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MULTISCALE DIFFUSION PROCESSES WITH PERIODIC
COEFFICIENTS AND AN APPLICATION TO SOLUTE

TRANSPORT IN POROUS MEDIA1
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Consider diffusions on R
k� k>1, governed by the Itô equation dX�t�=

�b�X�t�� +β�X�t�/a��dt+σdB�t�, where b�β are periodic with the same
period and are divergence free, σ is nonsingular and a is a large integer.
Two distinct Gaussian phases occur as time progresses. The initial phase
is exhibited over times 1 � t � a2/3. Under a geometric condition on the
velocity field β, the final Gaussian phase occurs for times t � a2�log a�2,
and the dispersion grows quadratically with a. Under a complementary
condition, the final phase shows up at times t� a4�log a�2, or t� a2 log a
under additional conditions, with no unbounded growth in dispersion as a
function of scale. Examples show the existence of non-Gaussian intermedi-
ate phases. These probabilisitic results are applied to analyze a multiscale
Fokker–Planck equation governing solute transport in periodic porous me-
dia. In case b�β are not divergence free, some insight is provided by the
analysis of one-dimensional multiscale diffusions with periodic coefficients.

1. Introduction. In this article we consider phase changes with time for
diffusions on R

k with multiple scale periodic drifts b�x� + β�x/a�,

�1�1� X�t� =X�0� +
∫ t

0
�b�X�s�� + β�X�s�/a��ds+

∫ t
0
σ�X�s��dB�s��

with σ�·� a nonsingular matrix–valued function, a being a large spatial scale
parameter. Computations of these phase change and their time scales are
carried out directly for some examples in Section 6, without requiring the
machinery needed for the general case, and the reader may perhaps take a
look at these first.

It may be shown that for times t� a2/3 the large scale fluctuations may be
ignored, that is, the function β�x/a� in (1.1) may be replaced by the constant
drift β�X�0�/a�. This holds generally, without the assumptions of periodicity
of b�β (Theorem 2.1). As a consequence, if b is periodic and β is arbitrary
Lipschitz, then for times 1 � t � a2/3 the process X�t� is asymptotically a
Brownian motion (Theorem 2.2). This first phase analysis is carried out in
Section 2.

If b�·�, β�·� are both periodic with the same period lattice, say Z
k, σ�·� = σ

is a constant matrix, and a is a positive integer, then, for a fixed a, Ẋ�t� �=
X�t�moda is a diffusion on the big torus �a �= �xmoda� x ∈ R

k�, and a central
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limit theorem holds for X�t� as t→∞ [Bensoussan, Lions and Papanicolaou
(1978), Chapter 3; Bhattacharya (1985)]. For large a, that is, as a→∞, how
large must t be for this approximation to take hold? This Gaussian law is re-
ferred to as the final phase in this article. Under the divergence–free condition
div b�·� = 0 = divβ�·� (incompressibility), the Gaussian approximation for a
set of k1 coordinates Xj�t�, 1 ≤ j ≤ k1, holds at times t � a2�log a�2 pro-
vided an appropriate geometric condition holds on β�·� (Theorem 5.2). Under
a different geometric condition the time scales for this final phase of Gaus-
sian approximation are t � a4�log a�4 in Theorem 5.3 and t ≥ a2 log a in
Theorem 5.4.

Two crucial ingredients for this final phase analysis are (1) the speed at
which Ẋ�t� approaches the uniform (equilibrium) distribution on �a (as a→
∞), and (2) the asymptotic relation between a and the dispersion matrix of the
limiting Gaussian in the final phase. By spectral methods analogous to those
of Diaconis and Stroock (1991) and Fill (1991), the L1-distance between the
distributions of Ẋ�t�, with arbitrary Ẋ�0�, and the equilibrium distribution is
bounded above by cak/2 exp�−c′t/a2� for some positive constants c and c′ (The-
orem 4.5). For the analysis of final phase dispersion as a function of the scale
parameter, it is convenient to look at the related process Y�t� = X�a2t�/a.
Then Ẏ�t� �= Y�t�mod 1 is a diffusion on the unit torus �1 with gener-
ator Aa �= � + a�b�a·� + β�·�� · ∇, with � = �1/2�∑j� j′ Djj′∂

2/�∂xj∂xj′ �
���Djj′ �� �= σσ ′� and ∇ = grad. Since b�a·� is rapidly oscillating, one may
approximate Aa by A �= � + a�b + β�·�� · ∇, where b = �b1� � � � � bk� is the
mean of b�·� w.r.t. the uniform distribution on �1. According to the central
limit theorem for X�t�, with a fixed, the asymptotic dispersion (or variance)
per unit time of Yj�t� is given by Djj − 2�gj�2

1, where gj is the mean-zero
solution of Aagj�x� = bj�ax� + βj�x� − bj − βj. Here �gj�1 is the norm in
the complex Hilbert space H1 = �h mean-zero, periodic: �h�2 and �∇h�2 in-
tegrable w.r.t. uniform distribution on �1� endowed with the inner product
�g�f�1 =

∫
�0�1�k�∇g�x��′D∇f�x�− dx, f− being the complex conjugate of f.

One may replace gj by the solution hj to Ahj = βj − βj. The last equation
may be expressed as ��+a�−1�b+β�·��·∇�hj = �−1�βj−βj�, or ��+aS�hj =
�−1�βj−βj�, with � as the identity operator, and S = �−1�b+β�·�� ·∇. Since
S is a skew-symmetric compact operator on H1 (Proposition 3.2), one may now
use the spectral decomposition of S to express hj in an eigenfunction expan-
sion, arriving at �hj�2

1 � �gj�2
1. This gives an asymptotic relation between a

and the dispersion of Xj�t� as that of a2 times that of Yj�t�. The dominant
term in this expansion of the dispersion is 2a2���−1�βj−βj��N�2

1 where fN is
the projection of f inH1 onto the null spaceN of S. Thus, if ��−1�βj−βj��N �=
0, the dispersion of Xj�t� per unit time grows with a quadratically and is
asymptotically bounded away from 0 and ∞ if ��−1�βj − βj��N = 0 (Theo-
rems 3.7, 3.8).

The Gaussian approximations derived in this paper may be readily strength-
ened to their functional forms (see Remark 5.2.1). In other words, under ap-
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propriate scaling, the diffusion process X�·� in (1.1) has different Brownian
motion approximations in the first and final phases.

Multiscale phenomena occur commonly in nature. The present study was
motivated in part by the so-called scale effect in the dispersion of solute mat-
ter such as a chemical pollutant injected at a point in an underground water
system, called an aquifer, saturated with water. It has been widely observed
that for the solute concentration profile different Gaussian approximations
with increasing dispersivity, or variance per unit time, hold at successively
larger time scales [Fried and Combarnous (1971); Garabedian, LeBlanc, Gel-
har and Colin (1991); Gelhar and Axness (1983); Guven and Molz (1986);
LeBlanc, Garabedian, Hess, Gelhar, Quadri, Stollenwerk and Wood (1991);
Sauty (1980); Sudicky (1986)]. The concentration c�t� y� is governed at a local
scale by a second-order linear parabolic (Fokker–Planck) equation with a drift
term v�·� given by the velocity of water and diffusion coefficients which are of
a somewhat larger order than the molecular diffusion coefficient of the solute.
Since v�·� does not depend on time in a saturated aquifer under isothermal con-
ditions, the root cause for the observed increase in dispersivity is the existence
of multiscale heterogeneities in the medium [Bhattacharya and Gupta (1983)
and Sposito, Jury and Gupta (1986)]. For the understanding of this it is enough
to consider only two such scales of heterogeneity, reflected in the flow velo-
city as

�1�2� v�y� = b�y� + β�y/a��

with a large. Here b and β are functions whose derivatives are of the same
order, so that the derivatives of β�·/a� are small, namely, O�1/a�. Thus the
fluctuations of β�·/a�—the large scale fluctuations—are manifested only over
large distances. Note that the solute concentration c�t� y� corresponding to
a unit local initial injection at x is simply the transition probability density
p�t�x�y� of a diffusion process X�t� governed by the Itô equation (1.1).

It follows that the asymptotics of t → c�t� y� are given by the asymptotic
distribution of X�t�. The proper way to look at this, when a is very large
compared to the local scale, is to let a→∞ and let t→∞ at slower to higher
rates relative to a. Initially, for a period of time t � a2/3 (i.e., t/a2/3 → 0),
the fluctuations of β�·/a� may be ignored and β�X�s�/a� may be replaced
by its initial value β�X�0�/a�. Theorem 2.1 says that this new process, say
Y�·�, approximates the X�·� process up to such times t well in total variation
distance. In particular, if Y�·� is asymptotically Gaussian, then so is X�·� for
times 1� t� a2/3. This holds, for example, if b�·� is periodic (Theorem 2.2).

The preceding analysis of dispersion of Xj�t� as a function of the distance
scale parameter a is formally the same as that for the dispersion of a diffusion
X̂�t� with drift a�b+β�·�� [or aβ�·�, absorbing b in β�·�] and diffusion matrix
D = σσ ′. For the latter, one may regard a = u0 as the velocity parameter.
This enables one to study dispersion at a single scale as a function of u0 (see
Proposition 3.1). This latter analysis is also of importance in hydrology, and
has been studied experimentally at the laboratory (or Darcy) scale extensively
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[Fried and Combarnous (1971)]. This is discussed, along with the scale effect,
in greater detail in Section 7.

Although the major emphasis in this article is on the case of divergence-free
velocity fields, we also consider general one-dimensional multiscale diffusions
with periodic coefficients. Here the speed of convergence to equilibrium may
be either of the same order as in the divergence-free case (k > 1), or may be
exponentially slow in a, requiring times t� exp�ca� to approach equilibrium
(Theorems 4.6, 4.7, 4.9). The dispersion per unit time in the final phase is
always asymptotically constant in a. In the time-reversible case this dispersion
actually goes to zero exponentially fast with a. This study throws some light
on the general nondivergence-free case.

It would be interesting and challenging to extend this study to the case
of multiscale diffusions whose coefficients constitute an ergodic random field,
or are almost periodic. For central limit theorems with such coefficients see
Papanicolaou and Varadhan (1979), Kozlov (1979, 1980), Bhattacharya and
Ramasubramanian (1988).

The present article provides a synthesis as well as an exposition of ear-
lier work, often done in collaboration with Vijay Gupta, Homer Walker, and
Friedrich Götze [Bhattacharya and Götze (1995); Bhattacharya and Gupta
(1979, 1983); Bhattacharya, Gupta and Walker (1989)], although a number of
results are either modified versions of earlier results or new. To facilitate ex-
position, detailed proofs are given for the most part. They also serve to remove
some lacunae in Bhattacharya and Götze (1995).

A word on notation. The constants c� c′ appearing in this article, with or
without subscripts or superscripts, are all independent of the parameter a.
The process Y�·� in Section 2 is different from the process Y�·� in Sections 3,
4, 5.

2. First phase of asymptotics. Consider a k-dimensional diffusion �k ≥
1� governed by the stochastic integral equation,

�2�1�
X�t� =X�0� +

∫ t
0

{
b�X�s�� + β�X�s�/a�}ds

+
∫ t

0
σ�X�s��dB�s�� t ≥ 0�

Here b�·� ≡ �b1�·�� � � � � bk�·��, β�·� ≡ �β1�·�� � � � � βk�·�� are Lipschitzian func-
tions on R

k to R
k, σ�·� is a �k×k�-matrix valued Lipschitzian function on R

k,
B�·� is a standard k-dimensional Brownian motion and the initial state X�0�
is independent of B�·�. The spatial scale parameter a is assumed to be “large.”
One may think of b�·� as the drift velocity at the local scale, while β�·/a� is
the large scale drift velocity. Since the vector field x → β�x/a� changes very
slowly, the large scale fluctuations are manifested only at large distances and,
therefore, not experienced by the process X�·� over an initial stretch of time.
Over this time period one would then expect X�·� to behave like the process



MULTISCALE DIFFUSIONS 955

governed by the Itô equation

�2�2�
Y�t� =X�0� +

∫ t
0

{
b�Y�s�� + β�X�0�/a�}ds

+
∫ t

0
σ�Y�s��dB�s�� t ≥ 0�

Note that the large-scale drift velocity β�·/a� in (2.1) is replaced by its initial
value β�X�0�/a� in (2.2). As an appropriate initial condition we will scale the
initial state X�0� as

�2�3� X�0� = ax0� x0 ∈ R
k�

This is merely to avoid the artificial importance of the origin that would arise
from the assignment X�0� = x0, since in the latter case β�X�0�/a� → β�0� as
a→∞.

Our first result identifies the time period over which Y�·� is a good approx-
imation to X�·�. In order to state it, let �t denote the Borel sigma-field of
� �0� t�—the set of all continuous functions on �0� t� into R

k, and let P0�t and
P1�t denote the distributions of Yt

0 �= �Y�s�� 0 ≤ s ≤ t� and Xt
0 �= �X�s�� 0 ≤

s ≤ t�, respectively, on �t. The total variation distance between two measures
µ and ν is denoted �µ− ν�TV.

Theorem 2.1. Assume that b�·� and its first-order derivatives are bounded,
β�·� is bounded and has continuous and bounded derivatives of orders one and
two, σ�·� is Lipschitzian, and the eigenvalues of σ�·�σ�·�′ are bounded away
from zero and infinity.

(a) Then there exist constants ci �i = 1�2�3� which do not depend on “a” or
t such that, uniformly for all x0,

�2�4� ∥∥P0� t −P1� t

∥∥
TV ≤ c1

t3/2

a
+ c2

t

a
+ c3

t3/2

a2
�

(b) If bj�x� ≡ 0 and βj�x0� = 0 for 2 ≤ j ≤ k, and

�2�5� ∂βj�x�
∂x1

≡ 0 for 1 ≤ j ≤ k�

then one may take c1 = 0 in �2�4�.
(c) If, in addition to the hypothesis in (b), one has

�2�6�
(
∂βj

∂xi

)
�x0� = 0 for 1 ≤ j ≤ k�2 ≤ i ≤ k�

then one may take c1 = c2 = 0 in (2.4).

Before proving the theorem we make a few remarks on the time scales
under (a)–(c) for the validity of the approximation of X�·� by Y�·�, and on the
physical significance of the conditions (2.5), (2.6).
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Remark 2.1.1. Condition (2.5) means that the large-scale velocity does not
depend on the first coordinate x1. This condition is satisfied by the so-called
stratified media (see Sections 6 and 7). The condition bj�x� ≡ 0 for 2 ≤ j ≤ k of
course means that there is no small scale velocity in directions other than that
in the x1-direction. The conditions βj�x0� = 0 �2 ≤ j ≤ k� and �∂βj/∂xi��x0� =
0 (1 ≤ j ≤ k, 2 ≤ i ≤ k) are specific requirements on the initial point.

Remark 2.1.2. It follows from (2.4) that

�2�7� ∥∥P0� t −P1� t

∥∥
TV
→ 0 as

t3/2

a
→ 0�

that is, Y�·� is a good approximation of X�·� for times

�2�8� t� a2/3 or for
t

a2/3
small�

Under the additional assumptions in part (b) of Theorem 2.1,

�2�9� ∥∥P0� t −P1� t

∥∥
TV ≤ c2

t

a
+ c3

t3/2

a2
→ 0 as

t

a
→ 0�

that is, Y�·� provides a good approximation to X�·� over a period of time

�2�10� t� a�

Under the hypothesis of part (c),

�2�11� ∥∥P0� t −P1� t

∥∥
TV ≤ c3

t3/2

a2
→ 0 as

t

a4/3
→ 0�

that is, the initial phase of asymptotics governed by Y�·� holds over times
satisfying

�2�12� t� a4/3�

Examples in Section 6 show that the estimates in Theorem 2.1 are, in general,
optimal.

Remark 2.1.3. The assumption that β�·� is bounded is only used in part
(a) of Theorem 2.1. In the absence of this assumption, only the constants
c′1� c

′′
1 in (2.4), (2.2) need to be changed to c1�1+�β�x0��� and c′′1�1+�β�x0���,

respectively.

Proof of Theorem 2.1. By the Cameron–Martin–Girsanov theorem [see,
e.g., Ikeda and Watanabe (1981), pages 176–181 or Friedman (1975), pages
164–169],

�2�13� ∥∥P0� t −P1� t

∥∥
TV = E

∣∣exp�Z�t�� − 1
∣∣�
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where, with Y�0� =X�0�,

�2�14�
Z�t� =

∫ t
0
σ−1�Y�s��{β�Y�s�/a� − β�Y�0�/a�}dB�s�

− 1
2

∫ t
0

∣∣σ−1�Y�s��{β�Y�s�/a� − β�Y�0�/a�}∣∣2 ds�
By Itô’s lemma [Ikeda and Watanabe (1981), pages 66 and 67, Bhattacharya
and Waymire (1990), page 585],

�2�15�

βj�Y�s�/a� − βj�Y�0�/a�

=
∫ s

0

(
L0βj�·/a�

)�Y�s′��ds′
+
∫ s

0

(∇�βj�·/a��)�Y�s′��σ�Y�s′��dB�s′�� ∇ �= grad�

where, writing D�x� �= σ�x�σ ′�x� = ��Dij�x���,

�2�16� L0 =
1
2

∑
i� i′
Dii′ �·�

∂2

∂xi∂xi′
+ (
b�·� + β�x0�

) · ∇�
Thus,

�2�17�

(
L0�βj�·/a��

)�Y�s′�� = 1
2a2

∑
i� i′
Dii′ �Y�s′��

(
∂2βj�·�
∂xi∂xi′

)
�Y�s′�/a�

+ 1
a

(
b�Y�s′�� + β�x0�

) · (∇βj�·�)�Y�s′�/a��
Denoting the Reimann integral on the right side of (2.15) by I1j�s� and the
stochastic integral by I2j�s�, we have

�2�18� E
(
βj�Y�s�/a� − βj�Y�0�/a�

)2 ≤ 2EI2
1j�s� + 2EI2

2j�s��

Letting λ denote the infimum (over x ∈ R
k) of the smallest eigenvalue of D�x�,

one has

�2�19�
E�Z�t�� ≤ 1√

λ

(∫ t
0

k∑
j=1

E
(
βj�Y�s�/a� − βj�Y�0�/a�

)2
ds

)1/2

+ 1
2λ

∫ t
0

k∑
j=1

E
(
βj�Y�s�/a� − βj�Y�0�/a�

)2
ds�
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Also, denoting by � · �∞ the supremum of the Euclidean norm of a real-, vector-,
or matrix-valued function, one has

�2�20�

EI2
1j�s� ≤ s2

{
c′1
a4

∥∥D�·�∥∥2
∞

∥∥∥∥
(

max
i� i′

∣∣∣∣∂
2βj�·�
∂xi∂xi′

∣∣∣∣
)∥∥∥∥

2

∞

+ 2
a2

∥∥(b�·� + β�x0�
) · �∇βj��·/a�∥∥2

∞

}
�

EI2
2j�s� ≤

s

a2

∥∥D�·�∥∥∞ ∥∥∇βj�·�∥∥2
∞�

so that

�2�21�

∫ t
0

k∑
j=1

(
EI2

ij�s� +EI2
2j�s�

)
ds

≤ t3

a4
c′2
∥∥D�·�∥∥2

∞

[ k∑
j=1

∥∥∥∥
(

max
i� i′

∣∣∣∣∂
2βj�·�
∂xi∂xi′

∣∣∣∣
)∥∥∥∥

2

∞

]

+ 2t3

3a2

k∑
j=1

∥∥(b�·� + β�x0�
) · (∇βj)�·/a�∥∥2

∞

+ t2

2a2
�D�·��∞

( k∑
j=1

∥∥∇βj�·�∥∥2
∞

)
�

Using the last inequality in (2.19), we get

�2�22�
E�Z�t�� ≤

(
c′′1
t3

a2
+ c′′2

t2

a2
+ c′′3

t3

a4

)1/2 1√
λ

+
(
c′′1
t3

a2
+ c′′2

t2

a2
+ c′′3

t3

a4

)
1

2λ
�

Here the constants c′′i (i = 1�2�3) do not depend on a� t or x0. Next note that
exp�Z�t��, t ≥ 0, is a martingale and, in particular, E exp�Z�t�� = 1, or

�2�23�
0 = E(1− exp�Z�t��) = E(1− exp�Z�t��)+ −E(1− exp�Z�t��)−�

E
∣∣1− exp�Z�t��∣∣ = 2E

(
1− exp�Z�t��)+ ≤ 2

[
E��Z�t�� ∧ 1�]�

The last inequality follows from the relation 1 − ex ≤ �x� ∧ 1 for x ≤ 0. The
desired result (2.4) is now a consequence of (2.22) and (2.23).

