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For evanescent Markov processes with a single transient communicat-
ing class, it is often of interest to examine the limiting probabilities that the
process resides in the various transient states, conditional on absorption
not having taken place. Such distributions are known as quasi-stationary
(or limiting-conditional) distributions. In this paper we consider the deter-
mination of the quasi-stationary distribution of a general level-independent
quasi-birth-and-death process (QBD). This distribution is shown to have a
form analogous to the matrix-geometric form possessed by the stationary
distribution of a positive recurrent QBD. We provide an algorithm for the
explicit computation of the quasi-stationary distribution.

1. Introduction. An elegant development in the literature on Markov
processes over the last three decades has been the discovery of fine struc-
ture, distinguishing types of transient class, within the classification of the
ergodic character of states. Consider the simplest case, that of a countable
discrete-time Markov chain with a single absorbing state 0 accessible from
an irreducible class ¢ = {1, 2,...} with n-step transition probabilities pE;L).
For i, j > 1, the power series Y 5. pﬁ?z" possess a common radius of con-
vergence « > 1, and the further classification follows the classical one, with
pgl)a" taking the place of pg-l). Thus the chain is classified as a-positive, a-null
or a-transient depending on the convergence or divergence of > -, pg}l)a” and

the behavior of lim sup pg-l)a”. For a detailed account see [21] and [19].

Allied with these developments was an emergent theory of a-invariant (or
quasi-stationary) distributions. These frequently give the limiting behavior
of the chain, conditional on absorption not yet having taken place. If this is
the case, the distribution is also termed a limiting-conditional distribution. In
stark contrast to the theory of irreducible chains, limiting-conditional distribu-
tions may exist when the process is a-transient. Indeed, a homogeneous birth-
and-death process is a-transient, yet there is always a limiting-conditional
distribution. For further detail see [2], [5] and [1].

In order to treat concrete examples, one has to find the value of the criti-
cal parameter, a, which is often difficult. For this reason there are very few
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substochastic chains for which a full analysis is available. Historical excep-
tions were finite-state processes, the Galton—Watson branching process, sim-
ple birth-and-death chains and the work of Kyprianou [8] on GI/M/1 queues
(see also [9] for an analysis under conditions of heavy traffic). Recently, a no-
table advance was made by Kijima [6] who gave an algebraic equation for
the convergence norm of PH/PH/1 queues (in fact, more generally, for pro-
cesses of M/G/1 and GI/M/1 type). In the queueing context considered in [6],
this equation can be solved by use of the Laplace—Stieltjes transform of the
interarrival and service time distributions. Kijima also gave the form of the
quasi-stationary distribution for the special cases of the M/PH/1 and PH/M/1
queues. This work was extended by Makimoto [13] who gave an explicit repre-
sentation of the quasi-stationary distribution for PH/PH/c queues in terms of
solutions to a matrix equation. Makimoto did not, however, discuss methods
of solution for this equation in the general case.

In this paper we extend the results of [6] and [13] by examining the
limiting-conditional behavior of general quasi-birth-and-death processes
(QBD’s), which includes PH/PH/c queues as a subclass. Neuts [16] introduced
QBD’s as a generalization of the ordinary birth-and-death process, replacing
each state by a “level” of states. Processes of this type have proved to be
a potent tool in modeling queueing and telecommunications systems. The
authors believe that they also have great potential for modeling a variety of
biological phenomena.

Our major result provides a method for the computation of the radius of
convergence « and the unique quasi-stationary distribution, which, under the
mild assumptions we shall make, admits a limiting-conditional interpretation.
Thus, at the same time, we provide a means of studying the long-term behav-
ior of a flexible class of stochastic models, as well as providing a significant
new class of processes for which a complete limiting-conditional analysis is
possible.

The paper is organized as follows. In Section 2 we briefly review some of
the basic results on limiting-conditional and quasi-stationary distributions.

In Section 3 we generalize the familiar geometric matrix R of a QBD to a
version R(B). The scalar B acts as a time-discounting factor, so that R(B) may
be interpreted as a matrix of expected rewards. The matrix R(B) is shown to
have basic properties similar to those of R; in particular, when its entries
are finite, it constitutes the minimal nonnegative solution to a certain matrix-
quadratic equation.

Section 4 addresses the question of finding the radius of convergence a.
The majority of the results in this section follow from [6]. Here, an algebraic
expression is given for the largest value of 8 for which R(B) has finite en-
tries. This value is @. A consequence is that the process is a-transient. This
constitutes a major difficulty for the conclusion that the process has a limiting-
conditional distribution, since classical theory deals only with the a-recurrent
case. However, recent results of Kesten [5] concerning a-transient processes
are applicable in our situation. It follows from the structure of the model that
the jumps are of bounded size and Kesten’s uniform irreducibility condition
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is satisfied. With the mild extra assumption of aperiodicity, the existence of a
limiting-conditional distribution follows from Kesten’s Theorem 2.

In Section 5 we give an explicit representation for the unique limiting-
conditional distribution. The form of this distribution extends that identified
by Makimoto [13] in the special case of the PH/PH/c queue.

Section 6 contains the major contribution of the paper. In this section we
develop an efficient numerical technique for computing the radius of conver-
gence, «, the matrix R(a) and, ultimately, the limiting-conditional distribu-
tion. Our solution incorporates the logarithmic reduction algorithm developed
by Latouche and Ramaswami [12] for QBD structures.

Finally, in Section 7 we report on numerical results for two examples.

2. Limiting-conditional distributions. Consider a discrete-time Markov
chain (X,; n € Z,) on a countable state space .” = {0, 1, ...} with transition
matrix P. Assume (X, ) has an absorbing state 0 and an irreducible and ape-
riodic communicating class ¢ = ./ \ {0}. Let P denote the restriction of P to
¢. We assume that the expected time until absorption is finite from one (and
then all) states i € ¢. This is an important assumption which we emphasize
for later reference.

