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Here is a new genetic algorithm. It is built by randomly perturbing a
two operator crossover-selection scheme. Three conditions of biological rel-
evance are imposed on the crossover. A new selection mechanism is used,
which has the decisive advantage of preserving the diversity of the indi-
viduals in the population. The attractors of the unperturbed process are
particular equifitness subsets of populations endowed with a rich structure.
The random vanishing perturbations are twofold: local perturbations of the
individuals (mutations) and loosening of the selection pressure. When the
population size is greater than a critical value which depends strongly on
the optimization problem, their delicate asymptotic interaction ensures the
convergence (possibly in finite time) of the population to the ideal attractor
whose populations contain all the maxima of the fitness function. The pro-
cess explores without respite the neighborhoods of the best points found so
far (instead of focusing on a particular point) and finds simultaneously all
the global maxima of the fitness function; it seems to be the first coopera-
tive search procedure of this kind.

1. Introduction. In the realm of stochastic optimization, attention has
focused essentially on two techniques during the last decade: simulated an-
nealing [1] and evolutionary algorithms [12, 16].

The fundamental problem may be stated as follows: given a finite but huge
space (the size precludes any exhaustive search procedure) endowed with a
transition mechanism and a real-valued function defined on this space, deter-
mine the set of its global maxima or find at least suboptimal points, as fast
as possible.

The theory of simulated annealing is now extensively developed and a great
number of results describing the dynamics of this kind of algorithm in vari-
ous settings are available [1-5, 8, 9, 11, 13-15, 17-20, 22, 24-29]. As far as
we know, the most accurate work in this area has been achieved by Catoni,
in the spirit of the Freidlin—Wentzell theory [2-5]. Nevertheless, simulated
annealing presents a fundamental drawback: it is sequential in nature.

In an attempt to investigate the theoretical aspects of the parallelization of
this algorithm, Trouvé carried out a systematic study (initiated by Hwang and
Sheu [19]) of a broader class of algorithms he baptized “generalized simulated
annealing” [25, 26, 28, 29]. As it turns out, this framework is also well adapted
for evolutionary algorithms. Let us mention that several recent studies have
been devoted to these kinds of processes. Holley, Kusuoka and Stroock [17, 18]
have developed an approach leading to an estimation of the second eigenvalue
of the infinitesimal generator of the Markov process. This method is particu-
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larly well suited to reversible situations, but it has also been recently extended
to nonsymmetric annealing processes by Deuschel and Mazza [8] and is thus
potentially applicable to genetic algorithms. One of our major goals is to show
how the large deviations theory of Markov chains with rare transitions can
be used to study the convergence of genetic algorithms.

In a first paper [6], we proposed a Markovian model of Holland’s simple ge-
netic algorithm which is built by randomly perturbing a very simple selection
scheme: mutations and crossovers are considered as vanishing random per-
turbations. We proved that convergence to the global maxima of the fitness
function becomes possible when the population size is greater than a criti-
cal value (which depends strongly on the optimization problem). Surprisingly,
the crossover is not fundamental to ensure this convergence: the crucial point
is the delicate asymptotic interaction between the local perturbations of the
individuals (i.e., the mutations) and the selection pressure.

In a second paper [7], we used the concepts introduced by Catoni [2, 3, 5]
and further generalized by Trouvé [26, 28, 29] to fathom more deeply the dy-
namics of the two operators mutation-selection algorithm when the population
size becomes very large. The key result lies in the structure of the trajectories
of populations joining two uniform populations; a small group of individuals
sacrifice themselves in order to create an ideal path which is then followed by
all other individuals. As a consequence, the various quantities associated with
the algorithm (such as the communication cost, the virtual energy, the commu-
nication altitude, etc.) are affine functions of the population size. We proved
that the hierarchy of cycles on the set of the uniform populations stabilizes.
Furthermore, if the mutation kernel is symmetric, the limiting distribution
is the uniform distribution over the set of the global maxima of the fitness
function.

In this third paper, we introduce two major modifications to the previous
schemes. The crossover is now integrated into the unperturbed process and
is not considered any more as a random vanishing perturbation. Although
this operator is not essential to ensure the desired convergence, it certainly
increases the efficiency of the algorithm. Three conditions of biological rele-
vance are imposed on the crossover.

1. When two identical individuals mate, they produce offspring identical to
themselves.

2. There is always a nonzero probability that nothing happens during a
crossover.

3. The two individuals of the mating pair play symmetric roles (the popula-
tions are asexual).

The first condition is essential for our algorithm to work for every fitness
function; the second condition makes the analysis somewhat easier; the third
condition is a natural symmetry assumption which could be removed.
Furthermore, we propose a new selection mechanism which has the decisive
advantage of preserving the diversity of the individuals in the population.
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The analysis of the algorithm follows the road opened by Freidlin and
Wentzell [10]. Unlike the situations studied in [6, 7], the structure of the
set of the attractors of the unperturbed process is very rich. These are partic-
ular subsets of populations and they stand in one-to-one correspondence with
the equifitness subsets of the state space whose cardinality is less than the
population size. When the population size is large enough, there is a unique
ideal attractor whose populations contain all the maxima of the fitness func-
tion. We study the communication cost between attractors: the costs of bad
transitions (either those which decrease the maximal fitness of the population
or those which lose some peak fitness individuals) increase linearly with the
population size, whereas the costs of good transitions (those which create some
new peak fitness individuals) remain bounded. As a consequence, when the
population size is greater than a critical value, the minimum of the virtual
energy corresponds to the ideal attractor previously described. Therefore the
sequence of the stationary measures (associated with a fixed level of intensity
of the perturbations) concentrates on this attractor as the perturbations van-
ish. The remaining problem is to adapt carefully the rate of decrease of the
perturbations in order to obtain an inhomogeneous Markov chain with the
same limiting law. Besides, it is possible to ensure a stronger convergence;
we may force the process to be forever trapped in the attraction basin of the
ideal attractor after a finite number of transitions. Furthermore, when the
population size is large, the cycles which do not contain the ideal attractor
are reduced to one single attractor, and the optimal convergence exponent in-
creases faster than an affine function of the population size. We show also how
our general model specializes to the case where the state space is {0, 1}V; we
discuss the role of the crossover and compare the genetic algorithm with the
parallel (independent) simulated annealing on a small numerical example.

One might wonder whether this asymptotic point of view is relevant for
analyzing genetic algorithms. Indeed, the current state of this large deviations
theory (even the sharp large deviations estimates of Catoni [3, 4]) does not
yet provide probability bounds which can be effectively computed in a real
problem. Therefore one does not know in practice when the process is near
the asymptotic regime. Anyway, we hope that the paradigm we propose is
one of the very first steps toward a complete theory. Asymptotic convergence
is the least thing to require for such stochastic algorithms. Moreover, our
model should shed some light on the true behavior of genetic algorithms. It
provides also a tool to make theoretical comparisons; we are able to analyze the
optimal convergence exponent for large population sizes (its rate of increase is
a quantitative measurement of the intrinsic parallelism of genetic algorithms),
to assess the impact of the crossover operator on it or to compare it with the
one associated with parallel (independent) simulated annealing.

Finally, let us summarize the important aspects of this work. Our algorithm
finds simultaneously all the global maxima of the objective function in finite
time and thus solves completely the optimization problem; it seems to be the
first of this kind. The cornerstone of this cooperative search procedure is the
delicate asymptotic interaction between the mutations and our enhanced se-
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lection mechanism; the process explores simultaneously and without respite
the neighborhoods of the best points found so far (instead of focusing on a
particular point). Moreover, we hope to have found the right way of using the
crossover operator.

This paper has the following structure. Sections 2—7 are devoted to the
description of the model: the unperturbed process, its attractors and the ran-
dom perturbations. The main results are presented in Section 8. The role of
the crossover is analyzed in Section 9. In Section 10 we show how our model
enters the class of generalized annealing processes. We then give technical
results in Sections 11-14 and prove the main results in Section 15.

General conventions. The cardinality of a set X will be denoted indiffer-
ently |X| or card X and its characteristic function 1x. We adopt the usual
conventions concerning empty sets:

[[=1, > =0, min & = +oo, max J = —oo.

(%) (%]

If s is a real number, | s| denotes the unique integer such that |s| < s < |s|+1.
The Kronecker symbol 6(i, j) will be used to denote the identity matrix

indexed by E:

.. .. 0, if: B
Vi,jeE, 5(”:])2{1 lflij

For any integer r, the set of the permutations over {1---r} is denoted by &(r).

2. The fitness landscape. We recall that a Markov kernel % on a finite
set X is a function k(x, y) defined on X x X with values in [0, 1] satisfying

VxelX, > k(x,y)=1
yeX

DEFINITION 2.1. An abstract fitness landscape consists of four objects
(E, f,a, B), where:

(i) E, the search space, is a finite space of states;

(i1) f, the fitness function, is a positive nonconstant function defined on E;
(iii) «, the mutation kernel, is an irreducible Markov kernel on E;
(iv) B, the crossover kernel, is a Markov kernel on the set E x E.

The points of E will be called individuals and will be mostly denoted by
the letters i, j and e. The quantity a(i, j) determines the rate at which the
individual i mutates to j. The irreducibility assumption on «, which means
that

Vi’jEE,Hel,...,erEE, e1=i,er=j>
Vke{l---r—1}, a(er, €z41) > 0

is essential to ensure that the whole space E can be explored with the help of
the mutation mechanism.
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Similarly, the quantity B((i1, j1), (i9, Jo)) is interpreted as the probability
of producing the pair of individuals (ig, j3) by performing a crossover on the
couple (i1, j;). Throughout this work, we impose the following conditions on
the kernel B:

(1) VieE,  B((,0),3,0)=1,
(2) Vi,jekE, B((, j), (i, j)) > 0,
3 Vi, J1,lg, Jo € E, B((i15 J1)» (igs J2)) = B((J1, 1), (J2» i2))-

These three conditions have a natural biological interpretation. Condition
(1) states that when two identical individuals mate, they produce offspring
identical to themselves. Condition (2) states that there is a nonzero probability
that nothing happens during the crossover. Condition (3) states that the two
individuals of the mating pair play symmetric roles (our population is asexual).

