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The Metropolis–Hastings algorithm is a method of constructing a re-
versible Markov transition kernel with a specified invariant distribution.
This note describes necessary and sufficient conditions on the candidate
generation kernel and the acceptance probability function for the resulting
transition kernel and invariant distribution to satisfy the detailed balance
conditions. A simple general formulation is used that covers a range of
special cases treated separately in the literature. In addition, results on
a useful partial ordering of finite state space reversible transition kernels
are extended to general state spaces and used to compare the performance
of two approaches to using mixtures in Metropolis–Hastings kernels.

1. Introduction. The Metropolis–Hastings algorithm [Metropolis, A. W.
Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller (1953), Hastings
(1970)] is a method of constructing a reversible regular Markov transition ker-
nel P�x;dy� on a measurable space �E;E � with a specified invariant distribu-
tion π. The algorithm requires a transition kernel Q�x;dy� and a measurable
function α�x;y�x E×E→ �0;1�. If the current state is x, then a candidate, or
proposal, for the next state is generated from Q�x;dy�. An observed candidate
of y is accepted with probability α�x;y�. Otherwise, the candidate is rejected
and the process remains at x. The resulting transition kernel is

P�x;dy� = Q�x;dy�α�x;y� + δx�dy�
∫
�1− α�x;u��Q�x;du�;(1)

where δx is point mass at x. Originally proposed for discrete state spaces, this
algorithm has recently been applied extensively to more general state spaces,
in particular as a method for examining posterior distributions in Bayesian
inference [Besag and Green (1993), Smith and Roberts (1993), Tierney (1994),
Green (1994)]. This note has two objectives. The first is to give a statement of
necessary and sufficient conditions onQ�x;dy� and α�x;y� for the algorithm to
be reversible with respect to the target distribution π. These conditions unify
a number of special cases treated separately in the literature. The second
objective is to extend a result of Peskun (1973) on the ordering of asymptotic
variances for finite state spaces to general state spaces. This result is then
used to compare two approaches to using mixtures of kernels in Metropolis–
Hastings samplers.
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2. Reversibility. A Markov chain with initial distribution π and transi-
tion kernel P is reversible if and only if the detailed balance relation

π�dx�P�x;dy� = π�dy�P�y;dx�(2)

is satisfied. The two sides of this identity are measures on E ⊗E , and detailed
balance means these measures are identical. If detailed balance holds, then
for any real-valued f,

∫ ∫
f�y�π�dx�P�x;dy� =

∫ ∫
f�y�π�dy�P�y;dx� =

∫
f�y�π�dy�

and thus π is invariant for P. The Metropolis–Hastings kernel (1) satisfies (2)
if and only if

π�dx�Q�x;dy�α�x;y� = π�dy�Q�y;dx�α�y;x�;(3)

that is, the diagonal component does not matter.
The following proposition gives a few useful facts about measures on prod-

uct spaces.

Proposition 1. Let µ�dx;dy� be a sigma-finite measure on the product
space �E × E;E ⊗ E � and let µT�dx;dy� = µ�dy;dx�. Then there exists a
symmetric setR ∈ E⊗E such that µ and µT are mutually absolutely continuous
on R and mutually singular on the complement of R, Rc. The set R is unique
up to sets that are null for both µ and µT. Let µR and µTR be the restrictions
of µ and µT to R. Then there exists a version of the density

r�x;y� = µR�dx;dy�
µTR�dx;dy�

such that 0 < r�x;y� <∞ and r�x;y� = 1/r�y;x� for all x;y ∈ E.