To prove part (b), note that the second term on the right of (2.21) now
vanishes. It remains to prove part (c). Under the additional assumption (2.6),
one may express Yi�·�, 2 ≤ i ≤ k, as

�2�24� Yi�t� = Yi�0� +
∫ t

0

k∑
r=1

σir�Y�s��dBr�s�� 2 ≤ i ≤ k�
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so that the expected square of the stochastic integral in (2.15) may be esti-
mated as

�2�25�
EI2

2j�s� =
1
a2
E

[ k∑
i=2

∫ s
0

(
∂βj

∂xi

)(
Y�s′�
a

) k∑
r=1

σir�Y�s′��dBr�s′�
]2

≤ c′′4
a2

∫ s
0

k∑
i=2

E

[(
∂βj

∂xi

)(
Y�s′�
a

)]2

ds′�

In view of (2.6), �∂βj/∂xi��Y�0�/a� ≡ �∂βj/∂xi��x0� = 0 for i ≥ 2. Thus

�2�26�

E

[(
∂βj

∂xi

)(
Y�s′�
a

)]2

= E
[(
∂βj

∂xi

)(
Y�s′�
a

)
−
(
∂βj

∂xi

)(
Y�0�
a

)]2

= E
[(
Y�s′�
a

− Y�0�
a

)
·
(
∇ ∂βj
∂xi

)
�Ỹ/a�

]2

[
Ỹ lying in the line segment joining Y�0� and Y�s′�]

= E
[

1
a

k∑
i′=1

(
Yi′ �s′� −Yi′ �0�

)∂2βj�·�
∂xi′∂xi

�Ỹ/a�
]2

= 1
a2
E

[ k∑
i′=2

(
Yi′ �s′� −Yi′ �0�

)( ∂

∂xi

∂βj�·�
∂xi′

)
�Ỹ/a�

]2

≤ c′′5
a2
s′ by (2.24).

Use this and (2.25) to get

�2�27�
k∑
j=1

EI2
2j�s� ≤

c′′6
a4
s2�

Using this estimate in place of the estimate of EI2
2j�s� in (2.20), the last term

on the right side involving t2/a2 may be replaced by c′′7 t
3/a4. Since the second

term on the right of (2.21) (involving t3/a2) vanishes, as for part (b), the proof
of part (c) is complete. ✷

Remark 2.1.4. The significance of Theorem 2.1 is that it identifies the time
scale for a change in the behavior of X�·�, and shows that, prior to this thresh-
old, X�·� and Y�·� are close in total variation distance. This is especially im-
portant in those cases in which Y�·� has interesting analyzable behavior. For
example, if b�·� ≡ 0 and σ�·� is a constant matrix, then Y�·� is a Brownian
motion, so that X�·� is approximately a Brownian motion for times t � a

2
3 .

More important, Theorem 2.2 below identifies a class of coefficients b�·� such
that Y�·� is asymptotically a Brownian motion and, for 1 � t � a2/3, so is
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X�·�. One may also consider a class of (nonperiodic) coefficients b�·�, β�x0�,
such that Y�·� is ergodic, that is, Y�·� has a unique invariant probability and
is Harris recurrent.

For Theorem 2.2 below, assume b�·�, σ�·� are periodic having the same pe-
riod lattice. Since by an appropriate nonsingular linear transformation ofX�·�,
the period lattice of the transformed coefficients becomes the standard lattice
Z
k, we will assume without loss of generality that b�·�, σ�·� are periodic with

period one in each coordinate, that is,

�2�28� b�x+ r� = b�x�� σ�x+ r� = σ�x� ∀x ∈ R
k� r ∈ Z

k�

In this case the process Ẏ�·� defined by

�2�29� Ẏ�t� �= Y�t�mod 1 ≡ (
Y1�t�mod 1� � � � �Yk�t�mod 1

)
�

is a Markov process, a diffusion on the unit torus

�1 �=
{
xmod 1� x ∈ R

k
} ≡ {�x1 mod 1� � � � � xk mod 1�� x = �x1� � � � � xk� ∈ R

k
}

[see, e.g., Bhattacharya and Waymire (1990), page 518]. Given that the transi-
tion probability density of Y�·� [and, therefore, of Ẏ�·�] is positive, it is simple
to check that Ẏ�·� has a unique invariant probability π�x�dx and that Ẏ�·�
has an exponentially decaying phi-mixing rate. Also, as shown in Bensoussan,
Lions and Papanicolaou [(1978), Chapter 3] and Bhattacharya (1985), Y�·� is
asymptotically a Brownian motion, in the sense that the sequence of processes

�2�30� Y�nt� −Y�0� − nt�b+ β�x0��√
n

� 0 ≤ t ≤ 1

converges in distribution, as n → ∞, to a Brownian motion with zero drift
and dispersion matrix K. Here

�2�31�

b = �b1� b2� � � � � bk��

bj �=
∫
�1

bj�x�π�x�dx� 1 ≤ j ≤ k�

K =
∫
�1

�gradψ�x� − Ik�D�x��gradψ�x� − Ik�′π�x�dx�

Ik being the k× k identity matrix and ψ = �ψ1� ψ2� � � � � ψk�′ being the unique
mean-zero periodic solution of

�2�32� L0ψj�x� = bj�x� − bj� 1 ≤ j ≤ k�
Recall that L0 is the generator of Y�·� [see (2.16)], and therefore of Ẏ�·� when
restricted to periodic functions. The existence and uniqueness of the solution
of (2.32) follows from a general theorem for ergodic Markov processes [see
Bhattacharya (1982)]. Indeed, the solution is given by (2.37) below. A proof of
the convergence in distribution of (2.30) is sketched in the course of the proof
of the theorem below. We will occasionally write →� to denote convergence in
law, or in distribution.
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The normal distribution on R
k having mean vector zero and dispersion

matrix K will be denoted by 2K or � �0�K�.

Theorem 2.2. Assume that b�·� is continuously differentiable, and σ�·� is
Lipschitzian, and b�·� and σ�·� are periodic as shown in �2�28�. Assume also
that β�·� has continuous and bounded derivatives of orders one and two. Let the
diffusion X�·� be as defined in �2�1� with initial value �2�3�. Then, as n→∞,
a→∞, such that

�2�33� n

a2/3
→ 0�

the process

�2�34� X�nt� −X�0� − nt�b+ β�x0��√
n

� 0 ≤ t ≤ 1�

converges in distribution to a Brownian motion with zero drift and dispersion
matrix K. In particular,

�2�35� X�t� −X�0� − t�b+ β�x0��√
t

→� 2K

as t→∞, a→∞ such that

�2�36� t

a2/3
→ 0�

Proof. In view of Theorem 2.1(a) (also see Remark 2.1.3), it is enough
to prove that the process (2.30) converges to a Brownian motion, as n → ∞.
Although the latter is proved in Bensoussan, Lions and Papanicolaou [(1978),
Chapter 3] and Bhattacharya (1985), we will sketch the arguments here for
completeness and for later use. First note that

�2�37� ψj�·� �= −
∫ ∞

0
Tt�bj�·� − bj�dt

is well defined as an element of � 2��1� π�, where Tt is the transition operator

�2�38� �Ttf��y� �= E
[
f�Ẏ�t�� � Ẏ�0� = y]� f ∈ � 2��1� π��

Note that Ttf→ f, exponentially fast as t→∞, in the � 2-norm. By applying
Th to both sides of (2.37), one obtains �Thψj −ψj�/h→ bj − bj in � 2��1� π�.
In other words, (2.32) holds. By Itô’s lemma,

�2�39�

ψj�Ẏ�t�� − ψj�Ẏ�0��

=
∫ t

0
L0ψj�Ẏ�s��ds+

∫ t
0

gradψj�Ẏ�s�� · σ�Ẏ�s��dB�s�

=
∫ t

0

(
bj�Ẏ�s�� − bj

)
ds+

∫ t
0

gradψj�Ẏ�s�� · σ�Ẏ�s��dB�s��
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Hence,

�2�40�

Y�t� −Y�0� − t�b+ β�x0��

≡
∫ t

0

(
bj�Ẏ�s�� − b

)
ds+

∫ t
0
σ�Ẏ�s��dB�s�

= ψ�Ẏ�t�� − ψ�Ẏ�0�� −
∫ t

0

(
gradψ�Ẏ�s�� − Ik

)
σ�Ẏ�s��dB�s��

On dividing both sides of (2.40) by
√
t and letting t → ∞, one shows that

the asymptotic distribution of t−1/2�Y�t� −Y�0� − tb− tβ�x0�� is the same as
that of

�2�41� − 1√
t

∫ t
0

(
gradψ�Ẏ�s�� − Ik

)
σ�Ẏ�s��dB�s��

But the integrand in (2.41) is stationary and ergodic. Thus if Ẏ�0� has distri-
bution π then, by the Billingsley–Ibragimov central limit theorem for martin-
gales [Billingsley (1968), page 206], (2.41) converges in law to 2K ≡ � �0�K�.
Since the transition probability density ṗ�t� z� y� converges to π�y� exponen-
tially fast as t → ∞, uniformly in z and y, the limit law of (2.41) under
Ẏ�0� = x0 is the same as under the initial distribution π. ✷

Remark 2.2.1. Under the hypothesis of Theorem 2.2, a Berry–Esséen type
bound may be derived for the process Y�t� defined by (2.2), namely,

�2�42� sup
C∈�

∣∣∣∣P
(
Y�t� −Y�0� − t�b+ β�x0��√

t
∈ C

)
−2K�C�

∣∣∣∣ ≤ c4√
t
�

where � is the class of all Borel measurable convex sets in R
k and c4 is a

positive constant which depends only on b�·�, β�·� and D�·�; in particular, c4 is
independent of a [see, e.g., Nagaev (1961) or Tikhomirov (1980)]. Combining
(2.4) and (2.42), we get the following refinement of (2.35):

�2�43�
sup
C∈�

∣∣∣∣P
(
X�t� −X�0� − t�b+ β�x0��√

t
∈ C

)
−2K�C�

∣∣∣∣
≤ c1

t3/2

a
+ c2

t

a
+ c3

t3/2

a2
+ c4√

t
�

This goes to zero as t→∞ and t/a2/3 → 0. Indeed, one may bound the right
side by c5

t3/2

a
+ c4√

t
, if t/a2/3 < 1, a > 1. Assuming that this is the precise order

of the error of normal approximation, the approximation by 2K improves as t
(� 1) increases to an order such that t3/2

a
= O� 1√

t
�, that is, t = 0�a1/2� (a large),

the minimum error beingO�a−1/4�. After this time, this normal approximation
worsens, and it breaks down for t of order a2/3 or larger. Under the special
assumptions in part (b) of Theorem 2.1, in addition to the assumptions of
Theorem 2.2, one may use (2.9), instead of (2.4), to take c1 = 0 in (2.43), so
that the error may be bounded by c5�t/a� + �c4/

√
t�, which has its smallest
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value O�a−1/3� at a time t = 0�a2/3�. If, in addition, the assumption in part
(c) of Theorem 2.1 holds, then one may take c1 = 0 = c2 in (2.43) to get an
error bound c3�t2/3/a2� + c4/

√
t, which becomes minimum for t = O�a�, the

minimum error being O�a−1/2�.

Remark 2.2.2. Central limit theorems for a process such as Y�·� in (2.2)
have been studied in the literature under assumptions other than periodicity
of b�·�, σ�·�. For example, one may take b�·�, σ�·� to be (i) almost periodic, or
(ii) stationary ergodic random fields [see Papanicolaou and Varadhan (1979),
Kozlov (1979, 1980) and Bhattacharya and Ramasubramanian (1988)]. If a
is sufficiently large, so that these Gaussian approximations for Y�t� hold for
1� t� a2/3, then they hold for X�t� over the same time scale.

3. Analysis of dispersion in the final phase: the divergence-free
case. In this section we first analyze the functional dependence of the asymp-
totic dispersion of a diffusion with periodic coefficients on a large velocity pa-
rameter u0. This is of importance in itself, and has been studied extensively
in the hydrology literature [see, e.g., Fried and Combarnous (1971)]. More
important for us is the fact (see Proposition 3.1 below) that the asymptotic
dispersion matrix is the same function of the spatial parameter “a” in the
absence of u0, as it is of u0 in the absence of “a.” We will use this fact later
in the section to analyse the dispersion in the final phase. Consider then the
k-dimensional diffusion X̂�t� governed by the Itô equation,

�3�1� X̂�t� = X̂�0� + u0

∫ t
0
β�X̂�s��ds+

∫ t
0
σ�X̂�s��dB�s��

where β�·� is continuously differentiable and periodic with period lattice Z
k,

σ�·� is a Lipschitzian matrix-valued periodic function of period one whose
eigenvalues are bounded away from zero, X̂�0� is independent of the k-dimen-
sional standard Brownian motion B�·�, and u0 is a “large” parameter scaling
the velocity magnitude. We have seen in Section 2 that �X̂�t�−X̂�0�− tβ�/√t
converges in distribution to a Gaussian � �0�K� with mean zero and disper-
sion matrixK =K�u0�, say. On the other hand, one may consider the diffusion
X̃�·� governed by

�3�2� X̃�t� = X̃�0� +
∫ t

0
β�X̃�s�/a�ds+

∫ t
0
σ�X̃�s/a�dB̃�s��

with the same assumptions on β�·�, σ�·� as above, B̃�·� a standard Brownian
motion independent of X̃�0�, and a a “large” parameter scaling distance. Let
K̃�a� denote its asymptotic dispersion matrix as computed in Section 2.

Proposition 3.1. Under the above assumptions, K�·� ≡ K̃�·�.

Proof. Define the process

�3�3� Ŷ�t� �= u0X̂�t/u2
0�� t ≥ 0�
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Then

�3�4� dŶ�t� = β�Ŷ�t�/u0�dt+ σ�Ŷ�t�/u0�dB�t��

where B�t� �= u0B�t/u2
0� is again a k-dimensional standard Brownian mo-

tion. Thus, with a = u0, Ŷ�·� and X̃�·� have the same law, if their initial
states are the same. However, irrespective of initial states, the scaled pro-
cesses converge weakly to the same Gaussian law. Finally, the asymptotic
dispersion matrix of Ŷ�·� is the same as that of X̂�·�. For limt→∞ var Ŷ�t�/t =
limt→∞ var X̂�t/u2

0�/�t/u2
0� = limt→∞ var X̂�t�/t = K�u0�. Therefore, K�·� ≡

K̃�·�. ✷

The analysis of the asymptotic dispersion of X̂�·� [governed by (3.1)] will
be carried out under the additional assumptions,

�3�5� divβ�x� ≡
k∑
j=1

∂βj�x�
∂xj

= 0 ∀x

and

�3�6� σ�x� ≡ σ�
where σ is a constant nonsingular k× k matrix. An extension to nonconstant
σ is indicated later (see Remark 4.5.2). We will write D = ��Djj′ �� for σσ ′.
The divergence-free condition (3.5) means that the medium through which
the transport (of a solute, e.g.) is taking place is incompressible. The spectral
method of this section does not extend to velocity fields which are not diver-
gence free. The latter are treated in Section 5 by direct calculations for the
case of dimension one.

Under the assumptions that β�·� is periodic with period lattice Z
k, and (3.5),

(3.6) hold, the diffusion ˙̂X�t� �= X̂�t�mod 1 on the torus �1 �= �xmod 1� x ∈
R
k� has the normalized Lebesgue measure dx as the invariant distribution.

To see this check that L∗1 = 0, where L∗ is the formal adjoint of the generator
L of ˙̂X,

�3�7�

Lf�x� = 1
2

k∑
j� j′=1

Djj′
∂2f�x�
∂xj∂xj′

+ u0

k∑
j=1

βj�x�
∂f

∂xj
�

L∗f = 1
2

k∑
j� j′=1

∂2

∂xj∂xj′
�Djj′f�x�� − u0

k∑
j=1

∂

∂xj
�βj�x�f�x��

= 1
2

k∑
j� j′=1

Djj′
∂2f�x�
∂xj∂xj′

− u0

k∑
j=1

βj�x�
∂f�x�
∂xj

�

The last equality follows from (3.5).
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It follows from Section 2 [see (2.30)–(2.32)] that

�3�8� X̂�t� − X̂�0� − u0tβ√
t

→� 2K as t→∞,

where β = �β1� � � � � βk�, with βj given by

�3�9� βj =
∫
�0�1�k

βj�x�dx

and

�3�10�
K =

∫
�0�1�k

(
gradψ�x� − Ik

)
D
(
gradψ�x� − Ik

)′
dx

= ��Kjj′ ���

Here ψ�·� = �ψ1�·�� � � � � ψk�·�� is the unique mean-zero solution in the domain
of L [in � 2��1� dx��,

�3�11� Lψj�·� = u0
(
βj�·� − βj

)
� 1 ≤ j ≤ k�

Further, one has

�3�12�
Kjj′ = Ejj′ +Djj′�

Ejj′ �=
∫
�0�1�k

gradψj�x� ·D gradψj′ �x�dx�

This follows from (3.10) using periodic boundary conditions, namely,

�3�13�
∫
�0�1�k

∂ψj�x�
∂xr

dx = 0� 1 ≤ j� r ≤ k�

To analyze Ejj′ let us introduce the complex Hilbert space,

�3�14� H0 = � 2��1� dx� ∩ 1⊥ = 1⊥�

where dx denotes Lebesgue measure, or the uniform distribution on the unit
torus �1, and � 2��1� dx� ≡ � 2 is the space of complex-valued square inte-
grable (w.r.t. dx) functions on �1. Here 1⊥ is the subspace of � 2 orthogonal
to constants, that is, the set of all mean-zero elements of � 2. This identifies
H0 and its inner product as

�3�15�
H0 =

{
h periodic:

∫
�0�1�k

�h�x��2 dx <∞�
∫
�0�1�k

h�x�dx = 0
}
�

�f�g�0 �=
∫
�0�1�k

f�x�g−�x�dx�
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Here g− is the complex conjugate of g. The spectral expansion ofEjj′ is carried
out on the Hilbert space H1 defined by

�3�16�
H1 =

{
h ∈H0�

∫
�0�1�k

�∇h�2�x�dx <∞
}
� ∇ �= grad�

�f�g�1 �=
1
2

k∑
j� j′=1

Djj′

∫
�0�1�k

∂f

∂xj

∂g−

∂xj′
dx�

Note that for all twice continuously differentiable periodic f and once contin-
uously differentiable periodic g, integration by parts yields

�3�17� �f�g�1 = −��f�g�0�
where

�3�18� � �= 1
2

k∑
j�j′=1

Djj′
∂2

∂xj∂xj′
�

The Sobolev space H1, given in (3.16), is the closure in the norm �f�1 �=
��f�f�1�1/2 of the space of all twice continuously differentiable periodic func-
tions in H0, and the elements of H1 are those elements of H0 which have
square integrable derivatives on �0�1�k. Finally let H2 be the subspace of H1

having square integrable derivatives of order two. The operator � maps H2

onto H0 and is in fact invertible. Indeed, if g ∈H2 is such that �g = f, then
the Fourier transforms ĝ, f̂ of g and f are related, on integration by parts, by

f̂�r� =
∫
�0�1�k

f�x� exp�−2πir · x�dx

=
∫
�0�1�k

��g��x� exp�−2πir · x�dx

= 1
2

k∑
j� j′=1

Djj′

∫
�0�1�k

∂2g�x�
∂xj∂xj′

exp�−2πir · x�dx(3.19)

= 1
2

k∑
j� j′=1

Djj′ �2πirj��2πirj′ �
∫
�0�1�k

g�x� exp�−2πir · x�dx

= −2π2
( k∑
j� j′=1

Djj′rjrj′

)
ĝ�r�� r ∈ Z

k�

Thus ĝ is given by

�3�20� ĝ�0� = 0� ĝ�r� = − 1
2π2

( k∑
j� j′=1

Djj′rjrj′

)−1

f̂�r�� r ∈ Z
k\�0��

Note that

�3�21� �ĝ�r�� ≥ 1
2α2π

2�r�2 �f̂�r��� r ∈ Z
k\�0��
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where α1 is the smallest eigenvalue of D and α2 is the largest. We will show
that the operator �−1�H0 →H1 is compact. For this, let fk (k = 1�2� � � �) be a
bounded sequence in H0, say �fk�0 ≤ 1∀k. Then there exists a subsequence
fk′ (k = 1�2� � � �) which converges weakly to some element f0 of the unit ball
of H0. In particular,

�3�22�
f̂k′ �r� → f̂0�r� as k′ → ∞ �r ∈ Z

k\�0���
f̂k′ �0� = 0 = f̂0�0� ∀k′�

Let

�3�23� gk �= �−1fk� g0 �= �−1f0�

We now show that �gk′ −g0�1 → 0 as k′ → ∞. For this write [see (3.17)–(3.21)]

∥∥gk′ − g0

∥∥2
1 = −

〈
� �gk′ − g0�� g′k − g0

〉
0 = −

〈
fk′ − f0��

−1�fk′ − f0�
〉
0

= 1
2π2

∑
r �=0

∣∣f̂k′ �r� − f̂0�r�
∣∣2 1
7Djj′rjrj′

≤ 1
2α1π

2

∑
r�=0

∣∣f̂k′ �r� − f̂0�r�
∣∣2 1
�r�2(3.24)

≤ 1
2α1π

2

{ ∑
�r�≤R

∣∣f̂k′ �r� − f̂0�r�
∣∣2 + 1

R2

∑
�r�>R

∣∣f̂k′ �r� − f̂0�r�
∣∣2}

≤ 1
2α1π

2

{ ∑
�r�≤R

∣∣f̂k′ �r� − f̂0�r�
∣∣2 + 4

R2

}
�

since �fk′ �0 ≤ 1, �f0�0 ≤ 1. Given ε > 0, choose Rε such that �1/2α1π
2�

��4/R2�� < ε/2 for R ≥ Rε. Now choose k′ε large so that
∑
�r�≤Rε

�f̂k′ �r� −
f̂0�r��2 < ε/2 ∀k′ ≥ k′ε. Then

∥∥gk′ − g0

∥∥2
1 < ε ∀ k′ ≥ k′ε�

Thus gk′ → g0 in H1, proving the compactness of �−1.
We may now express (3.11) as

�3�25� (
� + u0β�·� · ∇

)
ψj�·� = u0

(
βj�·� − βj

)
� 1 ≤ j ≤ k�

Rewrite (3.25) as

�3�26� �� + u0S�ψj = u0�
−1�βj�·� − βj�� 1 ≤ j ≤ k�

where � is the identity operator on H1, and S is the linear operator

�3�27� S = �−1β�·� · ∇
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acting on H1. Note that, for f�g ∈H1,〈
�−1β�·� · ∇f�g〉1 = −〈β�·� · ∇f�g〉0

= −
k∑
j=1

∫
�0�1�k

βj�x�
∂f�x�
∂xj

g−�x�dx

=
∫
�0�1�k

f�x�
k∑
j=1

∂

∂xj

(
βj�x�g−�x�

)
dx

(3.28)

=
∫
�0�1�k

f�x�
{
g−�x��divβ��x� +

k∑
j=1

βj�x�
∂g−�x�
∂xj

}
dx

=
∫
�0�1�k

f�x��β�·� · ∇g��x�dx = �f�β�·� · ∇g�0

= −��−1f�β�·� · ∇g�1�
Thus S is skew symmetric. Noting that β�·� · ∇� H1 → H0 is bounded, while
�−1� H0 →H1 is compact, we have the following result [see Reed and Simon
(1980), page 200].

