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LARGE DEVIATIONS OF JACKSON NETWORKS

By Irina Ignatiouk-Robert

Université de Cergy-Pontoise

The problem of large deviations for a Jackson network is analyzed in
detail. A new representation of the rate function is given and a simple
procedure is proposed to get its closed form expression. The methods used
rely on twisted distributions, localized processes, fluid limits and a careful
analysis of some functions.

1. Introduction. We consider an open Jackson network with N queues.
For i = 1� � � � �N, the arrivals at the ith queue are Poisson with parameter
λi and the services delivered by the server are exponentially distributed with
parameters µi. All the Poisson processes and the services are assumed to be
independent. The routing matrix is denoted �pij� i� j = 1� � � � �N�, pij is the
probability that a customer goes to the jth queue when it has finished its
service at queue i. The residual quantity

pi0 = 1−
N∑
j=1
pij

is the probability that this customer definitively leaves the network. If the
initial lengths of the queues are given by the vector x = �xi� i = 1� � � � �N�,
Xi�t� x� denotes the length of the queue i at time t. The process �X�t� x�� is
a continuous time Markov process on �N+ with X�0� x� = x. Its generator is
given by

� f�y� = ∑
z∈�N+

q�z− y��f�z� − f�y��� y ∈ �N+ �

where

q�y� =


λi� if y = εi� i ∈ �1� � � � �N	,
µipi0� if y = −εi� i ∈ �1� � � � �N	,
µipij� if y = εj − εi� i� j ∈ �1� � � � �N	�
0� otherwise,

(1.1)

εi is the ith unit vector, εij = 0 if j 
= i and εij = 1 otherwise. We set p00 = 1
and p0i = 0 for i 
= 0, the matrix �pij� i� j = 0� � � � �N� is then stochastic.

Assumption A. We suppose that the matrix �q�x − y�� x�y ∈ �N� is
irreducible.
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Assumption A means that the following conditions are satisfied jointly:

(i) The spectral radius of the matrix �pij� i� j = 1� � � � �N� is strictly less
than unity.

(ii) For any i = 1� � � � �N, there exist n ∈ � and j ∈ �1� � � � �N	 such that
λjp

�n�
ji > 0� where p�n�ij is the n-time transition probabilities of a Markov chain

with N+ 1 states associated to the stochastic matrix �pij� i� j = 0� � � � �N�.

The spectral radius of the matrix �pij� i� j = 1� � � � �N� is strictly less than
unity if and only if a customer leaves the network with probability 1; that is
for any i ∈ �1� � � � �N	 there exists n ∈ �� such that p�n�i0 > 0�

We recall some of the well-known results concerning Jackson networks;
see [20], for example. The traffic equations of the Jackson network are the
following system of equations:

νj = λj +
N∑
i=1
νipij� j = 1� � � � �N�(1.2)

Under Assumption A, the system has a unique solution �νi� and the Markov
process �X�t� x�� is ergodic if and only if

νi < µi for all i = 1� � � � �N�(1.3)

Under these conditions the stationary probabilities �π�x�� x ∈ �N+ � of the
Markov process �X�x� t�� are given by the product formula

π�x� =
N∏
i=1
ρ
xi
i �1− ρi�� x ∈ �N+ �(1.4)

where ρi = νi/µi for i = 1� � � � �N. When the network is at equilibrium, the
components of the Markov process are independent.

A functional strong law of large numbers has been established by Chen and
Mandelbaum in [6]; it shows that almost surely,

lim
n→+∞

1
n
X�nt� 
nx�� = Q�t� x��

uniformly on t ∈ K for any compact set K. The process �Q�t� x�� is a deter-
ministic process also called a fluid limit or fluid approximation of the Jackson
network. Up to now there are different characterizations of the fluid limit
�Q�t� x��� Chen and Mandelbaum [6] describe �Q�t� x�� in terms of the oblique
reflection mapping, which is a solution of the associated Skorokhod problem
(see [13]). Botvich and Zamyatin [5] characterize �Q�t� x�� in terms of the sec-
ond vector field. They give an explicit expression of that by using the explicit
form for stationary probabilities (1.4). We shall recall some of these results in
Section 6.

A natural step after the analysis of the fluid limit is the study of the large
deviation problem. Denote by � �
0�T���N+ � the set of cadlag functions from
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0�T� to �N+ endowed with Skorokhod topology. For x ∈ �N+ and t ∈ 
0�T�, the
renormalized process �Zn�t� x�� is defined by

Zn�t� x� =
1
n
X�nt� 
nx���

Following the usual terminology, the Markov process is said to satisfy the
sample path large deviation principle with the good rate function

Ix�T�·� � � �
0�T���N+ � → �+�

iff for every x ∈ �N+ and T > 0:

1. For any c ∈ R+, the level set �ϕ:Ix�T�ϕ� ≤ c	 is a compact subset of
� �
0�T���N+ �.

2. For every open set G of � �
0�T���N+ �,

lim inf
n→+∞

1
n
logP

(
Zn�·� x� ∈ G

) ≥ − inf
ϕ∈G
Ix�T�ϕ� �

3. For every closed set F of � �
0�T���N+ �,

lim sup
n→+∞

1
n
logP

(
Zn�·� x� ∈ F

) ≤ − inf
ϕ∈F
Ix�T�ϕ��

Dupuis and Ellis [10] proved the sample path large deviation principle with
a good rate function for a large class of Markov processes describing various
queueing systems satisfying the communication condition (see [10], Condi-
tion 3.4). This class of processes includes in particular open Jackson networks
for which the communication condition holds whenever Assumption A is satis-
fied. However, this paper does not give an explicit representation for the rate
function.