The set f* of the global maxima of f is

fr=licE: £) =nj1€agcf(j)}

and f(f*) is the maximum value of f over E, that is, max g f(j). Symbols
with an asterisk (x) in superscript will denote sets realizing the minimum or
the maximum of a particular functional. The main goal of a genetic algorithm
is to locate the points of f* or at least to find suboptimal points. The minimal
and maximal variations of the fitness function are

6 =min{|f(0) — F())|: i, J € E, f(i)#f())}
A =max{|f(0) - f(J)I: i,j € E}.

Let A be a positive real number. We put f, = f~1({A}), which is the set
of the points of the search space having fitness A, and we define similarly
i =7Ff1(A, ), and f; = £f~1([0, A[). The maximal cardinality of a level set
of the fitness function is A = max{|f,[: A € R}}. If F' is a subset of E, f(F)
(or sometimes simply fF) denotes the set {f(i): i € F}.

3. The population space. A key principle of genetic algorithms is to
make a population of individuals evolve simultaneously in the fitness land-
scape. Let m be the population size of our algorithm. A genetic algorithm is
a stochastic process with state space the population space E™, the m-tuples
of elements of E. That is, the points of the set E™ are called populations and
will be mostly denoted by the letters x, y, z, © and v. We define a bracket
operator [ ] on E™ with values in &(E), the set of all the subsets of E, by

x=(29,...,%,) € E™ > [x]={xp: 1<k <m}

that is, [x] is the set of all individuals present in the population x.
With f we associate a function f defined on E™ by

f(x) = ]?(xl,...,xm) =max{f(x;): 1 <k <m};
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that is, f(x) is the maximal fitness of the individuals of population x. In this
way, the fitness landscape (E, f, a, B) induces a landscape structure (E™, f)
on population space E™. A key issue is to understand this new landscape
and to determine whether it is easier to optimize (E™, f) than the naive m-
fold copy of (E, f). The peculiarity of genetic algorithms is to introduce a
cooperative dynamics on the search space.

We now introduce some notation describing the repartition of fitness values
in a population or in a set of populations. For x in E™, X denotes the set of
those elements of [x] which realize the value f(x):

X={a; 1<k<m, f(xp)=F(x)}
The previous definitions [«x], f(x) and ¥ are extended to #(E™), the set of all
the subsets of E™, in a natural way: if K is a subset of E™, we have
[Kl={x: 1<k<m, x=(x1,...,%,) € K},
f(K)=max{f(x;): 1<k<m, x=(xy,...,%,) € K},
K={x; 1<k<m, x=(x1,...,%,) € K, f(xp) = F(K)}
For x in E™, we let x* = [x]N f, (the individuals of the population x having

fitness A) and we number the elements of the set x*,

= {xf, ...,x‘)‘x”},
in the order they appear in the sequence (x;,1 < £ < m). Equivalently, we
have

Yhk, 1<h<k<]|x"|, min{r: x, = x}} < min{r: x, = x}}.

Such a numbering is clearly unique. Whenever A does not belong to f[x], the
set x* is empty. For the special case A = f(x) (i.e., where ) is the maximal
value of the fitness in the population x), we use the notation x = {xy, ..., X5}
(i.e., we replace x* by % in the preceding notation).

Finally, for x in E™, we denote by Aj, ..., ’\Ixf[xll the |f[x]| elements of the
set f[x] (i.e., the set of the fitness values observed in population x), where
again the indexing respects the order of appearance of the elements of f[x] in
the sequence (f(x;), 1 < k < m), or equivalently

Vh ok, 1<h<Pk<|flx], min{r: f(x,) = A3} <min{r: f(x,) = A;}.

When the context is unambiguous, we will drop the superscript in the above
notation.

4. Example: the case E=1{0, 1}¥. We specialize our general model to the
case where the state space E is {0,1}" (N € N). A point i of E is a word
of length N over the alphabet {0, 1} and is denoted i = i;--- iy, where i, €
{0,1}. The Hamming distance H(i, j) between two points i, j of E is the
number of letters where i and j differ:

H(i, j)=card{k: 1 <k <m, i} # ji}-
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The mutation kernel « is defined by

) if H(i, j) > 1,
a(i, ) = {1/N, if H(i, j) = 1.

It is irreducible: the minimal number of transitions necessary to join two
arbitrary points of E through the kernel « is N.

In order to build the crossover operator, we define now a cutting operator
T, for kin {0---N}; T}, maps E x E onto E x E and for i, j in E, we put
T.(i, j)=(, j), where

RN N [RREE MO () IRRR [ R
Notice that T, only exchanges the two individuals of the mating pair, that is,
To(i, j) = (J,i), whereas Ty is the identity map over E x E.
For any pairs (i, j) and (i/, j') of E x E, we put

C((@, J), (i, j)) =card{k: 1<k <N, T;(i,j)=(",J)}
and we define finally the crossover kernel B8 by

P < () XU )RR (RN G D)
R e (N N D EXe (RN T )

It is a straightforward matter to check that conditions (1), (2) and (3) are
satisfied.

5. The unperturbed process (X,°). We first describe the underlying
process which drives the algorithm. When there is no random perturbation,
the process under study is a Markov chain (X¢°) with state space E™. The
superscript oo reflects the fact that this process corresponds to the limit be-
havior of our model, when all perturbations vanish. The transition mechanism
from X to X2° ,; is decomposed in two stages:

n+1
crossover selection

00 00 00
Xy — Zy — X}

We describe now in detail the crossover and selection operators.

51 X — Z: crossover. The phenomenon of crossover is modeled as
a random operation on the couples formed by consecutive individuals of the
population X¢°. This random operation is the one naturally associated with
the crossover kernel B of the abstract fitness landscape (Definition 2.1). The
transition probabilities from X° to Z3° are

(4) P(Z;L.o = Z/X;L.o = JC) = am(xmv Zm) 1_[ B ((x2k717 ka)7 (22k717 ZZk)) >
1<k<m/2

where 6,,(i, j) = 8(i, j) if m is odd (the last individual of the population has
no mating partner and remains unchanged after crossover) and §,,(i, j) = 1
if m is even.

Notice here a fundamental difference from the model studied in [6]: the
crossover is now incorporated into the unperturbed process.
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5.2. Z? — X7, selection. We propose here an enhanced version of the
selection mechanism used in the previous models [6, 7] which has the decisive
advantage of preserving the diversity of the individuals present in the popula-
tion. This mechanism may be described roughly as follows. Suppose Z9° = z.
To build population X}’ ; = x, we first select randomly with a uniform dis-
tribution a permutation o of &(|z]). We divide the set of indices {1,..., m}
in |Z] + 1 parts of approximately the same size (around |m/(|z| + 1)]). The
components of the rth part (for 1 < r < |Z]) are set equal to ?0(,). That is,
roughly, for the indices % such that

m m
1 -1
T )L?lﬂJfker?HlJ’

we put x, = 2z, (for | ], see the initial conventions). The components of the
(|z]4+ 1)th part are chosen independently with the uniform distribution on the
set Z.

We now explicate precisely this transition mechanism.

We first define a triangular array of integers 7(k, h),0 <k <h+1,1<h <
m, by

Vhe{l,....m}, 10,h)=1 7(h+1,h)=m,

m
v 1 = - 1.
k,h, 1<k <h<m, 7(k, h) 2k{2(h+1)J+
Let x and z be two elements of E™. If there exists a permutation o of ©(|z])
such that

Vhe{l,.. |2l VE t(h—1E) <k <7l |2, %= Zoan,

then

00 00 1 13(x )
(5) P(Xn+1=x|Zn=2):@ l_[ i
F (2], [Z2])sksm

cardz’
If no such permutation exists, then P(X}", = x/Z° =2z)=0.

REMARK 1. In formula (5), the |Z]|! stands for the choice of a random per-
mutation belonging to ©(|z]), and the product corresponds to the choice of the
components of x whose indices belong to the (|z] + 1)th part.

REMARK 2. The first |Z| parts of x have an even cardinality, so that the
crossover can not act on a pair of individuals belonging to distinct parts. Since
in addition each such part contains only one type of individual, condition (1)
shows that the crossover operator will have no effect on the first |z]| parts of x.
The main interest of the (|z]| + 1)th part is to give the opportunity to distinct
individuals of |Z] to mate without constraints.

REMARK 3. If m < 2(|Z| + 1), the first |Z| parts of x are empty, so that the
components of x are chosen independently with uniform distribution on the
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set z. However, the dynamics of the algorithm becomes particularly interesting
when m is large (as will be shown later), and such situations will not then
occur.

6. The attractors of the chain (X;°). Due to the selection mechanism,
the populations generated by the Markov chain (X¢°) have a very specific
structure. In fact, the Markov chain (X¢°) wanders through particular subsets
of E™ which we call attractors. These subsets play the role of the attractors of
the deterministic dynamical system in the Freidlin—Wentzell theory [10]. The
aim of this section is to investigate the zoology of the attractors of the chain
(X?°) and to understand the dynamics of (X?°) on these attractors.

DEFINITION 6.1. The attractors of the chain (X$°) are the sets of popula-
tions K such that:

() [K]=K;

(ii) a population x = (x4, ..., x,,) of E™ belongs to K if and only if

Vre{l K}, Vkh  1(r—1|K)) <k h<t(r,|K|) = x,=x,
{x: 1<k <7(K]|.| K]} = [K].
{x: 7K, |K]) < k < m} C [K].
The set of all the attractors is denoted by % [thus % € 2(Z(E™))].

REMARK. Notice that property (ii) is an equivalence; that is, each popula-
tion x satisfying the three conditions in (ii) has to belong to K whenever K is
an attractor. Conversely, each population in K must fulfill these conditions.

Condition (i) implies that the populations of the attractors are equifitness
populations (i.e., populations whose individuals all have the same fitness).
More precisely, we have

VKex,31eR], VxekK, [x] C f,.

That is, all the individuals belonging to the populations of a fixed attractor
are in the same level set of f. We denote by %, (respectively, .#,", %, ) the
set of attractors K such that [K] C f, (respectively, [K] c £, [K] C ).
For an attractor K, we denote by f(K) the unique real number A such that K
belongs to .%). We denote by .#; the attractors included in f* (i.e., #, = F#}+))
and by K* the unique attractor (it exists for m > |f*|) such that [K*] = f*.
We let also 7 = J} p.y.

