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ON INDEPENDENCE OF k-RECORD PROCESSES:
IGNATOV’S THEOREM REVISITED

BY YI-CHING YAO

Academia Sinica and Colorado State University

For an infinite sequence of independent and identically distributed
Ž .i.i.d. random variables, the k-record process consists of those terms that
are the kth largest at their appearance. Ignatov’s theorem states that the
k-record processes, k s 1, 2, . . . , are i.i.d. A new proof is given which is
based on a ‘‘continualization’’ argument. An advantage of this fairly
simple approach is that Ignatov’s theorem can be stated in a more general
form by allowing for different tiebreaking rules. In particular, three
tiebreakers are considered and shown to be related to Bernoulli, geometric
and Poisson distributions.

Ž .1. Introduction. For an infinite sequence X , X , . . . of independent1 2
Ž . Žand identically distributed i.i.d. random variables with common distribu-

.tion F , define the initial rank of the nth term X asn

n
X � 41 r s I X G X ,Ž . Ýn i n

is1

Ž .where I A denotes the indicator of event A. For each k s 1, 2, . . . , denote by
Ž . XY s Y , Y , . . . the collection of those X with r s k, which is calledk k , 1 k , 2 n n

Ž .the k-record process for the sequence X , X , . . . . Thus, Y is the jth X1 2 k , j n
with initial rank equaling k, and Y - Y - ??? . Collectively, these pro-k , 1 k , 2
cesses are referred to as partial record processes. Ignatov’s theorem states
that Y , Y , . . . are i.i.d.1 2

In the literature, several authors have taken different approaches to
Ž . Ž .proving this surprising result. Ignatov 1977 , Deheuvels 1983 and Stam

Ž .1985 considered only the case of continuous F and showed that Y , Y , . . .1 2
Ž .are i.i.d., each being a Poisson process. Goldie and Rogers 1984 used an

interesting martingale argument to establish the general case. Engelen,
Ž .Tommassen and Vervaat 1988 first proved the discrete case directly, and

wthen passed to the general case by a discretization device. See also Resnick
Ž . Ž . x1987 , Section 4.6, and Rogers 1989 for related discussions. Samuels’
Ž .1992 proof goes ‘‘backwards’’ by constructing the X recursively from then
k-record processes. While none of the proofs is very long, the ‘‘discretization’’
and ‘‘backward’’ approaches provide good insight into why the k-record
processes are i.i.d. Furthermore, although most of the proofs assume the

Received October 1996.
AMS 1991 subject classification. Primary 60G55.
Key words and phrases. Record values, Poisson process.

815



Y-C. YAO816

Ž Ž . .condition P F X s 1 s 0 to avoid the possibility that each k-record pro-1
Ž .cess has only finitely many terms, Samuels 1992 observed that Ignatov’s

Ž Ž . .theorem still holds with P F X s 1 ) 0.1
In this article, we present another simple proof based on a ‘‘continualiza-

tion’’ argument, which is in direct contrast to that of Engelen, Tommassen
Ž . Žand Vervaat 1988 . More precisely, by expanding each discrete point discon-
.tinuity of F into an interval, the k-record processes are shown to form a

Poisson random measure on the expanded space, from which Ignatov’s theo-
wrem follows easily. The ‘‘continualization’’ idea was also mentioned in the

Ž . Ž Ž . . xfinal remark of Samuels 1992 concerning the case P F X s 1 ) 0. An1
advantage of this fairly simple approach is that Ignatov’s theorem can be
stated in a more general form by allowing for different tiebreaking rules. In
particular, we consider three tiebreakers resulting in Bernoulli, geometric
and Poisson distributions at each discrete point.

