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MORE ON RECURRENCE AND WAITING TIMES1

BY ABRAHAM J. WYNER

University of Pennsylvania

� 4Let X � X : n � 1, 2, . . . be a discrete valued stationary ergodicn
n � 4process distributed according to probability P. Let Z � Z , Z , . . . , Z1 1 2 n

be an independent realization of an n-block drawn with the same proba-
bility as X. We consider the waiting time W defined as the first time then
n-block Zn appears in X. There are many recent results concerning this1
waiting time that demonstrate asymptotic properties of this random
variable. In this paper, we prove that for all n the random variable

Ž n.W P Z is approximately distributed as an exponential random variablen 1
with mean 1. We use a Poisson heuristic to provide a very simple intuition
for this result, which is then formalized using the Chen�Stein method. We
then rederive, with remarkable brevity, most of the known asymptotic
results concerning W and prove others as well. We further establishn

Ž n. Ž .the surprising fact that for many sources W P Z is exp 1 even if then 1
probability law for Z is not the same as that of X. We also consider the
d-dimensional analog of the waiting time and prove a similar result in
that setting. Nearly identical results are then derived for the recurrence
time R defined as the first time the initial N-block X n reappears in X.n 1

We conclude by developing applications of these results to provide
concise solutions to problems that stem from the analysis of the
Lempel�Ziv data compression algorithm. We also consider possible appli-
cations to DNA sequence analysis.

� 41. Introduction. Let X � X , X , . . . be a finite alphabet stationary1 2
ergodic process on the space of infinite sequences endowed with probability P.
Let X � AA and denote any finite contiguous substring of X with the notationi

j � 4 nX � X , . . . , X . Let the sequence Z be an independent realization of thei i j 1
first n symbols of the process. Thus, for any n-block sequence of symbols zn

1
with z � AA, we definei

P zn � Pr Zn � zn .� 4Ž .1 1 1

Ž n.Since X and Z have the same distribution the random variable P X and1
Ž n.P Z are also identically distributed as well as independent. Our main1

interests are the waiting time W , defined to be the first time the sequence Zn
n 1

appears in X, and the recurrence time R , defined to be the first time then
sequence X n reappears in X:1

W � inf k � 1: X k�n�1 � Zn , R � inf k � 1: X k�n � X n .� 4 � 4n k 1 n k�1 1
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These random variables have been the subject of a growing body of work that
crosses over probability theory to computer science and information theory.
Originally, A. D. Wyner and J. Ziv, motivated by interest in the Ziv�Lempel

Ž � �.data compression algorithm, discovered in 10 that for all stationary,
finite-alphabet, ergodic processes,

log Rn
1 lim � H in probability,Ž .

nn��

where H is the process entropy. They found the same result to be true of W ,n
if the process was also assumed to be Markov of arbitrary order. They

Žconjectured that the same limit held almost surely a fact that was later
� �. � �established in 5 . Subsequently, A. J. Wyner discovered in 12 that for

Ž .Markov sources, W and R satisfied a second-order limit law;n n

log W � nHn
2 lim � N 0, 1 ,Ž . Ž .'n�� � n

2 Ž Ž n. Ž� � � � � �.where � � lim Var �log P X �n 7 , 8 , 9 . Interesting work on then�� 1
� � Ž� �.‘‘Wyner�Ziv’’ problem was presented by Shields 6 who discovered in 8

Ž .that the limit theorem of 1 was not true of all stationary, ergodic processes
especially if the process memory vanished sufficiently slowly. In 1994, Orn-
stein and Weiss showed that W and R had simple analogs for stationary,n n

Ž .ergodic, d-dimensional random fields and that a limit law similar to 1 also
held in that setting.

Ž n. Ž n.In this paper, we consider the quantities W P Z and R P X . Wen 1 n 1
establish that the respective products each are approximately distributed

Ž .exponentially with mean 1 for all n providing an explicit error term. Since
Ž n. ŽP Z is a very familiar object since it is easily transformed into a random1

.walk by taking logarithms , this result transforms W and R into equallyn n
familiar objects. We then use this nonasymptotic result to prove several new
asymptotic results and reprise some older ones.

The accuracy of the approximation is contingent upon two quantities that
characterize the length of the process memory. For �� 	 i 	 j 	 �, let BB j

i
denote the �-field generated by X j. Define for k � 1,i

P A 
 B � P B P AŽ . Ž . Ž .
� k � sup ,Ž .

P B P AŽ . Ž .0 �A�BB , B�BB�� k

Ž .where 0�0 is defined to be 0. We say X is �-mixing if � k � 0 as k � �.
Furthermore, we define the quantity

k�1 k�1 2 k k�1 �1� �� k � max P x , P x x , P x x .Ž . Ž . Ž . Ž .0 0 k 0 �k
x , . . . , x�k 2 k

� �Since AA is finite there must exist a k-block whose probability or conditional
Ž .probability is maximal. Therefore, � k always exists.