The transition mechanism implies that the process (X¢°) is instantaneously
absorbed in the set of the populations which belong to attractors, that is,

VxeE™,  P(NWn>1 3Kex XTcK|XP=x)=1L.

Moreover, as a consequence of condition (2) on the crossover kernel B8, we
see that, for each attractor K and each population x in K, the probability



A NEW GENETIC ALGORITHM 787

P(X}’, € K/X5° = x) is positive so that the process has a nonzero probability
of staying in an attractor.

We distinguish two kinds of attractors. An attractor K is said to be unstable
if

JxeK, P(Xy,

An attractor K is said to be stable if
VxekK, P(X;o+leK|X,"L°=x)=l.

Notice that the bracket operator [ ] provides a one-to-one correspondence be-
tween the set % of all the attractors and the subset & of 2(E) defined by

&={FCE: |F|l<m, F=F}.

In fact, if K is an attractor, for each x in K, we have [x] = [K]. That is, the
bracket operator is constant over K and thus characterizes K. As a conse-
quence, two distinct attractors do not intersect.

When m is small, the set & clearly depends on m, but for m > A, it does
not depend on m any more, nor does the structure of the set of attractors .%;
only the size of the populations changes, and the composition of the attractors
is stabilized.

We use the crossover kernel 8 to build an operator on the set Z(E). If F
is a subset of E, we define

B(F)={icE:3(,J,j)e FxFxE, B((i,J) (1 J) >0}
The operator ﬁis the composition of the operators 8 and the caret (7). That is,

B(F) = {i € B(F): f(i) = F(B(F))}.

We have the following characterization of the stable attractors.

eK|XY=x)<1

LEMMA 6.2. An attractor K of % is stable if and only if E([K]) =[K]and
m > 2(|K| + 1).

PROOF. This is an immediate consequence of the transition mechanism of
the process (X?°). If the above conditions are satisfied, we have

P([X2 ]=[K]| Xy eK)=1
If B([K]) # [K), there is a nonzero probability that the crossover creates new
individuals not belonging to [ K] with a fitness greater than or equal to f(K),
so that X", has a positive probability of leaving K. If m < 2(|K| + 1), the

selection mechanism does not guarantee the survival of all the individuals of
[K], so that

P([X24]1G[K]| X e K) > 0. O
We define a partial relation <., on .%: for each pair K, K, of attractors,

we have
Ki<.Ky; & 3x€K;,3yecK,y, IreN, P(X

n+r

=y|XP=x)>0.
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This relation is reflexive and transitive. In addition, the process X¢° can leave
an attractor only by creating with the crossover new individuals whose fitness
is greater than or equal to the fitness of the starting attractor. Thus

Ky < Ky = [Kylc U B(-BB(KL))
n=0 " <
B,n times

and the fitness cannot decrease during such a transition:

K, <« Ky, f(Ky) #f(Kg) = f(Ky) < f(Ky).

Suppose m > 2(A + 1). The selection mechanism then never causes a loss of
diversity within a level set of f so that

Ky < Ky, f(Ky) =f(Ky) = [Ki]C[Ky]

and the relation < is then a partial order on %

If x is a population of E™ which belongs to a (necessarily unique) attractor
K, we put K(x) = K. It follows from the very definition of the relation <
that

Vn>1, K(X7Y) <0 K(X79);

that is, the sequence (K(X3’)),-; is increasing in the ordered set (%, <.).
Since % is finite, this sequence is stationary; with probability 1, the limit

lim K(X3°)= K

n—o0o
is a maximal element of % for the order <., and yet the maximal ele-
ments of % are precisely the stable attractors. Finally, let K be a stable
attractor. For any populations x, ¥ belonging to K, the transition probability
P(X7,, =y| Xy = x) is independent of x and y (it is completely determined
by the set [ K]). As a consequence, the process (X¢°) admits a unique invariant
probability measure on the attractor K, which is the uniform distribution.

REMARK. The main role of the crossover is to make some attractors unsta-
ble. Suppose for instance we define the kernel B, by

Vi, J1,l9, jo € E, Bo((i1, j1), (ig, J2)) = 38(i1, i2)8(j1, J2)
+ %5(i1, J2)8(J1,12)

so that the crossover can only exchange the individuals of the mating pair
and never creates new individuals. The corresponding algorithm is then a
mutation—selection algorithm. In this case, all the attractors are stable when-
ever m > 2(| K|+ 1).
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A numerical example on the space E = {0,1}3. We consider the space
E = {0, 1}3 and we define the fitness function f by

£({001,011}) = {1},
({010, 101}) = {2},
f({100}) = {3},

({000, 110, 111}) = {4}.

We take m = 10. There are 15 attractors. If F is an equifitness subset of E,
we denote by K(F') the associated attractor. The attractors K(010, 101) and
K (000, 111) are unstable. All other attractors are stable. Actually, we have

K (000, 111) <., K(000, 110, 111),
K (010, 101) <., K(100),
K (010, 101) <., K(110).

The ideal attractor K* = K (000, 110, 111) contains 3!3* = 486 populations.
A typical example of such a population is

(110, 110, 000, 000, 111, 111, 000, 111, 110, 000).

7. The perturbed Markov chain (X fl). The three operators of a genetic
algorithm play different roles: the mutation tends to disperse the population
over the space E, the crossover helps the information to spread quickly over
the population and the selection tends to concentrate the population on the
current best individual. Our point of view is to consider the mutation and the
selection as random perturbations of very crude operators: random perturba-
tions of the identity map for the mutations and random perturbations of the
very strong selection mechanism of the chain (X¢°) for the selection. Within
this framework we are able to carry out an analysis of the asymptotic dynam-
ics of the algorithm when the perturbations vanish. It is of course questionable
whether this paradigm is relevant in practice. A major remaining issue is to
obtain operational probability bounds for real optimization problems. There
are several such attempts in this direction for sequential simulated annealing.
Hajek and Sasaki study a maximum matching problem [15] and Jerrum stud-
ies a maximum clique problem [20]. These authors analyze the rate of growth
of the time necessary to reach a solution with a given accuracy when the
size of the problem tends to infinity. Jerrum and Sinclair succeed in building
polynomial-time algorithms designed to approximate the partition function of
the Ising model [21]. Lundy and Mees describe situations where convergence
is exponentially long and others where termination occurs in polynomial time
with a good practical confidence [22]. Sinclair develops techniques to han-
dle the multicommodity flow [23]. Sorkin investigates simulated annealing
on fractal energy landscapes [24]. These interesting results rely on features
which depend strongly on the problem under study and cannot be generalized
easily. They are aimed at finding efficient implementations on real problems.
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Nevertheless our abstract setting for genetic algorithms yields general
conditions ensuring the convergence of the genetic algorithm for any fitness
landscape. We also establish the existence of critical population sizes. The
paradigm we propose is somewhat different from the practical implementa-
tions of genetic algorithms, where the parameters controlling the mutation
and the selection are kept constant in time. On the one hand, our analysis
might be interpreted as the analysis of these temporally homogeneous genetic
algorithms for small values of the mutation rate and a strong selection pres-
sure. The asymptotic dynamics therefore gives a sharpened and simplified
picture of the true dynamics. On the other hand, the scheme of decreasing
perturbations is a new procedure which should be tested in practice to see
whether it succeeds in accelerating the convergence (in the same way that
simulated annealing is an attempt to speed up the Metropolis algorithm).

We now describe the perturbed transition mechanism precisely. The previ-
ous Markov chain (X:°) is randomly perturbed by two distinct mechanisms.
The first one acts directly upon the population and mimics the phenomenon
of mutation. The second one consists in loosening the selection of the individ-
uals. The intensity of the perturbations is governed by an integer parameter
l; as [ goes to infinity, the perturbations progressively disappear. The transi-
tion mechanism of the perturbed Markov chain (X!) is decomposed in three

stages:

mutation crossover selection

Y! Z! X!

X iz n n n+l*

7.1. X! — Y!: mutation. The mutations are modeled by random inde-
pendent perturbations of the individuals of the population X' . These random
perturbations are built with the help of the mutation kernel « of the abstract
fitness landscape (Definition 2.1). Let a be a positive real number, which we
call the mutation cost. Define

a(i, I, if i # J,
(L J) =V 1Y a(,e)l 0, ifi=j,
e#l

so that «; is an irreducible Markov kernel on E.
The transition probabilities from X/ to Y/ are given by

P(Yi =Y | Xﬁz = x) = al(xb yl)' ' ’al(xma ym)'
Note that
©) lim P(Y), = y| X}, = x) = 8(x1, 1)+ (s ¥
that is, the mutations vanish when [ goes to infinity.

7.2. Y. — ZL: crossover. The crossover is not perturbed in any way: this
stage is exactly the same as the passage from X©° to Z$° [formula (4)]. We
define the crossover kernel 8 on E™ x E™ by

Yy, zeE™, B(y,2)=P(Z, =2|Y, =y) = P(Z7 = 2| X = y).
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7.3. Z!, - X! +1: selection. We first describe the selection mechanism in-
formally.

Suppose Z! = z and we wish to build the vector X’ +1 = x. We first traverse
f[z]; with each element A of this set, we associate a sequence iy, ..., ¢,
obtained by reordering randomly (all orders being equally probable) the set
F71({A}) N f[z]. The population x is then built in the following way: for each
component x,, 1 < k < m, we draw a value A under a distribution probability
on the set f[z] which is biased toward the high values. As [ goes to infinity,
this distribution concentrates on the value f(z). With this value A, we had
previously associated a sequence {1, ..., §, . We divide the set {1---m} into
n, + 1 parts. If the index % under consideration belongs to the rth part, where
1<r=<n,, weset x, = ,. If k belongs to the (n, + 1)th part, we choose x,
randomly and uniformly over the set {{,..., ¥, }.