Proposition 3.2. Let β�·� be continuously differentiable and periodic and
�3�5�, �3�6� hold. Then S �= �−1β�·� · ∇ is a skew symmetric compact operator
on H1 and, therefore, may be expressed as S = iG where G is a compact and
self–adjoint operator on H1.

Applying the spectral theorem for compact self-adjoint operators [see Reed
and Simon (1980), page 203], it now follows that G has a sequence of nonzero
eigenvalues λn → 0 with corresponding eigenfunctions ϕn (n ≥ 1) such that
�ϕn� n ≥ 1� form a complete orthonormal sequence for N⊥� the subspace of
H1 orthogonal to the null space N of G or S. Hence one has the eigenfunction
expansion,

�3�29� f = fN +
∞∑
n=1

�f�ϕn�1ϕn� f ∈H1�

where fN is the orthogonal projection of f onto N. Also,

�3�30� Sf =
∞∑
n=1

iλn�f�ϕn�1
ϕn� f ∈H1�

Taking f = ψj in (3.29), (3.30), one may now express the equation (3.26) in
spectral form

�3�31� �ψj�N = u0
(
�−1�βj − βj�

)
N
�

�1+ iu0λn��ψj�ϕn�1 = u0
〈
�−1

(
βj − βj

)
� ϕn

〉
1� n ≥ 1�

Hence,

�3�32� �ψj�ϕn�1 =
u0βjn

1+ iu0λn
� βjn �=

〈
�−1�βj − βj�� ϕn

〉
1� n ≥ 1�
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Thus the components Ejj′ of the dispersion matrix ��Kjj′ �� arising from the
heterogeneity of the medium of transport may be expressed as [see (3.12),
(3.16)]

�3�33�

Ejj′ = 2�ψj�ψj′ �1

= 2
〈�ψj�N� �ψj′ �N〉1 + 2

∞∑
n=1

�ψj�ϕn�1�ψj′� ϕn�−1

= 2u2
0

〈��−1�βj − βj��N� ��−1�βj′ − βj′ ��N
〉
1 + 2

∞∑
n=1

u2
0βjnβ

−
j′n

1+ u2
0λ

2
n

�

In particular,

�3�34� Ejj = 2u2
0

{∥∥��−1�βj − βj��N
∥∥2

1 +
∞∑
n=1

�βjn�2
1+ u2

0λ
2
n

}
� 1 ≤ j ≤ k�

Theorem 3.3. Suppose the assumptions in Proposition 3.2 hold.

(a) If ��−1�βj − βj��N �= 0, then

�3�35� lim
u0→∞

Kjj

u2
0

= lim
u0→∞

Ejj

u2
0

= 2
∥∥��−1�βj − βj��N

∥∥2
1 > 0�

(b) If βj − βj belongs to the range of β�·� · ∇, say, β�·� · ∇h = βj − βj for

some h ∈H1, then

�3�36� lim
u0→∞

Kjj = lim
u0→∞

Ejj +Djj = 2�h0�2
1 +Djj�

where h0 is the projection of h on N⊥ or, equivalently, h0 is the unique element
in N⊥ such that β�·� · ∇h0 = βj − βj.

Proof. (a) If ��−1�βj − βj��N �= 0, then (3.35) is an immediate conse-
quence of (3.12) and (3.34).

(b) In this case, �−1�βj − βj� = �−1β�·� · ∇h ≡ Sh belongs to the range of
S and is, therefore, orthogonal to N. Writing

h =
∞∑
n=1

�h�ϕn�1
ϕn + hN� Sh =

∞∑
n=1

iλn�h�ϕn�1
ϕn�

one has [see (3.32), (3.34)]

βjn =
〈
�−1�βj − βj�� ϕn

〉
1 = �Sh�ϕn�1 = iλn�h�ϕn�1�

Ejj = 2u2
0

∞∑
n=1

λ2
n�h�ϕn�21
1+ u2

0λ
2
n

→ 2
∞∑
n=1

�h�ϕn�21 = 2�h0�2
1� ✷
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Remark 3.3.1. Under the hypothesis of part (a) of Theorem 3.3, the dis-
persion coefficient Kjj = Ejj +Djj [see (3.12)] grows quadratically with u0.
Experimental studies have shown a similar growth pattern for solute dis-
persion in saturated porous media. See Fried and Combarnous (1971), and
Figures 1 and 2 in Section 7.

Consider now the diffusion X̃�t� governed by the Itô equation (3.2) involving
a spatial scale parameter a. Then X̃�t�moda is a diffusion on the torus �a �=
�xmoda� x ∈ R

k� and therefore X̃�t� is asymptotically Gaussian. Indeed,
in view of Proposition 3.1, the matrix ��K̃jj′ �� of dispersion coefficients of this
asymptotic distribution is the same as that of X̂�t�, namely, ��Kjj′ �� for u0 = a.
The following is then an immediate consequence of Theorem 3.3.

Corollary 3.4. Suppose the hypothesis of Proposition 3.2 holds for the
coefficients of the diffusion X̃�t�.

(a) If ��−1�βj − βj��N �= 0, then

�3�37� lim
a→∞

K̃jj

a2
= 2

∥∥��−1�βj − βj��N
∥∥2

1 > 0�

(b) If βj − βj belongs to the range of β�·� · ∇, βj − βj = β · ∇h, then, with

h0 as the projection of h on N⊥,

�3�38� lim
a→∞ K̃jj = 2�h0�2

1 +Djj�

We now turn to the multiscale process of interest, namely [see (2.1)],

�3�39� X�t� =X�0� +
∫ t

0

{
b�X�s�� + β�X�s�/a�}ds+ σB�t��

where it is assumed that

(3.40)(A1) b�·�, β�·� are continuously differentiable, divergence free and peri-
odic with period lattice Z

k;
(3.40)(A2) σ is a constant k× k nonsingular matrix;
(3.40)(A3) a is a positive integer.

Then

�3�41� Ẋ�t� �=X�t�moda ≡ �X1�t�moda� � � � �Xk�t�moda�
is a diffusion on the torus �a �= �xmoda� x ∈ R

k�, whose unique invariant
probability is the uniform distribution on �a. It is convenient to scale this
process to bring it to the unit torus �1 = �xmod 1� x ∈ R

k�. For this, define

�3�42� Y�t� �= X�a2t�
a

� Ẏ�t� �= Y�t�mod 1 ≡ Ẋ�a2t�
a

�

Note that apart from the scaling of distance, in which one unit of length in
the Y-scale equals “a” units of length in the original X-scale, one unit of time
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for Y equals a2 units of time for X. The process Y�t� is governed by the Itô
equation

�3�43� Y�t� = Y�0� +
∫ t

0
a
{
b�aY�s�� + β�Y�s��}ds+ σB�t��

where B�t� �= B�a2t�/a is a standard Brownian motion on R
k. The infinitesi-

mal generator of Ẏ�t� is given by Aa = � + a�b�a·� + β� · ∇, that is,

�3�44� Aaf�x� =
1
2

k∑
j� j′=1

Djj′
∂2f�x�
∂xj∂xj′

+ a�b�ax� + β�x�� · ∇f�x�

for smooth functions which are periodic: f�y + r� = f�y� for all r ∈ Z
k, all

y ∈ R
k; that is,Aa acts on (a dense subspace of) � 2��1� dx�. Let gj (1 ≤ j ≤ k)

be the unique solution in 1⊥ of

�3�45� Aagj�x� = bj�ax� + βj�x� − bj − βj�
By Itô’s lemma [see (2.40)], writing g = �g1� � � � � gk�′,

�3�46�

Y�t� −Y�0� − at�b+ β�

= g�Ẏ�t�� − g�Ẏ�0�� −
∫ t

0
a
{
gradg�Ẏ�s�� − I}σdB�s�

(
gradg�x� �=

((
∂gj�x�
∂xj′

)))
�

Hence, for a fixed “a,”

�3�47� Y�t� −Y�0� − at�b+ β�√
t

→� 2K as t→∞�

where

�3�48�
Kjj′ = Ejj′ +Djj′�

Ejj′ �= a2
(�gj�gj′ �1 + �gj′� gj�1)� 1 ≤ j� j′ ≤ k�

Since the function x→ b�ax� is rapidly oscillating for large a, one may think
of approximating Aa by A = � + a�b+ β� · ∇,

�3�49� Af�x� = 1
2

k∑
j� j′=1

Djj′
∂2f�x�
∂xj∂xj′

+ a�b+ β� · ∇f�x��

Correspondingly, define on H1 the skew symmetric compact operators

�3�50� Sa = �−1�b�a·� + β� · ∇� S = �−1�b+ β� · ∇�
Let N denote the null space of S. We will denote by fN the orthogonal pro-
jection of an element f of H1 on N. The following result provides preliminary
estimates of the norms of the solution gj of the equation (3.45) in H0 and H1.
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Lemma 3.5. Under assumptions (A1)–(A3) in �3�40� one has

�3�51� sup
a
�gj�2

1 <∞� �gj�2
0 ≤

1
2π2α1

�gj�2
1�

where α1 is the smallest eigenvalue of the diffusion matrix D = σσ ′.

Proof. The operators Sa, S are skew symmetric so that

�3�52� �Saf�f�1 = 0� �Sf�f�1 = 0 ∀f ∈H1�

Therefore,

�3�53� ∥∥�� + aSa�f
∥∥2

1 = �f�2
1 + a2�Saf�2

1 ≥ �f�2
1�

Rewrite the defining equation (3.45) for gj as

�3�54� �� + aSa�gj = �−1[bj�a·� − bj + βj�·� − βj]�
It now follows from (3.53) [also see (3.17)] that

�3�55�
�gj�2

1 ≤
∥∥�−1[bj�a·� − bj + βj�·� − βj]∥∥2

1

= 〈
bj�a·� − bj + βj�·� − βj�−�−1[bj�a·� − bj + βj�·� − βj]〉0�

Writing r = �r1� � � � � rk� ∈ Z
k, and using Parseval’s relation and (3.20), one

has for all f ∈H0,

�3�56�

〈−�−1f�f
〉
0 =

∑
r∈Z

k\�0�

(
2π2 ∑

j� j′
Djj′rjrj′

)−1∣∣f̂�r�∣∣2

≤ ∑
r∈Z

k\�0�

(
2π2α1�r�2

)−1�f̂�r��2

≤ 1
2π2α1

�f�2
0�

Therefore, (3.55) leads to the first inequality in (3.51). The second inequality
in (3.51) follows from

�3�57�

�f�2
1 = �−�f�f�0 =

∑
r�=0 2π2

(∑
j� j′ Djj′rjrj′

)
�f̂�r��2

≥ ∑
r�=0

2π2α1�r�2�f̂�r��2 ≥ 2π2α1
∑
r�=0

�f̂�r��2

= 2π2α1�f�2
0 ∀f ∈H1� ✷

The next lemma enables one to estimate the error in replacing b�a·� by b
in variance calculations.

Lemma 3.6. Suppose f ∈H0 and “a” is a positive integer.
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(a) If � is a relatively compact subset of H1 then

�3�58� sup
g∈�

∣∣�f�a·�� g�0∣∣ = o
(

1
a

)
as a→∞�

(b) If � is a relatively compact subset of H0, then

�3�59� sup
g∈�

∣∣�f�a·�� g�0∣∣ = o�1� as a→∞�

Proof. Assume first that f is continuously differentiable of all orders up
to at least �k/2� + 1 = k0, say. Then

�3�60� �f�a·�� g�0 =
∑

r∈Z
k\�0�

f�a·�̂ �r�ĝ−�r�� r ∈ Z
k\�0��

Now

�3�61�

∑
r �=0

�f̂�r�� = ∑
r�=0

�r�k0 �f̂�r��
�r�k0

≤
(∑
r �=0

�r�2k0 �f̂�r��2
)1/2(∑

r�=0

1
�r�2k0

)1/2

<∞�

It follows that the Fourier series for f, namely
∑
r�=0 f̂�r� exp�2πir · x�, con-

verges uniformly to f�x� so that

�3�62� f�ax� = ∑
r�=0

f̂�r� exp�2πir · ax� = ∑
r�=0

f̂�r� exp�2πiar · x��

In particular,

�3�63� f�a·�∧�r� =
{

0� if r �∈ aZ
k\�0�,

f̂�r/a�� if r ∈ aZ
k\�0�.

Using this in (3.60) we get

�3�64�

∣∣�f�a·�� g�0∣∣ =
∣∣∣∣ ∑
r∈aZ

k\�0�
f̂�r/a�ĝ−�r�

∣∣∣∣
≤
( ∑
r∈aZ

k\�0�

∣∣f̂�r/a�∣∣2)1/2( ∑
�r�≥a

∣∣ĝ�r�∣∣2)1/2

≤ �f0�
( ∑
�r�≥a

1
a2
�r�2�ĝ�r��2

)1/2

≤ �f�0

a

( ∑
�r�≥a

�r�2�ĝ�r��2
)1/2

≤ c�f�0�g�1/a�
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To prove (3.58), note that if � is a relatively compact subset of H1 then

�3�65� sup
g∈�

( ∑
�r�≥a

�r�2�ĝ�r��2
)1/2

→ 0 as a→∞�

To prove part (b), use the first inequality in (3.64) to get

�3�66� ∣∣�f�a·�� g�0∣∣ ≤ �f�0

( ∑
�r�≥a

�ĝ�r��2
)1/2

�

and note that the right side goes to zero as a→∞, uniformly for g belonging
to a relatively compact subset of H0.

Since the final estimates in (3.64), (3.66) involve only the H0-norm of f,
and the set of all infinitely differentiable functions in H0 is dense in H0, the
proof of the lemma is complete. ✷

We are now ready to prove two of the main results of this section. The
following technical condition will be made use of in the proof.

Consider the “approximation” of gj provided by the solution hj in H1 to
the equation

�3�67�
Ahj = βj − βj or(

� + aS)hj = �−1
(
βj − βj

)
�

and let iλn be the eigenvalues of S corresponding to normalized eigenfunctions
ϕn (n ≥ 1). We assume

(3.68)(A4)j (i) �gj� a ≥ 1�, �g−j ∂/∂xs��−1�βj − βj��N� a ≥ 1� �1 ≤ s ≤ k) are
relatively compact subsets of H1, and

(ii) �ϕn∂g−j /∂xs� a ≥ 1� (1 ≤ s ≤ k� n ≥ 1) are relatively compact
in H0.

See Remark 3.7.1 for some simpler conditions which guarantee (A4)j.
For the statement of the theorem below recall thatKjj′ = Ejj′ +Djj′ are the

elements of the dispersion matrix of the limiting Gaussian distribution of the
scaled Y�t� process (3.47) [see (3.48)].

Theorem 3.7. Assume (A1)–(A3) in �3�40�, and (A4)j in �3�67�. Then

�3�69� lim
a→∞

Kjj

a2
= 2

∥∥��−1�βj − βj��N
∥∥2

1�

Proof. Since [see (3.48)]

�3�70� Kjj = a2Ejj +Djj = 2a2�gj�2
1 +Djj�

it is enough to show that

�3�71� lim
a→∞�gj�

2
1 =

∥∥��−1�βj − βj��N
∥∥2

1�
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Now gj solves (3.45) or (3.54). Hence [see (3.52) and Lemma 3.6],

�3�72�
�gj�2

1 =
〈
gj� �� + aSa�gj

〉
1 =

〈
gj��

−1[bj�a·� − bj + βj − βj]〉1
= −〈gj� bj�a·� − bj + βj − βj〉0 � −〈gj�βj − βj〉0
= 〈
gj��

−1�βj − βj�
〉
1�

Here � indicates that the difference between its two sides goes to zero as
a → ∞. As in the proof of Theorem 3.3(a), letting iλn be the eigenvalues of
S corresponding to eigenfunctions ϕn (n ≥ 1), one may express the second
equation in (3.67) as

�3�73�
�hj�N =

(
�−1�βj − βj�

)
N
�

�hj�ϕn�1 =
βjn

1+ iaλn
� βjn �=

〈
�−1�βj − βj�� ϕn

〉
1� n ≥ 1�

Hence

�3�74� ∥∥hj − ��−1�βj − βj��N
∥∥2

1 =
∞∑
n=1

β2
jn

1+ a2λ2
n

→ 0 as a→∞�

since the sum on the right is bounded above by
∑∞
n=1 β

2
jn ≤ ��−1�βj − βj��2

1
for all a. Hence,

�3�75� hj→
(
�−1�βj − βj�

)
N

in H1-norm, as a→∞.

Now, using �� + aSa�gj = �−1�bj�a·� − bj + βj − βj� and �� + aS�hj =
�−1�βj − βj�, one gets

�3�76� �� + aS��gj − hj� = �−1�bj�a·� − bj� − a�−1�b�a·� − b� · ∇gj�
Therefore,

�3�77� �gj − hj�N =
(
�−1�bj�a·� − bj�

)
N
− a(�−1��b�a·� − b� · ∇gj�

)
N

and

�3�78�
〈
gj − hj�ϕn

〉
1 =

1
1+iaλn

〈
�−1�bj�a·� − bj�� ϕn

〉
1

− a

1+ iaλn
〈
�−1�b�a·� − b� · ∇gj�ϕn

〉
1� n ≥ 1�

The first term on the right in (3.78) goes to zero by (3.58) or (3.59). To
evaluate the second term, express the inner product as〈

�−1�b�a·� − b� · ∇gj�ϕn
〉
1 =

〈−�b�a·� − b� · ∇gj�ϕj〉0
= −

k∑
s=1

��bs�a� − bs�
∂gj

∂xs
� ϕn�0(3.79)

= −
k∑
s=1

〈
�bs�a·� − bs�� ϕn

∂g−j
∂xs

〉
0
→ 0 as a→∞,
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using the assumption that �ϕn∂g−j /∂xs� a ≥ 1�, 1 ≤ s ≤ k, are relatively
compact subsets of H0 [see (A4)j and Lemma 3.6(b)]. Thus

�3�80� �gj − hj�ϕn�1 → 0 as a→∞ �n = 1�2� � � ���

Since �gj − hj� a = 1�2� � � �� is relatively compact in H1, (3.80) implies �gj −
hj�N⊥ → 0 weakly in H1, that is, �gj�N⊥ → 0 weakly in H1. Now use (3.72)
to write

�3�81�

�gj�2
1 �

〈
gj��

−1�βj − βj�
〉
1

= 〈
gj� ��−1�βj − βj��N

〉
1 +

〈
gj�

(
�−1�βj − βj�

)
N⊥

〉
1

� 〈
gj� ��−1�βj − βj��N

〉
1

= 〈
hj� ��−1�βj − βj��N

〉
1 +

〈
gj − hj� ��−1�βj − βj��N

〉
1

� ∥∥��−1�βj − βj��N
∥∥2

1 +
〈�gj − hj�N��−1�βj − βj�

〉
1�

Now, by (3.77) and Lemma 3.6,

�3�82�

〈�gj − hj�N��−1�βj − βj�
〉
1

� −a���−1��b�a·� − b� · ∇gj��N��−1�βj − βj�
〉
1

= −a〈�−1��b�a·� − b� · ∇gj�� ��−1�βj − βj��N
〉
1

= a〈�b�a·� − b� · ∇gj� ��−1�βj − βj��N
〉
0

= a
k∑
s=1

〈
∂

∂xs

{�bs�a·� − bs�gj}� ��−1�βj − βj��N
〉

0

= −a
k∑
s=1

〈
�bs�a·� − bs�� g−j

∂

∂xs
��−1�βj − β�j��N

〉
0
→ 0�

since �g−j �∂/∂xs���−1�βj − βj��N� a ≥ 1�, 1 ≤ s ≤ k, are relatively compact
subsets of H1. Relations (3.81) and (3.82) imply (3.71). ✷

Remark 3.7.1. Assumption (A4)j is probably redundant, in the presence of
assumptions (A1)–(A3), for the proof of the theorem above. But we are unable
to dispense with it.