The relationship between waiting times and probability functions has been
Žpursued before. It is well known to information theorists who study data

. Ž n. Ž .compression that �log P X represents in some sense an ideal codeword1
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length. Furthermore, a Lempel�Ziv codeword is very closely related to a
quantity L , defined to be the largest k such that a copy of Z k can be foundm 1
as a contiguous substring of X m,1

k j�k�1 � �3 L � max k � 1: Z � X for some j � 1, m � k � 1 .Ž . � 4m 1 j

The quantity L is exactly the length of the first phase in the fixed-databasem
Ž . � �version of the LZ 77 algorithm; see 14 .

The relationship of W and L is through the observation thatn m

� 4 � 4L � n � W � m .m n

� �Thus W and L are ‘‘duals’’ of one another. In 14 , it was discovered that ifn m

4 T � inf k : �log P Z k � log m ,Ž . � 4Ž .m 1

Ž Tm.then �log P Z and L are asymptotically equivalent. This was only1 m
proved if the process was assumed to be Markov. Finally, no history of the
waiting time problem, however brief, would be complete without a reference

Ž � �.to the groundbreaking work of Szpankowski see 3 who has considered Lm
and related match lengths in quite literally dozens of papers with almost as
many collaborators.

Ž n. �The first explicit connection between log W and �log P Z as well asn 1
Ž n.� � �log R and log P X was made by Kontoyiannis in 4 . He showed, withn 1

� � Ž n.methods similar to those found in 10 , that �log P Z provides a strong1
asymptotic approximation to log W for mixing processes and that log R isn n

Ž n.approximated by �log P X for all stationary ergodic processes.1

2. Waiting times.

THEOREM A. Let X be a stationary, finite valued, ergodic process. For
t � 0, we have

nPr W P Z � t � exp �t 	 1 � t 8n� n � � n .� 4 Ž . Ž . Ž . Ž .Ž .n 1

Thus, for processes with memory that vanishes sufficiently fast, the quantity
Ž n.W P Z has an exponential distribution with mean 1.n 1

COROLLARY A1. If X is an ergodic Markov chain then there exists a
positive constant � � 1 such that

n nPr W P Z � t � exp �t 	 1 � t 9n� .� 4 Ž . Ž .Ž .n 1

Ž . Ž .COROLLARY A2. If n� n � 0 and � n � 0 then
nPr log W P Z � log log n � 0.� 4Ž .n 1

Ž . Ž .COROLLARY A3. If � n � o n then for any � � 0,
nPr log W P Z � � 1 � � log n � 0.Ž .� 4Ž .n 1
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� �COROLLARY A4. Suppose X is i.i.d. uniform over AA with s � AA . Then for
any a � � and all integers n � 0,

a a �n� 4Pr log W � a � n � exp �s 	 1 � s 8ns .Ž . Ž .s n

COROLLARY A5. If X is an ergodic Markov chain then for any � � 0,
n� 1 � � log n 	 log W P Z 	 log log n eventually, almost surely.Ž . Ž .n 1

PROOFS OF COROLLARIES A1�A5. It is easily shown that for Markov chains
2 n Ž n�1. n Ž n�1there exists p � 1 such that for all sequences x : P x 	 p , P x ��n 0 0

�1 . n Ž n�1 2 n. nx 	 p and P x � x 	 p . Typically, p might be the largest transi-�n 0 n
tion probability of the forward or backward chain if less than 1. If not, it is
possible, without loss of generality, to extend the alphabet so that the largest

Ž . ntransition is less than 1. This implies that � n 	 p . Now recall that for
Ž . nMarkov chains there exists a positive constant q � 1 such that � n 	 q .

Corollary A1 follows from Theorem A with � � p 
 q. Corollary A2 follows
from Theorem A with t � log n. To prove Corollary A3, observe that with
t � n�Ž1 �� ., we have that

Pr W P Zn � n�Ž1 �� . 	 1 � exp �n�Ž1�� .Ž .� 4Ž .n 1

�Ž1 �� .� 1 � n 8n� n � � n ,Ž . Ž . Ž .
Pr log W P Zn � � 1 � � log n 	 n�Ž1 �� . � 8� n n�� � � n n�Ž1 �� .� 4Ž . Ž . Ž .Ž . .n 1

� o 1 .Ž .
Ž n. �nLastly, Corollary A4 is proved by noting that for X i.i.d. uniform, P X � s .1

Ž . �n Ž .This implies that � n � s and it is obvious that � n � 0. Thus, Corollary
A4 will follow from Theorem A with t � sa. We point out the following: a

� �stronger version of Corollary A3 can be found in 4 ; Corollary A2 is a
� �stronger version in a less general setting than another theorem in 4 ; and

Corollaries A1 and A4 are essentially new versions of theorems that have
� �appeared only in 12 . Corollary A5 is proved by observing that for X ergodic

� Ž . � Ž .Markov, Ý � n � � and Ý � n � �, which implies, by Borel�Cantelli,n�1 n�1
that Corollaries A2 and A3 hold almost surely. �

We will need some new notation to provide a framework for Poisson
n n � � Ž n.�4approximation. To that end, we fix z � AA . Let I � 1, 2, . . . , m � t�P z .1 1

Consider the doubly infinite extension of X to X� and define��

1, if X i�n�1 � zn ,i 1Y �i ½ 0, otherwise.