We now describe this mechanism precisely. Suppose always Z! = z. Let us
recall some notation. The set f[z] contains |f[z]| distinct values A, ..., A%,
Throughout this section, when the context is unambiguous, we will drop the
superscript z in this notation, so that A, will stand for Aj. For each A in f[z],
there are |z%| distinct individuals in z whose fitness is equal to A:

2t ={z},..., Z\);AI}'

The vector Xln+1 = x is built in the following way. For each A in {1---|f[2]|},
we select independently and randomly with the uniform distribution a per-
mutation o” belonging to ©(|2*|) = S(|[z]N f,1)- The law of each component
x, 1 < k < m of x is defined as follows: we randomly select a value A in the
set f[z] with the distribution

exp(cAy Inl)
>/ exp(cA, Inl)’

where c is a positive real number, which we call the scaling parameter.
The value of x, is then chosen in the set z* according to the value of the
index k:

Vhe{l--|fle]ll},  P(A=2p) =

1. If 7(|2%], |2*]) < k < 7(|z*| + 1, |z}|) = m, then x,, is chosen at random with
the uniform distribution over the set z* = [z] N f, (k lies in the last part of
the set of indices).

2. If there exists an index r in {1---|z*|} such that 7(r — 1,|2"|) < k <
7(r,|2*|), then we put x, = zi‘r hry where h is the unique integer in
{1-.-|z*|} satisfying A = A;, (the index k lies in the rth part of the set of
indices, where 1 < r < |z*)).

REMARK. The selection mechanism at work in the chain (X¢°) is obtained
as a particular case. The probability distribution on f[z] is degenerate and
assigns mass 1 to f(2).

We give now an explicit expression for the transition probabilities. Let x
and z belong to E™. If [x] ¢ [z], we put o(z, x) = &. Suppose [x] C [z]. Let
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o(z, x) be the set of the |f[z]|-tuples of permutations
(o, ..., ocE Iy e &(|2M]) x - - x S(|2Nne])
satisfying the following property:

For each k£ in {1---m}, if h is the unique integer in
{1---|f[2]|} such that A, = f(x.), and if for some r in
{1---12"|} we have 7(r — 1,|2*]|) < k < 7(r,|z"]), then

Ay
Xp = Zoh(r)'
The transition probabilities from Z/ to X!, are then given by the intuitive
formula
P(XL,, =x|Z =2)

el () )

(7 B [ae sz 122! Aeflel her(isil. o)
1 _exp(ef(xp)Ind)
p1 2ref[z) €Xp(cAInl)

We define the kernel y on E™ x E™ by the identity

m Inl)
P(X! ., =x|2Z =2)=vy(z« exp(cf (x1) .
(X1 | Zn )= )kl;[l Y refiz) €xp(cAInl)

Only the last product in formula (7) depends upon .. It may be rewritten as

exp(e iy £(x)Inl)
(Xrefizrexp(caln )"

As [ goes to infinity, this term is equivalent to

exp(~c(mF() - 3 Flan) ) 1nt).

k=1

which tends to zero whenever [x] is not included in Z. Thus

lim P(X.,, =x|Z. =2) = W’x)'( L(x )>|2|T(|2|s|2|)1m‘
=00 (Ko ) [aeriz 122! kl;[l g
Yet, for x such that [x] CZ, we have either o(z, x)=@ and P(X},,=x/Z} =z2)
=0, or
oz 0l= 1 |2
ref[z0\{f(2)}
in which case [see formula (5)]
7] (2], [2)-1-m

(8) llir?op(xfmzﬂzfl:z):@ =P(XX,=x|Z7 =2);
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that is, the limiting selection mechanism is the one used for the Markov
chain (X¢°). Formulas (6) and (8) yield

Vy zeE™, }imP(Xg+1=z|Xg=y)=P(X;°+1=Z|X;°=y)

so that the process (X)) is a perturbation of the process (X°). A crucial point
is that the perturbations really interact as [/ goes to infinity. More precisely,
the rates of convergence in (6) and (8) should be logarithmically of the same
order.

8. Convergence of the genetic algorithm. We state now our main re-
sults. The proofs are deferred to the remaining sections of the paper. Several
critical quantities appear in the statements, such as the critical population
size m* and the critical heights H, and H3. Explicit bounds on these quan-
tities are obtained in the proofs of the results; however, these bounds involve
some intricate constants associated with the abstract fitness landscape. For
the sake of clarity, we state the results without introducing these constants.
Let us point out that the proofs yield also a lot of information concerning the
structure of the most probable trajectories of the process.

The first important result deals with the concentration of the equilibrium
law of the algorithm on the ideal attractor K*.

THEOREM 8.1 (Critical population size and limiting distribution). There
exists a critical population size m* depending on the fitness landscape
(E, f, a, B), the mutation cost a and the scaling parameter c, such that, when
the population size m of the algorithm is greater than m*, the limit of the
sequence of the stationary measures of the Markov chains (X'), 1 € N, as [
goes to infinity, is the uniform distribution over the ideal attractor K*; that is,

Ym>m* Vx,ye E™ x K*, lim limP(Xflzy|Xé=x)— 1

l—00 n—>00 - |K*|

We next state some key facts concerning the cycle decomposition when the
population size is large.

THEOREM 8.2 (Structure of the cycles). There exists another critical popu-
lation size M* such that, when the population size m of the algorithm is greater
than M*, each cycle over the set of attractors J not containing the attractor
K* is reduced to one single attractor K.

In fact, for m large enough, the set of attractors does not depend on m any
more (the attractors are in one-to-one correspondence with particular subsets
of E; see Section 6). The trace of the limiting dynamics on the set of attractors
stabilizes for m large and does not depend on m any more. This could be
proved using the same technique as in [7], Section 7.

REMARK. Once more, this limiting structure is obtained as soon as the
population size m is greater than a critical value, the other parameters being
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fixed. This structure of cycles is the most favorable one; the bad cycles, that is,
those which slow down the convergence, are reduced to one single attractor.

In the next results, we suppose that the population size m is larger than m*.
Once we know that the sequence of the stationary measures of the Markov
chains (X!), I € N, concentrates on the ideal attractor K*, the remaining
problem is to build a process with the same limiting law. From now on, we
consider the inhomogeneous algorithm; that is, the control parameter [ is an
increasing function of n and we deal with an inhomogeneous Markov chain
(X in )nen- We will suppress the superscript / in most notation. The challeng-
ing problem is to adapt the sequence ({(n)),y in order to have

VxeE™,  lim P(X,cK'|Xy=x)=1

n—oo

[I(n) should not increase too fast] and, simultaneously, to obtain the best rate
of convergence [I(n) should not increase too slowly]. The answer to this now
classical problem is given by Catoni and Trouvé’s results [2, 5, 28, 29].

The critical heights H, and H}. For the definition and the properties of
the height of exit H,, we refer the reader to Trouvé’s work [25, 26, 28, 29]. The

crucial constant for the convergence of the algorithm is the critical height H;
defined by

H, = sup{H,(7): 7 cycle not containing K*}.
The rate of escape from the basin of attraction of K* is

H;=H,({x € E™: [* C[x]}).

PROPOSITION 8.3. The critical height H, is bounded as a function of m. The
height H? is greater than an affine function of m.

The proof is in the Appendix.
We now restate in our context Trouvé’s convergence result ([28], Theorem
2.22), which is an extension of a result by Hajek [13] for simulated annealing.

THEOREM 8.4. Suppose m is larger than m*. For all increasing sequences
l(n) going to infinity, we have the equivalence

sup P(X, ¢ K*/Xg=%x)—>0 asn—>o0 & Y l(n) T =c0.

xeEm™ n=0

Furthermore, we may adapt the sequence /(n) in order to be trapped in the
basin of attraction of K* after a finite number of transitions.
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THEOREM 8.5. Suppose m is large enough to have m > m* and H, < H.
For all increasing sequences l(n), we have the equivalence

VxeE™, ~ P@EAN Van>N fc[X,]|X,=x)=1

& imwm=m fmwm<w

REMARK. Proposition 8.3 implies that for m large enough, we have H; <
H? so that sequences I(n) with the desired properties do exist.

The optimal rate of convergence. For the meaning and the properties of the
optimal convergence exponent, we refer the reader to [2-5, 25-29]. We now
restate Trouvé’s result for the optimal convergence rate, which generalizes
Catoni’s work.

THEOREM 8.6. There exist two strictly positive constants R, and R, such
that for all m > m* and all n,
R, R,

< inf maxP(X, ¢ K" | Xy =x) < .
npt 051(1%5..51@) xeE™ ( n ¥ | Xo )_ n%opt

PROPOSITION 8.7. The optimal convergence exponent a,, is bounded be-
tween two affine strictly increasing functions of m. That is, we have

. . aopt
0 < liminf <limsup — < oc.

m— 00 m m— o0

aopt

The proof is in the Appendix.

The fact that the optimal convergence exponent «,, increases linearly with
m shows that our genetic algorithm is intrinsically parallel; it involves mostly
local independent computations. This nice feature will be further discussed
in the next section, where we compare the parallel (independent) simulated
annealing with the genetic algorithm on a very simple example.

9. The role of the crossover. The crossover operator is integrated into
the underlying process which drives the dynamics of the genetic algorithm.
It is therefore essential to impose some stability conditions on it to make
convergence to the global maxima possible for every fitness function. Our con-
dition (1),

VieE,  B(( 1), (i) =1,

is the simplest form of such a requirement.

PROPOSITION 9.1. Suppose there exist i and e such that i # e and
B((i, 1), (e, e)) > O,
vjeEN{i},  B((J,)) (U, 0)=1
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Then there exists a fitness function [ such that, whatever the population size
m > 2, the mutation cost a and the scaling factor c,

VreE",  lim lim P(x1cr|Xh=x)=0.

The proof is in the Appendix.

Instead of imposing a general condition like (1), one could impose a condition
depending on a particular fitness function f. For instance, convergence can be
ensured if

Vieft,  B((E10),E0)=1
or even if B(f*) = f* [the notation B(f*) is explained before Lemma 6.2].
Condition (2),
Vi, jeE, B ) (1 ) >0,

is not as crucial as the first one. However, it makes the analysis of the set of at-
tractors somewhat simpler. Without it, one should impose a further restriction
in the definition of attractors (Definition 6.1) so that

VxeK, P(X7Y e K| X =x)>0;

otherwise the process might escape instantaneously from K with probability 1.
An example of such a condition is

VxeK, Vi, je[x], B((Z, j), (i, j)) > 0.
Condition (3),

v il? jlﬂ i27 jZ € E7 B((lb jl)’ (iZ’ .]2)) = B((le il)? (j25 iZ))v

is superfluous and can be removed without affecting the analysis. However, it
is a natural condition of symmetry.