We consider the problem of the rate function identification, which is impor-
tant in view of the possible applications. The main difficulty arises here from
a discontinuity in the transition mechanism of the process. The Markov pro-
cess �X�t� x�� describing the Jackson network is a process with discontinuous
statistics; the dynamic is discontinuous at the boundary set{

x ∈ �N+ � xi = 0� for some 1 ≤ i ≤N}�
that is, the ith component is decreased by 1 at rate µi only if it is positive. This
discontinuity property is a serious difficulty for the large deviation analysis.

For tandem queues, the large deviation analysis and the problem of the
rate function identification have been carried out by using the contraction
principle [8, 29]. It is not usually possible to apply this method in more gen-
eral situations and in particular for open Jackson networks. General results
and explicit representations of the rate function were obtained for Markov
processes with a discontinuity in the transition mechanism along a hyper-
plane, or more generally along a smooth �n− 1�-dimensional interface in �N

(see [1, 3, 9, 17, 28]).
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To identify the rate function for the Markov processes describing open
Jackson networks, Dupuis, Ishii and Soner [12] proposed the method of vis-
cosity solutions. It gives a variational expression of the rate function. Atar
and Dupuis [2] extended these results for a more general class of the Markov
processes when the associated Skorokhod problem has some regularity prop-
erties. They used a probabilistic method and simplified the representation of
the rate function. However, their description is rather implicit; it does not give
a simple procedure for its calculation.

We propose another probabilistic method for the large deviation analysis of
Jackson networks. The method is based on a change of probability measure
using an exponential martingale and on a careful analysis of the related fluid
limits. We give an explicit form of the rate function and an algorithm to get
its closed form expression.

The next section presents an overview of our results.

2. The main results. Articles [10] and [2] show that the Markov process
�X�t� x�� satisfies the sample path large deviation principle with the rate
function given by

Ix�T�ϕ� =

∫ T
0
L�ϕ�t�� ϕ̇�t��dt� if ϕ is absolutely continuous,

+∞� otherwise.
(2.1)

The function L�x� v� is uniquely determined by the following limits:

1
τ
lim
δ→0

lim
ε→0

lim sup
n→+∞

1
n

sup
y��y−nx�<εn

log�
(

sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

= 1
τ
lim
δ→0

lim
ε→0

lim inf
n→+∞

1
n

inf
y��y−nx�<εn

log�
(

sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)
�

the constant τ > 0 is supposed to satisfy x+vt ∈ �N+ for all t ∈ 
0� τ�; otherwise
L�x� v� = +∞ if such a τ does not exist.

The function L�·� ·� completely determines the rate function; its explicit
representation is the main goal of this paper. We introduce some definitions
used throughout this paper.

Definition 1. The function R is defined by

R�α� = ∑
y∈�N

q�y�(e�α�y� − 1
)
� α ∈ �N�

�·� ·� is the usual scalar product in �N. If + is a subset of �1� � � � �N	, the
quantity l+�v� is given by

l+�v� = sup
α∈�+

��α� v� −R�α���(2.2)
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where �+ is the set

�+ =
{
α ∈ �N:αi ≤ log

( N∑
j=1
pije

αj + pi0
)
for all i 
∈ +

}
�(2.3)

Using the definition (1.1), the function R can be expressed as

R�α� =
N∑
i=1
µi

( N∑
j=1
pij exp�αj − αi� + pi0 exp�−αi� − 1

)
(2.4)

+
N∑
i=1
λi�exp�αi� − 1��

For a subset + of �1� � � � �N	� we denote +c = �1� � � � �N	\+; for x ∈ �N+ , we set

+�x� = {i ∈ �1� � � � �N	:xi > 0
}
�

and for x ∈ �N, x+ = �xi�i∈+.
The first result of the paper is the following theorem.

Theorem 1. For any x ∈ �N+ and v ∈ �N such that v+c�x� = 0,

L�x� v� = l+�x��v��(2.5)

Remark 2.1. The rate function Ix�T�·� is completely determined by the
values L�x� v� where x ∈ �N+ and v ∈ �N are such that v+c�x� = 0. Indeed,
equation v+c�x�=0 is satisfied iff for all index i, vi = 0 when xi = 0. If t ∈ �0�T�
is such that ϕi�t� = 0, then for all s 
= t, we have ϕi�t� ≤ ϕi�s� and hence,
if ϕ̇i�t� exists, it must be zero. Consequently, if ϕ is an absolutely continuous
function in � �
0�T���N+ �, then for all index i and for almost all t ∈ 
0�T�,
ϕ̇i�t� = 0 when ϕi�t� = 0 and therefore, the representation (2.1) of the rate
function Ix�T�·� shows that only the values of L�x� v� for x and v such that
v+c�x� = 0 are really used.

Definition (2.2) of the function l+�v� is not easy to use in practice because
the set �+ where the supremum (2.2) is taken is not convex. To get a more
explicit form for l+�v� we identify the point αv ∈ �+ where the supremum
(2.2) is achieved.

To prove the existence of the above αv it is useful to consider the following
system of equations:{

βi = αi� i ∈ +,
βi = − log

(∑N
j=1pij exp�αj − αi� + pi0 exp�−αi�

)
� i ∈ +c.(2.6)

We prove that the unique solution α�β� of this system is a diffeomorphism
from the convex set

�+�N≤0 = {β ∈ �N:βi ≤ 0 for all i ∈ +c}
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to �+. Moreover, we show that the function β → R�α�β�� is strictly convex
on �+�N≤0 and for v ∈ �N such that v+c = 0� the level sets of the function

β → R�α�β�� − �α� v� are compact in �+�N≤0 (Proposition 8.1). In particular,
for a given subset + and v ∈ �N such that v+c = 0, this will prove the existence
of a unique βv ∈ �+�N≤0 , and consequently a unique αv = α�βv� ∈ �+, such that

l+�v� = �βv� v� −R�α�βv�� = �αv� v� −R�αv��
βv is the unique local minimum of the function β→ R�α�β��−�β� v� in �+�N≤0 ,
and αv = α�βv� is the unique local minimum of the function α→ R�α�−�α� v�
in �+.