Thus Y � 1 if the n-block at position i in X is equal to zn. We count thei 1
number of occurrences of zn over the index set I with the random variable1

W zn � Y .Ž . Ý1 i
i�I
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�For each i � I we denote the 2n neighborhood of i by BB � i � 2n, i �i
42n � 1, . . . , i � 2n . We now define three expectations over X:

B zn � EY EY ,Ž . Ý Ý1 1 i k
i�I k�BBi

B zn � EY Y ,Ž . Ý Ý2 1 i k
i�I i�k�BBi

n �B z � s where s � E Y � EY � Y : k � I � BB .� 4Ž .Ž . Ý3 1 i i i i k i
i�I

Finally, we let
� zn � EW zn .Ž . Ž .1 1

Ž n. nHeuristically, if P z is small and matches of z are not likely to appear in1 1
Ž n .clumps this will be true if z exhibits little self-symmetry then the waiting1

n � Ž n.�time until an occurrence of z call this conditional waiting time W z1 n 1
Ž n.should be approximately geometric with mean � � 1�P z . Thus if we close1

our eyes to the dependence, one might believe that
� �t�1

n n nPr W z P z � t � Pr W z � t� � 1 � � exp �t .� 4 � 4� � Ž .Ž . Ž . Ž .n 1 1 n 1 ž /�

Ž � �.This statement we can make rigorous using the Chen�Stein method see 1
which shows that

3
n n �1 n n5 Pr W z � 0 � exp �� z 	 1 � � z B z .� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ý1 1 1 i 1

i�1

By the stationarity of X and the linearity of expectations we have that

� zn � mP zn � t .Ž . Ž .1 1

Furthermore, it is easy to see that
n � n n nPr W P z � t Z � z � Pr W z � 0 .� 4 � 4Ž . Ž .n 1 1 1 1

Thus we have
3

n n n �1 n�6 Pr W P z � t Z � z � exp �t 	 1 � t B z .� 4Ž . Ž . Ž .Ž . Ž .Ýn 1 1 1 i 1
i�1

We now state our key technical lemma, leaving the proof for the Appendix.

Ž n. Ž . Ž .nLEMMA A. Let B � E B Z . Then, B 	 4nt� n , B 	 4nt� n andi Z i 1 1 21
Ž .B 	 t� 2n .3

n Ž .PROOF OF THEOREM A. Taking expectations with respect to Z in 6 ,1

3
n �1 n

nPr W P Z � t 	 exp �t � 1 � t E B Z .� 4 Ž . Ž .Ž . Ž .Ýn 1 Z i 11
i�1
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Applying Lemma A, we have
nPr W P Z � t 	 exp �t � 1 � t 8n� n � � 2n .� 4 Ž . Ž . Ž . Ž .Ž .n 1

In the same way, we can prove reverse inequalities and thus,
nPr W P Z � t � exp �t 	 1 � t 8n� n � � 2n ,� 4 Ž . Ž . Ž . Ž .Ž .n 1

which proves Theorem A. �

3. Recurrence times.

THEOREM B. Let X be a stationary, finite valued, ergodic process. Let
t � 0. Then

nP R P Z � t � exp �tŽ .Ž .Ž .n 1

	 1 � t 8n� n 1 � � n � � n � 8n� n .Ž . Ž . Ž . Ž . Ž .

COROLLARY B1. If X is an ergodic Markov chain, then there exists a
positive constant � � 1 such that

n nPr R P X � t � exp �t 	 1 � t 16n� .� 4 Ž . Ž .Ž .n 1

Ž . Ž .COROLLARY B2. If n� n � 0 and � n � 0 then
nPr log R P Z � log log n � 0.� 4Ž .n 1

Ž . Ž . Ž . Ž .COROLLARY B3. If � n � o n and n� n � o 1 then for any � � 0,
nPr log R P X � � 1 � � log n � 0.Ž .� 4Ž .n 1

� �COROLLARY B4. Suppose X is i.i.d. uniform over AA with s � AA . Then for
any a and all integers n � 0,

a a �n� 4Pr log R � a � n � exp �s 	 1 � s 16ns .Ž . Ž .s n

COROLLARY B5. If X is an ergodic Markov chain, then for any � � 0,
n� 1 � � log n 	 log R P Z 	 log log n eventually, almost surely.Ž . Ž .n 1

PROOF. We only need to make a simple modification in the definitions.
n n � � Ž n.�4First we fix x � AA and let I � 4n � 1, 4n � 2, . . . , m � t�P x . For1 1

i � I, define

1, if X i�n � x n ,i�1 1Y �i ½ 0, otherwise.