An important issue is to understand the impact of the crossover on the
speed of convergence of the algorithm. A natural direction for future research
is to find how one should implement efficiently the crossover operator in order
to increase significantly the optimal convergence exponent for a specific class
of fitness functions. Let us see what happens on a small numerical example.

We consider the space E = {0, 1}* endowed with the mutation and crossover
kernels (a, B) defined in Section 4. We define the fitness function f by

£({0000}) = {1000},
({1000, 0100, 0010, 0001}) = {900},
£({1100, 1010, 1001, 0110, 0101, 0011}) = {800},
£({1110, 1101, 1011, 0111}) = {0},
£({1111}) = {1100}
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so that f is a function of the number of digits of the individual equal to 1. Let
Bo be the identity crossover kernel. That is,

Vi, J1,19, J2 € E, Bo((i1, J1), (ias J2)) = %S(il, i19)8(J1, J2)

+ 28(i1, Jo)8(Jj1, i2)-

The algorithm with B, corresponds to a genetic algorithm without crossover,
that is, a mutation—selection algorithm. Let us denote by H;(8,) and a,y(8)
the critical height and the optimal exponent associated with the algorithm
running with the crossover B,.

To compute H; we look at the trajectories of minimal cost which start from
the attractor K(0000) and end with the attractor K(1111). With B, (i.e., no
crossover) and a sufficiently large population size, the best way is to let an
individual follow a mutation path such as

0000 — 0100 — 0101 — 1101 — 1111,

while all other individuals remain in 0000. Whenever this explorer reaches
1111, the whole population jumps to 1111. This trajectory requires four muta-
tions and an antiselection cost of ¢(3/(0000) — £(0100) — £(0101) — £(1101)),
so that its global cost is H{(B) = 4a +1300c. When a crossover mechanism is
available, it is possible to build more efficient paths which avoid the difficult
saddles. In our example, a good way to avoid the antiselection of an individual
containing three digits equal to 1 (like 1101) is to let two individuals mutate
from 0000 to 1100 and 0011 simultaneously and then to perform a crossover
between them:

(0000, 0000) — (1000, 0010) — (1100, 0011) — (1111, 0000).

This requires four mutations and an antiselection cost of ¢(2f(0000) —
£(1000) — £(0010)) so that the global cost is H{(B) = 4a + 200c¢, which is
much less than H(B,).

We finally examine the rate of increase of the optimal convergence exponent
when the population size is sufficiently large. We obtain analogously
i opt(B) __ min(a, 100c) - lm @opt(Bo) __ min(a, 100c)

] - - .
s —, 4a +200c  mox T m 4a + 1300¢

Consider now m independent simulated annealing algorithms running over
this fitness landscape (the moves of the particle are determined by the muta-
tion kernel « and the simulated annealing does not make use of the crossover
mechanism). We keep track of the best point found by the m algorithms. The
optimal convergence exponent of this process is m/10. Trouvé proves that
in general the optimal convergence exponent for parallel annealing based on
periodically interacting searches is always worse than for independent mul-
tiple searches [27]. Introducing an interaction between simulated annealing
algorithms may therefore damage the speed of convergence. We see that, for
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large populations, the optimal exponent of m independent simulated anneal-
ing is always better than the optimal exponent «,,(B,) of the genetic algo-
rithm without crossover. However, the situation changes radically whenever a
crossover mechanism is available. Indeed, if we choose for instance a = 100c,
we obtain «,,(B8) ~ m/6 which outperforms the m independent simulated
annealing algorithms. An appropriate cooperation mechanism can therefore
enhance significantly the speed of convergence.

10. Asymptotic expansion of P(X f, a=v|X fl =u). The aim of this sec-
tion is to show how our model fits into the framework of the generalized sim-
ulated annealing. What we have to do is to study the asymptotic behavior of
the transition matrix of (X/) as [ goes to infinity. By the very construction of
the process (X!), we have

P(Xi =v|X,=u)
= Y PXii=v|Z,=2)P(Z =2|Y,=y)P(Y,=y| X, =u).
y,ze E™

For each y, z in E™,
P(Xi, =v|Z=2)P(Z. =2 | Y, =y)P(Y. = y| X} = u)
(9) ~ a(u, y) B(y, 2) ¥(2,v)
X exp < - <ad(u, y) +e i(f(z) _ f(%))) lnl> 2 1 o oo,

k=1
where we note for u, y in E™,
au,y)= [ o(up yr)
ki up#yy

and d(u, y) is the Hamming distance between the vectors u and y. That is,
d(u,y)=card{k: 1 <k <m, u, # y;}.

The above quantity (9) vanishes whenever a(u, y) B(y, 2) y(z,v) = 0.
Let D;(u,v) be the set of all four-tuples (u, y, z, v) satisfying a(u, y) x

B(y,z)v(z,v) > 0.
We define next the communication cost V; on E™ x E™ by

Viwo)=  min  ad(u.y)+e (7 - F(o)

(u,y,2,0)eD; (u,v) k=1

and we denote by Ei(u, v) the elements of D;(u, v) which realize the above
minimum. Putting

ql(u’ U) = Z a(ua y) B(ya Z) 7(27 U)’

(u,y,2,v)eD (u,v)
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we have
P(X'. =v| X, =u)~qi(u,v)exp(~Vi(u,v)Inl) asl— co.
Moreover, notice that for each u, v in E™,
P(XL, =v|XL=u)=0 & Vi(u,v)=00 & q;(u,v)=0.

We are now in the framework of the generalized simulated annealing studied
by Trouvé [25-29]; that is, the transition probabilities of the process (X! ) form
a family of Markov kernels on the space E™ indexed by [/ which is admissible
for the communication kernel q; and the cost function V; ([28], Definition 2.1).

11. The paths and their costs. If ./ is an arbitrary set, /() denotes
the set of paths in .7, that is, the set of finite sequences of elements of .. A
path s in ./ is denoted indifferently,

S:(Sl,...,sr), S:(sl’,..’sr) or s=8;— -+— 8§,

and its length is denoted |s| ( in the above example). A path s in ./ is said
to join two elements ¢; and ¢, if s; = ¢; and s|y = £y; the set of all paths in ./
joining the points #; and ¢, is denoted .”M(#y, t,).

We will consider paths in the sets E, E™ and &(E). Paths in E™ will mostly
be denoted by the letter p and paths in &(E) by the letter q.

By D™ we denote the paths in E™ which correspond to possible trajectories
of the process (X)), that is, the paths p in E™ satisfying

Vi, 1<k<|pl,  Vi(Pp Prs1) <o
The V' cost of such a path is

|p|-1

Vi(p) = Z Vi(Pr> Prs1)-
k=1

Notice that for the empty path (which has a null length), the cost is zero.

If p belongs to E™™ \ D™, we put V,(p) = oco. Similarly, by D" we denote
the paths in E™ which correspond to possible trajectories for the whole process
(the number of transitions r being variable)

1 l 1 1 1 1
X, -Y, -2, X,  —>Y, > Z,

.
17 Xn+r7

l

that is, such a path p includes the intermediate populations YfL pand Z .,

0 < k < r, has a length equal to 1 mod 3 and satisfies
v k, 1< 3k < |p|’ C\C(p3k_2, p3k—1)B(p3k—1’ p3k)‘y(p3k, p3k+1) -~ 0.

The corresponding cost function V is defined by

Vip)= X [ad(p%—z,p%-l)ﬂi(f(psk)—ﬂpik“))]
h=1

1<3k<|p|
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if the path p belongs to D" (here pik“ is the Ath component of the vector

p3**t1) and V(p) = oo otherwise. We put also, for y, z in E™,
Dm(y,z)szﬂEm(N)(y,z), D= J D",

meN*

and we define similarly Em( y,2z), D (just replace D by D in the above
formulas).

The bracket operator [ ] provides a natural projection from the set
Unens E™™ onto 2(E)™; with each path p = (py, ..., p,) in E™ we associate
the path [p] = ([p1],---, [p,]) in L(E). Finally, we put [D] = {[p]: p € D}.

12. The minimal communication cost and the virtual energy.

DEFINITION 12.1. We define the minimal communication cost V for y and

zin E™ by
V(y,z) =inf{V(p): p € D"(y,2)}.

Notice that, for all x in E™, we have V(x, x) = 0.

If F, G are two subsets of E™, we define

V(F,G)=inf{V,(p): pe D™, p' e F, pl*l ¢ G}
=inf{V(y,2): ye F, z < G}.
Let g be a graph on E™. The cost of g is
Vig)= X Vi(x ).

(x—>y)eg

This definition works also for a path p in E™ if we consider the path as a
graph over E™. Notice that for the empty graph (which has no arrows), the
cost is zero.

We recall that an x-graph is a graph with no arrow starting from x and
such that for any y # x there exists a unique path in g leading from y to
x. The set of all x-graphs is denoted by G(x). For more details and notation
concerning graphs, see [10], Chapter 6.

DEFINITION 12.2. The virtual energy W associated with the cost function
V is defined by
VxeE™, W(x) =min{V(g): g € G(x)}.
We put also for any subset F' of E™,
W(F) = min{W(x): x € F}, W ={xe E™: W(x)=W(E™)}.
Proposition 5.4 of [7] shows that this quantity could equivalently be defined
through the cost function V; instead of V. The point is that the sequence of

the stationary measures of the Markov chains (X!), [ € N, concentrates on
the set W* as [ goes to infinity.
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PrOPOSITION 12.3 (Freidlin and Wentzell).

VxeE™,  limlim P(X, e W*|X)=x) =1

l—o00n—>00

We face here the same difficulty as in the case of the mutation—selection
algorithm: the size of the state space increases geometrically with the popu-
lation size m. Anyway, we are mostly interested in the way the chain (X%)
visits the populations of the attractors .#". We use the same technique as in
[7]. Since

VxeE™, 3 KeXx, V(x, K) =0,

then Theorems 5.8 and 7.3 of [7] show that the dynamics of the process may be
studied by considering only the restrictions of the communication cost V and
the virtual energy W to the set of the populations belonging to the attractors.
Furthermore, we have

VKex, Vx,ye K, V(x,y)=0
so that
VK,KyeX*,Vx,eK; VixgeK,, V(xy, x9) = V(Kq, Kg)
and similarly
VKeX¥,VxeK, W(x) = W(K).