A set of sufficient conditions for (A4)j to hold are

�3�83� sup
a≥1

sup
x
�∇gj�x�� <∞� lim

a→∞∇gj�x� exists a.e.

and

�3�84� ��−1�βj − βj��N have bounded first, and second-order derivatives.
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Indeed, (3.83) guarantees that gj converges in H1 to some q, say. One may
then use the inequality

�3�85� �uv�2
1 ≤ c′

(
�u�2

1�v�2
∞ + �u�2

0

(
k∑

s′=1

∥∥∥∥ ∂v∂xs′
∥∥∥∥

2

∞

))
�

with u = gj − q and v = ∂/∂xs��−1�βj − βj��N. One also has the more
symmetric inequality,

�3�86� �uv�2
1 ≤ c′

(�u�2
1�v�2

∞ + �u∞�2�v�2
1

)
�

It may be noted in this connection that the inequality (3.86) corrects a careless
error in Bhattacharya and Götze [(1995), relation (4.86)]. Finally, it may be
noted that (3.83), (3.84) hold in the examples in Section 6.

The next result deals with the case

�3�87� (
�−1�βj − βj�

)
N
= 0�

We will make use of the following assumption, in addition to (A1)–(A3):

(3.88)(A5)j There exists a twice continuously differentiable solution p ∈H1 of
the equation

�b+ β� · ∇p = βj − βj�

Note that (A5)j says that �−1�βj − βj� belongs to the range of S, so that
(3.87) holds.

Theorem 3.8. Assume (A1)–(A3), (A5)j. Then

�3�89� Djj ≤ lim inf
a→∞ Kjj ≤ lim sup

a→∞
Kjj <∞�

Proof. In view of (3.48) [see (3.70)], it is enough to show that

�3�90� lim sup
a→∞

a2�gj�2
1 <∞�

Letting p be as in (3.88) one has, by the last inequality in (3.64),

�3�91�

�gj�2
1 =

〈
gj� �� + aSa�gj

〉
1

= 〈
gj��

−1�bj�a·� − bj�
〉
1 +

〈
gj��

−1�βj − βj�
〉
1

≤ c1�gj�1�bj�0

a
+ �gj�Sp�1�
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Now

�3�92�

〈
gj�Sp

〉
1 = �gj�Sap�1 −

〈
gj� �Sa −S�p

〉
1

= −〈Sagj�p〉1 − 〈
gj��

−1�b�a·� − b� · ∇p〉1
= −1

a

〈−gj +�−1�bj�a·� − bj� +�−1�βj − βj�� p
〉
1

− 〈
gj��

−1�b�a·� − b� · ∇p〉1
= 1
a
�gj�p�1 +

1
a

〈
bj�a·� − bj�p

〉
0

− 1
a
�Sp�p�1 −

〈
gj��

−1�b�a·� − b� · ∇p〉1�
Since �Sp�p�1 = 0, and p ∈H1, (3.91) and (3.92) lead to

�3�93� �gj�2
1 ≤

c2�gj�1

a
+ c3

a2
+ ∣∣〈gj��−1�b�a·� − b� · ∇p〉1∣∣�

By Lemma 3.6(a),

�3�94�

∣∣〈gj��−1�b�a·� − b� · ∇p〉1∣∣
=
∣∣∣∣∣
〈
gj�

k∑
s=1

�bs�a·� − bs�
∂p

∂xs

〉
0

∣∣∣∣∣
=
∣∣∣∣∣
k∑
s=1

〈
gj
∂p−

∂xs
� bs�a·� − bs

〉
0

∣∣∣∣∣ ≤ c4�gj�1/a�

The last inequality follows from (3.58) using the fact that [see (3.85)]

�3�95�

∥∥∥∥gj ∂p−∂xs

∥∥∥∥
2

1
≤ c′

{
�gj�2

1

∥∥∥∥∂p−∂xs

∥∥∥∥
2

∞
+ �gj�2

0

k∑
s′=1

∥∥∥∥ ∂2p−

∂xs′∂xs

∥∥∥∥
2

∞

}

≤ c5�gj�2
1�

From (3.93), (3.94), one derives the relation

�3�96� a2�gj�2
1 ≤ c6a�gj�1 + c7�

where c6 and c7 do not depend on “a.” It is clear from (3.96) that �a�gj�1� a =
1�2� � � �� is a bounded sequence, that is, (3.90) holds. ✷

Remark 3.8.1. The assumption of boundedness of derivatives of p in (A5)j
is probably redundant. In any case, it is satisfied in Example 2 of Section 6.
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4. Speed of convergence to equilibrium of diffusions on a big torus.
A crucial element in the analysis of the asymptotic behavior of multiscale
diffusions with periodic coefficients, such as X�t� in (3.39), is the estimation
of the total variation distance between the distribution at large times t of the
corresponding diffusion Ẋ�·� �=X�·�moda on the big torus �a = �x moda� x ∈
R
k� and its equilibrium distribution uniformly with respect to all initial states

of Ẋ�·�. To derive such an estimate we first obtain an analogue of a result of
Fill (1991) [also see Diaconis and Stroock (1991) for the time-reversible case],
which holds for general Markov processes in continuous time.

Let U�t�, t ≥ 0, be a Markov process on a measurable state space �M�	 �,
having a transition probability density r�t�x�y� with respect to a sigma-
finite measure ν. Suppose r admits a unique invariant probability π�dx� =
π�x�ν�dx�. Let � 2 = � 2�M�π� be the real Hilbert space of square integrable
(w.r.t. π) functions on M and Tt (t > 0) the semigroup of transition operators
on � 2,

�4�1� �Ttf��x� =
∫
f�y�r�t�x�y�ν�dy�� f ∈ � 2�

Define also the transition probability density q�t�x�y� of the time-reversed
Markov process, by

�4�2� q�t�x�y� = r�t�y�x�π�y�/π�x�
if π�x� > 0 [and arbitrarily, measurably, if π�x� = 0]. Let T̃t, t > 0, denote the
corresponding transition semigroup,

�4�3� �T̃tg��x� =
∫
g�y�q�t�x�y�ν�dy�� g ∈ � 2�

It is simple to check that T̃t is the adjoint of Tt, that is,

�4�4� �Ttf�g� = �f� T̃tg�� f�g ∈ � 2�

where � � � is the inner product on � 2. Let B and B̃ denote the infinitesimal
generators of the semigroups Tt (t > 0) and T̃t (t > 0), respectively, and DB,
DB̃ their domains. Let 1⊥ denote the subspace of � 2 orthogonal to constants
and write � · � for the norm in � 2.

Proposition 4.1. Assume that DB̃ is dense in � 2, and define

�4�5� λ = inf
{�−B̃f� f�� f ∈ 1⊥ ∩DB̃� �f� = 1

}
�

Then if U�0� has a probability density η w.r.t. ν, the density ηt of U�t� satisfies

�4�6�
∫ ∣∣ηt�y� − π�y�∣∣ν�dy� ≤ e−λt�ψ0��

where ψ0 is given by

�4�7� ψ0�y� =
η�y� − π�y�

π�y� a.e., w.r.t. π�dy��
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Proof. Without loss of generality, assume �ψ0� < ∞, that is, ψ0 ∈ 1⊥.
Now if g ∈ 1⊥ ∩DB̃� then T̃tg ∈ 1⊥ ∩DB̃ ∀ t > 0 so that, by (4.5),

�4�8�
d

dt
�T̃tg�2 = d

dt

〈
T̃tg� T̃tg

〉 = 2
〈
T̃tg� B̃T̃tg

〉
≤ −2λ�T̃tg�2�

leading to

�4�9� �T̃tg�2 ≤ e−2λt�g�2� g ∈ 1⊥ ∩DB̃�

Note that 1⊥ ∩DB̃ is dense in 1⊥, since DB̃ is dense in � 2. Hence (4.9) holds
for all g ∈ 1⊥. Now one may write

�4�10�
T̃t

(
η

π

)
�y� =

∫ η�x�
π�x� q�t�y�x�ν�dx�

=
∫ η�x�
π�x� r�t�x�y�

π�x�
π�y� ν�dx� =

ηt�y�
π�y� �

which implies T̃tψ0 = ηt/π−1. Therefore, by the Cauchy–Schwarz inequality
and (4.9),

�4�11�

∫
�ηt�y�−π�y��ν�dy� =

∫ ∣∣∣∣ηt�y�π�y� −1
∣∣∣∣π�y�ν�dy�

=
∫ ∣∣T̃tψ0�y�

∣∣π�y�ν�dy�
≤ �T̃tψ0� ≤ e−λt�ψ0�� ✷

Remark 4.1.1. IfB is self–adjoint, that is, if B̃ = B, λ defined in (4.5) is the
spectral gap of B. Note that in this case the spectrum of B lies on the negative
half of the real-axis (in the complex plane), with 0 as the simple eigenvalue
corresponding to the eigenspace of constants in � 2�M�π�. The point of the
rest of the spectrum closest to 0 is −λ, if λ > 0. If B is not self-adjoint then,
assuming that the symmetric operator B+ B̃ is closed with a domain dense in
� 2�M�π�, the quantity λ in (4.5) is the spectral gap of 1

2�B+B̃�. For notational
purposes, we will often write λB for λ in (4.5).

The following simple lemma shows the change in λ that occurs under a
change in the time scale.

Lemma 4.2. Assume the hypothesis of Proposition 4.1 and consider the
Markov process V�t� �= U�ct�, t ≥ 0.

(a) Then V�·� has invariant probability π and for its infinitesimal generator
Bc, say, one has

�4�12� λBc �= inf
{〈−B̃cf� f〉� �f� = 1� f ∈ 1⊥ ∩DB̃c

} = cλB�
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(b) Also, if V�0� has a probability density η w.r.t. ν, and V�t� has the cor-
responding density ηt, then one has

�4�13�
∫
M

∣∣ηt�y� − π�y�∣∣ν�dy� ≤ exp�−cλBt��ψ0��

where ψ0�y� = �η0�y� − π�y��/π�y�.

Proof. Clearly, V�·� has the same invariant probability as U�·�. Also, the
infinitesimal generator of V�·� is Bc = cB (with domain DBc

= DB), so that
B̃c = cB̃ and λBc is given by

�4�14� inf
{〈−cB̃f� f〉� �f� = 1� f ∈ 1⊥ ∩DB̃

} = cλB�
This proves part (a). Part (b) follows from (4.7). ✷

We now apply this lemma to the scaled diffusion Ẏ on the unit torus and
its generator Aa on � 2��1� dx� [see (3.42), (3.44)]. Recall that, under the
divergence-free assumption in (3.40), dx is the unique invariant probability
of Ẏ. The adjoint operator Ãa is then easily seen to be

�4�15�
Ãa =

1
2

k∑
j�j′=1

Djj′
∂2

∂xj∂xj′
− a�b�a·� + β� · ∇

= � − a�b�a·� + β� · ∇�
Denote by λ the infimum in (4.5) for the case B = Aa, B̃ = Ãa. That is, λ is
the spectral gap of 1

2�� + a�b�a·� + β� · ∇� + 1
2�� − a�b�·� + β� · ∇� = � on

� 2��1� dx�.

Proposition 4.3. Under assumptions (A1)–(A3) in �3�40�, writing α1 for
the smallest eigenvalue of the matrix ��Djj′ ��, and λ1 = min�Djj� 1 ≤ j ≤ k�,
one has

�4�16� 2π2α1 ≤ λ ≤ 2π2λ1�

Proof. Denote by D the domain of � on � 2��1� dx�. As before, let f̂
denote the Fourier transform of f on � 2��1� dx�. Then one has

�4�17�

λ = inf
{−�f��f�� �f� = 1� f ∈ 1⊥ ∩D

}
= inf

{
2π2 ∑

r∈Z
k\�0�

∣∣f̂�r�∣∣2(∑
j� j′

Djj′rjrj′

)}

≥ 2π2 inf
{ ∑
r∈Z

k\�0�

∣∣f̂�r�∣∣2α1�r�2
}
≥ 2π2α1�

On the other hand, letting f�x� = √2 cos 2πxj, one gets −�f��f� = 2π2Djj.
Hence λ ≤ 2π2λ1. ✷
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By using Lemma 4.2, one arrives at the following corollary of Proposition
4.3. To state it, assume (A1)–(A3). Let L denote the generator of the diffusion
Ẋ�t� on the big torus �a = �xmoda� x ∈ R

k�, and let m denote the normalized
Lebesgue measure or the uniform distribution on �a. Note thatm is the unique
invariant probability of Ẋ and that 1

2�L+L̃� = � on � 2��a�m�. Let D denote
the domain of � in � 2��a�m�.

Corollary 4.4. Assume (A1)–(A3) in �3�40�. Then the quantity λL �=
inf�−�f� L̃f�� �f� = 1� f ∈ 1⊥ ∩DL̃� satisfies

�4�18� 2π2α1

a2
≤ λL ≤

2π2

a2
λ1�

where α1, λ1 are as in Proposition 4.3.

Proof. First note that V�t� �= Ẋ�a2t�, t ≥ 0, has the generator a2L on
� 2��a�m�. The generator Aa of Ẏ�t� = V�t�/a has the same spectrum on
� 2��1� dx� as that of V�t� on � 2��a�m�. Therefore, λ = λa2L ∈ �c1� c2�, where
c1� c2 are as in (4.16). On the other hand, by Lemma 4.2, λa2L = a2λL. Hence
λL = 1/a2λa2L ∈ �c1/a

2� c2/a
2�. ✷

One of the main results of this section may now be stated and proved.

Theorem 4.5. Assume (A1)–(A3) in �3�40�, and let pa�t�x�y� denote the
transition probability density of Ẋ�t� with respect to Lebesgue measure on
�0� a�k. Then there exists a positive constant c5 independent of a such that

�4�19� sup
x

∫
�0� a�k

∣∣∣∣pa�t�x�y� − 1
ak

∣∣∣∣dy ≤ c5a
k/2 exp

{−2π2α1 t/a
2}�

α1 being the smallest eigenvalue of the matrix ��Djj′ ��.

Proof. By Corollary 4.4 and Proposition 4.1 one has, for every initial den-
sity η of Ẋ,

�4�20�
∫
�0� a�k

∣∣∣∣ηt�y� − 1
ak

∣∣∣∣dy ≤ exp
(−2π2α1t

a2

)
�ψ0��

where ψ0�y� = �η�y� − a−k�/a−k, and ηt is the density of Ẋ�t�. Now

�4�21�

�ψ0�2 = a2k
∫
�0� a�k

(
η2�y� + a−2k − 2a−kη�y�)a−k dy

= ak
∫
�0�a�k

η2�y�dy− 1

≤ ak sup
{
η�y�� y ∈ �0� a�k}�

Since pa�t�x�y� is the density of Ẋ�t�, when Ẋ�0� has the degenerate distri-
bution δx, we will apply (4.20), (4.21) to η�y� = pa�1�x�y� and with t replaced
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by t− 1 to get

�4�22�

∫
�0� a�k

∣∣∣∣pa�t�x�y� − 1
ak

∣∣∣∣dy
≤ (
ak sup

{
pa�1�x�y�� y ∈ �0� a�k

})1/2 exp
{
−2π2α1�t− 1�/a2

}
�

To estimate the supremum on the right side we apply a result of Aronson
(1967), which implies that the transition probability density f�1�x�y� of the
process X�t� satisfies

�4�23� f�1�x�y� ≤ c′ exp�−c�x− y�2�� x� y ∈ R
k�

where c and c′ are positive constants not depending on a. Now

�4�24�
pa�1�x�y� =

∑
r∈Z

k

f�1�x�y+ ar�� x� y ∈ �0� a�k

≤ c′ ∑
r∈Z

k

exp
{−c�x− y− ar�2} ≤ c′′�

where c′′ does not depend on a. Therefore, (4.22) and (4.24) lead to (4.19). ✷

Remark 4.5.1. It follows from the above proof that the transition density
qa�t�x�y�, say, of Ẏ�t� satisfies the inequality

�4�19�′ sup
x

∫
�0�1�k

∣∣qa�t�x�y� − 1
∣∣dy ≤ c5a

k/2 exp�−2π2α1t��

Remark 4.5.2. One may extend Theorem 4.5 by relaxing the assumptions
(A1)–(A3) to the case of diffusions X�t� with generators of the form

�4�25� L = 1
2

k∑
j� j′=1

∂

∂xj
�Djj′ �x��

∂

∂xj′
+

k∑
j=1

�bj�x� + βj�x/a��
∂

∂xj
�

where the assumptions (A1), (A3) hold for bj, βj and a, but (A2) is replaced
by

(A2)′ ��Djj′ �x� �� is a (positive definite)-matrix valued continuously differen-
tiable periodic function with period lattice Z

k.

In this case the diffusion Ẋ�t� = X�t�moda on the big torus �a has again
as its unique invariant probability the normalized Lebesgue measure m =
a−k dx, whose generator on � 2��a�m� is L-restricted to periodic functions.
Also, 1

2�L + L̃� = �1 �= 1
2

∑
j� j′ �∂/∂xj� �Djj′ �x�� �∂/∂xj′ � is self-adjoint on

� 2��a�m� and has a spectral gap O�1/a2�. This last statement is a conse-
quence of the fact that for the generator Aa of Ẏ�t� �= Ẋ�a2t�/a one has
1
2�Aa + Ãa� = �1 on � 2��1� dx�, and the latter has a spectral gap indepen-
dent of a. Thus under the hypotheses (A1), (A2)′, (A3) the transition probability
density pa�t�x�y� of Ẋ�t� satisfies (4.19).
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We next turn to a special class of diffusions with periodic diffusion coef-
ficients whose drift terms are not divergence free. This is the class of one-
dimensional multiscale diffusions with periodic coefficients. But, first, some
general facts concerning diffusions on the unit circle S1 = �xmod 1� x ∈ R

1�
are needed. For detailed derivations see Bhattacharya, Denker and Goswami
(1999). Consider the one-dimensional Itô equation

�4�26� Z�t� = Z�0� +
∫ t

0
µ�Z�s��ds+

∫ t
0
σ�Z�s��dB�s��

where µ�·�, σ�·� are continuously differentiable periodic functions with pe-
riod one, σ2�x� > 0 ∀x, B�t� is a standard one-dimensional Brownian motion
independent of Z�0�. The diffusion Ż�t� �= Z�t�mod 1 on S1 has a unique
invariant probability with density π given by

�4�27� π�x� = d exp�I�0� x��/σ2�x�� I�0� x� �=
∫ x

0

2µ�y�
σ2�y� dy�

provided one has

�4�28�
∫ 1

0

µ�y�
σ2�y� dy = 0�

If (4.28) does not hold, then

�4�29�
π�x� = d′ exp�I�0� x��

σ2�x�
{

exp�I�0�1��
exp�I�0�1�� − 1

∫ 1

0
exp�−I�0� y��dy

−
∫ x

0
exp�−I�0� y��dy

}
�

The constant d in (4.27) is the normalizing constant, as is the constant d′ in
(4.29). The infinitesimal generatorA of Ż�t� on � 2�S1� π� is 1

2σ
2�x��d2/dx2�+

µ�x��d/dx� acting on periodic functions. One can show that A is self-adjoint,
that is, A = Ã, if and only if (4.28) holds. Write Ã for the adjoint of A.
Then, irrespective of whether A is self-adjoint or not, one can show on direct
integration, using integration by parts and periodic boundary conditions [see
Bhattacharya, Denker and Goswami (1999)] that

�4�30�

�−f� Ãf� = 1
2
�σ�·�f′�2 ∀f ∈ DÃ�

λA �= inf
{
−�f� Ãf�� �f� = 1� f ∈ 1⊥ ∩DÃ

}

≥ 1
2M

�

where

�4�31�
M �= sup

{(
σ2�y�π�y�)−1

∫ 1

y
xπ�x�dx� 0 ≤ y < 1

}

≤
(

min
y
σ2�y�π�y�

)−1(
max
y
π�y�

)/
2�
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Now consider a general multiscale one-dimensional diffusion with periodic
coefficients,

�4�32�

X�t� =X�0� +
∫ t

0

{
b�X�s�� + β�X�s�/a�}ds

+
∫ t

0
σ�X�s��dB�s��

X�0� = ax0�

Assume

(4.33)(B1) b�·�, β�·�, σ�·� are continuously differentiable and periodic with
period one,

(4.33)(B2) σ�x� does not vanish for any x,
(4.33)(B3) “a” is a positive integer.