Ž n. Ž n. Ž n. Ž n.The definitions of BB , B x , B x , B x and W x are the same as ini 1 1 2 1 3 1 1
Section 2, replacing every occurrence of zn with x n.1 1

In the recurrence time setting, there are two kinds of occurrences of the
initial patterns to consider: short range occurrences, where R � 4n, andn
long range occurrences where R � 4n. We argue that for processes withn
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Žvanishing memory, it is very likely that R � 4n short range matches occurn
. Žwith small probability . We formalize this by proving the following lemma in

.the Appendix .

� 4 Ž .LEMMA B. Pr R � 4n 	 4n� n .n

Observe that in the recurrence setting, the quantities EY and EY Y arei i k
conditional events, conditioned on the outcome of the initial n-block. It is

Ž n. Ž n.� Ž .�easy to see that B x 	 B z 1 � � n follows from the �-mixing prop-1 1 1 1
Ž n . Ž n.erty since we are conditioning on the initial X block . Similarly B x 	1 2 1

Ž n.� Ž .�B z 1 � � n . Finally, it follows that2 1

n n � n nPr W x � 0 	 Pr R P x � t X � x� 4 � 4Ž . Ž .1 n 1 1 1

n � n n	 Pr W x � 0 � Pr R � 4n X � x .� 4� 4Ž .1 n 1 1

� Ž n. 4To apply the Chen�Stein equation to approximate Pr W x � 0 we need to1
Ž n. Ž n.find � x � EW x . This is no more difficult than in the waiting time case,1 1

but slightly more complicated:

� x n � EYŽ . Ý1 i
i�I

t
n� � 4n P xŽ .1nP xŽ .1

� t � 4nP x n .Ž .1

n n Ž n. Ž .Since, for every x � AA , P x 	 � n it must be that1 1

t � 4n� n 	 � x n 	 t .Ž . Ž .1

Ž . � Ž Ž . Ž .Thus, it follows from 5 and the fact that exp 4n� n � 1 � 4n� n �
Ž Ž ..�o 4n� n that

n n n�Pr R P X � t X � x � exp �t� 4 Ž .Ž .n 1 1 1

3
�1n n	 1 � � x B x. Ž .ÝŽ .ž /1 i 1

i�1

� n n� Pr R � 4n X � x � 4n� n .� 4 Ž .n 1 1

Following the steps of the proof of Theorem A and using Lemma A and
Lemma B proves Theorem B. �

4. Generalization to random fields. A remarkable feature of the Pois-
son approximation approach is the ability to find extensions, with only minor
modification of the proof used in the one-dimensional case, to random fields

d �on the integer lattice Z . We consider a family of random variables X :u
d4 Ž .u � Z indexed by d-dimensional vectors u � u , . . . , u . We assume that1 d

for all vectors u on the random variable X takes values in a finite set AA. Theu
distribution on the process is assumed to be a stationary and ergodic proba-
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� d4 Ž .bility P on the product space XXXXX � Ł AA : u � Z with each AA a copy of AA .u u
Ž .Suppose x is a realization of the process and thus x � XXXXX then X � x isu u

d Ž . � 4the coordinate at position u. For any subset U � Z we let X x � x .U u u �U
For any Vector v � Zd, let T x denote the realization with coordinatesv

Ž . Ž . dX T x � X x � x . Thus, for any subset U � Z , we say that theu v u�v u�v
d-dimensional pattern X occurs at position v if X � X .U U v�U

The d-dimensional analog of a sequence of length n in one dimension is
d � . � dthe d-dimensional cube. For u, w � Z let u, w � v � Z : u 	 v � wj j j

4for all j . We can define the d-dimensional cube with side k � 0, to be the
� .dCartesian product of 0, k ,

C k � u � Zd : 0 	 u � k for all j .Ž . � 4j

We define the recurrence time R as the smallest value of k such that then
Ž .initial n-cube pattern X occurs at some coordinate inside C k other thanCŽn.

at coordinate 0,

R � inf k � 1: X � X for some u � C k , u � 0 .Ž .� 4n CŽn. u�CŽn.

The waiting time analog of the recurrence time R , considers an independentn
� 4process Z also distributed with probability measure P. We define theu

waiting time W as the smallest value of k such that the n-cube pattern Zn CŽn.
Ž .occurs in the process X at some coordinate inside C k :

W � inf k � 1: Z � X for some u � C k .Ž .� 4n CŽn. u�CŽn.