The functionals W and V may thus be seen as defined on the set of attractors
% rather than on the set of populations belonging to attractors.

For the sake of completeness, we recall also the definition of the communi-
cation altitude, as well as the construction of the hierarchy of cycles. These
tools will only be used for Theorem 8.2. For the details, we refer the reader to
[26, 28] as well as to [8], Section 4, where they are used to compute spectral
estimates.

DEFINITION 12.4 ([28], Definition 2.15). The communication altitude
A(K,, K5) between two distinct attractors K, and K, is

A(Ky, Kp) = inf| max W(p,)+V(py, pu): pe D", pte Ky, plP € Ky,
For any K in %, we put A(K, K) = W(K).

DEFINITION 12.5. Let A € R. We define an equivalence relation #, on the
set
W,={Kex: W(K) <A}
by
VK,KyeW,, K, # Ky, & A(K,{, Ky) <A
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PROPOSITION 12.6 (Trouvé [28], Proposition 2.20). The set of cycles in
associated with the cost function V is

()= Wi/ %,
AeR™T

where W, /| @, is the quotient set of the equivalence classes of W, for the rela-
tion #).

We will now study the costs of the transitions between the attractors. As it
turns out, the costs of the bad transitions increase linearly with the population
size m, whereas the costs of the good transitions remain bounded (as functions
of m).

13. The costs of the bad transitions. We distinguish two kinds of bad
transitions: those which lose some peak fitness individuals and those which
decrease fitness.

LEMMA 13.1 (Loss of diversity in f*). Let K., K5 be two elements of %
such that [K ] C f*, [Ko] C f* G.e., Ky, Ky € %,). We have

V(K,, Ky) > { min(a, ¢8*) card([K ]\ [K}]),

a7+

2(1/1+1)

where §* = min{f(f*) — f(i): i & f*}.
Proor. Let K, K, be two attractors of %,. Put [K{]\ [Ks] = {ey,...,e,}

and let p be a path joining the attractors K; and K, that is, p! € K; and
p'?l € K,. We define for ¢ in {1---r},

t(v) = min{k: 0 <k < |p|, k=0 (mod3), e, & [p"]N[p***]n[p"*]};
that is, £(¢) is the last time equal to 0 mod 3 before the disappearance of e, in
path p.

We make the conventions p® = p! and p/?I*1 = plPl+2 = pl?l. The transition
mechanism implies the following fact: for each ¢ in {1, ..., r}, there exists A,
in {1,...,|p“"|} such that

Vh 1(h —L[pO) < h <1(h,|pV), pMer = p=e
Therefore, the r sets indexed by ¢ in {1, ..., r},
{t(0), 1) + 1, () + 2} x {h: 7(h, = 1, |B"V)) < b < 7(h,, |B"))},

have pairwise empty intersections, and it follows that

L

ro 1k, |POD-1

V=Y X [e(F0 )= Foih) +a(1-a(pi " pi )]

=1 h=r(h,~1,|p ")

Let « belong to {1, ..., r} and suppose

¢ (F(p') = F(P™) +a (1= 8(p V™, p%)) =0
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for some h satisfying 7(h,—1,|pV|) < h < 7(h,, | p “®)]). This implies p} """ =

pz( D e,. Suppose that

1 SO _r(h — 1,50 = |

such terms vanish. Necessarily, there exists an odd index 4 such that
7(h,— 1L, [p") < h < 7(h,, [B"V))

and
()41 t(1)+2 #H(1)+1 H()+2
by = Py =DPpy1 = Ppy1 =€

The crossover operator does not )affect the palr ( pt( )+2 Z(Jr)f 2) [by con-

dition (1)] and we have also p Thus the individual e,
is present in the populations pt(L)+1 t(}s” ‘( )+3 which contradicts the
definition of #(v).

We have proved that less than [m/(2(|p*¥| +1))] terms vanish in each
sum (1 <.¢<r):

7(h,|p)-1

Y [e(F ) = £l ™h) +a - pi)].

h=1(h,~1,|p ")

Moreover, we know that 7(p¥) = £(f*) (since e, € [p"“]) and each nonzero
term is necessarily greater than min(a, ¢8*), so that the above sum is greater
than

h, =t()y _ h -1, ~t(v) _\‘ Am J) : , 5*
(75D = 7, = 1159 = | gt | minca 07

m
=| ———+——— [ min(a, ¢8").
b(lpt(‘)l +1)J ( )

Yet p ) c f*, so that |p “Y)| < |f*|. Finally we obtain

V(p)= L J min(a, ¢6*)r

_m
2(1F/*1+1)
[where r = card([ K;]\[K2])] and taking the infimum over all paths p joining
the attractors K; and K, yields the desired inequality. O

To obtain a lower bound for the communication cost between two attractors,
we will study the possible trajectories of a pair of contiguous individuals within
a given path of populations joining the two attractors.

DEFINITION 13.2 (Admissible paths). Let g be a path in #(E). We say that
the pair (i, j,), 1 < k <|q|, of paths in E is admissible for q if:

D) Yke{l--|q}, i, eq" j,eqt
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(i) Y k, 1 <3k < |q|:
Either i3;,_o = i3, or a(igs_g, igp_1) > 0.
Either jg;,_o = J3p—1 or a(Jsp—2, Jp—1) > 0.
B((i3p-15 J3k-1)> (Z3p> J3r)) > 0.
fQsks1) = [(Uske1) = isp41 = Tkt

The set of all pairs of paths admissible for the path g is denoted by /(q).

We define the quantity p(K;, K,) for K; and K, in % to be the infimum

inf{ Yo [a(2=08(isn 2 isk1) — 8(Jzr_2> Jar_1))
1=3k<lq|

+c (2Rq3k) = [(sps1) — F(J3rs1)]
where q € [D], q' =[K,], ¢ =[K,],

(Ths Tr)1<k<iql € (Q), i1 = J1}-

We put
p=min{p(K;, Ky): Ky, Ky € #,p(Ky, K3) > 0}.
Since the quantities p(K;, K3) are finite sums involving terms of the form «a

or c(f(2) — f())) [where f(i) > f(j)], we have p > min(a, ¢§) > 0.

LEMMA 13.3. Let K, and K, belong to %. Suppose p(K{, Ky) = 0. Then
there exists a path q in the set [D] such that
¢' =[K1l, " =[K5] and [f(g") =f(g") = = [(d") < f(g").

That is, the sequence (ﬂq3k+1)), 1 <3%k+1 < |q|, is nondecreasing. In partic-
ular, we have f(K;) < f(K,).

COROLLARY 13.4. Let K, and K, be two attractors such that f(K;) >
f(K,). Then p(K,, K5) > p > min(a, ¢8) > 0.

PrROOF. Let K; and K, be as in the hypothesis of Lemma 13.3. By defini-
tion of p(K, K,), there exists a path ¢ in [D] and a pair (i;, j;), 1 < & <|q|,
of paths in E admissible for g such that ¢! = [K;], ¢!9 = [K,], i; = j; and

Y [a(2—6(isp_25isr-1) — (Jar_2- Jar-1))
1=<8k<|q|

+¢(2F(¢**) = f(izps1) — F(Jars1))] = 0.
This relation implies that, for each %k, 1 < 3% < |q|, we have
(10) igp_g =13p_1, J3k—2 = J3k-1- f(isps1) = F(Jars1) = F(@°F).

Since the pair of paths (i,, j;) is admissible for the path g, the last of the
above equalities implies that i3,,; = j3;,1 for each k£, 1 < 3%k < |q|. Notice
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also that i; = j;. Moreover, the crossover has no effect when two identical
individuals mate [condition (1)], so that

(11) Vk, 1<3k<]|ql, I3r = Jar = l3p-1 = J3r-1-
Therefore, we conclude from (10) and (11) that
VE 1=8k<lgl,  F(@™)=F(g") = f(¢*?)

and the sequence (£(¢%*1)), 1 < 3k + 1 < |q|, is nondecreasing. O

LEMMA 13.5 (Lower bound for the communication cost). Let K; and K,
belong to 2. We have the inequality

m A+3

V(K;, Ky) > <4 - 2) p(K1, Ky).

(We recall that A = max{|f,|: A € R}}.)

PROOF. Let p be a path in D joining the attractors K; and K, (i.e., p! € K,
and pl?! € K,). We make the convention p® = p!. Putting

~ m
T (T(|P3k 3, 1p%%)) — 1) = |p3k 3|\;2(|I/53k_3|‘|’1)J’ 1 <3k < |pl|,

we have

V= Y Sla(l-s(p2 pN) + e (Fo™) — F(o2)]

1<3k<|p| h=1

12) ! 3k-2  3k-1 3k-2  3k-1
> Y Y [a(2—8(poiiis Ponr1) — 8(Poniss Ponrs))
1<3k<|p| h=0

+c(2F(pPF) — F(pID) = F(PEEH)].

Let A belong to {1---A}. Let m = 2(h + 1)q + r be the Euclidean division of
m by 2(h +1). We have [since A > 1 and 0 < r < 2(h + 1)]

m r h
2}{2(}1 )J 2hq = 2h2(h+1) Arimn)

=

5( 2(h+1))>§—A—1

For each k, 1 < 3k < |p|, the very definition of A implies 1 < |p3*3| < A,
whence

—~ m
(B9, 50 = 2 - A
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It follows from (12) that

Vimz Y X = X 2

1<3k<|p| 0<h<m, 1<3k<|p| 1<2h+1<7(|p3k-3|,|p3%3|)
-y Y = ¥y ¥
1<3k<|p| 1<2h+1<m/2—-A 1<2h+1<m/2—A 1<3k<|p|

[the ellipses stand for the summand in the last sum of (12)]. Yet, for each A
such that 1 < 2h+1 < m/2— A, the pair of paths (p%,,,, p,.5), 1 <k <|p|, is
admissible for [ p] and satisfy also pj,.; = P3;.s; as a consequence, the sum

> a (2 - 6“’32&7 pgiﬁ) 5(1732@’ pgfﬁ%))
1<3k<|p|

+c(2F(p*) — F(p3rt)) — F(P3hTD))

is greater than p(K;, K,) and finally V(p) > (m/4 — (A + 8)/2) p(K1, K5).
Taking the infimum over all the paths joining K; and K, gives the inequality
of the lemma. O

In the same flavor as the two preceding lemmas, we have the following
proposition.