The next step analyzes the location of αv and gives an explicit form for
l+�v�. For a subset of indices +, the set �+ is defined as

�+ =
{
α ∈ �N:αi = log

( N∑
j=1
pije

αj + pi0
)
� ∀ i ∈ +c

}
�

and H∗
+�·� by

H∗
+�v� = sup

α∈�+
��α� v� −R�α�	�

We prove that for v ∈ �N such that v+c = 0, H∗
+�v� is the Fenchel–Legendre

transform of the function α+ →H+�α+� given by

H+�α+� =
∑
i∈+

(
νi −

∑
j∈+
νjm

+
ji

)
�eαi − 1�

+∑
i∈+
µi

(∑
j∈+
m+ij exp�αj − αi� +m+i0 exp�−αi� − 1

)
�

where �νi� is the solution of the traffic equations (1.2) and

m+ij = pij +
∑
k≥1

∑
j1� ���� jk∈+c

pij1 · · ·pjkj� i� j ∈ �0�1� � � � �N	�

For j ∈ +, the value m+ij is the probability that the Markov chain associated
with the stochastic matrix �pij� i� j = 0� � � � �N� reaches the point j without
visiting the set + in a mean time given that it starts in i. For j ∈ +c, m+ij
is the mean time that the above Markov chain spends at the point j before
hitting the set + ∪ �0	.

The set �+ being a subset of �+, we have the following inequality:

H∗
+�v� = sup

α∈�+
��α� v� −R�α�	 ≤ sup

α∈�+

��α� v� −R�α�	 = l+�v��

Let αv be the point which achieves the maximum in �+. We give a necessary
and sufficient condition for αv ∈ �+. When it is the case, we have clearly

l+�v� =H∗
+�v�
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and the quantity l+�v� is given therefore by an explicit function. When αv 
∈ �+,
we prove that

l+�v� = min
j∈+c

l+∪�j	�v��

This gives a recursive procedure to calculate l+�v�:
1. If αv ∈ �+, then l+�v� =H∗

+�v�.
2. Otherwise, for each j ∈ +c, calculate l+∪�j	�v�.

This algorithm terminates since for + = �1� � � � �N	, we have�+ = �+ = �N

and consequently,

l�1� ����N	�v� =H∗
�1� ����N	�v� = R∗�v��

where R∗�·� is the Fenchel–Legendre transform of the function R�·�. We give
an example of that procedure in Section 3.

The following theorem summarizes the above results.

Theorem 2. For + ⊆ �1� � � � �N	 and v ∈ �N such that v+c = 0:

(i) There is a unique point α̃v of �+ such that

H∗
+�v� = �α̃v� v� −R�α̃v��(2.7)

α̃v+ is a unique solution of the system ∇ H+�α+� = v+ and

α̃vi = log
( ∑
j∈+
m+ij exp�α̃vj� +m+i0

)
� i ∈ +c�

(ii) The equality l+�v� =H∗
+�v� holds if and only if

ν+j �α̃v� =
(
νj +

∑
i∈+
m+ij

(
µi exp�−α̃vi � − νi

))
exp�α̃vj� ≤ µj for all j ∈ +c�(2.8)

(iii) Otherwise,

l+�v� = min
j∈+̃

l+∪�j	�v��

where

+̃ = {j ∈ +c� ν+j �α̃v� > µi}�
The above theorem together with Theorem 1 implies in particular that for

x = 0 and v = 0 (⇔ +�x� = �):
1. L�0�0� = 0 if and only if νi ≤ µi for all i = 1� � � � �N.
2. Otherwise,

L�0�0� = min
i∈+̃

{
l�i	�0�} = min

i∈+̃

{
L�εi�0�} > 0�
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where �νi� is the unique solution of the traffic equations (1.2),

+̃ = {i � νi > µi}
and εi ∈ �N+ is the ith unit vector that is, εij = 1 if i = j and εij = 0 otherwise.

Our paper is organized as follows. To prove Theorem 1 we verify the local
lower large deviation bound,

lim
δ→0

lim
ε→0

lim inf
n→+∞

1
n

inf
y��y−nx�<nε

log�

(
sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

≥ −τl+�x��v��
(2.9)

and the local upper large deviation bound,

lim
δ→0

lim
ε→0

lim sup
n→+∞

1
n

sup
y��y−nx�<nε

log�

(
sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

≤ −τl+�x��v��
(2.10)

To simplify the left-hand side of the above bounds it is convenient to rewrite
them in terms of local models. A local model relative to x ∈ �N+ is the simplest
Markov process with the same large deviation behavior in a neighborhood
of x ∈ �N+ as the original process �X�t� x��. We introduce the local models
and we rewrite the above bounds in terms of that in Section 5. To prove the
lower bound we use the results of [5]. We recall these results in Section 6.
Section 7 is devoted to the exponential change of measure and the associated
twisted Markov processes. We show that a twisted Markov process is also an
open Jackson network, and we describe its fluid approximation. In Section 8
we establish some properties of the functions l+�·� being used in the proof of
the local lower large deviation bound. In particular, we relate the functions
l+�·� with the fluid approximation of twisted Markov processes. In Section 9
the proof of the local large deviation bounds is completed and Section 10 is
devoted to the proof of Theorem 2.

Two examples illustrate our results. We begin with an example of a Jackson
network with two nodes in Section 3, which shows that our method is effective,
that is, one can get explicit expressions for the rate function with our results.
In Section 4 we show how the explicit expression of the rate function can
be used to estimate the mean time until the total number of customers in an
ergodic Jackson network reaches the level n, given that the process starts in 0.

3. Example: a Jackson network with two nodes. In this section, the
Markov process �X�t� x�� describes an open Jackson network with two nodes
(N = 2). See Figure 1. Its generator is given by

� f�x�=λ1
(
f�x+ ε1� − f�x�

)+ µ1(p12f�x− ε1 + ε2� + p10f�x− ε1� − f�x�)
+ λ2

(
f�x+ ε2�−f�x�

)+µ2(p21f�x− ε2+ ε1�+p20f�x− ε2�−f�x�)�
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λ1

λ2
p20
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p10

p12

2

1

µ2

µ1

Fig. 1. A Jackson network with two nodes.