Proof. Let ν�dx;dy� = µ�dx;dy� + µT�dx;dy� = µ�dx;dy� + µ�dy;dx�.
Then ν is symmetric and both µ and µT are absolutely continuous with re-
spect to ν. Let h�x;y� be a density of µ with respect to ν. Then µT�dx;dy� =
h�y;x�ν�dy;dx� = h�y;x�ν�dx;dy� and thus h�y;x� is a density of µT with
respect to ν. Let R = ��x;y�x h�x;y� > 0 and h�y;x� > 0�. Then R is sym-
metric, the restrictions of µ and µT to R are mutually absolutely continuous
with r�x;y� = h�x;y�/h�y;x� on R, and on Rc the measures µ and µT are
mutually singular. The function r�x;y� can be set to one on Rc. If R∗ is any
other set with the specified properties, then µ and µT must be mutually abso-
lutely continuous as well as mutually singular on R\R∗ and on R∗ \R, which
means these sets must be null sets for both µ and µT. 2

For a given proposal generation kernel Q, let µ�dx;dy� = π�dx�Q�x;dy�.
The set R for this measure µ can be viewed as consisting of those state pairs
�x;y� for which transitions from x to y and from y to x are both possible
in the Markov chain with initial distribution π and transition kernel Q. The
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function r�x;y� measures the relative rate of these transitions. The detailed
balance condition (3) can be written in terms of µ as

µ�dx;dy�α�x;y� = µT�dx;dy�α�y;x�:(4)

Examining this identity separately for the sets R and Rc yields the following
result.

Theorem 2. A Metropolis–Hastings transition kernel satisfies the detailed
balance condition (4) if and only if the following two conditions hold.

(i) The function α is µ-almost everywhere zero on Rc.
(ii) The function α satisfies α�x;y�r�x;y� = α�y;x� µ-almost everywhere

on R:

Proof. Let η�dx;dy� = µ�dx;dy�α�x;y� and ηT�dx;dy� = µT�dx;dy� ·
α�y;x�. If α is µ-almost everywhere zero on Rc, then η�Rc� = 0. Since Rc

is symmetric, this implies that ηT�Rc� = 0 also, and hence detailed balance
holds on Rc. Conversely, since the measures η and ηT are mutually singular
on Rc, detailed balance implies that they must satisfy η�Rc� = ηT�Rc� = 0,
which implies that α is µ-almost everywhere zero on Rc. On R, the measures
µ and µT are equivalent with dµ/dµT = r�x;y�. So (4) holds on R if and only
if α�x;y�r�x;y� = α�y;x� holds µT-almost everywhere, which holds if and
only if α�x;y�r�x;y� = α�y;x� holds µ-almost everywhere. 2

The set R may be empty; if it is, then P�x;dy� = δx�dy�.
The standard Metropolis–Hastings rejection probability αMH�x;y� can be

written as

αMH�x;y� =
{

min�1; r�y;x��; if �x;y� ∈ R;
0; if �x;y� 6∈ R:

Condition (i) holds by construction. For �x;y� ∈ R
αMH�x;y�r�x;y� = min�r�x;y�; r�y;x�r�x;y��

= min�r�x;y�;1� = αMH�x;y�
since r�x;y� = 1/r�y;x� on R, and thus (ii) is satisfied as well.

This general formulation covers a number of special cases that are usually
treated separately in the literature.

1. Common dominating measure [e.g., Tierney (1994), Section 2.3]. Sup-
pose there is a measure ν such that π�dx� = π�x�ν�dx� and Q�x;dy� =
q�x;y�ν�dy�. Then

R = ��x;y�x π�x�q�x;y� > 0 and π�y�q�y;x� > 0�
and

r�x;y� = π�x�q�x;y�
π�y�q�y;x� :
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Detailed balance holds if and only if π�x�q�x;y�α�x;y� = 0 for ν × ν-almost
all �x;y� 6∈ R and α�x;y�r�x;y� = α�y;x� for ν × ν-almost all �x;y� ∈ R.

2. Deterministic proposals [e.g., Tierney (1994), Section 2.3.4]. Suppose T
is a one-to-one transformation from E onto E such that T−1 = T, and let
Q�x;y� = δT�x��dy�. Thus when the current state is x then the proposal is
T�x�. Define the measure π ′ by π ′�A� = π�T−1�A�� for all A ∈ E , and let
ν�dx� = π�dx�+π ′�dx�. Let h�x� be a density for π�dx� with respect to ν�dx�.
Then h�T�x�� is a density for π ′�dx� with respect to ν. Let A = �x ∈ Ex h�x� >
0 and h�T�x�� > 0�. Then R = ��x;y�x x ∈ A and y = T�x�� and r�x;y� =
h�x�/h�T�x�� on R. Detailed balance holds if and only if α�x;T�x�� = 0 for
π-almost all x 6∈ A and

