D2
r−1] + 3E[Dr−1] + 1

)
(r − 1).



272 H. M. MAHMOUD AND R. NEININGER

To prepare for telescoping, set zn = (n
2

)
E[�3

n], and difference nzn and (n−1)zn−1,
to obtain the iteratable recurrence

zn

n + 1
= zn−1

n
+ Pn

n(n + 1)
,(14)

with

Pn = 2
n∑

r=1

E
[
(Dr−1 + 1)3](r − 1) + 6

n∑
r=1

E[Dr−1 + 1]E[
(Dn−r + 1)2]

(r − 1).

With some effort the first sum can be computed exactly, yielding the asymptotic
equivalent:

8n2 ln3 n + (24γ − 36)n2 ln2 n + o(n2 ln2 n).

Here and subsequently γ = 0.57721 . . . , denotes Euler’s constant. Six different
sums appear in the second sum in Pn. One can write this latter sum as

S1(n) + 2S2(n) + S3(n) + S4(n) + 2S5(n) + S6(n),

with

S1(n) :=
n−1∑
r=1

E[Dr−1]E[D2
n−r ](r −1), S2(n) :=

n−1∑
r=1

E[Dr−1]E[Dn−r ](r −1),

S3(n) :=
n−1∑
r=1

E[Dr−1](r − 1), S4(n) :=
n−1∑
r=1

E[D2
n−r ](r − 1),

S5(n) :=
n−1∑
r=1

E[Dn−r ](r − 1), S6(n) :=
n−1∑
r=1

(r − 1).

Of these, S3(n) and S6(n) are simple. From their exact form we see that both are
O(n2 ln n).

The other four sums include numerous formidable combinatorial sums involv-
ing various powers of the harmonic numbers. In principle we can obtain them
exactly, but it strikes us as a daunting task. For our asymptotic purposes, we shall
content ourselves with leading terms, which can be found from comparing sums
with areas under continuous curves. For example, S1(n), the most formidable of
all six sums, can be assessed asymptotically as follows. Plug in the exact values of
the first and second moments of Dn, to obtain

S1(n) = 8
n−2∑
j=1

j (n − j)HjH
2
n−j

n − j + 1
+ O(n ln2 n).
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Approximating harmonic numbers with their asymptotic expansion (the first two
terms suffice here), one gets

S1(n) = 8
n−2∑
j=1

j

[
ln j + γ + O

(
1

j

)][
ln(n − j) + γ + O

(
1

n − j

)]2

+ O(n ln2 n)

= 8
n−2∑
j=1

j ln j ln2(n − j) + 16γ

n−2∑
j=1

j ln j ln(n − j) + 8γ

n−2∑
j=1

j ln2(n − j)

+ O(n2 lnn).

We obtain approximations for these sums by integrals. For instance

n−2∑
j=1

j ln j ln2(n − j) =
∫ n

1
x ln x ln2(n − x) dx + o(n2 lnn)

= 1
2n2 ln3 n − 1

4n2 ln2 n + o(n2 lnn).

Likewise, the other sums in S1(n) are obtained:

S1(n) = 4n2 ln3 n + (8γ − 2)n2 ln2 n + o(n2 ln2 n).

In a like manner we find all the other five sums, yielding

S2(n) = 2n2 ln2 n + o(n2 ln2 n), S3(n) = n2 lnn + o(n2 ln n),

S4(n) = 2n2 ln2 n + o(n2 ln2 n), S5(n) = n2 lnn + o(n2 ln n),

S6(n) = O(n2).

Putting it together, one finds

Pn = 32n2 ln3 n + 72γ n2 ln2 n + o(n2 ln2 n).

Working our way back, we unwind the recurrence (14):

zn = (n + 1)

n∑
j=2

Pj

j (j + 1)
.

So,

zn = 32n2 ln3 n + 72γ n2 ln2 n + o(n2 ln2 n).

We now recover E[�3
n] in the asymptotic form

E[�3
n] = 2

n(n − 1)
zn = 64 ln3 n + 144γ ln2 n + o(ln2 n).
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Now, a calculation of E[(�n −E[�n])3], resorting to what we now know about all
three moments, finally yields

E
[(

�n − E[�n]
2
√

lnn

)3]
= 48(12 − γ )√

lnn
+ o(ln−1/2 n).

This implies ζ3(�
∗
n, σnN (0,1)) = �(1/

√
ln n) and finishes the proof of Theo-

rem 2.

6. Concluding remarks. We have investigated random distances in a random
binary search tree. Two types of distance have been considered, the depth of a
random node and the distance between random pairs of nodes. Classical methods
lead to a Gaussian limit law for normed random distances from the root. By a
combination of classical methods and modern contraction techniques we arrived
at a Gaussian limit law for normed random distances between random pairs. All
proofs of convergence in distribution are accompanied by rates of convergence.

The heuristic approach to the limiting random variable of D∗
n by the contraction

method would give the following. The normalization of Dn induces a distributional
equation for D∗

n:

D∗
n

L= D∗
R−1IL

√
ln(R − 1)

ln n
+ D̃∗

n−RIR

√
ln(n − R)

lnn
+ Sn,(15)

where Sn is the expression

Sn = 1√
ln n

(
IL + IR + 2IL ln(R − 1) + 2IR ln(n − R) − 2 lnn

)
.

We have the following convergences:

IL
L−→ I ; IR

L−→ 1 − I ;
√

ln(R − 1)

lnn

a.s.−→ 1;
√

ln(n − R)

ln n

a.s.−→ 1; Sn
a.s.−→ 0,

where I
L= Ber(1

2 ). Passing formally to the limits in (15) we arrive at

Y
L= IY + (1 − I )Ỹ ,

where Y , Ỹ and I are independent, with Y
L= Ỹ . The additive term Sn is

asymptotically annihilated.
The characteristic property of this fixed-point equation is that it is degenerate

as it is satisfied by any distribution. By contrast to this degenerate behavior of the
depth Dn the limit distribution of �n came about as a fixed-point of the equation

X
L= IX + J X̃ + K

1√
2
(Y + Ỹ ),
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where (X̃, Ỹ ) is an independent probabilistic copy of (X,Y ), the variates Y, Ỹ are
standard Gaussian, the row vector (X, X̃, Y, Ỹ ) is independent of (I, J,K) and
(I, J,K) has a uniform distribution on {(1,0,0), (0,1,0), (0,0,1)}.

As we have seen the unique distribution satisfying the equation is the
standard normal distribution. The additive term K(Y + Ỹ )/

√
2, even though it

depends on the recurring terms, guides the solution to be the standard normal
distribution. These dependent random variables are disengaged via mutually
exclusive indicators.

The contrast between degenerate distributional equations satisfied by any
distribution, and those which distinguish a distribution as their unique solution
under certain constraints demonstrates a significant difference between the
corresponding problems from the point of view of the application of the
contraction method.
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