Before we state any theorems, we need to introduce d-dimensional analogs of
Ž . Ž .� n and � n . To that end, for any coordinate u � I, define the 2n-neighbor-

� � � 4 Ž .hood of by BB � v: u � v 	 2n . Thus, for any v � C n � u and anyu j j

� d 4 � �w � Z � BB , it must be that v � w � n for all j. This means that everyu j j
Ž .coordinate outside of BB is separated by at least n in all directions fromu

every coordinate inside the n-cube at u. We now are able to define
�� n � max P x , � n � max P x x : v � BB � C n .Ž . Ž . Ž . Ž .Ž .0 CŽn. 1 CŽn. v 0

x : u�BB x : u�BBu u0 0

Ž .Thus � n is the probability of the n-cube with the highest probability with0
Ž .respect to P and � n is the conditional probability of the n-cube with the1

highest conditional probability given all its neighbors that are within a
distance n of any coordinate. Since we are assuming that AA is finite alphabet,
the n-cube with the largest probability or conditional probability must exist

Ž . Ž . Ž . Ž .and therefore � n � � n 
 � n is well defined. Now let 	 n denote the0 1
� Ž .4 Ž .�-field generated by X : u � C n and let 	 �n denote the �-field gener-u

� d 4ated by X : u � Z � BB . Letu 0

P A 
 B � P A P BŽ . Ž . Ž .
� n � sup .Ž .

P A P BŽ . Ž .Ž . Ž .A�	 n , B�	 �n

THEOREM C. Let X be a stationary, ergodic, d-dimensional random field
Ž .defined above . Let t � 0,

1�d dPr W P Z � t � exp �t 	 1 � t 4n � n � � n .Ž . Ž . Ž . Ž . Ž .Ž .½ 5n CŽn.
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Ž .1� dThus, for many processes with vanishing memory the quantity W P Zn CŽn.
has an exponential distribution with mean 1.

COROLLARY C1. If X is an i.i.d. random field then

d log Wn 2� N H , � ,Ž .d �2n
where

E � log P Z Var �log P ZŽ . Ž .Ž .cŽn. cŽn.2H � lim and � � lim .d dn nn�� n��

PROOF. It follows from Theorem C that n� d �2d log W andn
�d �2 Ž .�n log P Z are almost surely equal in the limit as n � �. By theCŽn.

independence assumption,

�log P Z � log P Z .Ž .Ž . ÝCŽn. u
Ž .u�C n

d Ž .Since there are exactly n vectors in C n the corollary follows from the
central limit theorem. We remark that Corollary C1 will also be true if Z is a
Markov random field.

PROOF OF THEOREM C. We use the Chen�Stein method in the d-dimen-
�Ž Ž .1� d � �sional setting. Given Z � z we let m � t�P z and I � v �CŽn. CŽn. CŽn.

Ž .4C m . Then define

1, if X � z ,u�CŽn. CŽn.Y �u ½ 0, otherwise.

Thus for any coordinate u, Y � 1 if the n-cube at u is equal to the n-cubeu
Ž .z . The total number of matches of z in C m is given byCŽn. CŽn.

W z � Y .Ž . ÝCŽn. u
u�I

The expected number of matches is easily derived from the stationary and is
given by

� z � EW zŽ . Ž .CŽn. CŽn.

� mdP zŽ .CŽn.

� t .
The d-dimensional analogs B , B and B of Section 2 are1 2 3

B z � EY EY ,Ž . Ý Ý1 CŽn. u v
u�I v�BBu

B z � EY Y ,Ž . Ý Ý2 CŽn. u v
u�I u�v�BBu

�B z � s where s � E Y � EY � Y : v � I � BB .� 4Ž . Ž .Ý3 CŽn. u u u u v u
u�I
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In the Appendix we prove the following lemma.

Ž . Ž .d Ž .LEMMA C. The following bounds hold for all n: EB Z 	 4n t� n ,1 CŽn.
Ž . Ž .d Ž . Ž . Ž .EB Z 	 4n t� n and EB Z 	 t� n .2 CŽn. 3 CŽn.

From the Chen�Stein equation we have that
3

�1Pr W z � 0 � exp �� z 	 1 � � z B z .Ž . Ž . Ž . Ž .� 4 Ž . Ž . ÝCŽn. CŽn. CŽn. i CŽn.
i�1

The theorem follows, taking expectations and applying Lemma C. �

5. Extensions. Suppose Z does not have the same distribution as X. Let
Z be distributed according to the stationary distribution Q and define

Q zn � Pr Zn � zn .� 4Ž .1 1 1

We will need to define
� n � max Q zn , � n � max P x n .Ž . Ž .Ž . Ž .Q 1 P 1n nz x1 1

We will also need to bound the ratio of the conditional probability of an
n-vector and the unconditional probability

n�1 � 2 nPr X � x X � y� 40 n

 n � max .Ž . n�1n Pr X � x� 4x, y�AA 0

Let

 � lim sup 
 n .Ž .

n��

If we let
n

�1 �1�� n � max log P X � x X � xŽ . Ž .Ý 0 0 �n�i �n�i
2nx�AA i�1

�1 �1��log P X � x X � x ,Ž .0 0 �i �i

Ž .then 
 � � if � n � � which is akin to a vanishing memory condition.
Clearly, 
 is finite if X is Markov.