α�x;T�x�� h�x�
h�T�x�� = α�T�x�; x�

for π-almost all x ∈ A.
3. Green’s dimension-changing kernel. Green (1995) applies the Metropolis–

Hastings algorithm to Bayesian model selection. His formulation leads to a
state space in which elements have two components, an index from a discrete
set I and a value from a set Ei that depends on the index. The index i might
be an integer and Ei might be Ri. Thus E = ��i; x�x i ∈ I and x ∈ Ei� and
E is the sigma algebra generated by the sets ��i; x�x x ∈ A� for i ∈ I and
A ∈ Ei, where Ei is a sigma algebra on Ei. Write πi�A� for the probability
of observing an index of i and a value in A ∈ Ei, and define Qij�x;dy� and
αij�x;y� analogously. For each i; j ∈ I , let µij�dx;dy� = πi�dx�Qij�x;dy�
and νij�dx;dy� = πi�dx�Qij�x;dy�+πj�dy�Qji�y;dx� be measures on Ei⊗Ej,
let hij = dµij/dνij and set

Rij = ��x;y�x x ∈ Ei; y ∈ Ej; hij�x;y� > 0; and hji�y;x� > 0�:

Thus �x;y� ∈ Rij if and only if �y;x� ∈ Rji. Then

R = ��i; x; j; y�x i; j ∈ I ; �x;y� ∈ Rij�;

and rij�x;y� = hij�x;y�/hji�y;x�. A Metropolis–Hastings kernel is reversible
if and only if for each i; j ∈ I we have αij�x;y� = 0 for µij-almost all �x;y� 6∈
Rij and

αij�x;y�rij�x;y� = αji�y;x�

for µij-almost all �x;y� ∈ Rij.

3. A partial ordering. Peskun (1973) introduces a useful partial order-
ing on transition kernels that can be called off-diagonal domination. If P1
and P2 are transition kernels with invariant distribution π, then P1 dom-
inates P2 off the diagonal, P1 � P2, if for π-almost all x ∈ E we have
P1�x;A \ �x�� ≥ P2�x;A \ �x�� for all A ∈ E .
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Lemma 3. If P1 and P2 have invariant distribution π and P1 � P2,
then P2 − P1 is a positive operator on L2�π�. That is, ��P2 − P1�f;f� =∫∫
f�x�f�y��P2�x;dy� −P1�x;dy��π�dx� ≥ 0 for all f ∈ L2�π�.

Proof. Let H�dx;dy� = π�dx��δx�dy� − P2�x;dy� + P1�x;dy��. Then
H�A� ≥ 0 for all A ∈ E ⊗ E , and H�E ×E� = 1. That is, H is a probability
on E ⊗ E . Furthermore, H�E×A� =H�A×E� = π�A�; that is, the marginal
distributions of H are both equal to π. So for f ∈ L2�π�,∫ ∫

f�x�f�y��P2�x;dy� −P1�x;dy��π�dx�

=
∫ ∫

f�x�f�y��π�dx�δx�dy� −H�dx;dy��

=
∫
f�x�2π�dx� −

∫ ∫
f�x�f�y�H�dx;dy�

= 1
2

(∫
f�x�2π�dx� +

∫
f�y�2π�dy� − 2

∫ ∫
f�x�f�y�H�dx;dy�

)

= 1
2

∫ ∫
�f�x� − f�y��2H�dx;dy�

and the final right-hand side is nonnegative. 2

This result shows that the lag one autocorrelations of a stationary Markov
chain with a transition kernel P1 are at most as large as for a chain with
kernel P2 when P1 � P2. Higher order correlations need not be ordered, but
if the kernels are reversible then the asymptotic variances of sample path
averages for a chain with kernel P1 are no larger than for a chain with kernel
P2 when P1 � P2:

Theorem 4. Let P1 and P2 be reversible transition kernels with invariant
distribution π and suppose f ∈ L2

0�π� = �g ∈ L2�π�x
∫
gdπ = 0�. Let

v�f;H� = lim
n→∞

1
n

VarH

( n∑
i=1

f�Xi�
)

where X0;X1; : : : is a Markov chain with initial distribution π and reversible
transition kernel H. If P1 � P2, then v�f;P1� ≤ v�f;P2�.