2. Ignatov’s theorem with general tiebreaking rules. For a pair of
Ž .ties, the tiebreaking rule associated with 1 treats the ‘‘later’’ observation as

‘‘smaller’’. We will consider a general definition of initial rank r of X whichn n
satisfies the following two requirements:

2 r depends on X , . . . , X only through a and b ; andŽ . n 1 n n n

3 a q 1 F r F a q b ;Ž . n n n n

where

� 4 � 4a [ a i : X ) X , 1 F i F n and b [ a i : X s X , 1 F i F n .n i n n i n

Ž .Indeed, r is allowed to be a random variable whose conditional distribu-n
Ž .tion, given X , . . . , X , depends only on a and b . In addition to 1 , which is1 n n n

equivalent to rX s a q b , we will also discuss two other simple definitionsn n n
rY and rZ of initial rank, given byn n

4 rY s a q 1,Ž . n n

and

5 P rZ s a q i N X , . . . , X s 1rb for 1 F i F b .Ž . Ž .n n 1 n n n

For a pair of ties, the tiebreaking rule associated with rY treats the ‘‘later’’n
observation as ‘‘larger’’ while that associated with rZ is a randomized rule.n

It is instructive to think of the processes Y , Y , . . . collectively as a1 2
Ž . Ž .random point measure P on the space R = N; that is, Y s Y , Y , . . .k k , 1 k , 2

˜ ŽŽ . Ž . . Ž � 4.is identified with Y s Y , k , Y , k , . . . a point process on R = k ,k k , 1 k , 2
˜ ˜and P is induced by Y , Y , . . . . We will also identify the restricted random1 2

˜< � 4measure P with Y and Y . Denote by D s d , d , . . . the set of allR= �k4 k k 1 2
discontinuities of F. Let Dc [ R _ D, the complement of D.

Ž .THEOREM 1. For a general definition of initial rank r satisfying 2 andn
Ž . Ž Ž .3 , the partial record processes Y , Y , . . . for an i.i.d. sequence X , X , . . .1 2 1 2
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.with common distribution F induce a random measure P on R = N with the
following properties:

Ž . < c <i P , P , i s 1, 2, . . . are independent;D =N �d 4=Ni

Ž . < cii P is a Poisson process with mean measure given byD =N

� 4 cm dx = k s F dx r 1 y F x for x g D and k g N.Ž . Ž .Ž . Ž .
We first prove two lemmas.

LEMMA 1. For continuous F, P is a Poisson process on R = N with mean
Ž � 4. Ž . Ž Ž ..measure given by m dx = k s F dx r 1 y F x , for x g R and k g N.

PROOF. Using the memoryless property of the exponential distribution,
Ž .Deheuvels 1983 gave a very short proof that if F is exponential with mean

1, then Y , Y , . . . are i.i.d. Poisson processes with rate 1; that is, P is a1 2
Ž � 4. �Poisson process on R = N with mean measure given by m dx = k s I x )

40 dx. For a general continuous distribution F, using the monotone transfor-
Ž . Ž Ž .. Ž . Ž .mation g x s ylog 1 y F x , we have g X , g X , . . . i.i.d. exponential1 2

with common mean 1. The lemma follows easily. I

Ž .LEMMA 2. For an arbitrary sequence of real numbers x , x , . . . , let1 2
Ž . Ž X .y s y , y , . . . be the k-record sequence according to r . For givenk k , 1 k , 2 n

<y` F a - b F `, let y be a subsequence of y consisting of those yw a, b.k k k , j
<with a F y - b. Then from y , k s 1, 2, . . . , one can construct thew a, b.k , j k

Ž X X . Ž .sequence x , x , . . . which is derived from x , x , . . . with terms less than a1 2 1 2
removed and terms greater than or equal to b replaced by b; that is, xX si

� U 4 Umin x , b where x is the ith x G a.i i n

<PROOF. We first consider the case a s y` and b s `, so that y s y w a, b.k k
Ž . Ž X X .and x , x , . . . s x , x , . . . . To construct the x recursively from the y ,1 2 1 2 n k

note that x s y , The next term x must be one of the first available terms1 1, 1 2
in y , k s 1, 2; that is, x must be either y , or y . If y F x , thenk 2 2, 1 1, 2 2, 1 1

Žx s y ; otherwise x s y . If y F x and if x s y , then y must2 2, 1 2 1, 2 2, 1 1 2 1, 2 2, 1
be some x with m ) 2 whose initial rank would be at least 3, a contradic-m