Ž . Ž .THEOREM D Mismatch theorem . Let � n be the �-mixing coefficients of
X. Then for any t � 0 and any n,

nPr W P Z � t � exp �t 	 1 � t 4n� n � 4n
 n � n � � n .� 4 Ž . Ž . Ž . Ž . Ž . Ž .Ž .n 1 P Q

COROLLARY D1. If P and Q are ergodic Markov chains, then there exists a
constant � � 1 such that

n nPr W P Z � t � exp �t 	 1 � T 5n � 4n
 � .� 4 Ž . Ž . Ž .Ž .n 1

COROLLARY D2. If Z is Markov and X is ergodic, mixing and 
 is finite
Ž . Ž .and n� n � o 1 , thenP

log Wn
�lim � H Q � D Q P in probability.Ž . Ž .

nn��
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PROOFS OF THE COROLLARIES. If X is Markov then 
 is finite since
� Ž .Ý � n � �. Corollary D1 follows using the same steps used to proven�1

Ž Ž n. .Corollary A1. Corollary D2 follows by evaluating lim log W P Z �n : then�� n 1
Markovity of Z and the ergodic theorem implies that

�log P ZnŽ .1 n �lim � �E log P Z � H Q � D Q P .Ž . Ž .Ž .1nn��

We remark that if the conditions of Corollary D1 are satisfied then the
convergence is almost sure by Borel�Cantelli. �

PROOF OF THEOREM D. The proof rests on a modification of Lemma A
Ž .proved in the Appendix .

Ž n. Ž . Ž .nLEMMA D. B � E B Z 	 4nt
 n � n .2 Z 2 1 Q1

The proof of Theorem D follows the steps of the proof of Theorem A. The
bounds on B and B of Lemma A apply to the mismatch case unchanged. If1 3
Lemma D is applied to bound B then the theorem is proved. �2

� �To conclude, we remark that the mismatch case was first considered in 12
Ž .where it is remarked that the proof used to prove 2 may be carried over to

the mismatch case with only slight changes. There are mismatch extensions
� �of the main theorems in 4 as well. Furthermore, there are perhaps un-

counted corollaries and extensions of Theorem A; we have remarked on only a
few. It is, however, this author’s belief that Theorem A provides a thorough
settlement of the waiting time problem.

6. Applications. It is clear that pattern matching theory, as developed
in the preceding sections, has a natural connection to the Lempel�Ziv data

Ž .compression algorithm see Section 1 . The relevant quantity is the match
Ž .length L defined in 3 . Since the algorithm’s asymptotic performance ism

determined by this match length, if the distribution and moments of the
match length can be found, then performance properties can be derived. Our
main theorem here provides a precise bound on the difference between the

Ž .match length L and the random variable T , defined in 4 . Before statingm m
and proving that theorem, we establish an extension of Theorem A.

Let N be a positive, integer valued random variable that is independent of
Ž .X but not necessarily independent of Z . Consider the random variable

Ž N .W P Z . The following theorem establishes criterion for when we canN 1
Ž .expect the distribution of this random variable to also be distributed exp 1 .

THEOREM E. Assume that there exist constants � and � so that � 	 N1 2 1
	 � . Then for t � 0,2

NPr W P Z � t � exp �t 	 1 � t 8� � � � � � .Ž . Ž . Ž . Ž .� 4Ž .N 1 2 1 1
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PROOF. The proof of the theorem follows closely the steps of the proof of
Theorem A. Since we are assuming bounds on N, the proof is basically
identical to the nonrandom case; we will only sketch the proof. A more
general theorem, for unbounded N, surely holds, but for our applications we
only need to establish the inequality of Theorem E for bounded N. The first

n n Žstep is to condition on N � n and Z � z . Since N is independent of X as is1 1
. Ž .Z , the inequality of 6 holds unchanged. We cannot apply Lemma A directly,

however, because of the randomness of N. Instead we apply the following
simple extension.

Ž N . Ž . Ž .NLEMMA E. Let B � E B Z . Then B 	 4� t� � , B 	 4� t� � andi Z i 1 1 2 1 2 2 11
Ž .B 	 t� 2� .3 1

Applying Lemma E completes the proof of the theorem. �

Ž .The most useful application of this theorem is with N � T Z . In thism
Ž N . � 4 Ž .case, the quantity P Z is nearly 1�m so that Pr W � m � exp �1 . It is1 N

� �then easy to prove the following extension of Theorem 3 of 14 .