ASSUMPTION 1. The expected time until absorption is finite from all states
le’d.

Let T denote the time until absorption of the process. A distribution, @ =
(m;, i € €), over ¢ is called a quasi-stationary distribution if, whenever
P(Xy=j)=mj, jet,

P(X,=jIT>n)=m;, je¢,
for all n > 1, so that, conditional on the chain being in ¢, the state probabilities

do not vary with time.
A nontrivial, nonnegative row vector m(3) that satisfies

(2.1) m(B) = Bm(B)P

is called a B-invariant measure. It is elementary to show that & is a quasi-
stationary distribution if and only if, for some B8 > 1, it is a normalized B-
invariant measure, in which case

Bl=Y Y mpji=1-) mp.
ie€ jet iet

Seneta and Vere-Jones [19] and Kesten [5] showed that under certain con-
ditions the quasi-stationary distribution = is also a limiting-conditional dis-
tribution in that

lim P(X, = j|Xg=i, T>n)=m,, JEe<€,

no matter what the initial state i, in which case 8 must be the convergence
radius associated with P.
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The convergence radius can be characterized as follows. For z € R, let N;;(z)
be defined by

(2.2) Ni(z)=) Znﬁi;’l)’
n=0

where ﬁun) is the (i, j)th entry of P". Theorem 6.1 of Seneta [18] states that,
for a given value of z, either N;(z2) is finite for all (i, j) or N;;(2) is infinite

for all (7, j). Thus we can define the convergence radius associated with P as
a = sup{z: N,;(2) is finite}.

There are two possibilities for the behavior of N;;(z) at z = a. In the case
where (2.2) diverges for z = «, P is said to be a-recurrent (either positive
or null), while in the case where (2.2) converges for z = a, P is said to be
a-transient (see [21]).

Henceforth, assume that (X)) is a quasi-birth-and-death process. This can
be regarded as a two-dimensional Markov chain with ¢ = {(%, j): £ >1, 1 <
J < M} and whose (stochastic) transition matrix is of the block-partitioned
form

1 0O 0 0 o0

Ae Ay A, 0 0
0 A, A, A, O
(2.3) P=1 90 o0 A, A A, - |
0 0 0 A, A

where A,, A; and A, are M x M matrices. Here the partitioning corresponds
to distinguishing subsets of states called levels. Level % is defined by I(k) =
{(k, j): 1 < j< M} for k> 1 and level 0 is the absorbing state 0. In (2.3), and
throughout, e denotes an M x 1 vector of 1’s.

We assume (X)) is irreducible on ¢ which implies the matrix A = A, +
A, + A, is irreducible and that A, and A, are nonzero. We emphasize these
properties for later reference.

PROPERTY 2. The matrix A = Ay + A; + A, is irreducible and A, and A,
are nonzero.

Consequently, the matrix

o)
=
&
>
>

is strictly substochastic.
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Equation (2.1), which defines the B-invariant measures, can now be written
as

(2.4)  my(B) = B[m;(B)A; +my(B)A,],

(2.5)  my(B) = B[m;,_1(B)A; + m(B)A; +my,(B)A,], k=2,

where the M-vector m,(B) is the restriction of m(B) to level k.

In the rest of this paper, we describe how to find a limiting-conditional dis-
tribution for (X,). We find the radius of convergence @ and then solve (2.1)
to determine an a-invariant measure. As a by-product, we show that (X ) is
a-transient. Theorem 2 of Kesten [5] is then invoked to show that, suitably
normalized, the a-invariant measure gives the limiting-conditional distribu-
tion for (X,).

The results of this paper can be applied to continuous-time QBD’s which
have generators of the form analogous to (2.3). This follows by applying our
discrete-time results to the uniformized chain.

A continuous-time Markov chain, with generator @ = [g;;], is uniform if ¢ =
sup; 3_; q;; < oo and then its uniformized chain is defined to be the discrete-
time Markov chain with transition probability matrix P, = @/r + I for some
r > q.If @ is the generator of a continuous-time QBD, then it must be uniform
on account of its homogeneity. The matrix P, is then the transition probability
matrix of a discrete-time QBD. Thus our discrete-time results can be applied
to the uniformized chain to find its limiting-conditional distribution. From [6],
page 425, it is known that the limiting-conditional distribution for a uniform
continuous-time Markov chain and its uniformized chain are identical. Thus
we shall have calculated the limiting-conditional distribution for the original
continuous-time QBD.

3. Absorbing QBD’s. In this section we extend the matrix-geometric the-
ory of QBD’s, as developed by Neuts [16], to absorbing QBD’s. We parallel
the development of Neuts and for most results the proofs are very similar.
Throughout, a matrix is termed finite if all its entries are finite.

Let N1(B) denote the M x M matrix whose (i, j)th entry is Ny ;1, ;(B)
as defined in (2.2). Define

(3.1) R(B) = BAyN11(B),

and T to be the first passage time (greater than zero) to level 1. The entry
R;;j(B) has the interpretation

T

(3.2) Ry(B) = E[Z BMIIX, = (2, /)Xo = (L, i)}
n=1

and so can be interpreted as the expected total discounted reward for visits to

state (2, j) before returning to level 1, conditional on starting in state (1, i)

with a discount factor 8. In the rest of this paper, we shall consider only the

situation where B is greater than or equal to 1.
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Since (X, ) is homogeneous on all levels greater than 1, the interpretation
given in (3.2) also holds when levels 1 and 2 are replaced by levels £ and £+1,
respectively.

LEMMA 1. The matrix R(B) is finite for all B < « and finite for B = «a if
and only if the process is a-transient.