Also, without any essential loss of generality, assume

(4.34)(B4)
∫ 1

0
�b�x�/σ2�x��dx = 0�

by adding a constant to β�·� if necessary. As before, Ẋ�t� �= X�t�moda is a
diffusion on the big circleS1

a �= �xmoda� x ∈ R
1�, which we identify with �0� a�

for purposes of integration. Let π̃a denote the unique invariant probability
density of Ẋ�t�. The infinitesimal generator of Ẋ�t� on � 2�S1

a� π̃a� is

�4�35� L = 1
2
σ2�x� d

2

dx2
+ {

b�x� + β�x/a�} d
dx

acting on periodic functions. The diffusion Y�t� �= X�a2t�/a is governed by
the Itô equation

�4�36� Y�t� = Y�0� +
∫ t

0
a
{
b�aY�s�� + β�Y�s��}ds+ ∫ t

0
σ�aY�s��dB�s��

Y�0� = x0�

where B�t� �= B�a2t�/a is a standard Brownian motion. Also, Ẏ�t� �= Y�t�
mod 1 is a diffusion on the unit circle S1 having the invariant probability
density πa related to the invariant density of Ẋ�t� by πa�y� = aπ̃a�ay�. Note
that the generator of Ẏ�t� is given by

�4�37� Aa =
1
2
σ2�ax� d

2

dx2
+ a�b�ax� + β�x�� d

dx
�

Assume now that β�·� is bounded away from zero. Then, in the presence of
(B4) in (4.34), the relation (4.28) does not hold for the drift of Ẏ�t�. Hence in
this case the invariant density πa is given by (4.29) with

�4�38� I�0� x� = a
∫ x

0

b�ay�
σ2�ay� dy+ a

∫ x
0

β�y�
σ2�ay� dy�
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and the generator Aa is not self-adjoint. In order to estimate λAa
using (4.30),

(4.31), assume β�x� > 0 ∀x. [The case β�x� < 0 ∀ x is entirely analogous.]
Write

�4�39�
d1 = min

y
σ2�y�� d2 = max

y
σ2�y�� δ =

∫ 1

0
�b�y��dy�

β∗ = min
y
β�y�� β∗ = max

y
β�y��

By direct calculation one may now show [Bhattacharya, Denker and Goswami
(1999)]

�4�40�

(
d1

2aβ∗

)
exp�−4δ/d1�

(
1− exp

(−2aβ∗

d1

))

≤ σ2�ax�πa�x�
d′

≤
(
d2

2aβ∗

)[
exp

(
�2δ/d1� +

(
1+ d2

2aβ∗

)
exp�4δ/d1�

]
�

From (4.40), (4.30), (4.31), one arrives at

λAa
≥ d1

miny πa�y�
maxy πa�y�

≥ c6 > 0�

where c6 is independent of “a.” To get an upper bound, let f�x� = sin 2πx −∫
sin 2π�y�πa�y�dy to get [see (4.30)] �−f� Ãf� = �−f�Af� = 1

2σ
2�f′�2 ≤

c′6�f�2 for some c′6 independent of a. Thus one obtains

�4�41� c6 ≤ λAa
≤ c′6�

For the generator L of Ẋ�t� one then has, by the same argument as given in
the proof of Corollary 4.4,

�4�42� c6

a2
≤ λL ≤

c′6
a2
�

Using this together with the Aronson estimate (4.23), and the relation (4.24),
as in the proof of Theorem 4.5, one arrives at the following result.

Theorem 4.6. Assume (B1)–(B4) in (4.33), (4.34). In addition, assume β�x�
> 0 for all x. Then:

(a) (4.42) holds, and
(b) TheL1-distance between the transition probability density pa�t�x�y� of

Ẋ�t� and its invariant density π̃a�y� is estimated by

�4�43� sup
x

∫
�0� a�

∣∣pa�t�x�y� − π̃a�y�∣∣dy ≤ c7a
1/2 exp�−c′7t/a2��

where c7 and c′7 are positive constants independent of a.
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The next result concerns the self-adjoint case. For this we assume that the
diffusion coefficient σ2�·� is a (positive) constant σ2 > 0, so that (B4) in (4.34)
becomes

(4.44)(B4)′
∫ 1

0
b�x�dx = 0.

The generator Aa of Ẏ�t� is then self-adjoint if and only if

(4.45)(B5)
∫ 1

0
β�x�dx = 0�

As stated earlier, the invariant probability density πa of Ẏ�t� in this case
is given by (4.27), with I�0� x� = 2a/σ2�∫ x0 b�ay�dy + ∫ x

0 β�y�dy�. A fairly
straightforward calculation [see Bhattacharya, Denker and Goswami (1999)]
yields

�4�46�
exp�−2δ/σ2�

d
πa�x� ≤ exp

(
2aθ∗

σ2

)
�

exp
(

2δ/σ2�
d

)
πa�x� ≥ exp

(
2aθ∗
σ2

)
�

where δ = ∫ 1
0 �b�x��dx and

�4�47� θ∗ = min
x

∫ x
0
β�y�dy� θ∗ = max

x

∫ x
0
β�y�dy�

From (4.46) one gets

�4�48� maxx πa�x�
minx πa�x�

≤ exp
(

4δ
σ2

)
exp

(
2a�θ∗ − θ∗�/σ2

)
�

Using this in (4.30) one obtains

�4�49� λAa
≥
(
σ2 exp

(−4δ
σ2

))
exp

(−2a�θ∗ − θ∗�
σ2

)
�

so that the spectral gap λL of the generator L of the diffusion Ẋ�t� on the big
circle S1

a = �xmoda� x ∈ R
1� is estimated by

�4�50� λL =
1
a2
λAa

≥
(
σ2 exp

(−4δ
σ2

))
1
a2

exp�−2a�θ∗ − θ∗�
σ2

)
�

Proceeding as in the proof of Theorem 4.5, or Theorem 4.6, one arrives at the
following estimate of the speed of convergence to equilibrium in this case.

Theorem 4.7. In the self-adjoint case (B4)′, (B5) with constant σ2 > 0, the
L1-distance between the transition probability density of Ẋ�t� and its equilib-
rium density π̃a is estimated by

�4�51�
sup
x

∫
�0� a�

∣∣pa�t�x�y� − π̃a�y�∣∣dy
≤ c8a

1/2 exp
{
c9a/2

}
exp

{−�c′8/a2� exp�−c9a�t
}

where c8, c′8 c9 ≡ 2�θ∗ − θ∗�/σ2 are positive constants independent of “a.”
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Remark 4.7.1. The speed of convergence to equilibrium as estimated in
Theorem 4.7 is exceedingly slow and, going by it, the process may take times
t � �a2 log a� exp�c9a� to be close to equilibrium. This is in contrast to the
nonself-adjoint case considered in Theorem 4.6, where for times t � a2 log a�
the process is near equilibrium. The estimate (4.51) concerns the “worst case”
scenario such as holds under the hypothesis of part (b) of Theorem 4.9 below.
On the other hand, under the hypothesis of part (a) of Theorem 4.9, the speed
of convergence is shown to be as fast as in the case of Theorem 4.6.

An important difference in the asymptotic behavior between the two classes
of diffusions considered in Theorems 4.6 and 4.7 is provided by the following
result.

Proposition 4.8. (a) Under the hypothesis of Theorem 4�6, the invariant
probability density πa of the diffusion Ẏ�t� = Ẋ�a2t�/a on S1 is bounded away
from zero uniformly in a.

(b) Assume the hypothesis of Theorem 4�7. If the “potential function” ψ�x� �=∫ x
0 β�y�dy has its maximum attained at a single point x∗, then the invariant

probability πa�x�dx converges weakly to the point mass δx∗ as a → ∞. More
generally, if the maximum of ψ is attained at a finite number of points, then
all weak limit points of πa�x�dx have support contained in this finite set.

Proof. Part (a) follows from the estimate miny πa�y�/maxy πa�y� ≥ c6/d1
[see (4.41)]. To prove part (b), let x1� x2� � � � � xm be the distinct points in �0�1�
where the maximum of ψ is attained. Since �a ∫ x0 b�ay�dy� = � ∫ ax0 b�y�dy� =
� ∫ ax�ax� b�y�dy� ≤ δ ≡ ∫ 1

0 �b�y��dy [in view of (4.44)], it is simple to check that
πa�x�/maxy πa�y� → 0 if x �∈ �x1� x2� � � � � xm�. It follows that for any ε >
0, however small, the πa-probability of the ε–neighborhood of the finite set
�x1� x2� � � � � xm� goes to one as a→∞. ✷

The next result provides a dichotomy of the class of time-reversible diffu-
sions on the big circle into (1) those for which the speed of convergence to
equilibrium is the same as in the nonself-adjoint case considered in Theo-
rem 4.6 and (2) those for which the convergence is exceedingly slow, requiring
times t� eca. For this we need a result of Holley, Kusuoka and Stroock (1989)
specialized to the circle. Consider the self-adjoint case with b�·� ≡ 0, that is,

�4�52� Aa =
1
2
σ2 d

2

dy2
+ aβ�y� d

dy
�

∫ 1

0
β�y�dy = 0�

In this case, according to Theorem 1.14 in Holley, Kusuoka and Stroock (1989),
there exist constants c�1� > 0, c�2� ≥ 0, independent of a, such that

�4�53� c�1�a−2 exp�−c�2�a� ≤ λAa
≤ c�1�a6 exp�−c�2�a��

The constant c�2� is computed as follows. Let U�x� = �θ∗ −ψ�x��/σ2, where θ∗

is given by (4.47) and ψ�x� = ∫ x
0 β�y�dy. For any given pair of points x�y in S1

and a continuous curve γ joining x and y, let Hγ�x�y� denote the maximum
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value of U on (the image of) γ. Define H�x�y� to be the infimum over all
such γ. Then

�4�54� c�2� = sup
x�y
�H�x�y� −U�x� −U�y���

Theorem 4.9. Consider the self-adjoint case (B4)′, (B5) with σ2 > 0, and
assume that the number of zeros of β on �0�1� is finite.

(a) If ψ�x� ≡ ∫ x
0 β�y�dy has a unique maximum, then there exists a positive

constant c�3� independent of a such that

�4�55� λL ≥
c�3�

a2
�

(b) If ψ has more than one maximum then there exist positive constants c�2�,
c�4�, c�5� independent of a, with c�2� as in �4�54�, such that

�4�56� c�4�a−5 exp�−c�2�a� ≤ λL ≤ c�5�a4 exp�−c�2�a��

Proof. (a) Consider the generator Aa of Ẏ�t� on � 2�S1� πa�. Let π denote
the probability density on �0�1� given by

�4�57� π�x� = d′ exp
{

2a
σ2
ψ�x�

}
� 0 ≤ x ≤ 1�

d′ being the normalizing constant. Since � ∫ x0 ab�ay�dy� ≤ δ ≡ ∫ 1
0 �b�y��dy [see

(4.44)] one has

�4�58� πa�x� ≤ exp�4δ/σ2�π�x�� x ∈ �0�1��
Now let f ∈ DÃa

∩ 1⊥. Then, writing c11 = exp�8δ/σ2�,

�f�2 = 1
2

∫ 1

0

∫ 1

0
�f�x� − f�y��2πa�x�πa�y�dxdy

≤ 1
2c11

∫ 1

0

∫ 1

0
�f�x� − f�y��2π�x�π�y�dxdy

= 1
2c11

(∫ ∫
�x<y�

+
∫ ∫

�y<x�

)(
f�x� − f�y�)2

π�x�π�y�dxdy

= c11

∫ ∫
�x<y�

�f�x� − f�y��2π�x�π�y�dxdy(4.59)

= c11

∫ 1

0

∫ y
0
�f�x� − f�y��2π�x�π�y�dxdy

= c11

∫ 1

0

∫ y
0

(∫ y
x
f′�z�dz

)2

π�x�π�y�dxdy
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≤ c11

∫ 1

0

∫ y
0
�y− x�

{∫ y
x
�f′�z��2 dz

}
π�x�π�y�dxdy

= c11

∫ 1

0
�f′�z��2

[∫ 1

z

{∫ z
0
�y− x�π�x�dx

}
π�y�dy

]
dz�

By translation, if necessary, we may assume that the minimum of ψ is at 0,
and the maximum is at x∗. Then ψ�x� increases from x = 0 to x = x∗ and
decreases from x = x∗ to x = 1. One thus has, for z ≤ x∗,

�4�60�

∫ 1

z

{∫ z
0
�y− x�π�x�dx

}
π�y�dy

≤
∫ 1

z

{∫ z
0
�y− x�π�z�dx

}
π�y�dy

= π�z�
∫ 1

z

{∫ z
0
�y− x�dx

}
π�y�dy

= π�z�
∫ 1

z

(
yz− z2

2

)
π�y�dy

≤ π�z�z�
For z > x∗,

�4�61�

∫ 1

z

{∫ z
0
�y− x�π�x�dx

}
π�y�dy

=
∫ z

0

{∫ 1

z
�y− x�π�y�dy

}
π�x�dx

≤
∫ z

0

{∫ 1

z
�y− x�π�z�dy

}
π�x�dx

= π�z�
∫ z

0

{
1− z2

2
− x�1− z�

}
π�x�dx ≤ π�z�

(
1− z2

2

)
�

Using (4.60), (4.61) in (4.59) we get [see (4.30)]

�4�62� �f�2 ≤ c11

∫ 1

0
�f′�z��2π�z�dz = c11

σ2
�−f� Ãf��

so that λAa
≥ σ2/c11 and, as a consequence, the spectral gap λL of the gener-

ator L of Ẋ�t� satisfies

�4�63� L = 1
a2
λAa

≥ c12

a2
�

where c12 ≡ σ2/c11 does not depend on a.
For part (b), first make the additional assumption b�·� ≡ 0. Let x be a

point where ψ attains its absolute maximum value θ∗ and let y be another
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maximum of ψ. Then U�x� = 0 and y is a minimum of U, U�y� ≥ 0. Every
continuous curve γ joining x and y contains (in its range) a maximum of U,
that is, Hγ�x�y� ≥ U�z� − U�x� − U�y� ≡ U�z� − U�y� > 0, where U�z� =
min�U�z1��U�z2��, and z1� z2 are the two points on the two arcs joining x
and y at which U attains its maximum values. Hence c�2� defined by (4.54) is
positive, and (4.56) is just (4.53) in this case. For the general case under (b),
one shows, as in part (a) above, that the ratio of the invariant density to that
with b�·� ≡ 0 is bounded away from zero and infinity. Hence, using (4.30), one
derives (4.53) with c�1� replaced by a smaller constant c�4� on the left and by
a larger constant c�5� on the right. Since λL = λAa

/a2, (4.56) follows. ✷

Using Lemma 4.2 and an estimate of Aronson (1967), exactly as in the proof
of Theorem 4.6, we derive the following theorem.

Theorem 4.10. In addition to the hypothesis of Theorem 4�7, assume that
the potential function ψ�x� = ∫ x

0 β�y�dy on �0�1� has a unique maximum and
a unique minimum. Then

�4�64� sup
x

∫
�0� a�

∣∣pa�t�x�y� − π̃a�y�∣∣dy ≤ c10a
1/2 exp�−c′10t/a

2��

where c10 and c′10 are independent of a.

Example 4.10.1. Let b�·� be arbitrary (periodic and differentiable) satis-
fying

∫ 1
0 b�y�dy = 0. Let β�x� = π cosπx, so that ψ�x� = sinπx. Then, on

the unit circle, the flow dx�t�/dt = β�x�t�� has one stable equilibrium x = 1
2 ,

where ψ is maximum, and one unstable equilibrium x = 0, where ψ is mini-
mum. Thus Theorem 4.9 applies. One may expect a relatively fast convergence
to equilibrium here for Ẏ�t�, since from every initial point x �= 0 the flow
approaches the stable equilibrium fast.

Example 4.10.2. Let b�·� be arbitrary, as above, and β�x� = 4π cos 4πx.
Then ψ�x� = sin 4πx attains its maximum value at x = 1

8 and x = 5
8 ; these

are the stable equilibria of the flow dx�t�/dt = β�x�t��. The minimum value
of ψ�x� is attained at x = 3

8 and x = 7
8 ; these are the unstable equilibria of the

flow. In this case one would expect a relatively slow convergence to equilibrium
of Ẏ�t� starting from any point x, and Theorem 4.9(b) applies. The spectral
gap in this case is exponentially small, namely, O�e−αa�, for some α > 0 which
does not depend on a, and a slow convergence to equilibrium such as provided
for by Theorem 4.7 results.

5. Final phase of asymptotics.

5.1. The divergence-free case. Consider again the multiscale diffusion on
R
k with periodic coefficients as given in (3.39), namely,

�5�1� X�t� =X�0� +
∫ t

0

{
b�X�s�� + β�X�s�/a�}ds+ σB�t��
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and its scaled version Y�t� = X�a2t�/a satisfying the Itô equation (4.36).
Recall the diffusion Ẋ�t� = X�t�moda on the big torus �a and the diffusion
Ẏ�t� = Y�t�mod 1 on the unit torus �1. We first derive a simple consequence of
Theorem 4.5. To state it, write Ex for expectation under Ẋ�0� = x or Ẏ�0� = x,
as the case may be, and E as the expectation under equilibrium, that is, the
invariant distribution. Also, “covx” denotes covariance under Ẋ�0� = x [or
Ẏ�0� = x], while “cov” denotes covariance under equilibrium. As before, �f�∞
denotes the supremum of �f�x�� over all x for some measurable real-valued
function f. The constants ci c

′
i below are positive and independent of a.

Proposition 5.1. Assume (A1)–(A3) in �3�40�. There exist positive con-
stants ci, c

′
i �i = 13�14� not depending on “a” such that for all bounded mea-

surable f�g on �a, one has

�5�2�

∣∣Exf�Ẋ�t�� −Ef�Ẋ�t��
∣∣

≤ c13a
k/2�f�∞ exp

{−c′13t/a
2}� t ≥ 0�∣∣covx�f�Ẋ�s��� g�Ẋ�t���

∣∣
≤ c14a

k/2�f�∞�g�∞ exp�−c′13�t− s�/a2�� 0 ≤ s ≤ t�

Similarly, for all bounded measurable f�g on �1, one has

�5�3�

∣∣Eyf�Ẏ�t�� −Ef�Ẏ�t��
∣∣

≤ c13a
k/2�f�∞ exp�−c′13t�� t ≥ 0�∣∣covy�f�Ẏ�s��� g�Ẏ�t���

∣∣
≤ c14a

k/2�f�∞�g�∞ exp�−c′13�t− s��� 0 ≤ s ≤ t�

Proof. The first relation in (5.2) is an immediate consequence of Theo-
rem 4.5 with c13 = c5 and c′13 = 2π2α1. For the second relation, use condition-
ing given σ�Ẋ�u�� 0 ≤ u ≤ s� to write
�5�4�

covx
{
f�Ẋ�s��� g�Ẋ�t��} = Ex

[{
f�Ẋ�s�� −Exf�Ẋ�s��

}
× {

Ezg�Ẋ�t− s��z=Ẋ�s� −Exg�Ẋ�t��
}]
�

Applying the first inequality in (5.2) to the second factor in (5.4), one gets the
second relation in (5.2). Relations (5.3) follow from those in (5.2), noting that,
for functions f�g on �1, f�Ẏ�t�� = f�Ẋ�a2t�/a�, g�Ẏ�t�� = g�Ẋ�a2t�/a� so
that (5.2) may be applied to functions x→ f�x/a�, g�x/a� with times a2t, a2s
in place of t� s. ✷
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An immediate consequence of (5.2) and (5.3) is

�5�5�

∣∣cov�f�Ẋ�s��� g�Ẋ�t���∣∣
≤ c′14a

k/2�f�∞�g�∞ exp�−c′13�t− s�/a2��∣∣cov�f�Ẏ�s��� g�Ẏ�t���∣∣
≤ c′14a

k/2�f�∞�g�∞ exp�−c′13�t− s��� 0 ≤ s ≤ t�
For this, simply replace covx, Ex in (5.4) by cov and E, respectively.

We are now ready to prove one of the main results of this article. Below,
→� denotes convergence in law or distribution.