Ž .THEOREM F. Let 
 � L � T Z . If Z satisfies the conditions of Theoremm m
E, then there exists a positive constant � such that

log m � j
j j� 4Pr 
 � j 	 
 � O 
 ,

�ž /m
2log mŽ .�j �j� 4Pr 
 	 �j 	 exp �
 � O 
 .Ž . �ž /m

A very useful application of Theorem F makes use of the elementary fact
Ž . Ž . Ž . Žthat ET Z � log m�H � O 1 for Z both ergodic and Markov see them

� � .Appendix of 14 for a short proof . Since Theorem F implies that the tails of

 are at least exponential we have:

COROLLARY F. If Z is Markov and ergodic then

E
 � O 1 ,Ž .
log m

EL � � O 1 .Ž .m H

In conclusion, it follows easily from Corollary F and Theorem F that the
Lempel�Ziv parsing algorithm is simply a partition of a sequence into equally
probable segments of random length, with an approximately Normal distribu-

Ž Ž . .tion since T Z is Normal and mean equal to log n�H. From this fact, it isM
Ž � � � � � � .easy to establish convergence rates see 14 , 12 and 10 for details .
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Another application of Theorem F is in entropy estimation. Most ap-
proaches to entropy estimation proceed by first estimating a model and then
forming a plug-in estimate by computing the entropy of the estimated model.
From Corollary F it follows that consistent estimates of the entropy can be
constructed using match lengths. Algorithms that are based upon match
lengths have found useful application in linguistics and DNA sequence

Ž � � � � � �.analysis see 13 , 11 and 2 .

APPENDIX

PROOF OF LEMMA A. The proof of the technical lemma is straightforward;
we need only evaluate B , B and B . Recall that Y is the indicator of the1 2 3 i

� i�n�1 n4 � � Ž n.�4 �event X � Z , the index set I � 1, 2, . . . , m � t�P Z and BB � ii 1 1 i
4� 2n, i � 2n � 1, . . . , 1 � 2n ,

n n� �nB � E E Y Z E Y ZÝ Ý1 Z X i 1 X k 11
i�I k�BBi

tŽ .a
n n� �n� E E Y Z E Y ZÝZ X i 1 X k 1n1 P ZŽ .1 k�BB0

t4nŽ .b
2 n

n� E P ZŽ .Z 1n1 P ZŽ .1

Ž .c
n

n� 4ntE P ZŽ .Z 11

Ž .d
	 4nt� n ,Ž .

Ž .where a follows from the definition on B , using the stationarity of X and1
Ž n. Ž .the fact that there are t�P Z summands. Step b follows since Y is the1 k

� k�n�1 n4indicator of the event X � Z whose expectation with respect to X isk 1
Ž n. Ž . Ž .P Z . Step d follows from the definition of � n . To bound B , start with1 2

the definition
n�nB � E E Y Y ZÝ Ý2 Z X i k 11

i�I k�BBi

tŽ .a
n�n� E E Y Y ZÝZ X 0 k 1n1 P ZŽ .1 0�k�BB0

2ntŽ .b
k�n�1 n n�1 n n�1 n�n� E Pr X � Z X � Z Pr X � Z� 4 � 4ÝZ k 1 0 1 0 1n1 P ZŽ .1 k��2 n , k�0

2nŽ .c
k�n�1 n�1 n�1 n�n� tE E 1 X � X X � Z� 4Ý Z X k 0 0 11

0�k��2 n

2nŽ .d
k�n�1 n�1� t Pr X � X .� 4Ý k 0

0�k��2 n
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Ž .Step a follows from the stationarity and the definition of B and the fact2
Ž n. Ž .that there are t�P Z summands. Step b follows by conditioning on the1

� n�1 n4 Ž .event Y � 1, which is identical to the event X � Z . Step c follows by0 0 1
Ž n. � n�1 n4canceling the P Z term in the denominator with the Pr X � Z term.1 0 1

Ž .Step d follows from the definitions of conditional probability and the fact
that Zn has the same distribution as X n�1. To complete the bound on B , we1 0 2

� k�n�1 n�14 � �must evaluate Pr X � X for integers k with 0 � k 	 2n. Firstk 0
consider 0 � k 	 n,

k�n�1 n�1 n�1 k�n�1 2 n�2 n n�1Pr X � X � E E 1 X � X X .� 4 � 4k 0 X X 0 k n�1n� 1 0

We will show that for every outcome of the ‘‘future’’ sequence x 2 n , there1�n
Ž 2 n.exists a unique sequence U x such thatk n

n�1 k�n�1 2 n 2 n n�1 2 n � 2 n 2 nPr X � X X � x � Pr X � U x X � x .� 4 � 4Ž .0 k n n�1 0 i n n n

In other words, if we condition first on the outcome of the second n block from
Ž .time n to 2n, label it x, there exists only a single string U x which willk