PROPOSITION 13.6. Let K, Ko be two elements of % such that f(K,) =
f(K53). Then

V(K,, K,;) > min(a, ca)minq m A+3>

Jcard([Kl] \[Ks)), — ——— ).

2(A + 1) 4 2

PrROOF. Let p be a path in E™ joining the attractors K; and K,. We con-
sider two cases.

Case 1. Suppose the sequence (F(p¥*1)), 1 < 3k +1 < |p|, is not nonde-
creasing; there exists an index 2,1 < 32+1 < | p|, such that f(K;) > f(p3h+1)
and an attractor K satisfying

V(p"H Ky) =0, f(Kg) = F(p).
Clearly V(p) > V(K;, K3) and Corollary 13.4 and Lemma 13.5 imply

m A+3

V(K,, K3) > min(a, ¢d) ( — 2).

Case 2. Suppose the sequence (f(p3**1)), 1 < 3k + 1 < |p|, is nondecreas-
ing. Then we have
VE 1<3k+1<|pl,  f(p™)=f(K)=[(Ks)=6.

We modify (just for the purpose of the proof) the function f in the following
way: for each i in E, if f(i) is strictly greater than 6, we set f(i)=0— 6. The
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attractors K; and K, then become elements of %, and we are in a situa-
tion analogous to Lemma 13.1. Moreover, the cost of the path p, that is, the
quantity

V)= ¥ [ad<p3“, P+ e Y (™) - f(pik“))},

1<3k<|p| h=1
decreases when evaluated with the new function f. Actually, for any indices
h and %k such that 1 < 3%k < |p|, 1 < A < m, the value f(pzkfl) remains
unchanged (since it was lower than or equal to 6) and the value f( p3*), which
was greater than or equal to 6, becomes equal to 6. [Since f(p®**1) = 6 and

[p?**1] c [p®*], the set [ p#] necessarily intersects the set f,.] Application of
Lemma 13.1 yields

. m X
V(p) > \\2(|f‘9|+1)J min(a, ¢8,) card([K;] \ [K]),

where 6, =min{6 — f(i): i € E, f(i) < 0}.
In both cases, the inequality of the lemma is satisfied. O

14. The costs of the good transitions. We distinguish also two kinds
of good transitions: those which create some new peak fitness individuals and
those which increase fitness.

We note by R the minimal number of transitions necessary to join two
arbitrary points of E through the kernel a. That is, R is the smallest integer
satisfying

Vi,jeE, 3r<R, 3e,...,e,;,1 € E suchthat e =i, e 1=17

Vke{l,...,r} aley, ep, 1) > 0.

LEMMA 14.1 (Increasing diversity in f*). Let
r+1 r
V* = max min{ar+c () —fler): e =i, e,y =1J, [] aler, epi1) > 0}.
i, jef* h=1 k=1

We have

V*<aR+c(R—-1)A<(a+cA)|E| <o
and

i V(K{,Ky,) < V*.
ob B g VRS
K #K* [K{] G [K,]

(We recall that K* is the unique attractor such that [K*] = f*.)

PrROOF. The inequalities V* < aR + ¢(R — 1)A < (a + cA)|E| < oo are
straightforward. Let K belong to %, \ { K*}. There exists a point i in [K4], a
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point jin f*\[K,] and a path e; — --- — e, in E joining ¢ and j such that
Vke{l,...,r}, a(ey, epy1) > 0, Vke{2,...,r}, e, &1,

r+1

ar+¢ Y [£(0)~ fle)] < V",

k=1
Let p be a path in E™ defined by the extremal conditions
p' e Ky with pl, =i and p"™' e K, where K, € %,, [K,] =[K;]U{j}.

(There exists a unique attractor K, satisfying [K,] =[K;]U{j}) and having
for intermediate populations

Vked{2,...,ry, Vhe{l,...,m -1}, pr=pi, pk =e,.

In this path, the first m — 1 components remain fixed and the last compo-
nent follows the path e; — --- — e, ;. Clearly [K{]¢[K;] and V(K,, Kj) <
V(p) < V* O

LEMMA 14.2 (Increasing fitness). Let

v+ = max min far +.¢ 3 £~ Flenl: e =i, fler) > £

ieE\f* 1

[T aler, €rs1) > 0}~

k=1
We have
Vt <aR+c¢(R—-1)A <(a+cA)E| < oo
and
Y R Rl VR =VE
f(K3)>f (K1)

PrROOF. The proof is similar to the proof of the preceding lemma. Let K
belong to % \ %, and let i belong to [ K]. By definition of V*, there exists a
path e; - -+ — e,y in E such that e; =i, f(e,;;) > f(i) and

Vike{l---r},  alep,ep1) >0, fleg) = f(i),
ar+cY f(i)—f(e) < V™.
k=1
There exists a subdivision by =1 < kg <--- < k,_y < kg =r+1of{1,...,r+1}
such that f(ey,) = f(es,) = - = f(ex, ,) = £(i) and

Vee{l,...,r+1}\{ke,.... k), flen) < FQ).

For each ¢,1 < 1 < s, let K, be the unique attractor such that [K,] = [K;] VU
{en,>---» ey }- Let K be the attractor {(e,,1,...,e,,1)} (i.e., K, contains only
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the population whose components are all equal to e, ;). Clearly, the attractor
K, satisfies f(K,) > f(K,).

Let p be a path in E™ such that, for each ¢ in {1---s}, p* belongs to K,
and

Vie{l,...,s—1}, Vkel{k +1,...,k —1}, pk =e,,
Vhe{l,...,m—1}, p,’i:pz‘.

(During the transition from K, to K, {, the first m — 1 components remain
fixed and the last component follows the mutation path e, -— ey, ) The
path p belongs to D™ and joins the attractors K; and K, and its cost is less
than V*. It follows that V(K,, K,) < V*. O

15. The asymptotic dynamics of the algorithm. In this section, we
put together the results of Sections 13 and 14 in order to prove Theorem 15.5,
which implies Theorem 8.1. We give an explicit upper bound on the critical
population size m* in Corollary 15.6. We end the section with Theorem 15.7,
which is Theorem 8.2 with an explicit upper bound on M*.

The basic tools used to study the asymptotic dynamics of the process are
the Freidlin—Wentzell graphs ([10], Chapter 6). For completeness, we recall
the basic definition.

DEFINITION 15.1 (X -graphs). Let H be a finite set and let X be a subset
of H. An X-graph is a graph consisting of arrows &y — hy (hy € H\ X, hy €
H, h{ # hy) satisfying:

(i) Every point of H \ X is the initial point of exactly one arrow.
(ii) There are no closed cycles in the graph.

Condition (ii) may be replaced by:

(ii") For any point h; of H \ X there exists a sequence of arrows leading
from A, to some point A, of X.

The set of X-graphs is denoted by G(X) and we will use the letter g to denote
a graph.

We will consider graphs on the set of attractors .%". For any graph g over
% , we define its cost by

Vi)=Y V(K Ky).

(K1—>Ky)eg

If X and Y are two subsets of %, we denote by G x(Y) the set of Y-graphs
over X UY. For instance, we have G(X) = G, (X) = G 5 x(X). We define

Wx(Y)= min VK,K_man
(V)= min P V(ELK)= min V(e)



810 R. CERF

We denote by G%(Y) the set of graphs in G x(Y') which realize this minimum.
If g is a graph over %, its restriction g|, to the level A is the graph

gn=1{(K,—~ Kjy) e g: K, €7}

THEOREM 15.2 (Sufficient condition to ensure W*={K*}). If the inequality
> W%(%ﬁ)"‘ W . (K™)
Aef(E\f*)
< X Wu(xmuxm)
(14) Aef(E\f*)

+ m1n< Ke?l\?K} W, ({K}yu.z,),

W, (%) — i V(K, K)
2 (A7) Kee K, FRYEF(K) ( )

is satisfied, then the minimum of the virtual energy corresponds to the ideal
attractor K*; that is, W* = {K*}, and therefore

VxeE™, lim lim P([X.]=f"| X} =x)=1.

l—00 n—>©

PrROOF. Let g be a graph over .#. We decompose the sum V(g) in the
following way:

V= Y Y VELK)= Y Y V(KK
Aef(E) Kiex, Aef(E) (Ki—Kjy)eg),
(K1—>Kj)eg
That is,

Vig)= ). V(gn-

Aef(E)
Suppose now that g is in G(K) for some K in %. Put 6 = f(K). Then g,
belongs to G . (%, U #,") whenever A # 6, whence
(15) V(gp) = W (A Uz,

We consider two cases, depending upon the value of 6.