Assumption A is equivalent to:

1. p12p21 < 1;
2. λ1 + λ2p21 > 0 and λ2 + λ1p12 > 0.

The solution of the traffic equations

ν1 = λ1 + ν2p21�
ν2 = λ2 + ν1p12

is given by

ν1 =
λ1 + ν2p21
1− p12p21

� ν2 =
λ2 + ν1p12
1− p12p21

and the function R�α� = R�α1� α2� is
R�α1� α2� = λ1�exp�α1� − 1� + µ1�p12 exp�α2 − α1� + p10 exp�−α1� − 1�

+ λ2�exp�α2� − 1� + µ2�p21 exp�α1 − α2� + p20 exp�−α2� − 1��
To identify the rate function (2.1) here, we have to calculate L�x� v�:

1. For x = �x1� x2� with x1� x2 > 0 and arbitrary v = �v1� v2� ∈ �2

2. For x = �0� x2� with x2 > 0 and v = �0� v2�, v2 ∈ �
3. For x = �x1�0� with x1 > 0 and v = �v1�0�, v1 ∈ �
4. And for x = �0�0�, v = �0�0�.

The first case is trivial since in the interior of the domain the process is
equivalent to a homogeneous random walk, and consequently,

L�x� v� = R∗�v��
whereR∗�·� is the Fenchel–Legendre transform of the functionR�·� (see [7] for
example). To calculate L�x� v� for the second case, the results of [3, 9, 17] can
be used, because the large deviation behavior of our process in a neighborhood
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of x does not depend on the boundary �z� z2 = 0	 if x = �0� x2� with x2 > 0
(see Section 5 for more details). The third case is similar.

The last case is easy if the Markov process �X�t� y�� is ergodic (i.e., iff
νi < µi for all i = 1� � � � �N). In this case we obviously have L�0�0� = 0�

The most difficult case is when x = �0�0�, v = �0�0� and the process
�X�t� y�� is not ergodic; in this case the influence of the two boundaries occurs.
The following statement is a direct consequence of the second and third part
of Theorem 2.

Proposition 3.1. L�0�0� = 0 if and only if ν1 ≤ µ1 and ν2 ≤ µ2�Otherwise,
L�0�0� = l�1	�0� if ν1 ≥ µ1 and ν2 ≤ µ2�
L�0�0� = l�2	�0� if ν2 ≥ µ2 and ν1 ≤ µ1

and

L�0�0� = min�l�1	�0�� l�2	�0�	 if ν1 ≥ µ1 and ν2 ≥ µ2�
where

l�1	�0� = − inf
{
R�α� � α = �α1� α2� � α2 ≤ log�p21eα1 + p20�

}
and

l�2	�0� = − inf
{
R�α� � α = �α1� α2� � α1 ≤ log�p12eα2 + p10�

}
�

Now we identify the values of l�1	�0� and l�2	�0�. For this, notice that
�α1� α2� belongs to ��1	 if and only if α2 = log�p21eα1 + p20�), and if it is
the case then

R�α1� α2� =H�1	�α1�
= �λ1 + λ2p21��eα1 − 1� + µ1�1− p12p21��e−α1 − 1��

It is clear that the minimum of the function H+�α1� is achieved in the point

α̃1 =
1
2
log

(
µ1�1− p12p21�
λ1 + λ2p21

)
= 1
2
log

(
µ1
ν1

)
�

and hence,

inf
α1
H�1	�α1� =H�1	�α̃1�

= −�1− p12p21��
√
µ1 −

√
ν1�2�

Using Theorem 2 applied for the case where + = �1	, we get the proposition.

Proposition 3.2.

l�1	�0� = �1− p12p21��
√
µ1 −

√
ν1�2
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if

λ2 + λ2p21
(√
µ1
ν1
− 1

)
+ µ1p12 + µ1p12p20

(√
ν1
µ1
− 1

)
≤ µ2

and

l�1	�0� = − min
�α1�α2�∈�2

R�α1� α2�

otherwise.

The expression of l�2	�0� is quite similar to that of l�1	�0�.

Proposition 3.3.

l�2	�0� = �1− p12p21��
√
µ2 −

√
ν2�2

if

λ1 + λ1p12
(√
µ2
ν2
− 1

)
+ µ2p21 + µ2p21p10

(√
ν2
µ2
− 1

)
≤ µ1

and

l�2	�0� = − min
�α1�α2�∈�2

R�α1� α2�

otherwise.

Notice finally that

min
�α1�α2�∈�2

R�α1� α2� = R�α01� α02��

where �α01� α02� is a unique solution of the system

λ1 exp�α1� + µ2p21 exp�α1 − α2� = µ1�p12 exp�α2 − α1� + p10 exp�−α1���
λ2 exp�α2� + µ1p12 exp�α2 − α1� = µ2�p21 exp�α1 − α2� + p20 exp�−α2���

4. An application to a problem of exit time. Let �X�t� x�� describe an
ergodic open Jackson network with N nodes for which Assumption A holds.
We suppose therefore, that

νi
µi
< 1 for all i = 1� � � � �N�

where �νi� is the solution of the traffic equations (1.2). In this section we apply
Theorem 2 to prove the following proposition.
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Proposition 4.1. If �n is the first time when the total number of customers
of an initially empty ergodic Jackson network is greater than n,

�n = inf

{
t �

N∑
i=1
Xi�t�0� ≥ n

}
�

then

lim
n→+∞

1
n
log Ɛ�n = min

1≤i≤N
�logµi − log νi��(4.1)

The classical approach in this domain is given by Freidlin–Wentzel method
[16] (other approaches can be found in [21] and [28], e.g.). It consists in
getting the explicit expression of the rate function and finding the optimal
path, that is, the path that drives the process X�nt�0�/n out of the domain
�y ∈ �N+ �

∑
i yi ≤ 1	 and minimizes the rate function. Since the explicit

expression of the rate function for Jackson networks was not known, Frater,
Lennon and Anderson [15] proved (4.1) using a heuristic approach proposed
by Borovkov, Ruget [26] and others for a GI/GI/1 queue (see also [23]). With
Theorem 2 we are able to establish rigorously the relation (4.1).