Ž .admit a match at position k. We prove by construction: write U x �k
� 4 Ž .u , . . . , u . Clearly, the last k positions of U x must be the first k1 n k
positions of x: u � x for j � 1, 2, . . . , k. The rest of the sequence isn� j�1 k�1�j
defined recursively so that the matching condition X n�1 � X k�n�1 is satis-0 k
fied; that is, we let u � u for j � k, . . . , n � 1. Therefore,n� j�1 n�j�k�1

k�n�1 n�1 n�1 k�n�1 2 n�Pr X � X � E 1 X � X X� 4 � 4k 0 0 k n

n k�n�1 2 n�� E 1 X � U X X� 4Ž .1 i k n

	 � n .Ž .
The same proof applies for 0 � �k 	 n, and for k � n, we have by the

Ž . � k�n�1 n�14 Ž .definition of � n that Pr X � X 	 � n . We now finish the boundk 0
on B by observing that2

2n
k�n�1 n�1B 	 Pr X � X 	 4n� n .Ž .� 4Ý2 k 0

0�k��2 n

� � � ŽThe final task is to evaluate B . Recall that s � E Y � EY � Y : k � I �3 i i i k
.4 �BB and thati

n�nB � E s Z .Ý3 Z i 11
i�I

Ž . Ž .Given any set A � � X : 
 � BB with P Z � 0 it follows from the �-mix-
 0
ing property of X,

� 4P Y � 1 
 A � P A P Y � 1 	 � 2n P A P Y � 1 .Ž . Ž . Ž . Ž . Ž .Ž .0 0 0

Thus
n�E Y A 	 1 � � 2n P Z .Ž . Ž .0 1

This implies that for any i � I,
n ns 	 P Z 1 � � 2n � P Z .Ž .Ž . Ž .i 1 1
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Hence,

n�nB � E s ZÝ3 Z i 11
i�I

t
n n

n	 E P Z 1 � � 2n � P ZŽ .Ž . Ž .Z 1 1n1 P ZŽ .1

� � 2n t . �Ž .

PROOF OF LEMMA B. With the same procedure used to bound B , it follows2
that

4n�1
k�n n� 4Pr R � 4n 	 Pr X � X� 4Ýn k�1 1

k�1

	 4n� n . �Ž .

PROOF OF LEMMA C. This is the d-dimensional version of Lemma A and
the proof carries over with only changes in the index set. We leave the details
to the reader.

PROOF OF LEMMA D. We start with the definition of B :2

n�nB � E E Y Y ZÝ Ý2 Z X i k 11
i�I k�BBi

t
n�n� E E Y Y ZÝZ X 0 k 1n1 P ZŽ .1 0�k�BB0

2nt
k�n�1 n n�1 n n�1 n�n� E Pr X � Z X � Z Pr X � Z� 4 � 4ÝZ k 1 0 1 0 1n1 P zŽ .1 k��2 n , k�0

2n
k�n�1 n�1 n�1 n�n� tE E 1 X � X X � Z� 4Ý Z X k 0 0 11

0�k��2 n

2n
k�n�1 n�1 n n�1�� t Pr X � X Z � X .� 4Ý k 0 1 0

0�k��2 n

� �As in the proof of Lemma A we will need a bound, for all 0 	 k 	 2n, on
k�n�1 n�1 n n�1 ˆ� � 4Pr X � X Z � X . Define a sequence of random variables Xk 0 1 0 i

ˆfrom i � n, . . . , 2n so that the unconditional distribution of X is the condi-i
n�1 n Žtional distribution of X given that X � Z . As before in the proof ofi 0 1

. 2 n 2 n Ž 2 n.Lemma A , if X � x then there exists a unique sequence U x thatn n k n
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will admit a match of X n�1 at position k. Thus0

k�n�1 n�1 n n�1 n ˆ 2 n� n 2 nPr X � X Z � X � E E 1 Z � U X� 4 Ž .½ 5ˆk 0 1 0 Z X 1 k n1 n

n ˆ 2 n
2 n n� E E 1 Z � U XŽ .½ 5X̂ Z 1 k nn 1

n ˆ 2 n ˆ 2 n�� Pr X � U x X � x Pr X � xŽ .� 4 � 4Ý 1 k n n
nx�AA

n ˆ 2 n�	 max Pr Z � y X � x� 41 nnx , y�AA

Pr Zn � y� 412 n nˆ �� max Pr X � x Z � y� 4n 1 2 nn ˆx , y�AA Pr X � x� 4n

ˆ 2 n n�1�Pr X � x X � y� 4n 0	 max � nŽ .Q2 nn Pr X � x� 4x , y�AA n

	 
 n P� n .Ž . Ž .Q

Since this holds for every k, it must be that

B 	 4nt
 n � n . �Ž . Ž .2 Q

PROOF OF LEMMA E. By conditioning first on M and applying the bounds
as well as the independence of M and X, we can follow the steps of the proof
of Lemma A. The details are left to the reader. A detailed description of

� �random length patterns can be found in 12 .
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