Theorem 5.2. Assume (A1)–(A3) in �3�40�. Also assume that (A4)j in �3�68�
holds for 1 ≤ j ≤ k1 for some k1 ≤ k. If, in addition, the assumption

(5.6)(A6) ��−1�βj − βj��N, 1 ≤ j ≤ k1, are linearly independent elements

of H1, holds, then for t� a2�log a�2, that is, as

�5�7� a→∞� t

a2�log a�2 →∞�

one has

�5�8�
{

1

a
√
t
�Xj�t� −Xj�0� − t�bj + βj��� 1 ≤ j ≤ k1

}
→� � �0� 7� 1��

no matter what the initial state X�0� may be. Here 7�1 = ��σij�� is
given by

�5�9� σij = 2���−1�βi − βi��N� ��−1�βj − βj��N�1� 1 ≤ i� j ≤ k1�

Proof. One needs to prove that an arbitrary non-zero linear combination
of the random variables in (5.8), with coefficients ξj, say, converges in distribu-

tion to a normal law � �0� γ� where γ = ∑k1
i� j=1 σijξiξj. To avoid a somewhat

messy notation, we will prove the result for the case ξj = 1, ξi = 0 for i �= j.
The proof in the general case is entirely analogous. We will prove that for
times t satisfying (5.7),

�5�10� 1

a
√
t

(
Xj�t� −Xj�0� − t�bj + βj�

)→� � �0� σjj��

under the assumptions (A1)–(A4) and ��−1�βj − βj��N �= 0. This assertion is
equivalent to

�5�11� 1

a
√
t

(
Yj�t� −Yj�0� − at�bj + βj�

)→� � �0� σjj��

under the same assumptions, but for times t� �log a�2, that is,

�5�12� a→∞� t

�log a�2 →∞�
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Recalling that the left side of (5.11) equals [see (3.43)]

�5�13� 1√
t

∫ t
0

{
bj�aẎ�s�� + βj�Ẏ�s�� − bj − βj

}
ds+ �σB�t��j

a
√
t

�

where �σB�t��j is the jth component of the vector σB�t�, (5.11) is equivalent
to

�5�14� 1√
t

∫ t
0

{
bj�aẎ�s�� + βj�Ẏ�s�� − bj − βj

}
ds →� � �0� σjj��

By Itô’s lemma, the left side of (5.14) equals [see (3.45), (3.46)]

�5�15� 1√
t

{
gj�Ẏ�t�� − gj�Ẏ�0��

}
− 1√

t

∫ t
0

gradgj�Ẏ�s��σ dB�s��

Therefore, one has

�5�16�

1√
t

∫ t
0

{
bj�aẎ�s�� + βj�Ẏ�s�� − bj − βj

}
ds

− 1√
t

{
gj�Ẏ�t�� − gj�Ẏ�0��

}

= − 1√
t

∫ t
0

gradgj�Ẏ�s��σ dB�s��

Assume first that Ẏ�0� has the uniform (equilibrium) distribution. Then, by
Lemma 3.5,

�5�17� E

(
1√
t

{
gj�Ẏ�t�� − gj�Ẏ�0��

})2

≤ 2
t
�gj�2

0 → 0 as t→∞�

Letting t = ϕ�a� � �log a�2, ϕ�a� integral, one may express the left side of
(5.14) as

�5�18�

ϕ�a�∑
r=1

Vr�

Vr �=
1√
ϕ�a�

∫ r
r−1

{
bj�aẎ�s�� + βj�Ẏ�s�� − bj − βj

}
ds �1≤r≤ϕ�a���

In view of (5.16), (5.17) and Theorem 3.7, one has

�5�19� EVr = 0� E

(ϕ�a�∑
r=1

Vr

)2

→ σjj as a→∞�

We will prove the asymptotic normality of
∑ϕ�a�
r=1 Vr by representing it approx-

imately as the sum of a number of nearly independent block sums. For this
purpose, define

�5�20�
δ ≡ δ�a� �= ϕ�a�/�log a�2� η ≡ η�a� �= [

δ1/8 log a
]
�

ψ ≡ ψ�a� �= [
δ3/8 log a

]
� m ≡m�a� �= [ ϕ�a�

η+ ψ
]
�
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where �z� denotes the integer part of z. Consider the “big” block sums

�5�21� Z1 =
ψ�a�∑
r=1

Vr� Z2 =
ψ�a�∑
r=1

Vr+ψ+η� � � � � Zm =
ψ�a�∑
r=1

Vr+�m−1��ψ+η�

and the “little” block sums

�5�22�
ξ1 =

η�a�∑
r=1

Vr+ψ�

ξ2 =
η�a�∑
r=1

Vr+2ψ+η� � � � � ξm =
η�a�∑
r=1

Vr+m�ψ+η�−η�

Then

�5�23�
ϕ�a�∑
r=1

Vr �
m�a�∑
r=1

Zr +
m�a�∑
r=1

ξr�

To verify this, note that the right side of (5.23) is missing at most ψ+η terms
Vr from the left. By applying the convergence in (5.19), but with ψ+η in place
of ϕ, it follows that the expected value of the squared sum of the missing terms
is no more than O��ψ+ η�/ϕ�a�� → 0. Next, by a similar argument,

�5�24� Eξ2
r ≤ c15η/ϕ�a��

m∑
r=1

Eξ2
r ≤ c′15mη/ϕ�a� → 0�

Also, for r′ ≥ 1,

�5�25�
Eξrξr+r′ =

η∑
i=1

η∑
i′=1

E
(
Vi+ψVi′+�r′+1��ψ+η�−η

)

= 1
ϕ�a�

η∑
i� i′=1

∫ 1

0

〈
h�Ti′−i−1+r′�ψ+η�+sf

〉
ds�

where h�y� �= bj�ay� + βj�y� − bj − βj, f�y� = Ey

∫ 1
0 h�Ẏ�s��ds, and Tu is

the transition operator of Ẏ (u ≥ 0). By Proposition 5.1, the integral on the
right in (5.25) is bounded in magnitude by c16�h�2

∞a
k/2 exp�−c′13r

′ψ�, so that

�5�26�

∣∣Eξrξr+r′ ∣∣ ≤ c′16
η2ak/2

ϕ�a� exp�−c′13r
′ψ��

m∑
r=1

m−r∑
r′=1

∣∣Eξrξr+r′ ∣∣ ≤ c17
mη2ak/2

ϕ�a� exp�−c′13ψ� → 0 as a→∞�

Thus E�∑m
r=1 ξr�2 → 0 as a→∞, and we get from (5.23) the relation

�5�27�
ϕ�a�∑
r=1

Vr �
m∑
r=1

Zr�
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We next show that the characteristic function of the right side of (5.27) is
asymptotically the same as that of the sum of m i.i.d. random variables, each
having the same distribution as Z1. For this write, for any fixed ξ ∈ R

1,
f�y� �= E�exp�iξZ1� � Ẏ�0� = y�, to derive the following approximation using
Proposition 5.1:

�5�28�

∣∣∣∣E
(

exp
{
iξ

m∑
r=1

Zr

})

−E
(

exp
{
iξ

m−1∑
r=1

Zr

})
E
(
exp�iξZm�

)∣∣∣∣
=
∣∣∣∣E

[
exp

{
iξ

m−1∑
r=1

Zr

}(
Tηf�Ẏ�r′�� − f

)]∣∣∣∣
× (
r′ �= �m− 1��ψ+ η� − η)

≤ c18a
k/2 exp

{−c′13η
}
�

Telescoping this process one arrives at

�5�29�

∣∣∣∣E
(

exp
{
iξ

m∑
r=1

Zr

})
−

m∏
r=1

E
(
exp�iξZr�

)∣∣∣∣
≤ c18ma

k/2 exp�−c′13η� → 0 as a→∞�
We will now verify Lindeberg’s condition for the sum m = m�a� i.i.d. random
variables Zr. Note that, for each ε > 0,

�5�30�
m∑
r=1

E
(
Z2
r ���Zr�>ε�

) =mEZ2
1 ���Z1�>ε� = 0

for all sufficiently large a, since �Z1� ≤ cψ/
√
ϕ�a� → 0 as a→∞. This proves

(5.11) under the invariant initial distribution [of Ẏ�0�].
It remains to consider the case of an arbitrary initial distribution [of Ẏ�0�].

Let t = ϕ�a� � �log a�2, s = ψ�a� = δ3/8 log a as in (5.20). Write

�5�31�

Yj�t� − t�bj + βj�
a
√
t

= Yj�s� − s�bj + βj�
a
√
t

+ Yj�t� −Yj�s� − �t− s��bj + βj�
a
√
t

�

Using the integral representation of Y�·� [see (3.43), (5.13)], it follows that

�5�32� E

(
Yj�s� − s�bj + βj�

a
√
t

)2

≤ c19s
2

t
→ 0 as a→∞.

Now the conditional distribution of Y�t� − Y�s�, given �Y�u�� 0 ≤ u ≤ s�,
depends only on Ẏ�s� and is, in fact, the same as the distribution of Y�t−s�−z
with an initial state z = Ẏ�s�. Therefore, by Theorem 4.5 and Proposition 4.3
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(see Remark 4.5.1), the total variation distance between the distribution of
Y�t� −Y�s� under an arbitrary Ẏ�0� and that under a uniformly distributed
Ẏ�0� goes to zero as a → ∞. Using this fact and (5.32) in (5.31), it follows
that the left side of (5.31) converges in law to � �0� σjj� as a→∞, no matter
what the initial distribution may be. ✷

Remark 5.2.1. Theorem 5.2 may be strengthened to the following func-
tional form under the given hypothesis: for any given sequence of integers
ϕ�a� such that

ϕ�a�
a2�log a�2 →∞ as a→∞�

one has
1

a
√
ϕ�a�

{
Xj�ϕ�a�t� −Xj�0� − ϕ�a�t�bj + βj�� 1 ≤ j ≤ k1

}
t≥0

→� �W�t��t≥0 as a→∞�
where �W�t��t≥0 is a Brownian motion on � ��0�∞� → R

k� having the disper-
sion coefficients (5.9). To prove this, one first uses the negligibility of ξr’s to
reduce the problem to that of the asymptotic distribution of the polygonal pro-
cess corresponding to the partial sums of Zr (r ≥ 1). We then show that the
total variation distance between the distribution of �Z1�Z2� � � � �Zm� under
equilibrium and the product measure Gm

a , where Ga is the distribution of Z1,
goes to zero as m→∞. To establish the latter, consider a real-valued bounded
measurable function f on R

m and show, by using the Markov property, Propo-
sition 5.1, and telescoping [as in (5.28), (5.29)], that∣∣∣∣Ef�Z1�Z2� � � � �Zm� −

∫
fdGm

a

∣∣∣∣ ≤ c′18m�f�∞ak/2 exp�−c′13η��

Hence the proof of the functional limit theorem stated above boils down to that
for triangular arrays of i.i.d. summands, making use of Lindeberg’s condition
(5.30) [Billingsley (1968), page 77]. The argument when Ẋ�0� or Ẏ�0� is not in
equilibrium remains the same as given at the end of the proof of Theorem 5.2.

The next result complements Theorem 5.2 by analyzing the case where
�−1�βj−βj� belongs to the range of S = �−1�b+β�·∇ for certain j’s. Dramatic
differences in the growth of dispersion in the two cases (see Theorems 3.7, 3.8)
lead to significantly different scalings in Theorems 5.2 and 5.3.

For the statement of the following theorem, recall that K = ��Kjj′ �� where
Kjj′ = 2a2�gj�gj′ �1+Djj′ [see (3.48)]. For a set of k2 coordinates, 1 ≤ j ≤ k2,
let K2 denote the k2 × k2 submatrix of K comprising elements belonging to
the first k2 rows and to the first k2 columns of K. Also write Ik2

for the k2×k2
identity matrix.

Theorem 5.3. In addition to (A1)–(A3) in �3�40�, assume that (A5)j in
�3�88� holds for 1 ≤ j ≤ k2 and that the functions pj in H1 satisfying
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�b + β� · ∇pj = βj − βj, 1 ≤ j ≤ k2, are linearly independent. Then for

t� a4�log a�2 one has

�5�33� 1√
t
K
−1/2
2

(�Xj�t� −Xj�0� − t�bj + βj�
}

1≤j≤k2
� →� � �0� Ik2

�

as a→∞, whatever be the initial distribution.

Proof. As in the proof of Theorem 5.2, we will prove that for t� a4�log a�2
one has

�5�34� 1√
tKjj

(
Xj�t� −Xj�0� − t�bj + βj�

)→� � �0�1�� 1 ≤ j ≤ k2�

as a→∞. The proof for an arbitrary linear combination of X′
js (1 ≤ j ≤ k2)

is analogous.
First assume Ẋ�0� has the uniform (equilibrium) distribution. Let wj be

the solution in H1 of the equation

�5�35� Lwj = bj + βj�·/a� − bj − βj�

where L is the generator of Ẋ�t� on � 2��a� a−kdx�. Then wj�x� = a2gj�x/a�,
gj being as in (3.45). By Itô’s lemma, with t = ϕ�a� � a4�log a�2, ϕ�a� integral,

�5�36�

1√
tKjj

(
Xj�t� −Xj�0� − t�bj + βj�

)

= 1√
tKjj

[
wj�Ẋ�t�� −wj�Ẋ�0��

−
∫ t

0
gradwj�Ẋ�s��σ dB�s� + �σB�t��j

]

=
ϕ�a�∑
r=1

Vr�

Vr �=
1√

ϕ�a�Kjj

[∫ r
r−1

{
bj�Ẋ�s�� + βj�Ẋ�s�/a� − bj − βj

}
ds

+ (
σB�r� − σB�r− 1�)

j

]
�

Since Ew2
j�Ẋ�t�� = Ew2

j�Ẋ�0�� = a4Eg2
j�Ẏ�0�� ≤ c20a

2 by Theorem 3.8 (also
see Lemma 3.5), one has

�5�37� E

(
1√
tKjj

(
wj�Ẋ�t�� −wj�Ẋ�0��

))2

→ 0 as a→∞.
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Therefore,

�5�38�

var
(ϕ�a�∑
r=1

Vr

)

≡ E
(ϕ�a�∑
r=1

Vr

)2

→ lim
a→∞ var

(
1√
tKjj

{∫ t
0

gradwj�Ẋ�s��σB�s� + �σB�t��j
})
= 1�

Indeed, the variance on the right is exactly 1. We will now prove the asymptotic
normality of

∑ϕ�a�
r=1 Vr by representing it approximately as the sum of a number

of nearly independent block sums. For this purpose, define

�5�39�
δ = ϕ�a�/�a4�log a�2�� η = [

δ1/8a2 log a
]
�

ψ = [
δ3/8a2 log a

]
� m =

[
ϕ�a�
η+ ψ

]
�

Define the “big” and “little” block sums as in (5.21), (5.22), respectively, but
withVr as in (5.36). The rest of the proof that

∑ϕ�a�
r=1 Vr →� � �0�1� is entirely

analogous to the corresponding proof for Theorem 5.2. The only changes are in
replacing ψ by ψ/a2 and η by η/a2 in the exponents in (5.26), and (5.28), (5.29)
respectively. The reason for this adjustment is that we are directly considering
the X�·� process, and not its scaled version Y�·�. To check that the Lindeberg
condition holds, as a → ∞, for the sum of m i.i.d. random variables each
having the same distribution as Z1, write

�5�40�
U1 =

∫ ψ
0

{
bj�Ẋ�s�/a� + βj�Ẋ�s�/a� − bj − βj

}
ds�

U′1 =
(∫ ψ

0
σ dB�s�

)
j

�

Then Z2
1 ≤ �2/ϕ�a���U2

1 +U′21 �, so that

�5�41�

mE
(
Z2

1 ���Z1�>ε�
) ≤ 2m

ϕ�a�E
(
U2

1 ���U1�>�ε/2�
√
ϕ�a��

)

+ 2m
ϕ�a�E

(
U′21 ���U′1�>�ε/2�

√
ϕ�a��

)

+ 2m
ϕ�a�E

(
U2

1 ���U′1�>�ε/2�
√
ϕ�a��

)

+ 2m
ϕ�a�E

(
U′21 ���U1�>ε/2√ϕ�a��

)
�

Since �U1� ≤ cψ ≤ �ε/2�√ϕ�a� for all sufficiently large a, the first and last
terms on the right side of (5.41) vanish for large a. Also, the second term is
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estimated by

�5�42�

2m
ϕ�a�E

(
U′21 ���U′1�>�ε/2�

√
ϕ�a��

)

≤ 2m
ϕ�a��EU

′4
1 �1/2

(
P

(
�U′1� >

ε

2

√
ϕ�a�

))1/2

≤ 2m
ϕ�a��c21ψ�

(
EU′21 /ε

2ϕ�a�)1/2 ≤ c′21
mψ3/2

εϕ3/2�a� → 0

as a→∞. Finally, the third term on the right side of (5.41) is estimated by

�5�43� c22
m

ϕ�a�ψ
2P

(
�U′1� >

ε

2

√
ϕ�a�

)1/2

≤ c′22
mψ2

ϕ�a� exp
{
−c23ε

2ϕ

ψ

}
→ 0

as a → ∞. We have used an exponential bound for the tail probability of a
Gaussian random variable for the last inequality. This completes the proof
when Ẋ�0� has the uniform distribution on �a.

The proof of (5.34) under an arbitrary (initial) distribution of Ẋ�0� is anal-
ogous to that given for Theorem 5.2. Once again one takes t = ϕ�a�, s = ψ�a�
as in (5.39) and makes use of Theorem 4.5 and the fact that s2/t → 0 as
a→∞. ✷

Remark 5.3.1. An example in the next section shows that the time scale
for large scale asymptotics in Theorem 5.2 cannot be smaller than t � a2

in general. The time scale t � a4�log a�2 in Theorem 5.3, however, seems
too large. To understand the nature of technical difficulty encountered in
trying to bring down the scale, one may attempt a “more straightforward”
martingale CLT using the first equality in (5.36). Leaving aside the term
R �= �tKjj�−1/2�wj�Ẋ�t�� − wj�Ẋ�0���, one needs to show that the CLT ap-
plies to the term M, say, involving the stochastic integral [including �σB�t��j].
The proof of the conditional Lindeberg condition [see, e.g., Bhattacharya and
Waymire (1990), page 508] requires an estimate of the growth of the stochas-
tic integrand gradwj beyond its second moment. Even under equilibrium, we
are unable to obtain a precise estimate of this growth. Note that gradwj�x� =
a�gradgj��x/a�. Thus under equilibrium �w2�2

1 ≡ a2�gj�2
1 is bounded by The-

orem 3.8. If one could show that gradwj is bounded in sup norm (not just
in L2) then, at least under equilibrium, the martingale term M is asymp-
totically normal for t � a2. Similarly, under equilibrium, the L2-norm of
wj�x� ≡ a2gj�x/a� is of the order O�a2�, so that R → 0 in probability for
t � a2. However, a direct estimate of the sup norm of wj using the identity
wj�x� = −

∫∞
0 Ts�bj�·� + βj�·/a� − bj − βj��x�ds (with Ts as the transition

operator of Ẋ), yields a value of order larger than a2 log a, if one applies the
rate of decay of the integrand given by (5.2). Thus, if Ẋ�0� is an arbitrary
state, then to show R → 0 in probability using this last estimate, we need√
t � a2 log a. If one could show that agj and a gradgj are bounded in sup

norm, then the above arguments would lead to an improvement of the time
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scale in Theorem 5.3 to t � a2 log a. It is worthwhile to write this out as a
theorem.

Theorem 5.4. If, in addition to the hypothesis in Theorem 5�3, one assumes
that the functions agj and a gradgj (1 ≤ j ≤ k2) are bounded in sup norm,

then �5�33� holds for t� a2 log a.

Remark 5.4.1. Functional versions of Theorems 5.3 and 5.4 may be de-
rived by arguments analogous to those given under Remark 5.2.1.