. Ž .tion. In general, suppose x , . . . , x have been identified constructed . Then1 n
the next term x must be one of the first available terms in y , k snq1 k
1, . . . , n q 1. Denote these first available terms by z , k s 1, . . . , n q 1. Wek

n � 4say that z is a valid candidate for x if Ý I x G z q 1 s k. Thenk nq1 is1 i k
Žx must be that valid candidate with the largest index. If both z and znq1 k k 9

are valid candidates with k - k9 and if x s z , then z must be some xnq1 k k 9 m
.with m ) n q 1 whose initial rank would be at least k9 q 1 since z ) z .k k 9

This proves the lemma for the case a s y` and b s `.
< ŽTo deal with the general case, attach a ‘‘b’’ to y if it is a finitew a, b.k

. Ž X . X <sequence , resulting in a new sequence denoted y . Set y [ y if it isw a, b.k k k
Ž X X .an infinite sequence. Clearly, the k-record sequence for x , x , . . . is either1 2

X < Xy or y . It is not difficult to show that when applied to y , k s 1, 2, . . . ,w a, b.k k k
Ž X X . Ž .the above algorithm yields the sequence x , x , . . . , since i at the time1 2



Y-C. YAO818

X Ž X .when the ‘‘b’’ in y if y is a finite sequence becomes a valid candidate for1 1
X X Ž .x , say, we have x s b only if no other valid candidate is available, and iin n

X Ž X .the ‘‘b’’ in y if y is a finite sequence cannot be selected unless the ‘‘b’’ ink k
each yX, l s 1, . . . , k y 1 has already been selected. The proof is complete. Il

Note. In the above proof, the algorithm for constructing a sequence
Ž . Ž .x , x , . . . from its k-record sequences y is due to Samuels 1992 , who1 2 k
used this algorithm to show that an i.i.d. sequence can be constructed from its
partial record processes. His description of the algorithm is slightly different
Ž .but equivalent : among all the first available terms z in y , k s 1, . . . , n q 1k k
when x is to be determined, choose z for x withnq1 k nq1

n

� 4k s max k9: I x G z q 1 G k9 .Ý i k 9½ 5
is1

Our description used the fact that the y are assumed to be the k-recordk
Ž . Ž .sequences for some unknown unobserved sequence x , x , . . . .1 2

Ž .PROOF OF THEOREM 1. Consider an i.i.d. sequence U , U , . . . of1 2
Ž . Ž .uniform 0, 1 random variables, which is independent of X , X , . . . . Define1 2

XU [ X , 0 if X g DcŽ .n n n

[ X , U if X g D.Ž .n n n

U c � 4 w xThus, the X take values in the space S [ D = 0 j D = 0, 1 with com-n
mon continuous distribution G given by

� 4 cG dx = 0 s F dx for x g D ,Ž .Ž .
� 4 � 4G d = du s F d du for 0 - u - 1.Ž .i i

Ž .The ordering - on R induces an ordering -* on S: for a s a , a g S1 2
Ž .and b s b , b g S, we write a -* b if either a - b or a s b and1 2 1 1 1 1

U n � U U4a - b . Define r [ Ý I X F* X , and let Y* be the k-record process2 2 n is1 n i k
Ž U U . Ž U .for X , X , . . . according to r . Let P* be the random measure on S = N1 2 n

U U Žinduced by Y , Y , . . . . Since G is continuous and S can be suitably1 2
.embedded into R with the orderings -* and - preserved , it follows from

Lemma 1 that P* is a Poisson process with mean measure given by

F dxŽ .
c� 4 � 46 m* dx = 0 = k s , x g D ;Ž . Ž .Ž .

1 y F xŽ .
� 4G d = duŽ .i� 4 � 4m* d = du = k s , 0 - u - 1Ž .Ž .i UP d , u -* XŽ .Ž .i 1

7Ž .
� 4F d duis .� 41 y F d q 1 y u F dŽ . Ž .i i

Ž c � 4. Ž� 4 w x.Since D = 0 = N, d = 0, 1 = N, i s 1, 2, . . . are disjoint, it followsi
< c <that P* , P* , i s 1, 2, . . . are independent. Note thatŽD =�04.=N Ž�d 4= w0, 1x.=Ni
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with probability 1, no two X can take the same value in Dc, implying thatn
b s 1 if X g Dc. So, if X g Dc, then its initial rank is not affected by then n n
continualization device; that is,

n
U c� 4r s r s I X ) X q 1 s a q 1 if X g D .Ýn n i n n n

is1

< c < cHence the two random measures P and P* are the same if weD =N ŽD =�04.=N
c Ž c � 4. < cidentify the space D = N with D = 0 = N. It follows that P is aD =N