Proof of Proposition 4.1. To prove (4.1) we have to verify the upper
bound,

lim sup
n→∞

1
n
log Ɛ�n ≤ min

1≤i≤N
�logµi − log νi�(4.2)

and the lower bound

lim inf
n→∞

1
n
log Ɛ�n ≥ min

1≤i≤N
�logµi − log νi��(4.3)

To prove the upper bound we use an idea from [15] which shows that only the
dominating queue is important (we do not assume however, that this domi-
nating queue is unique). This means that the optimal path driving our pro-
cess out of the domain �x� ∑i xi ≤ 1	 should be linear and that it should
pass on the boundary �x ∈ �N+ � xi = 0 for all i 
= i0	, where i0 achieves
the maximum maxi�νi/µi�. Using this idea together with Theorem 2, we will
find a linear path ϕ� 
0�T� → �N+ starting in 0 and going out of the domain
�y ∈ �N+ �

∑
i yi ≤ 1	, for which I0�T�ϕ� = mini�logµi − log νi�. This will give

the upper bound (4.2). The lower bound will be obtained from the explicit form
of the stationary probabilities (1.4) and therefore we do not have to prove that
this path is really optimal.

We start with the proof of the upper bound. Without any restriction of
generality we will assume that

max
i
�νi/µi� = ν1/µ1�(4.4)

For + = �1	, the function H+�·� is given by

H�1	�α1� =m�1	10

(
ν1�eα1 − 1� + µi�e−α1 − 1�

)
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and the vector �ν�1	j �α�� j 
= 1� is defined by

ν
�1	
j �α� =

(
νj +m�1	1j �µ1e−α1 − ν1�

)
eαj� j = 2� � � � �N�

Theorem 2 shows that for v = �v1�0� � � � �0�, the identity
l�1	�v� =H∗

�1	�v�
is verified if and only if for any j 
= 1,(

νj +m�1	1j �µ1e−α̃1 − ν1�
)(
m
�1	
j1 e

α̃1 +m�1	j0
)
≤ µj�(4.5)

where α̃1 is the unique solution of the equation

d

dα1
H�1	�α1� =m�1	10

(
ν1e

α1 − µ1e−α1
) = v1�

Thus, for v1 =m�1	10 �µ1 − ν1�:
(i) The solution of the above equation is α̃1 = logµ1 − log ν1�
(ii) H∗

�1	�v� = v1�logµ1 − log ν1� because clearly, H�1	�α̃1� = 0.
(iii) The inequalities (4.5) are verified if ν1/µ1 ≥ νi/µi for all i = 2� � � � �N

and hence, l�1	�v� = v1�logµ1 − log ν1� whenever (4.4) holds.
Define the vector v = �v1�0� � � � �0� ∈ �N by setting v1 = m�1	10 �µ1 − ν1� and

let T = 1/v1. Then the linear path ϕ�t� = vt, t ∈ 
0�T� satisfies
I0�T�ϕ� = Tl�1	�v� = logµ1 − log ν1�(4.6)

We are ready to prove the upper bound (4.2). It is known (see, e.g., [23])
that

lim
n→∞

1
n
log Ɛ�n = − lim

n→∞
1
n
log a�0� 3n��

where a�0� 3n� is the probability that the embedded discrete-time Markov
chain �Xk� starting from 0 reaches the set 3n = �x ∈ �N+ :

∑N
i=1 xi = n	 before

returning to the state 0.
For 0 < ε < 1, 0 < δ < ε/2, and n > 1/ε, the Markov process X�x� t�

starting from x = �
nε��0� � � � �0� ∈ �N reaches the set 3n before the time nT
without visiting the state 0 in the mean time whenever the event

sup
t∈
0� nT�

�X�x� t� − x− vt� < δn(4.7)

occurs. Consequently, the probability that the embedded Markov chain start-
ing from x = �
nε��0� � � � �0� reaches the set 3n before returning to the state
0 is greater than the probability of the event (4.7).

Furthermore, Assumption A implies that the embedded Markov chain start-
ing from 0 reaches the state x = �
nε��0� � � � �0� before hitting the set 3n and
before returning to 0 with probability greater than γ
nε� where

γ = min
y 
=0

q�y�
(∑
y 
=0
q�y�

)−1
�
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and hence,

a�0� 3n� ≥ γ
nε� × �

{
sup

t∈
0� nT�
�X�x� t� − x− vt� < δn

}
for all 0 < ε < 1 , 0 < δ < ε/2 and n > 1/ε.

Letting now n→ ∞, δ→ 0 and then ε→ 0 and using then (4.6) together
with (2.9), we get the upper bound,

lim sup
n→∞

1
n
log Ɛ�n = − lim inf

n→∞
1
n
log a�0� 3n� ≤ Tl�1	�v� = logµ1 − log ν1�

The lower bound (4.3) easily follows from the explicit form of the stationary
probabilities (1.4). Indeed, the embedded Markov chain �Xk� has the same
stationary probabilities as the original Markov process X�t�0� and(

N−1
n+N

)(
ν1
µ1

)n
≥ 1
π�0�

∑
x∈3n

π�x�

= Ɛ

( τ0∑
k=0

��Xk∈3n	

)
(4.8)

≥ �
(
Xk ∈ 3n for some k ≤ τ0

) = a�0� 3n��
where τ0 is the first time when the Markov chain Xn returns to 0 starting
from 0. The first relation holds here because for each x ∈ 3n we have

π�x�/π�0� ≤ �ν1/µ1�n

when (4.4) holds and the cardinality of the set 3n = �x ∈ �N+ :
∑N
i=1 xi = n	 is

equal to the number of choices of N − 1 elements between n +N elements.
The second relation (4.8) is the classical representation of the stationary prob-
ability of a Markov chain (see, e.g., [14]). ✷

5. Localized Markov process. In this section we simplify the left-hand
side of the bounds (2.9) and (2.10). We rewrite them in terms of the local
models.