5.2. Final phase of asymptotics for vector fields which are not divergence
free—the one-dimensional case. Since the general case of multiscale diffu-
sions with periodic nondivergence-free vector fields is intractable, we will con-
sider only one-dimensional diffusions. This will provide some insight into the
nature and diversity of phenomena in the general case. Let X�·� be a one-
dimensional diffusion governed by the Itô equation (2.1) whose coefficients
satisfy the assumptions (B1)–(B3) in (4.33). Following the treatment of these
processes given in the last part of Section 4, we will consider the nonself-
adjoint and the self-adjoint cases separately. Once again, without any essen-
tial loss of generality, we will assume that (B4) in (4.34) also holds, that is,∫ 1

0 �b�x�/σ2�x��dx = 0. Using the notation in Section 4, let π̃a and πa de-
note the invariant probability densities of Ẋ�t� ≡ X�t�moda, and Ẏ�t� ≡
Y�t�mod 1 (Y�t� �=X�a2t�/a), respectively. Write

�5�44� b =
∫ a

0
b�x�π̃a�x�dx� β =

∫ a
0
β�x/a�π̃a�x�dx�

Note that unlike the case where π̃a and πa are uniform densities, in general
β �= ∫ a

0 β�x�π̃a�x�dx. Let L be the generator of Ẋ�t�, as given by (4.35), and
let h be the unique mean-zero solution in L2�S1

a� π̃a� of

�5�45� Lh�x� = b�x� + β�x/a� − b− β�
Define

�5�46� θ2 =
∫ a

0
σ2�x��h′�x� − 1�2π̃a�x�dx�

Note that, by Itô’s lemma,

�5�47�
X�t� −X�0� − t�b+ β� = h�Ẋ�t�� − h�Ẋ�0��

+
∫ t

0
σ�Ẋ�s��{1− h′�Ẋ�s��}dB�s��

so that, for a fixed a, θ2 is the variance of the asymptotic normal distribu-
tion of t−1/2�X�t� −X�0� − t�b + β��. The proof of the following theorem is
based on Theorem 4.6 and a direct computation of h and is given in detail in
Bhattacharya, Denker and Goswami (1999).
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Theorem 5.5. In addition to (B1)–(B4) in �4�33�, �4�34�, assume that β�·�
is bounded away from zero. Then for t� a2 log a one has, for all X�0�,

�5�48� X�t� −X�0� − t�b+ β�
θ
√
t

→� � �0�1� as a→∞�

Here θ = θ�a� is bounded away from zero and infinity.

Note that the time scale as well as the growth in dispersion here are com-
parable to those in Theorem 5.3. The next theorem is dramatically different
in these respects. For the case

∫ 1
0 β�y�dy = 0, write

�5�49� θ∗ = max
x

∫ x
0
β�y�dy� θ∗ = min

x

∫ x
0
β�y�dy�

Theorem 5.6. In addition to (B1)–(B4) in �4�33�, �4�34�, assume that σ�·�
is a constant, β�·� is nonconstant and

∫ 1
0 β�y�dy = 0.

(a) Then θ = θ�a� defined by �5�46� goes to zero exponentially fast as a→∞.
(b) If t � a2 exp��18a/σ2�θ∗ − θ∗��� one has, for arbitrary initial states

X�0� = ax0,

�5�50� X�t� − ax0

σaθ
√
t

→� � �0�1� as a→∞�

(c) If t� a−4 exp��2a/σ2��θ∗−θ∗�� then �5�50� does not hold, unless X�t�−
ax0 → 0 in probability.

Part (a) follows from a direct computation of θ in this case, while part (b)
uses this computation of θ and Theorem 4.7 [see Bhattacharya, Denker and
Goswami (1999) for details]. For part (c), one shows that, for the given range of
t, aθ

√
t→ 0 [Bhattacharya, Denkar and Goswami (1999)]. Therefore, if (5.50)

is to hold, �X�t� − ax�/ax must go to zero in probability.

Remark 5.6.1. With regard to the centering in (5.50), it may be shown that
b+ β = 0 for all a.

Remark 5.6.2. Part (a) of Theorem 5.6 shows that the asymptotic vari-
ance parameter or dispersion per unit time goes to zero exponentially fast,
in dramatic contrast to the divergence-free case (Theorems 5.2, 5.3) and the
one-dimensional nonself-adjoint case (Theorem 5.5). A heuristic explanation
is that the invariant probability πa either converges to a point mass or at least
gets confined to a small set in the limit, as a→∞.

Remark 5.6.3. The exponentially large time needed for the final Gaussian
phase to take hold, as indicated in parts (b), (c) of Theorem 5.6, is not really
due to the slow convergence to equilibrium as estimated in Theorem 4.7 for
the “worst case scenario.” Note that Theorem 5.6 holds under the hypothesis of
Theorem 4.9 where relatively speedy convergence to equilibrium takes place.
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Remark 5.6.4. Consider the possibility of X�t� − ax0 converging to 0 in
probability as indicated in part (c) of Theorem 5.6. For the scaled version of
X�t�, namely, the Y�t� process, this means Y�t� → x0 as a → ∞, t → ∞,
but t� a−6 exp��2a/σ2��θ∗ − θ∗��. Under the hypothesis of Theorem 5.6, this
is impossible unless ψ�x� = ∫ x

0 β�y�dy has a maximum at x0. To show this,
consider x0 where ψ does not have a maximum. By using standard formulas
[see, e.g., Bhattacharya and Waymire (1990), page 422, equation (10.12)], it
is not difficult to check that if x1 < x0 < x2 are such that ψ does not have a
maximum in �x1� x2�, then the exit time τ of Y�·� from �x1� x2� has an expected
value Eyτ which satisfies sup�Eyτ� y ∈ �x1� x2�� a ≥ 1� <∞.

Remark 5.6.5. Although Theorems 5.5, 5.6 address the case of one-dimen-
sional multiscale diffusions with periodic coefficients, they point to a range of
diverse behavior in the final phase for the general multidimensional nondi-
vergence-free case. Theorems 4.7, 4.10 similarly indicate widely different time
scales for approach to equilibrium on the big torus for the latter case. For
example, if the invariant density πa of the scaled diffusion Ẏ�t� = Ẋ�a2t�/a
on �1 converges to a point mass as a → ∞, one would expect the dispersion
(per unit time) in the final phase to decay as a → ∞ and the time scale for
the final Gaussian approximation to be very large. This ought to be true, for
example, in the case that the diffusion matrix is σ2Ik (σ2 a positive constant)
and b�x� = gradψ1�x�, β�x� = gradψ2�x�, where (1) the “potential” functions
ψ1 and ψ2 are periodic with period lattice Z

k, (2) ψ1�n� = 0 = ψ2�n� for all
n ∈ Z

k and (3) on �0�1�k, ψ2 has a unique maximum at x∗. In this case, the
invariant probability d�a� exp��2/σ2��ψ1�ay� + aψ2�y���dy of Ẏ�t� converges
to the point mass δx∗�dy� as a→∞; one would expect for this case an analog
of Theorem 5.6 to hold.

6. Examples. In this section we provide two examples to illustrate the
theory presented in Sections 2–5. Example 6.1 satisfies the hypotheses of The-
orems 4.5 and 5.2, while Example 6.2 satisfies the hypotheses of Theorems 4.5
and 5.4.

Example 6.1. Consider the diffusion on R
2 defined by

�6�1�
dX1�t� =

{
c0 + c1 sin�2π�X2�t�� + c2 cos�2πX2�t�/a�

}
dt+ dB1�t��

dX2�t� = dB2�t�� X�0� = ax = �ax1� ax2��
Assume c1� c2 are nonzero and

�6�2� sin�2πx2� = 0�

Table 1 shows the phase changes that occur along with their time scales. Here
� �U� denotes the law, or distribution of a random variable U. The sign ± in
(ii) is + or − according as cos 2πx2 = −1 or +1.

Table 1 is a modification of one derived in Bhattacharya and Götze (1995)
under the initial condition X�0� = x = �x1� x2�. The latter initial condition
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implies X�0�/a→ 0 as a→∞, thereby essentially requiring that the process
start at the origin. This issue becomes more important in the case (6.2) fails,
as we show in a modification of Table 1 in Remark 6.1.1 below. The first row in
the table is a consequence of Theorem 2.1(c), and Theorem 2.2. An alternative
derivation may be given along the lines of case (i) of Example 6.2 below. To
derive the second row, write

�6�3�

X1�t� −X1�0� − t�c0 + c2 cos 2πx2�
t2/a2

= c1

t2/a2

∫ t
0

sin�2π�ax2 +B2�s���ds

+ c2

t2/a2

∫ t
0

{
cos

(
2π

(
x2 +

B2�s�
a

))
− cos 2πx2

}
ds+ B1�t�

t2/a2
�

Note that a4/3 � t⇔ t2/a2 � t1/2. Therefore, B1�t�/�t2/a2� → 0 in probability.
Now use Itô’s lemma to get

�6�4�

∫ t
0

sin
(
2π�ax2 +B2�s��

)
ds

= − 1
2π2

{
sin

(
2π�ax2 +B2�t��

)− sin 2πax2
}

+ 1
π

∫ t
0

cos
(
2π�ax2 +B2�s��

)
dB2�s��

From this it is clear that the first term on the right in (6.3) goes to zero. It
remains to show that the middle term on the right in (6.3) has the asymptotic
distribution � �±2c2π

2
∫ 1

0 B
2
2�s�ds�. By a Taylor expansion,

�6�5�
cos

(
2π

(
x2 +

B2�s�
a

))
− cos 2πx2

= −2πB2�s�
a

sin 2πx2 −
4π2

2a2
B2

2�s� cos 2πx2 +
8π3

6a3
B3

2�s�θ�

Table 1
Phase changes in Example 6.1

Time scale Asymptotic law

(1) 1� t� a4/3 X1�t� −X1�0� − t�c0 + c2 cos 2πx2�√
t

→� � �0�1+ c2
1/2π

2�

(2) a4/3 � t� a2 X1�t� −X1�0� − t�c0 + c2 cos 2πx2�
t2/a2 →� �

(
±2c2π

2
∫ 1

0
B2

2�s�ds
)

(3) t/a2 → r > 0
X1�t� −X1�0� − tc0

t
→� �

(
c2

r

∫ r
0

cos�2π�x2 +B2�s���ds
)

(4) t� a2 X1�t� −X1�0� − tc0

a
√
t

→� � �0� c2
2/2π

2�
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where θ is a random variable, �θ� ≤ 1. The first term on the right is zero by
assumption (6.2). Also, E�B3

2�s�� ≤ cs3/2, so that

�6�6� c2

t2/a2

∣∣∣∣
∫ t

0

8π3

6a3
B3

2�s�θds
∣∣∣∣ ≤ c′

t2a
t5/2 = c′t1/2

a
→ 0�

since t� a2. Thus the middle term on the right in (6.3) has the same asymp-
totic distribution as

�6�7�
c2

t2/a2

∫ t
0
−4π2

2a2
B2

2�s� cos 2πx2 ds

= −2π2c2 cos 2πx2

t2

∫ t
0
B2

2�s�ds =� −2π2c2 cos 2πx2

∫ 1

0
B2

2�s�ds�

For the last equality in law we use the fact that, for every t > 0, the distribu-
tions of the processes �√tB2�s/t�� s ≥ 0� and �B2�s�� s ≥ 0� are the same. To
derive the third row in the table use the representation with a denominator
t, instead of t2/a2, and omit the centering term c2 cos 2πx2 from both sides, to
get the desired asymptotic distribution the same as that of

�6�8�

c2

t

∫ t
0

cos
(

2π
(
x2 +

B2�s�
a

))
ds

=�
c2

t

∫ t
0

cos
(
2π�x2 +B2�s/a2��)ds

= c2

t/a2

∫ t/a2

0
cos

(
2π�x2 +B2�s�

)
ds

→ c2

r

∫ r
0

cos
(
2π�x2 +B2�s��

)
ds�

The final phase (iv) in Table 1 follows from Theorem 5.2 for time scales
t � a2�log a�2. By explicit computation we now show that it holds for times
t� a2. As above, since a

√
t� √

t, one only needs to evaluate the asymptotic
distribution of

�6�9� c2

a
√
t

∫ t
0

cos
(

2π
(
x2 +

B2�s�
a

))
ds�

Since the function f�y� = −�c2a
2/2π2� cos�2π�x2 + y

a
�� satisfies 1

2f
′′�y� =

c2 cos�2π�x2 + y/a��, Itô’s lemma shows that (6.9) equals

�6�10�

1

a
√
t

(
−c2a

2

2π2

){
cos

(
2π

(
x2 +

B2�t�
a

))
− cos 2πx2

}

− 1

a
√
t

∫ t
0

c2a

π
sin

(
2π

(
x2 +

B2�s�
a

))
dB2�s�

� − c2

π
√
t

∫ t
0

sin
(

2π
(
x2 +

B2�s�
a

))
dB2�s� = I�t��
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say. To show that the last expression is asymptotically normal, note that its
quadratic variation is

�6�11�

Q�t� �=
(
c2

2

π2

)
1
t

∫ t
0

sin2
(

2π
(
x2 +

B2�s�
a

))
ds

=�

(
c2

2

π2

)
1
t

∫ t
0

sin2
(

2π
(
x2 +B2

(
s

a2

)))
ds

= c2
2

π2

1
t/a2

∫ t/a2

0
sin2(2π�x2 +B2�u��

)
du

→ c2
2

π2

∫ 1

0
sin2�2πy�dy = c2

2

2π2
a.s.�

since t/a2 →∞, and the process U�t� �= �x2+B2�t��mod 1 is a positive recur-
rent Markov process on S1 = �xmod 1� x ∈ R� having the uniform distribution
as its invariant probability. One may now check that the martingale central
limit theorem [see, e.g., Bhattacharya and Waymire (1990), page 508] holds
for the last expression I�t� in (6.10), with the asymptotic variance c2

2/2π
2. An

alternative derivation may be given by noting that E exp�iξI�t�+ξ2/2Q�t�� =
1 ∀ ξ and ∀ t. By (6.11), Q�t� → c2

2/2π
2 a.s., as a → ∞, t � a2. Since

�Q�t�� ≤ c2
2/π

2 for all t and a, one may now easily show that E exp�iξI�t�� →
exp�−ξ2/2σ2� with σ2 = c2

2/2π
2.

Remark 6.1.1. The above example shows that the time scale for the first
phase of asymptotics derived in Theorem 2.1(c), Theorem 2.2, is exact, namely,
1 � t � a4/3. Indeed, with an additional calculation one may show that if
a→∞, t/a4/3 → r > 0, then

�6�12�

X1�t� −X1�0� − t�c0 + c2 cos 2πx2�√
t

− c2
∫ t

0

{
cos�2π�x2 + �B2�s�/a��� − cos 2πx2

}
ds√

t

→� �

(
0�1+ c2

1

2π2

)
�

Now, by (6.5), and (6.6), (6.7) (with t2/a2 replaced by
√
t), one shows that

�6�13�
− c2√

t

∫ t
0

{
cos

(
2π

(
x2 +

B2�s�
a

))
− cos 2πx2

}
ds

→� �

(
2π2c2r

3/2�cos 2πx2�
∫ 1

0
B2

2�u�du
)
�

The limiting law in (6.13) is that of a strictly positive or a strictly negative
random variable (depending on whether c2 cos 2πx2 is positive or negative).
From this it follows that for t/a4/3 → r > 0, the asymptotic law in Table 1(1)
does not hold.
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Remark 6.1.2. If in Example 6.1 we drop the assumption (6.2), and instead
assume

�6�14� sin 2πx2 �= 0�

then the hypothesis of part (b) of Theorem 2.1 is satisfied, but not that of
part (c). Therefore, the time scale for case (1) is 1� t� a. The arguments for
cases (3) and (4) remain unchanged. Case (2), however, changes drastically.
For a� t� a2 one has, using (6.3) with t2/a2 replaced by t3/2/a, and noting
that t3/2/a� t1/2,

�6�15�

X1�t� −X1�0� − t�c0 + c2 cos 2πx2�
t3/2/a

� c2

t3/2/a

∫ t
0

{
cos

(
2π

(
x2 +

B2�s�
a

))
− cos 2πx2

}
ds

= c2

t3/2/a

∫ t
0
�− sin 2πx2�

2πB2�s�
a

ds

+O
(
a

t3/2

∫ t
0

B2
2�s�
a2

ds

)

� −2πc2 sin 2πx2

t3/2

∫ t
0
B2�s�ds�

since the expected value of the magnitude of the O-term is O�1/at3/2t2� =
O�t1/2/a� → 0 for t � a2. Now the last expression in (6.15) has the same
distribution as

�6�16� −2πc2 sin 2πx2

∫ 1

0
B2�s�ds�

which is � �0� �4π2c2
2/3� sin2 2πx2�. Thus, under (6.14), the first two rows of

Table 1 change to

Time scale Asymptotic law

(1)′ 1� t� a
X1�t� −X1�0� − t�c0 + c2 cos 2πx2�√

t

→� �

(
0�1+ c2

1

2π2

)

(2)′ a� t� a2 X1�t� −X1�0� − t�c0 + c2 cos 2πx2�
t3/2/a

→� �

(
0�

4π2c2
2

3
sin2 2πx2

)

Once again, if a → ∞, t/a → r > 0, then the asymptotic law in (1)′ can-
not hold. To see this note that in the integral representation of t−1/2�X1�t� −
X1�0�− t�c0+c2 cos 2πx2�� [see (6.3)], t−1/2

∫ t
0 c1 sin 2π�ax2+B2�s��ds+ t−1/2 ·
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B1�t� converges in law to � �0�1 + c2
1/2π

2�, as in (1)′. However, here the
middle term t−1/2

∫ t
0 c2�cos�2π�x2 +B2�s�/a�� − cos 2πx2�ds converges in law

to −r�2πc2 sin 2πx2�
∫ 1

0 B2�u�du = rZ2, say, by essentially the same argu-
ment as given for (2)′ above [see (6.15), (6.16)]. Thus if the asymptotic law in
(1)′ is to hold for t/a → r > 0 (a → ∞), then one would have in the limit
Z1 + rZ2=� Z1, where Z1 and Z2 are nondegenerate normal. This can not
hold if r is sufficiently large. Therefore, the time scale given in Theorem 2.1(b)
cannot be improved upon in general. The preciseness of the time scale t� a2/3

in part (a) of Theorem 2.1 will be shown in Remark 6.2.1 below.

Remark 6.1.3. The time scale for the final phase in Example 6.1 is t� a2,
whereas Theorem 5.2 gives a time scale t� a2�log a�2 in the general case. We
do not know if, in general, the logarithmic factor can be dropped altogether.
Recall that our estimation for the time scale to equilibrium on the big torus
is already t� a2 log a (Theorem 4.5).

Example 6.2. Consider the same equation forX1�t� as in Example 6.1 [see
(6.1)], but for X2�t� take a Brownian motion with a nonzero drift δ,

�6�17� dX2�t� = δdt+ dB2�t��

The initial condition is as in (6.1), namely, X�0� = ax = �ax1� ax2�, but we
assume sin 2πx2 �= 0 [i.e., (6.14)]. With this seemingly minor change, the
asymptotic behavior and time scales are dramatically different at larger scales,
as shown in Table 2.

Case (1) follows from Theorem 2.1(a) and Theorem 2.2, or one can directly
use the integral representation (6.3), but with a different denominator, namely,

Table 2
Phase changes in Example 6.2

Time scale Asymptotic law

(1) 1� t� a2/3 X1�t� −X1�0� − t�c0 + c2 cos 2πx2�√
t

→� �

(
0�1+ c2

1

2�δ2 + π2�

)

(2)
t

a2/3 → r>0
X1�t�−X1�0�− t�c0+ c2 cos 2πx2�√

t

→� �

(
−c2δr

3/2π sin 2πx2� 1+ c2
1

2�δ2+π2�

)

(3) t� a2 X1�t� −X1�0� − tc0√
t

→� �

(
0�1+ c2

1

2�π2 + δ2� +
c2

2

2δ2

)
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t1/2 (instead of t2/a2),

�6�18�

X1�t� −X1�0� − t�c0 + c2 cos 2πx2�√
t

= c1√
t

∫ t
0

sin 2π�ax2 + sδ+B2�s��ds

+ c2√
t

∫ t
0

{
cos

(
2π

(
x2 +

sδ

a
+ B2�s�

a

))
− cos 2πx2

}
ds+ B1�t�√

t
�

Now sin 2π�ax2 + sδ + B2�s�� = sin 2πZ�s�, where Z�s� = X2�s�mod 1 is
the Brownian motion on the unit circle with a drift. Since the distribution of
Z�s� approaches equilibrium (uniform distribution) exponentially fast in total
variation distance, uniformly with respect to the initial state, it follows from a
central limit theorem for Markov processes [see Bhattacharya (1982)] that the
first term on the right in (6.18) converges in distribution to � �0� σ2� where

�6�19� σ2 = −2
∫
�0�1�

f�y�u�y�dy� f�y� = c1 sin 2πy�

u�y� being the mean zero solution of

�6�20� 1
2u
′′�y� + δu′�y� = f�y��

A direct computation shows

�6�21� u�y� = − c1δ

π2 + δ2

{
cos 2πy

2π
+ 1

2δ
sin 2πy

}
�

leading to

�6�22� σ2 = 2c2
1δ

π2 + δ2

(
1
2δ

) ∫
�0�1�

sin2 2πydy = c2
1

2�π2 + δ2� �

The third term on the right in (6.18) is independent of the first, and its dis-
tribution is � �0�1�. Thus the sum of the first and third terms converges in
distribution to � �0�1 + c2

1/2�π2 + δ2�� as t → ∞ (uniformly w.r.t. a). If, in
addition a → ∞, t/a2/3 → r > 0 then, using a Taylor expansion such as in
(6.5), the middle term on the right in (6.18) may be expressed as

�6�23� 2πc2√
t

∫ t
0
�− sin 2πx2�

(
B2�s�
a

+ sδ

a

)
ds+O

(
1√
t

∫ t
0

(
B2�s� + sδ

a

)2

ds

)

The expected value of theO-term is of the orderO�t3/√t a2� = O�t5/2/a2� → 0,
since t5/2 = O�a5/3�. Since E�B2�s�� = c′s1/2, the dominant contribution in the
first term in (6.23) comes from

2πc2√
t
�− sin 2πx2�

δ

a

∫ t
0
sds = −2πc2δ sin 2πx2√

t a

t2

2

= �−c2πδ sin 2πx2�
t3/2

a
→ �−c2πδ sin 2πx2�r3/2�
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Thus (2) is established. In particular, this shows, along with Example 6.1, that
the time scales in Theorems 2.1, 2.2 are in general precise.