PrOOF. By the definition of the convergence radius, the matrix N;(B) is
finite for B < @ and for B = « in the a-transient case, and infinite otherwise.
Therefore, (3.1) implies that so is the matrix R(B). O

THEOREM 2. (i) If there exists a finite nonnegative solution to
(3.3) S=p[A;+SA; + SZAZ],

then the matrix R(B) defined by (3.1) is finite.

(ii) If the matrix R(B) defined by (3.1) is finite, then it is the minimal non-
negative solution to (3.3). Here, and throughout, a minimal solution is element-
wise minimal.

PROOF. The proof follows analogously to that of Lemmas 1.2.2 and 1.2.3
in [16].
Define the sequence of matrices {RY(B3)} by

TAN

3.0 RS =E T FIX, = @ )11 = (1)
n=1

and the sequence of matrices {W¥ ()} by the recursion

(3.5) wo(B)=0

and

(3.6) WNH(B) = B[Ag + WY (B)A; + (WY (B))*A,].

As in the proof of Lemma 1.2.3 of [16]:

1. WN(B) < WN+1(p);
2. RY(B) < RN*(B);
3. RV (B) = WN(B).

To prove part (i), let S(B) be a finite nonnegative solution to (3.3). Then, by
induction, W¥(8) < S(B) for all n, and so W(8) = limy_, ., WY (B) exists and
W(B) < S(B). The matrix W(B) satisfies (3.3) and therefore is the minimal
nonnegative solution.

By inequality 8 above, limy_, ., RN (B) exists and is finite. Fatou’s lemma
then gives that R(B), as defined by (3.1), is also finite.

We now turn to the proof of part (ii). As in Lemmas 1.2.2 and 1.2.3 of [16],
we can show that if R(B) defined in (3.1) is finite, then it is a solution to (3.3).
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The assumption that R(B) is finite replaces Neuts’s assumption of positive
recurrence to ensure convergence of all the series involved.

Since R(B) is a finite nonnegative solution to (3.3), it can replace S(B)
in the argument to show that W(B) is the minimal nonnegative solution to
(3.3). Therefore, W(B) < R(B). By Lebesgue’s dominated convergence theo-
rem, R(B) = limy_ ., RY(B), and so, by inequality 3, R(8) < W(B). Thus
R(B) = W(B) and is the minimal nonnegative solution to (3.3). O

Theorem 2(i) shows that if there exists a finite nonnegative solution to (3.3),
then R(B) defined in (3.1) is finite. Further, Theorem 2(ii) shows that R(B) is
the minimal nonnegative solution to (3.3) whenever R(p) is finite.

Finally, we prove a simple result that will be useful in Sections 4 and 5.

LEMMA 3. For all B such that R(B) is finite, the left kernel of A, is exactly
the left kernel of R(PB).

PrOOF. Consider B such that R(B) is finite. If x is in the left kernel of
R(B), then, by multiplying (3.3) by x, it is clear that x must also be in the left
kernel of A,. The fact that the left kernel of A, is a subset of the left kernel
of R(B) follows from (3.1). O

4. Determination of the convergence radius. In this section we shall
determine the largest value B* of B for which (3.3) has a finite nonnegative
solution. This will then be shown to be the convergence radius, a. The devel-
opment in this section parallels that of Kijima ([6], Section 2), but is in terms
of the matrix R(B) rather than the matrix ®(z) of Kijima’s equation (2.7).
As we shall show in Section 5, the quasi-stationary distribution depends on
R(a). Our development leads directly to, and illuminates, the computational
algorithm of Section 6.

First let us consider the solution of (3.3). For 0 < z < 1, let x(2z) be the
maximal eigenvalue of the matrix

A(Z) = AO =+ ZA]_ =+ 22A2

and let u(z) and v(z) be the corresponding left and right eigenvectors nor-
malized so that

(4.1) u(z)e =1 =u(z)v(z2).

As is observed in [16], page 15, x(z) is analytic on (0, 1), continuous at
z = 1 and may be defined by continuity at z = 0. Throughout this paper we
shall be making use of Assumption 1 and Property 2. By Lemma 1.3.3 and
Corollary 1.3.2 of [16], we have the following property.

PROPERTY 3a.
X (17)>1.

By further applying Corollary 1.3.3 and the last sentence of Lemma 1.3.4
of [16], we get the following property.
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PROPERTY 3b. There exists z, € (0, 1) such that
(4.2) zx'(2) < x(z) for all z € (0, z;).

In the positive recurrent case, it is of interest to study the equation
(4.3) z = x(2).

Since A(1) is stochastic, this equation has one solution at z = 1. Because of
Property 3 there is a second solution z = 1 € (0, 1) (see Lemma 1.3.4 of [16]).
In the transient case we are interested in the equation

z
(4.4) — = x(2).

3 (2)
For all 0 < z < 7, it follows from Property 3 that y(z) > z and so x(z) > z/B.
Therefore, any set of solutions to (4.4) in (0, 1] must be bounded away from 0.
Thus, if there exists a solution to (4.4) in (0, 1], then there exists a minimal
nonnegative solution in (0, 1].

THEOREM 4. (1) If B is such that (4.4) has a solution in (0, 1], then there
exists a finite nonnegative solution to (3.3) and so R(B) is finite.

(ii) If R(B) is finite, then the maximal eigenvalue n(B) of R(B) is positive.
It is the minimal nonnegative solution in (0, 1] to (4.4) and the corresponding
left eigenvector is u(n(B)), which may be chosen to be positive.

PROOF. (i) Consider the sequences of matrices { RV (8)} and {W¥(B)} de-
fined in the proof of Theorem 2. In that proof, under the assumption that there
exists a finite nonnegative solution S(B3) to (3.3), we showed that {W¥(8)}
[and therefore {RY(B)}] lies in the compact space {X: X < S(B8)}. In the
hypothesis of this part of this theorem, we have not assumed the existence of
the matrix S(B8) and so we take a different approach.