Proof. The proof is based on the approach of Kipnis and Varadhan (1986).
If H is a reversible transition kernel with invariant distribution π, then H
represents a self-adjoint operator on L2

0�π� with spectral radius bounded by
one. By the spectral decomposition theorem for self-adjoint operators, for each
f ∈ L2

0�π� there exists a finite positive measure ef;H on the real line with
support contained in the interval �−1;1� such that �f;Hnf� =

∫
xnef;H�dx�

for all integers n ≥ 0. Thus

1
n

VarH

( n∑
i=1

f�Xi�
)
=
∫

1+ 2
n∑
i=1

n− i
n

xief;H�dx� →
∫ 1+ x

1− xef;H�dx�:
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The limit is guaranteed to exit, but it may be infinite. Kipnis and Varadhan
(1986) show that a central limit theorem holds when the limit is finite. Now
define vλ�f;H� = �f; �I−λH�−1�I+λH�f� for 0 ≤ λ < 1. This is well defined
and finite since I − λH as an operator on L2

0�π� has a bounded inverse for
λ ∈ �0;1�. Then

vλ�f;H� =
∫ 1+ λx

1− λxef;H�dx� → v�f;H�

as λ→ 1, whether v�f;H� is finite or infinite. Now suppose that P1 and P2
are reversible transition kernels with invariant distribution π and P1 � P2.
Let Hβ = P1 + β�P2 −P1� for 0 ≤ β ≤ 1 and hλ�β� = vλ�f;Hβ�. Let Aλ�β� =
�I−λHβ�−1�I+λHβ�, and let A′λ�β� = limh↓0�1/h��Aλ�β+h�−Aλ�β�� be the
right-hand derivative of Aλ�β� at β ∈ �0;1�. Since �I−λHβ�Aλ�β� = I+λHβ,
we have

�I− λHβ�A′λ − λ�P2 −P1�Aλ�β� = λ�P2 −P1�
and thus

A′λ�β� = λ�I− λHβ�−1�P2 −P1��I+Aλ�β��
= 2λ�I− λHβ�−1�P2 −P1��I− λHβ�−1:

So the right-hand derivatives of hλ are given by

h′λ�β� = �f;2λ�I− λHβ�−1�P2 −P1��I− λHβ�−1f�
= 2λ��I− λHβ�−1f; �P2 −P1��I− λHβ�−1f�
≥ 0

for β ∈ �0;1� since P2 − P1 is a positive operator. So hλ is a nondecreasing
function, and therefore

vλ�f;P2� = hλ�1� ≥ hλ�0� = vλ�f;P1�:
Taking limits as λ→ 1 then shows that v�f;P2� ≥ v�f;P1�. 2

This theorem generalizes the finite state space result of Peskun’s theo-
rem 2.1.1 to general state spaces.

A similar analysis of the second derivative of hλ shows that this function
is convex. Thus

vλ�f;P2� ≥ �gλ; �P2 −P1�gλ� + vλ�f;P1�;
where gλ = �I − λP1�−1f for all λ ∈ �0;1�. If there exists a function g
such that �I − P1�g = f and �gλ; �P2 − P1�gλ� →

∫∫
g�x��P2�x;dy� −

P1�x;dy��g�y�π�dx�, then the variance inequality is strict; that is, v�f;P2� >
v�f;P1�, if v�f;P1� is finite and if the functions P1g and P2g are not equal
π-almost everywhere. A sufficient condition for the existence of such a g is
that the spectral radius of P1 as an operator on L2

0�π� be strictly less than
one; weaker conditions are possible.
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When the inequality is strict, the finite sample variances for sufficiently
large samples will be ordered as well. One might hope for the finite sample
variances to be ordered for all n, but this is not true in general. As a sim-
ple counter example, consider the irreducible, doubly stochastic, symmetric
transition matrices