Case 1. 6 = f(f*). In this case, g, belongs to G, ({K} U.%#_") so that
(16) V(g = W, ({K}U20).
Summing inequalities (15) and (16) yields
V(g)= X Wy (# ux)+ W, (Kyus).
Aef(E\f*)
Taking the minimum over all g in G(K), we have
W(EK)= > Wy (s V) + W (KYux),
Aef(E\f*)
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and taking again the minimum over all K in %, \ {K*}, we obtain
a7 min W(K) > W, (¥ Ux¥ )+ min W Kyux).
i W)= 5 WG 0+ min | Wa (KYU)

Case 2. 0 # f(f*). Let K’ be any element of %, U.%,". Then g, U{(K —
K')} is a graph belonging to G, (%} U #,"), whence
V(ge) = W, (g Ux) — V(K, K).
This inequality being valid for all K’ outside %}, we have

(18) V(810) 2 W (5 Uy") - V(K, K").

min
K', f(K")#f(K)
Summing inequalities (15) and (18) yields

V(g)z X Wy (#ux) -
AeF(E)

min V(K, K.
K, f(K")#f(K)

Taking the minimum over all g in G(K), we obtain

W(K)= 3 Wy (x vy -
ref(E)

V(K,K')

min
K', f(K")#f(K)
and taking again the minimum over all K in % \ %, = %, we have

(19) min W(K) > W, (% UX%") — max min V(K, K').
£ W) AE%E) (A OH) ~ mE e )

Combining inequalities (17) and (19), we see that

min W(K)> 35 W, (s ux)
7 Aef(B\F*)

i i w Kyuw~
(20) +m1n(K621\r{1K*} »{K}Ux,"),

W, (%) — i V(K,K' )
x(F) Keoe K fRV2F(K) ( )

We build now a graph g of G(K*) which describes the most desirable dy-
namics of our algorithm. For each A in f(E \ f*), we select a graph g, in the
set G%(.}i’f). Let gy(s+) be a graph of G7,, (K*). We define the graph g as the
union of the graphs (g))\cf(x):

(K1 — Ky)eg & Iref(E), (K1 — Kj) € 8y
Clearly g belongs to G(K*). Furthermore, we have by construction

V)= Y V(g = Y Wiu(#)+ W, (K.
Aef(E) Aef(E\f)
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It follows that

(21) WK< Y W (x)+ W, (K.
Aef(E\f*)

Putting together inequalities (20) and (21) and the hypothesis (14) of the the-
orem, we see finally that W* = {K*}. O

Of course, inequality (14) is strongly linked with the optimization problem;
the quantities involved there are built with fitness function f, mutation kernel
a, crossover kernel B, population size m and parameters a, c. However, this
inequality is of little practical interest; we will now derive stronger and simpler
conditions to ensure W* = { K*}.

COROLLARY 15.3. Suppose that

(22) W, (") < W, (% Ux") forall Xin f(E\ ),

2 K* P ) — 3 K K/

(23) W (K*) < W, (%) max K,’fg{l})géf(K)V( , K'),
24 W, (K* in W, ({K}u.x).

(24) »(K¥) < P 7 ({K}U %)

Then W* = {K*}.
PrROOF. Clearly, inequalities (22), (23) and (24) imply inequality (14). O

We will show that these inequalities hold when the population size m is
sufficiently large. First, the left-hand side of (23) and (24) is bounded.

PROPOSITION 15.4. The quantity W , (K*) is bounded as a function of m:

(25) sup W, (K*) < |#,| V* =27 V* < 0.

meN*

PrROOF. We build a graph g belonging to G . (K*) whose cost is less than
|#,| V*. For each K in %, \ {K*}, there exists by Lemma 14.1 an attractor
K’ belonging to %, such that [K]¢[K'] and V(K, K') < V*. We consider
successively each attractor K of #,\{ K*} and we add such an arrow (K — K’)
to the graph. The resulting graph g belongs to G, (K*) and its cost is less
than or equal to (|.%,| — 1) V*. O

THEOREM 15.5. Let m be an integer such that

(26) (—)> max min V(K{,K;)+ W, (K",
P Kiex~ Ky, f(Kq)=f(Ky) (K, Kp)+ W (K7

(27 Jmin(a, cd*) > W, (K™).

{ m
2(1/+1)
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For this integer, we have W* = {K*} and, in addition,

VxeE™ VyeK* lim lim P(X}=y| X)=2x)=

l—00 n—>00 |K*|

COROLLARY 15.6. There exists a critical population size m* such that the
conclusion of Theorem 15.5 holds for all m greater than m*. In addition, m*
is smaller than

|[F*|+1y7* *
max<2(A+3)+ ﬁ(zwmv* V), 20V + 1)>.
P

min(a, ¢6*)

We recall that A = max{|f,|: A € R}, & =min{f(f*)— f(i): i & [*}, pis
introduced after Definition 13.2, V* in Lemma 14.1 and V™' in Lemma 14.2.
Moreover, we have the crude estimates max(V*, V) < aR + ¢(R — 1)A and
p > min(a, cd).

PROOF. The corollary is a straightforward consequence of Theorem 15.5
together with inequalities (13) and (25). In particular, conditions (26) and (27)
of Theorem 15.5 are fulfilled as soon as

m A+3 .
_ [F| yr* +
P<4 5 )22 Vi 4+ VT,

{MHUJ min(a, c8%) > 21V, .

PROOF OF THEOREM 15.5. We prove that if the integer m satisfies inequal-
ities (26) and (27), then the set of inequalities (22), (23) and (24) hold.

Let A be in f(E \ f*) and let g be a graph belonging to G, (%, U H0).
This graph may contain a finite number of transitions from %, to %,": K; —
K!,..., K, — K. The first inequality (26) implies that for each K, 1 < h <
r, there exists K/, in %,  such that

m A+3
o(F 057 )= VLK)
and Lemma 13.5 yields V(K, K}) < V(K,, K},).

Let & be the graph obtained from g by replacing the r arrows K; —
K\,....K, > K, by K; > K/,..., K, - K/. The graph g is in the set
G, (#,7) and satisfies V(&) < V(g). This construction being valid for any
graph of G, (%, U .%,"), we have

W (") < W () Ux,)

for all A in f(E\ f*) and the first condition (22) is proved.
Concerning the second condition (23), we notice that any graph g belonging
to G (#,") contains at least an arrow starting from % and ending in J%".
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Thus
W () = min V(K. K)
K'¢x,
and Lemma 13.5 implies
m A+3
W% )=—+——-———
w0z (=250

which, together with (26), yields (23).

Similarly, any graph belonging to G ,, ({ K }U.#,") (where K # K*) contains
either a transition from K* to an attractor K of %, or to an attractor K of
J~, so that

Ir{m; W, ({K}VU.%#)>min{V(K*,K): Ke %, K# K"}
€Ay
K#K*

and Lemmas 13.1 and 13.5 show that this quantity is greater than

| e (52757 0)

so that inequalities (26) and (27) imply the third and last condition (24). Corol-
lary 15.3 implies that W* = { K*}. Thus the sequence of stationary measures
of (X!), I € N, concentrates on K* as [ goes to infinity (Proposition 12.3).

It remains now to prove that the limiting distribution is the uniform distri-
bution over K*. We could proceed as in [7] and use the representation formula
of the stationary measure involving Freidlin—-Wentzell graphs. However, this
result is rather a consequence of the following fact: the virtual energy pos-
sesses a unique minimum at K* and the unperturbed process (X¢°) admits a
unique invariant probability measure on K* (which is the uniform distribu-
tion over K*). We are thus in a situation analogous to Theorem 4.2 of [10],
Chapter 6. O

THEOREM 15.7 (Structure of the cycles). Let m be such that

(28) mian(A”jrl)J, (’Z’ - A'j’)) min(a, ¢8) > max(V+, V*),

Then each cycle over the set of attractors ¢ not containing the attractor K* is
reduced to one single attractor K.
PROOF. We define an order < on the set of attractors . by
VKI,KZEX, K1<K2
< (K1) <f(Kp) or f(Ky)=[f(Ky), [Ki]C[K,]
Notice that this order is an extension of the previous order <., that is,

VK, Kyex, K, <. Ky = K;{<K,.
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Furthermore, the set .% admits a greatest element which is precisely the
attractor K*:

VKex, K < K™

Now let 7 be a cycle over . not containing K*. Suppose 7 is not reduced to one
attractor. Let K be a maximal element of 7 for the order <. Then, for each K’ in
ar distinct from K, we have either f(K') < f(K)or f(K') = f(K), [K] ¢ [K'].
Proposition 13.6, Corollary 13.4 and Lemma 13.5 then imply

e 0 V) i comin | g | )

Let K’ be an element of 7 \ {K} such that V(K, K') is minimal. Then
A(K,K') = W(K)+ V(K, K’') (where A is the communication altitude),
whence

A(K, K') > W(K) + min(a, cs)minq m J m—m).

20+ 4 2
Yet Lemmas 14.1 and 14.2 show that there exists an attractor K” such that
K < K", K +# K", V(K,K") <max(V*t, V*),
whence

A(K,K") < W(K) +max(V*, V*).

Inequality (28) yields A(K, K”) < A(K, K’) so that necessarily the attractor
K’ belongs to the cycle 7r, but this contradicts the maximality of K in the
ordered set (7, <). O

APPENDIX

PrROOF OF PROPOSITION 8.3. To obtain an upper bound on H;, it is enough
to consider only the cycles over the set of attractors .%. We also know that the
attractors not containing K* are reduced to one attractor. Therefore

H, < in{V(K,K'): K' e %, K' # K}.
l_KeIJlil/é\l{XK*}mln{ ( ): K' € # K}

Lemmas 14.1 and 14.2 show that H; < max(V™, V*). Similarly, Proposi-
tion 1.33 of [26], Proposition 13.6 and Lemma 13.5 imply that H} is greater
than an affine increasing function of m. O

PROOF OF THEOREM 8.7. The definition of a,, is ([28], Definition 2.21)

. [ W(7) - W(K*)

aopt = min {_lq(ﬂ')

For a cycle 7 not containing K*, the quantity H () remains bounded whereas

the virtual energy W(w) is greater than an affine strictly increasing func-
tion of m [a graph belonging to G, (7) necessarily contains a bad transition].

: 7 is a cycle not containing K *}
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Finally, the virtual energy of the ideal attractor W(K*) is bounded as a func-
tion of m. O

PROOF OF PROPOSITION 9.1. Let f be constant over E \ {i} and such that
f(@@) > f(j) for all j # i. We denote by K(j) the attractor associated to
the point j [which consists simply of the uniform population (j,..., j)]. On
the one hand we have V(K(i), K(e)) = 0 since a massive crossover event
can transform the uniform population (i,..., ) into the uniform population
(e, ..., e). (Such an event does not involve the random perturbations and has a
null cost.) On the other hand, the algorithm cannot escape from K(e) without
performing at least one mutation [since B((e, e), (e, e)) = 1, the crossover has
no effect on (e, ..., e)l. Therefore, V(K (e), K) > 0 for any attractor K. Let
g be a graph in G(K (1)) realizing the value W(K (7)) (see the beginning of
Section 15). We remove the arrow starting from K(e) (which has a positive
cost) and we add the arrow K (i) — K(e) (of null cost). This way we obtain
a graph of G(K(e)) whose cost is strictly less than the cost of g. It follows
that W(K(e)) < W(K(i)). Proposition 12.3 implies that the sequence of the
stationary measures does not concentrate on K(i) when the perturbations
vanish. O
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