To derive case (3) in Table 2, we will use Itô’s lemma to write

�6�24�

X1�t� −X1�0� − tc0√
t

= w1�X2�t�� −w1�X2�0��√
t

− 1√
t

∫ t
0
w′1�X2�s��dB2�s� +

1√
t
B1�t��

where w1 is a periodic solution of

�6�25� 1
2w

′′
1�y� + δw′1�y� = c1 sin 2πy+ c2 cos�2πy/a��

By direct computation, w1 is given by [apart from an additive constant which
does not affect the right side of (6.24)]

�6�26�
w1�y� = −

c1δ

π2 + δ2

{
cos 2πy

2π
+ sin 2πy

2δ

}

+ c2δa
3

δ2a2 + π2

{
sin�2πy/a�

2π
− cos�2πy/a�

2δa

}
�

Note that w1 is O�a�. Therefore, if t � a2, the first term on the right side in
(6.24) goes to zero a.s. The integrand in the stochastic integral term is

�6�27�
w′1�y� =

c1δ

π2 + δ2

{
sin 2πy− π cos 2πy

δ

}

+ c2δa
2

δ2a2 + π2

{
cos

(
2πy
a

)
+ π sin�2πy/a�

δa

}
�

Neglecting the O�1/a� term whose contribution in the stochastic integral ob-
viously goes to zero in probability, one may then write

�6�28�

X1�t� −X1�0� − tc0√
t

� − 1√
t

∫ t
0

{
I1�X2�s�� + I2�X2�s��

}
dB2�s�

+ B1�t�√
t
�

where

�6�29�
I1�y� =

c1δ

π2 + δ2

{
sin 2πy− π cos 2πy

δ

}
�

I2�y� =
c2δa

2

δ2a2 + π2
cos

(
2πy
a

)
�

The stochastic integral in (6.28) is a martingale and its quadratic variation
(divided by t) is

�6�30� 1
t

∫ t
0
I2

1�X2�s��ds+
1
t

∫ t
0
I2

2�X2�s��ds+
2
t

∫ t
0
I1�X2�s��I2�X2�s��ds�
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As argued for case (1), I1�X2�s�� = I1�Z�s�� (Z�s� �= X2�s�mod 1), when
Z�s� is a Brownian motion on the unit circle with a constant drift δ, which
approaches equilibrium exponentially fast in t,

�6�31�

1
t

∫ t
0
I2

1�X2�s��ds→
∫
�0�1�

I2
1�y�dy =

c2
1δ

2

�π2 + δ2�2
{

1
2
+ π2

2δ2

}

= c2
1

2�π2 + δ2� as t→∞�

For the second term in (6.30), write
�6�32�

1
t

∫ t
0
I2

2�X2�s��ds �
(
c2

δ

)2 1
t

∫ t
0

cos2 2π
(
B2�s�
a

+ sδ

a
+ x2

)
ds

=�

(
c2

δ

)2 1
t

∫ t
0

cos2 2π
(
B2�s/a2� + sδ

a
+ x2

)
ds

=
(
c2

δ

)2 1
t/a2

∫ t/a2

0
cos2 2π

(
B2�s′� + as′δ+ x2

)
ds′�

Once again one may replace B2�s′� + as′δ+ x2 by its value mod 1 and use the
fact that the latter is a Brownian motion on the unit circle with a drift aδ.
This Brownian motion on the circle approaches equilibrium as s′ → ∞, uni-
formly w.r.t. the drift aδ since the Brownian motion on the unit circle without
drift approaches equilibrium (exponentially fast in total variation distance)
uniformly with respect to the initial state. Thus, as t/a2 →∞,

�6�33� 1
t

∫ t
0
I2

2�X2�s��ds→
c2

2

2δ2
in probability.

We now show that the product term in (6.30) goes to zero in probability. For
this note that

�6�34�

1
t

∫ t
0

sin 2π
(
B2�s� + sδ+ ax2

)
cos 2π

(
B2�s�
a

+ sδ

a
+ x2

)
ds

=�
1
t/a2

∫ t/a2

0
sin 2π�aB2�s� + a2sδ+ ax2�

× cos 2π�B2�s� + asδ+ x2�ds

= 1
t/a2

∫ t/a2

0
sin 2π�aZ2�s�� cos 2π�Z2�s��ds�

where Z2�s� = �B2�s� + saδ + x2�mod 1. Since, as argued earlier, Z�s� �=
�B2�s� + y�mod 1 approaches equilibrium (exponentially fast in total varia-
tion distance) uniformly w.r.t. y, as s → ∞, the last expression in (6.34) is
asymptotically the same in distribution as

�6�35� 1
t/a2

∫ t/a2

0
sin 2π�aZ�s�� sin 2πZ�s�ds�
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where �Z�s�� s ≥ 0� is the stationary standard Brownian motion on the unit
circle. One may rewrite (6.35) as

�6�36� 1
2t/a2

∫ t/a2

0

{
sin�2π�a+ 1�Z�s�� + sin�2π�a− 1�Z�s��}ds�

Now, uniformly for all a = 1�2� � � � �

�6�37� E

(
1
A

∫ A
0

sin�2π�a+ 1�Z�s��ds
)2

→ 0 as A→∞.

To see this, note that Z�s� is exponentially ϕ-mixing, and z→ sin�2π�a+1�z�
is uniformly bounded. Hence the covariance E sin�2π�a+ 1�Z�s�� sin�2π�a+
1�Z�s′�� → 0 exponentially fast, uniformly in a, as �s − s′� → ∞. One may
replace a+1 in (6.37) by a−1 and thus show that (6.36) goes to zero in mean
square as t/a2 → ∞. It follows that (6.34) → 0 in mean square. The same
proof applies to the other term in I1�X2�s��I2�X2�s�� involving cos 2π�X2�s��
cos 2π�X2�s�/a� [see (6.29)]. Thus the average quadratic variation (6.30) con-
verges in probability to c2

1/2�π2 + δ2� + c2
2/δ

2 [see (6.31), (6.33)]. One may
now easily apply the martingale central limit theorem to the stochastic inte-
gral term in (6.28), verifying the Lindeberg-type condition using the fact that
�I1�y� + I2�y�� is bounded (uniformly in a) [see Bhattacharya and Waymire
(1990), page 508]. Alternatively, one may also show that the characteristic
function of t−

1
2
∫ t

0 I�X2�s��dB2�s� converges to that of the appropriate Gaus-
sian, by using the exponential martingale property, as in the proof of case (4)
of Example 6.1.

Remark 6.2.1. To show that the time scale t � a2 for the final phase in
Example 6.2 is precise, let a → ∞, t/a2 → r > 0. Then, if r is sufficiently
large, there exists a positive constant c (independent of a, t and r) such that
E�t−1/2�w1�X2�t�� − w1�X2�0���2 ≥ cr [see (6.26)]. On the other hand, the
mean square of the sum of the two remaining terms on the right side of
(6.24) is bounded by an absolute constant c′. Therefore, the first term will
be dominant for large r. This shows that (3) in Table 2 does not hold if the
time scale is extended to include t = O�a2�.

Remark 6.2.2. The hypothesis of Theorem 5.4 is satisfied by Example 6.2,
with k2 = 1.

Remark 6.2.3. The Gaussian convergences in Examples 6.1 and 6.2 may
be strengthened to their functional versions (i.e., convergence to Brownian
motions) by standard results such as given in Theorem 7.1.4 in Ethier and
Kurtz (1986) [also see Hall and Heyde (1980), page 99]. The non-Guassian
convergences in these examples may also be expressed in functional forms.

7. An application to solute transport in porous media. Suppose a
chemical pollutant, or some solute, is injected at a point in a saturated aquifer
—an underground water system. How will it spread over large times? There
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is a vast engineering literature on this subject [see Adams and Gelhar (1992);
Bhattacharya and Gupta (1983); Cushman (1990); Dagan (1984); Fried and
Combarnous (1971); Garabedian, LeBlanc, Gelhar and Celia (1991); Gelhar
and Axness (1983); Gupta and Bhattacharya (1986); Guven and Molz (1986);
LeBlanc, Garabedian, Hess, Gelhard, Quadri, Stollenwerk and Wood (1991);
Sauty (1980); Sposito, Jury and Gupta (1986); Sudicky (1986)]. It is generally
accepted [Fried and Combarnous (1971)], and laboratory scale experiments
have confirmed it, that the solute concentration c�t� y� at y at time t at a local
scale, say the laboratory scale, satisfies a Fokker–Planck equation,

�7�1� ∂c

∂t
= 1

2

3∑
j� j′=1

∂2

∂yj∂yj′
�Djj′c� −

3∑
j=1

∂

∂yj
�vj�y�c��

with v�y� = �v1�y�� v2�y�� v3�y�� representing the velocity of water at y, and
satisfying the incompressibility condition

�7�2� div v�y� = 0 ∀y�
The positive definite symmetric matrix ��Djj′ ��may represent something akin
to Einstein’s molecular diffusion σ2I3 at a scale somewhat larger than the hy-
drodynamical scale [see, e.g., Bhattacharya and Gupta (1979), where this is
erroneously called the “Darcy scale”], or an enhanced dispersion due to hetero-
geneities in the porous medium at the laboratory, or the so-called Darcy scale
[Fried and Combarnous (1971)]. A commonly used experimental methodology
is to fit Gaussians to the concentration c�t� y� as a function of y, for succes-
sively larger scales of t. One may think of this as different Brownian motion
approximations at different scales of time. It has been widely observed that the
diagonal dispersion coefficients, or variances per unit time, increase steadily
with the time scale, especially in the direction of flow. This phenomenon has
been called the scale effect in dispersion. A different kind of study has focussed
on the increase in dispersion at the laboratory-, or Darcy-, scale with the in-
crease in the velocity magnitude of the flow [Fried and Combarnous (1971)].

As is well known [see, e.g., Friedman (1975), pages 144–150, or Bhat-
tacharya and Waymire (1990), pages 377–380], the solution to (7.1) with a
point initial input c0 at x is given by the function �t� y� → c0p�t�x�y�, where
p�t�x�y� is the transition probability density of a diffusion X�t� with drift ve-
locity v and diffusion coefficients Djj′ . In general, for an arbitrary compactly
supported and continuous initial concentration c0�x�, the solution to (7.1) is

�7�3� c�t� y� =
∫
c0�x�p�t�x�y�dx�

It follows that the asymptotic behavior of c�t� y� for large t is given by the
asymptotic distribution of X�t�. The present article provides these asymp-
totics assuming v to be periodic. For the physical problem at hand, the initial
concentration is always taken to be localized at a point.

To study the effect of velocity on dispersion, let v = u0β where u0 is a scalar
and β is periodic. It is shown in Section 3 thatX�t� is asymptotically Gaussian
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for large t [and therefore so is c�t� ·�], but with two extreme behaviors of dis-
persivity (i.e., asymptotic variance per unit time) depending on the nature of
the flow velocity. If �−1�βj−βj� has a nonzero component in the null space N
of S = �−1β∇ in H1, then the dispersivity of Xj�t� grows quadratically with
u0 [Theorem 3.3(a)]. In the complementary case, �−1�βj − βj� belong to the
closure 
 of the range 
 of S, sinceH1 =N⊕
. If �−1�βj−βj� ∈
, then the
dispersivity ofXj�t� grows fromDjj to a larger constant value, as u0 increases
[Theorem 3.3(b)]. The boundary case, where �−1�βj − βj� ∈
\
, seems dif-
ficult to analyze. For two-dimensional flows (i.e., k = 2), more information on
this may be found in Fannjiang and Papanicolaou (1994). Figures 1 and 2 rep-
resent observed functional relationships between velocity and dispersivity in
certain laboratory experiments as presented by Fried and Combarnous (1971).

We now turn to the scale effect in dispersion. As pointed out in Bhattacharya
and Gupta (1983), different Gaussian approximations accompanied with in-

Fig. 1. Laboratory experiments showing the growth in the dispersion coefficient KL in the di-
rection of flow with the velocity U. In order to make the coordinates dimensionaless, KL/D is
plotted against the Peclet number Ud/D, where D is the molecular diffusion coefficient and d is
the diameter of a typical gain of the porous medium. Taken from Fried and Combarnous (1971).
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Fig. 2. Laboratory experiments for the growth in the dispersion coefficient KT in a direction
transverse to the flow. The dotted line represents a fitted curve for KL/D in the same experiment.
Taken from Fried and Combarnous (1971).

crease in dispersivity at successively larger time scales can only occur in a
medium (aquifer) with new heterogeneities appearing at higher scales. To
understand this, it is enough to consider two spatial scales of heterogeneity
embodied in the flow velocity v,

�7�4� v�y� = b�y� + β�y/a��
where “a” is a large scalar. Here fluctuations in b represent the effect of a local
(or small) scale heterogeneity in the aquifer geometry and soil characteristics,
while fluctuations in v which manifest only at a larger scale of distance (of the
order a) are represented in β�·/a�. Theorem 2.1 provides precise time scales
�t� a2/3, t� a or t� a4/3� over which the local scale b dominates and large
scale fluctuations may be ignored. Here no specific assumptions are needed
on b�·� or β�·�, not even (7.2). The significance of this is that, irrespective of
the nature of β, whenever a Gaussian approximation holds for the concen-
tration corresponding to flow velocity b�·� + β�x0� (assuming an initial point
injection at ax0) and diffusion matrix D�x� ≡ ��Djj′ �x� ��, the same holds
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for the concentration with the actual flow velocity (7.4) and dispersion D�x�,
provided t � a2/3 (or t � a, t � a4/3, as the case may be). Since Gaussian
approximations for a single scale of fluctuations are known to be valid under
assumptions of periodicity and almost periodicity of the coefficients, as well
as under the assumption of their being an ergodic random field [see Bensous-
san, Lions and Papanicolaou (1978); Bhattacharya (1985); Bhattacharya and
Ramasubramanian (1988); Gelhar and Axness (1985); Kozlov (1979, 1980);
Papanicolaou and Varadhan (1979); Winter, Newman and Neuman (1984)], a
Gaussian approximation at the initial phase (1� t� a2/3) is expected to hold
rather broadly in the present context (Theorem 2.2, Remark 2.1.3). Beyond
this scale, as the effect of the large scale fluctuations gradually becomes man-
ifest, this initial phase will break down. Under additional assumptions (on β),
a different Gaussian approximation takes hold at a larger time scale. The
latter approximation, along with its time scale, is provided in Theorems 5.2–
5.4 for periodic flows satisfying assumptions (A1)–(A4), (A6) (Theorem 5.2), or
(A1)–(A3), (A5), (A7) (Theorems 5.3, 5.4).

Under the hypotheses of Theorems 5.3, 5.4, the dispersivity grows from
one constant Djj to a larger constant, so that it is asymptotically a constant.
Under the hypothesis of Theorem 5.2, the asymptotic growth in dispersivity
is O�a2t/t� = O�a2� = o�t� (since t � a2 at the larger scale). Thus although
dispersivity grows in the latter case, the growth is sublinear with time. In
between the final and initial phases other intermediate phases appear. Exam-
ples 6.1, 6.2 in Section 6 illustrate this, along with a precise specification of
the time scales for the initial, intermediate and final phases. A computation
of dispersivity d�t� in Example 6.1 through all these phases show a mostly
sublinear growth,

�7�5� d�t� = 1 �t = O�1��� d�t� = 1+ c2
1

2π2
�1� t� a4/3��

1� d�t� � t�a4/3 � t� a2�� d�t� � t�t� a2��
For the physical problem at hand, these are examples of multiscale versions
of stratified media considered in Gupta and Bhattacharya (1986) and Guven
and Molz (1986).

Because of the importance of the problem of solute transport in porous me-
dia in hydrology and environmental engineering, a number of field studies
have been undertaken over the past two decades to monitor solute dispersion
in aquifers [see, e.g., Adams and Gelhar (1992); Garabedian, LeBlanc, Gelhar
and Celia (1991); LeBlanc Garbedian, Hess, Gelhar, Quadri, Stollenwerk and
Wood (1991); Sauty (1980); Sudicky (1986)]. Such experiments are necessarily
complex. They require the digging of many properly placed wells to monitor the
solute concentration profile, often over a span of several years. The theoretical
model most commonly fitted to the data is based on the important work of Gel-
har and Axness (1983), where it is assumed that the coefficients of the Fokker–
Planck equation governing solute concentration are ergodic random fields. An
independent alternative mathematical approach under the same assumptions
is given in Winter, Newman and Neuman (1984). Proofs of the validity of the
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Gaussian approximation, along with a computation of its dispersion, may be
found in Kozlov (1980) and Papanicolaou and Varadhan (1979) for the special
case of the generator in divergence form. It seems that for the general case
considered by Gelhar and Axness (1983) some mathematical details still need
to be worked out, both for the CLT and for the analysis of the dispersion. As
shown in Papanicolaou and Varadhan (1979), the periodic and almost periodic
cases may be considered as special cases of the ergodic random field model.

The main thrust of the theoretical studies in the hydrology literature on
solute dispersion in aquifers has been to explain the scale effect, that is, the
increase in dispersivitiy with spatial scale. For example, the dispersivity at
the field scales are observed to be larger by orders of magnitude from that at
the laboratory scale. As pointed out in Bhattacharya and Gupta (1983), the
validity of a hierarchy of Gaussian approximations at the laboratory and field
scales, with increase in dispersivity with scale, can only be explained by the
presence of multiple scales of heterogeneity in the medium. A single central
limit theorem, such as mentioned in the preceding paragraph, cannot explain
this phenomenon in a saturated aquifer whose dynamics are independent of
time. The points of departure in the present article, following Bhattacharya
and Götze (1995), are (1) the explicit introduction of multiple scales of het-
erogeneity in the velocity field and (2) determination of the time scales for
changes from one Gaussian phase to the next. Although it is not claimed here
that natural aquifers have periodic velocity fields, the detailed analysis of the
periodic case with multiple scales provides a qualitative understanding of the
scale effect in dispersion in general. Since under a random translation the
periodic velocity field becomes an ergodic random field, the present study also
provides an avenue for testing the validity of some of the informal theories
and intuition on the nature of multiscale dispersion.

8. Final remarks. In the following series of remarks we mention some
unresolved issues and research problems.

Remark 8.1. The examples in Section 6 show that the time scale for the
final Gaussian phase cannot in general be less than t� a2 for divergence-free
b and β. The additional logarithmic factors �log a�2 and log a in Theorems 5.2
and 5.4, respectively, are needed to offset the factor ak/2 appearing in Theo-
rem 4.5 in our estimate of the speed of convergence to equilibrium for diffu-
sions on the big torus �a. We do not know if this factor ak/2 can be removed
in general. Among important recent methods for the estimation of the speed
of convergence to equilibrium of Markov processes we would like to mention
those of Chen and Wang (1994, 1997), and Diaconis and Saloff-Coste (1996).

The seemingly excessively large time scale t � a4�log a�2 in Theorem 5.3
may be reduced to that given in Theorem 5.4, namely, t � a2 log a if agj
and a gradgj can be shown to be bounded in sup norm rather than in the
H1-norm. We do not know if this is achievable in general.
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Remark 8.2. One may conjecture that the technical condition (A4)j in
(3.68) is redundant for the validity of the conclusion of Theorem 5.2. We would
also conjecture that, for Theorems 5.3 and 5.4, the assumption of continuity
of the derivatives of pj in (A5)j is redundant.

Remark 8.3. It is easy to see that the condition that “a→∞ through inte-
ger values” may be relaxed to “a→∞ through a sequence of rational numbers
with a bounded denominator.” Can we relax this further in Theorem 5.2? Note
that in Example 6.1 in Section 6 no restriction on “a” is needed (except that
a→∞).

Remark 8.4. As indicated by Theorems 5.5, 5.6 (also see Theorems 4.6, 4.7)
for the one-dimensional case, multiscale multidimensional diffusions with pe-
riodic nondivergence-free velocity fields offer a rich diversity of behavior that
needs to be explored further.

Remark 8.5. An important problem, both from the point of view of mathe-
matics and that of applications, is the analysis of multiscale diffusions whose
coefficients constitute ergodic random fields. Methods employed in this article
seem inapplicable for a general asymptotic analysis of such diffusions.
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