Ž � 4. Ž . ŽPoisson process with mean measure given by m dx = k s F dx r 1 y
Ž .. cF x for x g D and k g N.
The proof will be complete if we can show that for fixed i, and for each

<X s d , one can determine a and b from P* . Note thatŽ�d 4= w0, 1x.=Nn i n n i

< X
P* is identified with the collection of Y , k s 1, 2, . . . whereŽ�d 4= w0, 1x.=N ki

X U < U Ž .Y [ Y is the subsequence of Y with terms -* d , 0 and termswŽ d , 0., Žd , 1..k k k ii i

Ž . wG* d , 1 all removed. Here we have assumed that all U are strictly lessi n
U Ž . x Xthan 1 so that no X equals d , 1 . While it considers only the definition r ,n i n

Ž .Lemma 2 applies here in the absence of ties since G is continuous . Thus,
X Ž X X .from Y , k s 1, 2, . . . , one can construct the sequence X , X , . . . , which isk 1 2

Ž U U . Ž . Ž .derived from X , X , . . . with terms -* d , 0 removed and terms G* d , 11 2 i i
Ž . Ž .replaced by d , 1 . In this sequence, if the mth term is d , u with 0 F u - 1,i i

then it corresponds to an X equaling d for which a is the number of timesn i n
Ž .d , 1 appears before the mth term and b s m y a . The proof is complete.i n n

I

Ž . Ž .For any initial rank r satisfying 2 and 3 , Theorem 1 enables one ton
separate the continuous part and individual discrete points from one another.

<The remaining task is to find the distribution of P for each d g D. Let�d 4=N ii

Ž . �Ž .4Ž � 4. <n d [ P d , k s a j: Y s d . Then P can be identified with�d 4=Nk i i k , j i i

Ž Ž . Ž . . Ž . Ž .n d , n d , . . . . To determine the joint distribution of n d , n d , . . . , we1 i 2 i 1 i 2 i
need to pay attention only to the initial ranks of those X equal to d . So itn i

Ž .suffices to consider a 0]1 sequence B , B , . . . which is derived from1 2
Ž .X , X , . . . with terms - d removed, terms s d replaced by 0, and terms1 2 i i

Ž .greater than d replaced by 1. Clearly, the B are i.i.d. with P B s 0 s 1 yi k k
Ž . � 4 Ž Ž ..P B s 1 s p where p [ F d r 1 y F d y .k i i i i

Ž . X Ž .THEOREM 2. i If r s r for all n, then n d , k s 1, 2, . . . are i.i.d.n n k i
Ž .Bernoulli with

P n d s 1 s 1 y P n d s 0 s p .Ž . Ž .Ž . Ž .k i k i i

Ž . Y Ž . Ž .ii If r s r for all n and F d - 1, then n d , k s 1, 2, . . . are i.i.d.n n i k i
Ž .geometric with

P n d s m s pm 1 y p , m s 0, 1, . . . .Ž . Ž .Ž .k i i i

Ž . Y Ž . Ž .iii If r s r for all n and F d s 1, then with probability 1, n d s `,n n i 1 i
Ž .and n d s 0, k s 2, 3, . . . .k i
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Ž . Z Ž . Ž .iv If r s r for all n, then n d , k s 1, 2, . . . are i.i.d. Poisson withn n k i
Ž .common mean equal to y log 1 y p where y log 0 [ ` and a Poisson ran-i

dom variable with infinite mean is defined to be infinite with probability 1.