The local model (localized Markov process) relative to x ∈ �N+ is defined as
follows.

Given x ∈ �N+ and + = +�x�, let �X+�t� y��t≥0 be a Markov process on

�+�N+ = �z ∈ �N: zi ≥ 0 for all i ∈ +c	
with initial state y ∈ �+�N+ and generator

� +f�x� = ∑
z∈�+�N+

q�z− x��f�z� − f�x��� x ∈ �+�N+ �(5.1)

where the transition intensities q�z�� z ∈ �N� are defined by (1.1). The above
Markov process describes a modified open Jackson network with the same
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parameters as the original Markov process �X�t� y��, but without the bound-
ary conditions on the nodes i ∈ +. The queue lengths at the nodes i ∈ +may be
negative. We say that this Markov process describes an open Jackson network
where the nodes i ∈ + are free.

To identify the functionL�x� v�, it is sufficient to verify the local bounds (2.9)
and (2.10) for τ > 0 small enough, so that for any i ∈ +�x�,

xi + vit > 0 for all t ∈ 
0� τ��
In this case, for all δ > ε > 0 small enough and for every y ∈ �N+ such that
�y− nx� < εn� the probability

�

(
sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

does not depend on the transition intensities on the boundary⋃
i∈+�x�

�z: zi = 0	

and consequently,

�

(
sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

(5.2)
= �

(
sup
t∈
0� nτ�

�X+�x��t� y� − nx− vt� < δn
)
�

Thus, the new Markov process �X+�t� y�� has the same large deviation behav-
ior in a neighborhood of x as the original process �X�t� y�� and hence, to prove
the local bounds (2.9) and (2.10) for the original process it is sufficient to verify
them for �X+�t� y��.

It is convenient, moreover, to rewrite the left-hand side of the local bounds
(2.9) and (2.10) as follows.

Proposition 5.1. Given x ∈ �N+ , consider + = +�x�, v ∈ �N and τ > 0
such that v+c = 0 and xi + τvi > 0 for all i ∈ +; then

lim
δ→0

lim
ε→0

lim inf
n→+∞ inf

�y−nx�<εn
1
n
log�

(
sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

(5.3)
= lim
δ→0

lim inf
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)

and

lim
δ→0

lim
ε→0

lim sup
n→+∞

sup
�y−nx�<εn

1
n
log�

(
sup
t∈
0� nτ�

�X�t� y� − nx− vt� < δn
)

(5.4)
= lim
δ→0

lim sup
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)
�

This proposition is a direct consequence of Proposition 3.7 in [10].



LARGE DEVIATIONS OF JACKSON NETWORKS 977

Thus, to verify the local large deviation bounds (2.9) and (2.10) it is sufficient
to prove the lower bound,

lim
δ→0

lim inf
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)
≥ −τl+�v�

and the upper bound,

lim
δ→0

lim sup
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)
≤ −τl+�v�

for all + ⊆ �1� � � � �N	� τ ≥ 0 and v ∈ �N such that v+c = 0�
The proof of the upper bound is quite simple (see Section 9). To prove the

lower bound we shall use the following proposition.

Proposition 5.2. Let + ⊆ +′ ⊆ �1� � � � �N	 and v ∈ �N such that v+c = 0�
Then

lim
δ→0

lim inf
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)

(5.5)
≥ lim
δ→0

lim inf
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+′ �t�0� − vt� < δn
)
�

Proof. Given ε > 0, define xnε ∈ �+�N+ by setting

xnεi =


nεvi�� if i ∈ +,

nε�� if i ∈ +′ \ +,
0� otherwise

and consider the trajectories of the Markov process X+�t�0� which first go
from 0 to xnε in time tε = nε without leaving the set �z � �z� < 1/2δn	 and
then follow the path ψnε�t� = xnε + vt so that

sup
t∈
0� n�τ−ε��

�X+�t+ nε�0� − xnε − vt� < δ′n�

It is clear that for every δ > 0, there exists ε0 > 0 such that for all ε ∈ �0� ε0�
and for all δ′ ∈ �0� δ−Nε�,

�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)

≥ �

(
sup
t∈
0� nε�

�X+�t�0�� < 1
2δn and X+�nε�0� = xnε

)
(5.6)

× �

(
sup

t∈
0� n�τ−ε��
�X+�t� xnε� − xnε − vt� < δ′n

)
if n > N/�δ−Nε− δ′�.
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Choose now a sequence y0 = 0� � � � � ym−1� ym = xnε such thatm ≤Nεn and
for all k = 0� � � � �m,

q�yk − yk−1� > 0 and �yk� < 1
2δn

(the above sequence exists because of Assumption A). Then the included dis-
crete time Markov chain relative to X+�t�0� goes from 0 to xnε in time m
without leaving the set �z: �z� < δn/2	 with probability ≥ γ̃m ≥ γ̃Nεn where

γ̃ = miny 
=0 q�y�∑
y 
=0 q�y�

and hence

�

(
sup
t∈
0� nε�

�X+�t�0�� < 1
2δn and X+�nε�0� = xnε

)
≥ γnε

with γ = N−1γ̃N exp�−∑y 
=0 q�y��. Using therefore, relation (5.6) together
with the above inequality, we get

�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)

≥ γnε × �

(
sup

t∈
0� n�τ−ε��
�X+�t� xnε� − xnε − vt� < δ′n

)
(5.7)