If B is such that (4.4) has a solution in (0, 1], then let n° be the minimal
such solution and u® the corresponding left eigenvector of A(7°). By induction,
it is easy to show that the sequence {W¥(B3)} [and therefore, by inequality 3,
{RN(B)}] satisfies

(4.5) u’RY(B) < n°u’.

The space of nonnegative matrices satisfying (4.5) is compact and so the se-
quence {R"(B)} converges and, by a similar argument to that in the proof of
Theorem 2(ii), R(B) is the minimal nonnegative solution to (3.3).

(ii) For B8 > 1, R(B) = R(1) so that n(B) is greater than or equal to the
maximal eigenvalue of R(1) which is strictly positive (see [16], Lemma 1.2.4).

This proof now follows similar lines to that of Lemma 1.3.2 of [16]. Let s be
a nonnegative left eigenvector of R(B) corresponding to the maximal eigen-
value n(B). From (3.3) s is also a left eigenvector of the irreducible matrix
A(n(B)) with eigenvalue 1(B)/B. Since u(n(B)) is positive and s is nonneg-
ative, it follows from [3], pages 63—64, that s = u(n(B)) and 7n(B) satisfies
(4.4).
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Since (4.4) has a solution, from the proof of part (i) we have that {R"V(B)}
satisfies (4.5) and therefore

(4.6) u’R(B) < n’u’.
Now Theorem 1.6 of [18] implies that 0 < n(8) < 7° and so n(B8) = n°. O

THEOREM 5. For a process X, such that Assumption 1 and Property 2 hold,
the maximal value of B for which (4.4) has a solution m € (0, 1] is given by

4.7) B* = [u(z0)[ Ay + 220 A5]v(20)]
where z, is the minimal solution to
(4.8) X' (2)z = x(2)

in the interval (0, 1), and u(z,) and v(z,) are the Perron-Frobenius left and
right eigenvectors of A(z,), respectively.

PrOOF. Kingman’s theorem [7] shows that log y(e ) is a convex function
of s on the interval [0, co). This result is a key ingredient in the proof and so we
shall argue in terms of the function y(e™*), s € [0, c0). With this substitution,
(4.4) becomes

(4.9) x(e®)=e"/B.

We have already seen that when B8 = 1 there are two distinct solutions: one
at s = 0 and the other at s = —log 1. Kingman’s theorem then shows that the
graphs of x(e™®*) and e~/ are as indicated in Figure 1. In particular, for g
sufficiently large there are no solutions to (4.9).

Consider (4.8) which can be rewritten as

<dx(2) )es = x(e™®).

(4.10) s

z=e*

Clearly, this is satisfied if the ratio of the left-hand side to the right-hand side
is 1. Property 3a ensures that this ratio is greater than 1 in the limit as s
approaches 0 from above, and Property 3b ensures that this ratio is less than
1 as s approaches co. The convexity of log y(e™*) implies that this ratio is
decreasing. Therefore, there must exist a solution s, to (4.10) and accordingly
a solution z, = exp(—sy) to (4.8).

Define B* by

1
(4.11) X (20) = &

and so (4.8) and (4.10) are equivalent to

(4.12) % = x(20).
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Fi1G. 1. Graph of x(e”®) and e */B, on a log scale, against s.

Equation (4.12) says that (4.4) is satisfied with 8 = B8*, and (4.11) says that
the slope of the tangent to y(z) at z = z, is 1/8*. Therefore, 8* is the maximal
value of B for which (4.4) has a solution.

Returning to (4.10), Kingman’s theorem shows only that, as a function of
z, the ratio of the left-hand side to the right-hand side is increasing, not nec-
essarily strictly increasing. Therefore, we cannot exclude the possibility that
this ratio is 1 on an entire interval [z, z25]. However, if this is the case, it is
easy to see that y(z) is of the form Cz on this interval, for some fixed value C.
By (4.12), the value of C must be 1/8*. Thus B8* is uniquely determined even
in this case.

For any B for which (4.4) has a solution, Theorem 4 shows that the maximal
eigenvalue of the matrix R(B) is given by the minimal such solution. When
B = B*, the minimal solution z, to (4.4) is also the minimal solution to (4.8).
Thus the maximal eigenvalue of R(B*) is given by z,.

To conclude the proof, it suffices to observe that (4.7) follows by substitution
of (see [16], Lemma 1.3.3)

(4.13) X'(2) =u(2)[A] +22A5]v(2)
into (4.11). O

THEOREM 6. The convergence radius « associated with (X,,) is equal to B*
defined in (4.7).
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PrROOF. Lemma 1 shows that if B8 < «, then R(B) is finite. Therefore,
Theorem 4(ii) implies that (4.4) has a solution and so 8 < B*. This proves that
a < B*. Anderson [1], Lemma 5.2.4(3), states that if there exists a nonnegative
nonzero vector m such that Bmﬁ < m for some B > 0, then B8 < a. Therefore,
if we can find such a vector for 8 = B8*, the proof is concluded.

Theorem 4(i) proves that the matrix R(B8*) exists and so satisfies (3.3) with
B = B*. Choose x to be strictly positive and not in the left kernel of A,. Then
consider the vector m; = xR(B*)/, j > 1, which is nonnegative and nonzero
by Lemma 3. From (3.3) it follows that {mj} satisfies (2.5) (with B8 = B%).
However, {m} does not satisfy (2.4) (with B = B7); in fact, the right-hand
side is m; — B*xA,. Since A, is a nonnegative matrix and x is a positive
vector not in the left kernel of A, it follows that this is strictly less than m;.
Hence we have that B*mﬁ <m. O

REMARK 1. In Kijima [6] the fact that B* < « is proved using the relation
corresponding to (3.1). Our proof of this fact has the feature of exhibiting a
class of (matrix-geometric) B-subinvariant measures for all 8 < a.