P1 =




0:0 0:2 0:8 0:0

0:2 0:0 0:0 0:8

0:8 0:0 0:2 0:0

0:0 0:8 0:0 0:2


; P2 =




0:1 0:1 0:8 0:0

0:1 0:1 0:0 0:8

0:8 0:0 0:2 0:0

0:0 0:8 0:0 0:2




and the function fT = �1;−1;−3;3�. Since P1 and P2 are doubly stochastic,
they have the uniform distribution as their invariant distribution. Further-
more, P1 � P2, but

VarP1
�f�X0� + f�X1� + f�X2�� = 3

4f
Tf+ fTP1f+ 1

2f
TP2

1f = 15:4

and

VarP2
�f�X0� + f�X1� + f�X2�� = 3

4f
Tf+ fTP2f+ 1

2f
TP2

2f = 14:8:

So the sum has smaller variance under P2 than under P1, and thus P1 � P2
does not imply VarP1

�∑n
i=1 f�Xi�� ≤ VarP2

�∑n
i=1 f�Xi�� for all n.

As Peskun points out, for a given proposal generation kernelQ using the ac-
ceptance probability αMH produces a transition kernel that is maximal with re-
spect to off-diagonal domination among all Metropolis–Hastings kernels with
the same proposal kernel. This follows from the observation that

α�x;y� = α�y;x�r�y;x� ≤ min�1; r�y;x�� = αMH�x;y�
for any acceptance probability α�x;y� that produces a reversible transition
kernel. The Metropolis–Hastings kernel for a given Q that uses the accep-
tance probability αMH�x;y� will be called the maximal Metropolis–Hastings
kernel for Q. In terms of minimizing the asymptotic variance of sample path
averages, αMH�x;y� is the optimal acceptance probability function.

4. Mixing Metropolis–Hastings kernels. It is often useful to build up
a sampler from simpler component samplers. Given proposal kernels Qi we
can combine them in a mixture in two ways: we can use a mixture of the
Metropolis–Hastings kernels based on each proposal kernel, or we can form
a mixture proposal kernel and use it to form a single Metropolis–Hasting
kernel. When using the maximal acceptance probability, the second approach
is preferable in terms of asymptotic variances of sample path averages.

Proposition 5. LetQi be a sequence of proposal kernels and let βi ≥ 0 with∑
βi = 1 be a set of probabilities. Let Pi be the maximal Metropolis–Hastings

kernels based on proposal kernels Qi and let P be the maximal Metropolis–
Hastings kernel based on the proposal kernel Q =∑βiQi. Then P �∑βiPi.
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Proof. Suppose, without loss of generality, that there is a common
symmetric dominating measure ν for all the measures µi�dx;dy� =
π�dx�Qi�x;dy�. Let hi�x;y� be the density of µi with respect to ν and
let h�x;y� =∑βihi�x;y�. Then

π�dx�Q�x;dy�αMH�x;y� = h�x;y�min
{
h�y;x�
h�x;y� ;1

}
ν�dx;dy�

= min
{
h�y;x�; h�x;y�

}
ν�dx;dy�

= min
{∑

βihi�y;x�;
∑
βihi�x;y�

}
ν�dx;dy�

≥
∑
βi min

{
hi�y;x�; hi�x;y�

}
ν�dx;dy�

=
∑
βiπ�dx�Qiα

�i�
MH�x;y�;

where α�i�MH�x;y� is the maximal acceptance probability function for the pro-
posal kernel Qi. 2

This result must of course be treated with caution. To compute the ac-
ceptance probability for the mixture kernel Q = ∑

βiQi, one usually has to
compute the transition densities for all the Qi. In contrast, when using the
mixture of Metropolis–Hastings kernels

∑
βiPi, one only needs to compute

the transition density for the proposal kernel that was actually used. Thus
even though the number of iterations needed to achieve a particular level of
accuracy is lower when using a mixture proposal kernel, the cost of each it-
eration may be higher, and in terms of CPU time it may be better to use a
longer run of the cheaper chain than a shorter run of the more costly one.

While preparing the revision it came to my attention that a version of
Proposition 5 for discrete chains was given in the rejoinder of Besag, Green,
Higdon and Mengersen (1995). A similar version for discrete state spaces was
also given in the appendix of Tierney (1991).
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