≥ γnε × �

(
sup
t∈
0� nτ�

�X+�t� xnε� − xnε − vt� < δ′n
)
�

Notice finally that for 0 < δ < ε and n > 1/�ε − δ′�, the probability in the
right-hand side of (5.7) does not depend on the transition intensities of the
Markov process X+�t� xnε� on the boundary⋃

i∈+′\+
�z: zi = 0	

because the relation

�X+�t� xnε� − xnε − vt� < δ′n
implies

X+
i �t� xnε� ≥ n�ε− δ′� − 1 > 0 for all i ∈ +′ \ +�

and therefore, for 0 < δ < ε and n > 1/�ε− δ′�,

�

(
sup
t∈
0� nτ�

�X+�t� xnε� − xnε − vt� < δ′n
)

= �

(
sup
t∈
0� nτ�

�X+′ �t� xnε� − xnε − vt� < δ′n
)

= �

(
sup
t∈
0� nτ�

�X+′ �t�0� − vt� < δ′n
)
�



LARGE DEVIATIONS OF JACKSON NETWORKS 979

where the last equality holds because the generator of the Markov process
X+′ �t�0� is invariant with respect to the shifts on xnε [xnεi = 0 for all i ∈ �+′�c].
The above relation together with (5.7) implies that for any δ > 0,

lim inf
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)

≥ ε log γ + lim inf
n→+∞

1
n
log�

(
sup
t∈
0� nτ�

�X+′ �t�0� − vt� < δ′n
)

if ε > δ′ > 0 are small enough, and hence (5.5) holds. Proposition 5.2 is
proved. ✷

6. Fluid approximation. In this section we recall the results of [5],
applied for localized Markov processes. We shall use these results for the proof
of the lower large deviation bound in Section 9.

Given + ⊆ �1� � � � �N	, consider the Markov process �X+�t� y�� on �+�N+ ,
with initial state X�0� y� = y and generator (5.1), and let

M�x� = �Mi�x��Ni=1� x ∈ �+�N+

be a vector field of mean jumps of the process �X+�t� y��,
M�x� = ∑

y∈�+�N+
�y− x�q�y− x�� x ∈ �+�N+ �

Notice that the generator (5.1) is invariant with respect to the shifts on
z ∈ �+�N+ if zi = 0 for all i ∈ +c, and hence the projection of our Markov
process onto

�+
c

+ = �z ∈ �N� z+ = 0 and zi ≥ 0 for all i ∈ +c	
denoted by �X+

+c�t� y��, is a Markov process on �+
c

+ , with generator(
� +
+cf

)�x� = ∑
y∈�+c+

q+c�y− x��f�y� − f�x��� x ∈ �+
c

+ �

where

q+c�y� =
∑

x∈�+�N+ � x+c=y+c
q�x�� y ∈ �+

c

+ �

or using (1.1),

q+c�y� =



λi +
∑
j∈+
µjpji� if y = εi� i ∈ +c,

µi

(
pi0 +

∑
j∈+
pij

)
� if y = −εi� i ∈ +c,

µipij� if y = εj − εi� i� j ∈ +c�
0� otherwise.
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So the Markov process �X+
+c�t� y�� describes an open Jackson network with

the set of nodes +c, independent Poisson inputs with parameters

λ+i = λi +
∑
j∈+
µjpji�

exponential service times with parameters µi and P+c�+c = �pij�i� j∈+c is the
corresponding transition matrix.

The Markov process �X+
+c�t� y�� is called an induced Markov process

(induced Markov chain) corresponding to + (see [5]).
We say that the boundary B+ = �x ∈ �N:x+c = 0	 is attractive, if the

induced Markov process �X+
+c�t� y�� is ergodic, and for the case where the

above Markov process is ergodic, we denote by π+c�x�� x ∈ �+
c

+ its stationary
probabilities.

Remark that the ergodicity criteria for an open Jackson network [19] [see
(1.3)] gives a necessary and sufficient condition for the ergodicity of �X+

+c�t� y��
and Jackson’s product form (1.4) gives an explicit form for π+c�x�, x ∈ �+

c

+ .
Using the results of [22], Botvich and Zamyatin show that if the boundary

B+ is attractive, then for any x ∈ B+ almost surely,
1
n
X+�nt� 
nx�� → x+V+t as n→+∞�

uniformly on t ∈ K for every compact set K ⊂ �+, where V+ = �V+i � i =
1� � � � �N� is defined as follows

V+i =


∑
x∈�+c+

π+c�x�Mi�x�� if i ∈ +,

0� if i ∈ +c.
The vector V+ is called an induced vector relative to +.

The above result together with the ergodicity criteria for an open Jackson
network [19] and the explicit form for the stationary probabilities π+c�x�� x ∈
�+

c

+ , imply the following statement (see [5]).

Proposition 6.1. Given + ⊆ �1� � � � �N	, consider
ν++c = �λ+c + µ+P+�+c���+c�+c −P+c�+c�−1

and V+ = �V+i �Ni=1 with V++c = 0 and

V++ = −µ+ + λ+ + µ+P+�+ + ν++cP+c�+�(6.1)

Suppose that

ν++c < µ+c�(6.2)

then for any x ∈ B+ almost surely
1
n
X+�nt� 
nx�� → x+V+t as n→+∞�

uniformly on compact sets.
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The relation (6.2) is exactly the necessary and sufficient condition for the
ergodicity of the induced Markov process �X+

+c�t� y��, and (6.1) gives an explicit
form for the induced vector V+.

We shall use this proposition for the proof of the lower large deviation
bound.

7. Exponential change of measure. To prove lower and upper local
large deviations bounds we shall use the method of exponential change of
measure. This method consists in introducing a new probability measure by
using a Radon–Nikodym factor in order to make what was originally “deviant”
behavior look like typical behavior.