Since we have shown that 8* = «, we shall henceforth use « to denote the
quantity given by (4.7).

COROLLARY 7. (X,) is a-transient.

PROOF. In the proof of Theorem 6, we observed that R(«) is finite. Lemma
1 then shows that (X)) is a-transient. O

5. Determination of the limiting-conditional distribution. In this
section we shall solve (2.1) for m(«). Application of Theorem 2 from [5] de-
termines the limiting-conditional distribution to be the normalized form of
m(a).

LEMMA 8. Let a = u(zy) and b = u/(zy). Then the 1 x M vector b is the
unique solution to

(5.1) b[zﬁAZ + zo(A1 _ 11) 4 Ao} _ —a[onAz + (A1 _ 11)]
« o
subject to be = 0.

PrROOF. Consider the equation
x(@)u(z) = u(2)[ A, + 24, + 24,

that follows from the definition of y(z) and u(z) as the eigenvalue—eigenvector
pair of A(z). Neuts ([16], page 17), shows that y(-) and u(-) are differentiable
functions of z. Hence (5.1) can be derived by differentiating the above equation
with respect to z and evaluating at z = z;, using (4.11) and (4.12). Thus u'(z,)
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must exist and satisfy (5.1). By (4.1) the vector u(z) is normalized so that
u(z)e = 1 and hence be = 0.

To show that there is a unique solution to (5.1) subject to be = 0, observe
that any solution to (5.1) must be of the form b = b, + ¢, where b, is a par-
ticular solution to (5.1) and ¢ satisfies ¢A(z,) = zy¢/a. The Perron—Frobenius
theorem shows that the maximal eigenvalue of the irreducible matrix A(z)
is simple and so ¢ must be some multiple of u(z,). Since u(z;) is normalized
according to (4.1), the scalar multiple is uniquely defined by the condition
be =0. O

THEOREM 9. For a process (X,) such that Assumption 1 and Property 2
hold, the limiting-conditional distribution is given by ¢ 'm (@), where

(5.2) m () = 2Jb + jz} 'a —bR(a)’
and
_ 1 -1

REMARK 2. Makimoto [13] derived the form of the limiting-conditional dis-
tribution for the PH/PH/c queue. In the PH/PH/1 case, this form is identical
to (5.2).

PrOOF. (i) We first show that

zlb + jzj_la
(5.4) n;(a)=y( "° °
J(a) Y( R(a)’
satisfies (2.4) and (2.5), where y is any 1 x (M + 1) vector that satisfies
b
(5.5) y( 7 )AO =0.

Substitution of (5.4) into the right-hand side of (2.4), with 8 = «, gives

b 2h
N T

ay blzoA; + 25 Az] +a[A; +22,A,]
R(a)A; + R(a)?A,

< [zob +a] — abA, )
Y\ R(a) - a4,

. Zob +a
~ Y\ R

=ny(a),
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by the definition of a and (5.1), (3.3) and (5.5). Similarly, substitution of (5.4)
into the right-hand side of (2.5) when B = « gives, for £ > 2,

a[ny,_1(@)Ag+mn,()A; +1n, 4(a)A,]

—ay 2 b+ (k- 1)zk2a Ay z8b + kzila A
R(a)*! ' Rt )™

N 28 4+ (R +1)zka A,
R(a)kJrl

kztla + zkb
"\ R
= nk(a).
(ii) Now we prove that the family {n;(«a)}, defined in (5.4) and (5.5), is
equivalent (up to a scale factor) to {m;(a)} as given in (5.2).

Let the 1 x (M +1) vector y be written as (y,,y’), where y’ is a 1 x M vector.
Equation (5.5) then states that yyb +y’ is in the left kernel of the matrix A,.
If A, has full rank, then y’ = —y,b and n;(@) trivially has the form (5.2).
Therefore, assume that A, has rank £ < M. Let q;,qy, ..., q; be a basis for
the left kernel of A,. By Lemma 3 it follows that

(5.6) q;R(e)=0 foralli=1,2,... k.

Equation (5.5) can now be rewritten as

k

(5.7) yob+y =) wq;
i=1

for some w; e R,i=1,2,..., k.
Consider n («) as defined in (5.4):

n(2)=y zéb + jz{);la
! R(a)/

= yo(2{b + jzj 'a) + y' R(a)’
. . k )
= yo(z3b + jzé_la) + (Z w,q; — yob) R(a)’
i=1

= yo(20b + jz 'a) — yobR(a)’

= yOmj(a)

by (5.7) and (5.6).
(iii) Next we show that the family {m ;(«)}, defined in (5.2), is nonnegative.
By differentiating (4.4) with respect to 8, we can show that n'(B8) > 0 for
all B < a. Now consider, for 8 < a, the equation

(5.8) n(Bya(n(B)) = u(n(B))R(B)
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that follows from the fact that 7(B) and u(n(B)) are the eigenvalue—
eigenvector pair of R() by Lemma 1 and Theorem 4(ii). Differentiating with
respect to B gives

5.9 u(n(B) + (B (n(B)) — w(n(B)RB) = u(n(B)) = L)

n'(B)

The vector u(n(B)) is positive and, by definition, R(f) is an increasing func-
tion. Therefore, the right-hand side of (5.9) is nonnegative for all 8 < a and
hence also in the limit as B 1 a. Observe that n(a) = z; and from Lemma 8
that u(z,) = a and u/(z,) = b. Therefore, the left-hand side of (5.9) is equal to
a+2zob—bR(a) and so m, () is nonnegative. Finally, m ;(«) can be rewritten
as

(5.10) m;(a) =m;_;(0)R(a) + 2} 'my(a).