X Ž .PROOF. If r s r for all n, then n d equals 0 or 1 according as Bn n k i k
Ž . Y Ž .equals 1 or 0. This proves i . If r s r for all n, then n d equals then n k i

Ž . Ž .number of 0’s between the k y 1 th and kth 1 in the sequence B , B , . . . .1 2
Ž . Ž .If F d - 1, then p - 1 and clearly n d , k s 1, 2, . . . are i.i.d. geometric,i i k i

Ž . Ž . Žproving ii . If F d s 1, then p s 1 so that the B are all 0 with probabil-i i k
. Ž . Ž . Ž .ity 1 . Hence n d s ` and n d s 0, k s 2, 3, . . . , proving iii . The case of1 i k i

Z Ž .r s r for all n is equivalent to assigning an independent uniform 0, 1n n
random variable to each X s d and breaking the ties by comparing then i
values of the assigned variables. But this is exactly what the continualization

Ž .device did in the proof of Theorem 1. Therefore, n d may be identified withk i
ŽŽ� 4 w x. � 4.P* d = 0, 1 = k , k s 1, 2, . . . , which are i.i.d. Poisson with commoni

w Ž .xmean equal to see 7

� 4F d du1 1 i� 4 � 4m* d = du = k s s ylog 1 y p .Ž .Ž .Ž .H Hi i� 41 y F d q 1 y u F dŽ . Ž .0 0 i i

Ž .This proves iv . I

By Theorems 1 and 2, we have the following corollary.

Ž .COROLLARY 1. Let Y be the k-record process for the sequence X , X , . . .k 1 2
according to some definition of initial rank r .n

Ž . X Zi If either r s r for all n or r s r for all n, then Y , Y , . . . are i.i.d.n n n n 1 2
Ž . Y Ž Ž . .ii Assume that r s r for all n. If P F X s 1 s 0, then Y , Y , . . . aren n 1 1 2

Ž Ž . . <i.i.d. If P F X s 1 ) 0, then Y , Y , Y , . . . are i.i.d. where c isŽy`, c.1 1 2 3
Ž . Ž . <determined by F c y - 1 s F c and Y consists of those terms in YŽy`, c.1 1

that are less than c.

Ž .Part ii of Corollary 1 can be restated as follows:
Y <If r s r for all n, then Y , Y , Y , . . . are i.i.d. where sup Y [Žy`, sup Y .n n 1 2 3 11

sup Y .j 1, j

3. Some remarks.

Ž .REMARK 1. Let X , X , . . . be an exchangeable sequence and let Y be1 2 k
the k-record process according to some definition of initial rank r . By den
Finetti’s theorem and Corollary 1, if either r s rX for all n or r s rZ for alln n n n

Y <n, then Y , Y , . . . are exchangeable. If r s r for all n, then Y ,Žy`, sup Y .1 2 n n 1 1

Y , Y , . . . are exchangeable.2 3

Ž .REMARK 2. For an i.i.d. sequence X , X , . . . with common distribution1 2
Ž X .F, the 1-record process Y according to initial rank r is said to have the1 n
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Ž .record distribution associated with F. Samuels’ 1992 proof of Ignatov’s
theorem implies that if Y , k s 1, 2, . . . are i.i.d. processes each having thek
record distribution associated with some F, then there exists an i.i.d. se-

Ž .quence X , X , . . . with common distribution F such that Y is the k-record1 2 k
Ž .process for X , X , . . . , k s 1, 2, . . . . It would be of interest to characterize1 2

the class of sequences of random variables for which the k-record processes
are i.i.d. The following simple example shows that there exist non-i.i.d.
sequences for which the k-record processes are i.i.d.

Ž .Consider an i.i.d. sequence Z , Z , . . . with common continuous distribu-1 2
Ž . Ž .tion G satisfying G 0 s 0 and G 1 s 1. Let Y [ Z q j y 1, for k, j sk , j k
Ž .1, 2, . . . and let Y [ Y , Y , . . . , k s 1, 2, . . . . Clearly, the Y are i.i.d. Wek k , 1 k , 2 k

Ž .claim that there exists a sequence X , X , . . . for which Y is the k-record1 2 k
w Ž . xprocess, k s 1, 2, . . . . The sequence X , X , . . . is necessarily non-i.i.d. By1 2

Samuels’ algorithm applied to the Y , all we have to show is that all the Yk k , j
Ž .get used with probability 1 . The details are omitted.
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