Hence, by induction, {m(a)} is nonnegative since R(«) is a nonnegative
matrix.

(iv) Next we show that the sum ¢ = "5, m ;(a)e is finite.

This follows simply by summing (5.2) to yield

I _ a bz, B -
¢= jZ::lmj(a)e - <(1 St Ty~ PRE@U ~ R() 1>e.

Since a and b are normalized according to ae = 1 and be = 0, ¢ is given
by (5.3). It is finite since, by Theorem 5, z, [the spectral radius of R(«)] is
strictly less than 1, so (I — R())~! is finite.

(v) We have shown above that ¢c~'m(«) is a nonnegative solution to (2.1)
summing to 1. To show that it is the limiting-conditional distribution, we
invoke Theorem 2 of Kesten [5].

We have assumed throughout that (X)) is irreducible and aperiodic. As the
QBD is spatially homogeneous in its levels and the matrices Ay, A; and A,
are finite dimensional, it follows that (X)) is uniformly irreducible and uni-
formly aperiodic, in the sense of Kesten [5], and that the jumps are of bounded
size. Further, we have assumed that P is stochastic and that absorption is cer-
tain, which imply conditions (1.10) and (1.11) of [5]. Therefore, (1.13) of [5] is
satisfied (in particular with 2 =i and m = 0) and so the limiting-conditional
distribution of (X,) is ¢ 'm(«). O

6. Computation of the limiting-conditional distribution. In this sec-
tion we shall discuss the numerical computation of the limiting-conditional
distribution ¢ 'm(«). The steps involved are:

(i) Solution of (4.7) and (4.8) to find «, z, and a.
(i1) Solution of (5.1) to find b.
(ii1) Solution of (3.3) to find R(«).
(iv) Computation of ¢ from (5.3).
(v) Calculation of the limiting-conditional distribution from (5.2) or the
recursion (5.10).
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Below we discuss these steps in more detail.

(i) The minimal z, where (4.8) is satisfied can be found using a simple
bisection search together with (4.13), testing whether the left-hand side of (4.8)
is less than the right-hand side or vice versa. If x'(z)z > x(z), then z > z, and
if x¥'(2)z < x(z), then z < z,. A similar technique for a related problem [i.e.,
solving (4.3)] is mentioned in [16], page 40. The value of « can be calculated
from (4.7) by first computing a = u(z;) and v(z).

Of course, the bisection search can find z, and hence a« = x/(zy) only to
within some arbitrary accuracy. When the bisection search terminates, the
estimate & of @ should be taken so that & < «; otherwise, R(a) will not be finite.
In our calculations we chose @ so that 0 < a — & < 1071%. The implications
which flow from the fact that @ is not exactly equal to « are quite involved and
make for an interesting topic for further research. For notational convenience,
in the rest of this paper we will suppress the distinction between « and a.

(i) Since x(zy) = 2zp/a is the maximal eigenvalue of A(z,) and A(z,) is
irreducible, the matrix on the left-hand side of (5.1) has rank M — 1. If we
replace the last column of this matrix by the column e and the last entry
of the vector on the right-hand side by 0, then, by the uniqueness part of
Lemma 8, the resulting equation has a unique solution which is the required
vector b.

(iii) It might be expected that R(«) could be calculated using an iterative
scheme similar to those traditionally used in the evaluation of R(1). An ex-
ample of such a scheme is the recursion (3.6). When this is done, W¥(«) has
a probabilistic interpretation as the expected total discounted reward mea-
sured on sample paths, the maximum length of which increases with N (for
more details, see [11]). However, the fact that we are trying to calculate R(B)
precisely at the supremum of the values of 8 for which it is finite greatly in-
creases the influence of very long sample paths. Traditional algorithms thus
converge extremely slowly.

In order to take long paths into account, we use a generalization of the log-
arithmic reduction algorithm of Latouche and Ramaswami [12], Theorem 6.1,
for which the maximum length of the sample paths taken into account at step
n very rapidly increases with n. We present this in the following theorem.

THEOREM 10. The matrix R(B) for B < a is given by
E (T g1
(6.1) R(B)= )_ B, ( [1B; )
k=0 r=0

where Bg,}f) is defined for m = 0,2 as

BY = BA, (I - BA)™Y,

By Y = (BW)(1-BPBY - BB, k>o0.
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PrOOF. Latouche and Ramaswami [12] proved the result for the case B =1.
Define, for m = 0, 2,

(6.2) BY = Am< 3 A{‘),
n=0
63 B - (gs;;))z( S BMED g;k)ggknn), k>0,
n=0

Theorem 6.1 of [12] proves that

00 k-1
(6.4) R1)=Y Bg’”( I B;k“)).

k=0 r=0

This theorem may be interpreted as an algebraic statement: if R(1) is finite,
then all the relevant series converge and R(1) is given by (6.4).
The same argument with A,, A; and A, replaced by BA,, BA; and BA,
shows that if R(B) is finite, then all relevant series converge and (6.1) holds.
Since (X,) has been shown to be a-transient in Corollary 7, R(B) is finite
for all B < @, and so the proof is complete. O

To use (6.1) to evaluate R(«), it is necessary to truncate the infinite sum.
A simple way to decide where to truncate is to define R(¥)(a) as the sum of
the first K terms and then to truncate at K = K*, where K* is the smallest
value of K such that |[aR®)(a) — zja||, < & for some tolerance &.

For given B and %, the matrices ng) and B;k) have the following probabilis-
tic interpretation. Define the first-passage time (greater than 0) to level 1+ 2%
to be 7, for £ > 0, and let T be the first-passage time (greater than 0) to level
1. Then

TATh
(B("),; = E[ > BM[X, = (1+2% )]IX, = (L, i)]

n=ry

and

TATr
k . .
(B), =5 X 810X, = 1+ 28 )Xo = 4240, )|.

n=ry,
After some tedious manipulation, it can be shown that the (i, j)th entry of
the kth term of the sum in (6.1) has the interpretation

TATr
B[ XA, = @ )%= (1)

n=ry,
That is, only the trajectories starting from (1, :) that visit (2, j) and reach
the level 1 4+ 2* but do not go beyond the level 2%*! are included. Hence as %
tends to oo, the lengths of the sample paths whose influence is included in the
sum grow at an exponential rate. Latouche and Ramaswami [12] noted that
because of this structure, the probabilities of the sample paths will tend to 0
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very quickly as k tends to co. Hence, in the special case where 8 = 1, only a
small value of K* will usually be necessary. Typically, K* of the order of 5 or
6 will suffice. In the case where 8 > 1, as mentioned above, the weighting B"
tends to oo so that very long sample paths can make significant contributions.
Thus the sum in (6.1) converges more slowly when 8 = « than when 8 = 1.
We have found that K* is usually between 30 and 50, when « is taken within
10715 of its true value. Note that if K* = 30, then we have taken into account
the influence of sample paths that reach as high as level 23° before returning
to level 1.

REMARK 3. From our experlence in calculating R(«), we found that as &
gets large, the matrix B ) becomes 0 to machine accuracy and the matrix
) becomes infinite to machme accuracy. Hence, to calculate the product

B(k)(]'[ B(k - r)) for large values of &, it is necessary to use an exponential

scaling techmque A simple way to do this is to erte all matrices B( ) in the
form B -~ 10%, Where the max1mum element of B " is between 1 and 10,
and then the product B B is given by B B x 10i+5)).

(iv) It is now a very simple matter to compute ¢ from (5.3).

(v) The limiting-conditional distribution {¢"'m(e)} can now be com-
puted from (5.2) on division by ¢ or via the recursion (5.10) after determining
¢ lm, () from (5.2).

7. Numerical examples. In this section we present two numerical ex-
amples. The first example considers a continuous-time PH/PH/1 queue, while
the second example considers a model of an animal population.

Ramaswami and Latouche [17] modeled a PH/PH/1 queue in continuous
time where the arrival time distribution was a five-stage Erlang distribu-
tion and the service time distribution was the mixture 0.7E,(6.67778512) +
0.3E5(1.03323700), where E;(A) represents an i-stage Erlang distribution
with parameter A. If we uniformize this continuous-time process, then we
obtain a discrete-time analogue of the PH/PH/1 queue with Ay, A; and A,
given by

Ay = (T8 ® I,
A12130+T®16+15®S,
Ay =159 (S"n).

In the above, ® is the Kronecker product, I, is the n x n identity matrix, the
vectors &, n, T® and S° are given by

£=(1,0,0,0,0),
n=(0.7,0,0,0,0.3,0),
T = (0,0,0,0, w/AY,
S° = (0,0, 0, A;/A, 0, Ag/AY
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and the matrices 7" and S are given by
EE 9 0 0

A A
O_TM%OO
T=00_T”“%0,
000%“%
0000%’*
A A
TIXIOOOO
“A A
oTleooo
“A A
s=0 Al_{oo’
oooTloo
“dy A
ooooTZX2
o o o o o =X

A
with A = A+ A5+, Ay = 6.67778512 and A, = 1.03323700. It is easy to show
that the matrix A = Ay + A; + A, is stochastic and irreducible.

The traffic intensity p is given by p = wA e/mwAye, where m satisfies wA =
7. By varying the value of w, we can consider a range of values of p. In our
computations we chose K* to be the smallest value of K such that ||aR")(a)—
20a|| <1077, In Figure 2 we present a graph of a versus p for high values
of p.

For all the values of p considered in Figure 2, the value of K* was 19. The
marginal quasi-stationary distribution for the levels {m,e} is given in Table 1
for £ =1 to 60 and p = 0.95.

In the mathematical modeling of ecological systems, there has been consid-
erable interest in the incorporation of environmental stochasticity; see, for ex-
ample, [4], [10] and [14]. These authors have recognized that birth-and-death
process models and birth—death-and-catastrophe process models are inappro-
priate for modeling the evolution of many populations because they do not cap-
ture the effect of environmental variation. In each of [4], [10] and [14], methods
were developed to include the environmental variation. However, none of the
papers takes what seems to be the obvious way to incorporate environmen-
tal stochasticity, by adding an auxiliary variable to the model which reflects
the state of the environment. With this auxiliary variable, a birth-and-death
process model turns into a quasi-birth-and-death process model (QBD).
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TABLE 1
Marginal quasi-stationary distribution for the PH / PH /1 model with p = 0.95
k m,e k m,e k m,e
1 1.25550076e — 03 21 1.53793897e — 02 41 1.29890119e — 02
2 2.96270172e — 03 22 1.54540790e — 02 42 1.27581921e — 02
3 4.40736429%¢ — 03 23 1.54963951e — 02 43 1.25242950e — 02
4 5.73225888e — 03 24 1.55088834e — 02 44 1.22879682¢ — 02
5 6.94587984e — 03 25 1.54939344e — 02 45 1.20498107e — 02
6 8.05132099¢ — 03 26 1.54537921e — 02 46 1.18103764e — 02
7 9.05415217e — 03 27 1.53905618e — 02 47 1.15701765e — 02
8 9.96060161e — 03 28 1.53062181e — 02 48 1.13296822¢ — 02
9 1.07768213e — 02 29 1.52026118e — 02 49 1.10893272¢ — 02
10 1.15086902¢ — 02 30 1.50814771e — 02 50 1.08495098e — 02
11 1.21617747e — 02 31 1.49444375e — 02 51 1.06105951e — 02
12 1.27413303e — 02 32 1.47930126e — 02 52 1.03729173e — 02
13 1.32523141e — 02 33 1.46286236e — 02 53 1.01367813e — 02
14 1.36993997e — 02 34 1.44525988e — 02 54 9.90246494e — 03
15 1.40869917e — 02 35 1.42661790e — 02 55 9.67022032e — 03
16 1.44192401e — 02 36 1.40705224e — 02 56 9.44027568e — 03
17 1.47000536e — 02 37 1.38667092e — 02 57 9.21283689%¢ — 03
18 1.49331124e — 02 38 1.36557461e — 02 58 8.98808890e — 03
19 1.51218806e — 02 39 1.34385709e — 02 59 8.76619712e — 03
20 1.52696178e — 02 40 1.32160558e — 02 60 8.54730872e — 03
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In the example below we illustrate how a population can be modeled as a
QBD. Let the level represent the number in the population (or some function of
this) and the phase the state of the environment. In a realistic model, there are
many issues that need to be resolved, such as what a level should represent,
what time scales should be considered and how the environment should be
described. Any model will be highly dependent on the particular population
under consideration. Here we develop a simple model for a population of the
greater bilby (Macrotis lagotis) [20], commonly known as the bilby. The bilby
is a small Australian marsupial that is currently an endangered species.

It has been observed that the breeding patterns of bilbies depend on the
“quality” of the preceding seasons. An important measure of the quality of a
season is how much rainfall there was during that season. In our model we
specify that a season is either of good or of poor quality. Bilbies can sustain bad
seasons and indeed breed during bad seasons, but, when there are consecutive
bad seasons, they find it increasingly difficult, or impossible, to breed. We
account for this by letting the phase represent how many consecutive bad
seasons there have been.

In our model we observe the population at time points that correspond to
ends of seasons. Assume that in the state (%, j), £ gives a measure of the
number in the population and the phase j =1, 2, 3, 4, 5 indicates there have
been j—1 consecutive bad seasons, where j = 1 means that the last season was
a good season. Assume the qualities of the seasons are independent random
variables and that the probability of a season being good is g. Let b; be the
probability that the population moves up a level given the phase is j and let
d j be the probability that the population moves down a level given the phase
is j. Define c; by ¢c; = 1 —b; — d ;. The modeling assumptions detailed above
indicate that b; is decreasing in j and d; is increasing in j. The matrices A,

J
A, and A, are given by

gby (1-g)b, 0 0 0
gb, 0 (1-g)by 0 0
Ag = 8bs 0 0 (1—g)bs 0 )
8by 0 0 0 (1-2)b,
gbs 0 0 0 (1- g)bs
ger (1—-g)ey 0 0 0
gcy 0 (1-g)cy 0 0
A =] gcg 0 0 (1-g)cs 0
8¢y 0 0 0 (1-8)ey
8¢5 0 0 0 (1-8)cs
and
gd; (1-g)d; 0 0 0
gdy 0 (1-g)d, 0 0
Ay =1 gds 0 0 (1-g)ds 0
gd, 0 0 0 (1-g)dy
8ds 0 0 0 (1-g)ds
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TABLE 2
Marginal quasi-stationary distribution for the bilby model

k m,e k m,e k m,e
1 4.47898698e — 02 21 1.12862463e — 02 41 3.53678358e — 04
2 6.16374346e — 02 22 9.61375492¢ — 03 42 2.94731678e — 04
3 7.18438293e — 02 23 8.17266163e — 03 43 2.45472322e — 04
4 7.61207462e — 02 24 6.93480561e — 03 44 2.04336854e — 04
5 7.62851461e — 02 25 5.87448567e — 03 45 1.70008121e — 04
6 7.37472224e — 02 26 4.96852149e — 03 46 1.41377755e — 04
7 6.95059750e — 02 27 4.19620665e — 03 47 1.17514101e — 04
8 6.42841711e — 02 28 3.53919164e — 03 48 9.76348463e — 05
9 5.85946841e — 02 29 2.98132450e — 03 49 8.10837120e — 05
10 5.27931756e — 02 30 2.50846906e — 03 50 6.73106495e — 05
11 4.71189967e — 02 31 2.10831456e — 03 51 5.58550383e — 05
12 4.17261784e — 02 32 1.77018623e — 03 52 4.63314578e — 05
13 3.67069182e — 02 33 1.48486309e — 03 53 3.84176558e — 05
14 3.21092779e — 02 34 1.24440683e — 03 54 3.18443906e — 05
15 2.79504316e — 02 35 1.04200397e — 03 55 2.63868643e — 05
16 2.42265095e — 02 36 8.71822327e — 04 56 2.18575089¢ — 05
17 2.09198442e — 02 37 7.28881878e — 04 57 1.80999167¢ — 05
18 1.80042484e — 02 38 6.08939715e — 04 58 1.49837412e — 05
19 1.54488040e — 02 39 5.08388253e — 04 59 1.24004150e — 05
20 1.32205344e — 02 40 4.24165795e — 04 60 1.02595596e — 05

Note that this model does not fit into the class of PH/PH/c queues as defined,
for example, in [16], Section 3.7. This is easy to see, since there are several
values of i # j for which both (A,); ; and (A,); ; are positive. When calculat-
ing o and R(a) we used the same tolerances as in the previous example. For
the parameter values g = 0.2, b; = 1, b, = 0.4, by = 0.25, b, = 0.1, by = 0,
c;=0,¢9g=01,¢5=02,¢4 =01,¢5 =0,d; =0, dy = 0.5, d; = 0.55,
dy =0.8,ds; = 1, we found K* was equal to 23. The marginal quasi-stationary
distribution for levels k& ranging from 1 to 60 is given in Table 2.
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