In this section we recall the definition of exponential change of measure
and we show that a new random process relative to a new probability mea-
sure as well as the initial process describes the queue length process of an open
Jackson network (Lemma 7.2). Using this together with the fluid approxima-
tion for the above processes given by Proposition 6.1, we describe the typical
behavior of a new process in Proposition 7.1.

Consider a Markov process �X+�t� y��, with the set of states �+�N+ , initial
stateX�0� y� = y and generator (5.1). Let �y�+ be the distribution of the above
random process; denote by Ɛy�+ the expectation with respect to �y�+ and let

�
 y�+
t 	t∈�+ be the natural filtration,



y�+
t = σ�X+�s� y�� s ≤ t�� t ∈ �+�

Given α ∈ �N and y ∈ �+�N+ , define

�y�α� t� = exp
{
�α�X+�t� y� − y� −

∫ t
0
R+�α�X+�s� y��ds

}
� t ∈ �+�

where

R+�α� x� =
∑

z∈�+�N+
q�z− x��exp��α� z− x�� − 1�� x ∈ �+�N+ �(7.1)

Lemma 7.1. For any α ∈ �N and y ∈ �+�N+ , �y�α� t� is a martingale
relative to ��
 y�+

t 	t∈�+��y�+� with
Ɛy�+��y�α� t�� ≡ 1�(7.2)

Proof. Indeed, given α ∈ �N, for any y ∈ �+�N+ ,

d

dt
Ɛy�+��y�α� t��

∣∣∣∣
t=0
= ∑
z∈�+�N+

q�z− y��exp��α� z− y�� − 1� −R+�α�y� = 0�

and hence, using Markov property of the process �X+�t� y��t∈�+ we get
d

dt
Ɛy�+��y�α� t�� = 0 for all t ≥ 0�
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The above implies that

Ɛy�+��y�α� t�� ≡ Ɛy�+��y�α� 0�� = 1

and therefore (7.2) holds.
From (7.2) using again Markov property of the process �X+�t� y�� we get

Ɛy�+
(
�y�α� t��
 y�+

s

) =�y�α� s� for all t ≥ s ≥ 0�

and therefore, �y�α� t� is a martingale relative to
(�
 y�+

t 	t∈�+��y�+
)
. Lemma

7.1 is proved. ✷

Using Lemma 7.1, we define new probability measures �
�α�
y�+ on


 y�+ = ⋃
t≥0



y�+
t �

such that for all t ≥ 0 and A ∈ 

y�+
t �

�
�α�
y�+�A� = Ɛy�+��A�y�α� t��(7.3)

where �A denotes the indicator of A.
Denote by Ɛ

�α�
y�+ the expectation with respect of the measure �

�α�
y�+. Then (7.3)

implies that for all t ≥ 0 and A ∈ 

y�+
t ,

�y�+�A� = Ɛ
�α�
y�+��A��y�α� t��−1��(7.4)

As usual ��α�y�+ is called an exponential change of the measure �y�+ or twisted

distribution. The Markov process �X+�t� y�� relative to �
�α�
y�+ is called twisted

Markov process.
The following lemma shows that the above change of measure corresponds

to simply changing the jump rates from q�y� to e�α�y�q�y�.

Lemma 7.2. For any α ∈ �N, the twisted Markov process �X+�t� y�� relative
to �

�α�
y�+, describes an open Jackson network with N nodes, where the nodes

j ∈ + are free, independent Poisson inputs with parameters

λi�α� = λieαi� i ∈ �1� � � � �N	�(7.5)

exponential service times with parameters

µi�α� = µie−αi
( N∑
j=1
pije

αj + pi0
)
� i ∈ �1� � � � �N	(7.6)
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and routing matrix �pij�α�� i� j = 0� � � � �N� where

pij�α� =
pije

αj∑N
k=1pikeαk + pi0

� i� j ∈ �1� � � � �N	�

pi0�α� =
pi0∑N

k=1pikeαk + pi0
� i ∈ �1� � � � �N	�(7.7)

p0i�α� = p0i =
{
1� if i = 0,
0� otherwise�

Proof. Indeed, the Markov property of the twisted process is a simple
consequence of the Markov property of the original process �X+�t� y�� (see,
e.g., the section on Doob’s h-transform in [27] or [25]). Moreover, relation (7.3)
implies that for any compactly supported function f� �+�N+ → �,

Ɛ
�α�
y�+�f�X+�t� y���

= Ɛy�+
(
f
(
X+�t� y�) exp{�α�X+�t� y� − y� −

∫ t
0
R+�α�X+�s� y��� ds

})
�

and hence

d

dt
Ɛ
�α�
y�+

(
f�X+�t� y��)∣∣∣∣

t=0

= ∑
x∈�+�N+

q�x− y�(f�x� exp��α� x− y�� − f�y�)− f�y�R+�α�y��
Using now (7.1) we get

d

dt
Ɛ
�α�
y�+

(
f�X+�t� y��)∣∣∣∣

t=0
= ∑
x∈�+�N+

q�x− y� exp��α� x− y���f�x� − f�y��

and therefore, ��α�y�+ is a distribution of a Markov process on �+�N+ with gener-
ator

�� +�αf��x� = ∑
z∈�+�N+

q�z− x� exp��α� z− x���f�z� − f�x��� x ∈ �+�N+ �

Moreover, for i, j ∈ �1� � � � �N	,

q�y�e�α� v� =


λi�α�� if y = εi,
µi�α�pi0�α�� if y = −εi,
µi�α�pij�α�� if y = εj − εi,
0� otherwise,

(7.8)

and the matrix �pij�α�� i� j = 0� � � � �N� is obviously stochastic. Finally, com-
parison of (7.8) with (1.1) completes the proof of our lemma. ✷
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We are ready now to describe the typical behavior of a twisted Markov
process relative to �

�α�
y�+.

Given α ∈ �N, consider the vectors

ν++c�α� = �λ+c�α� + µ+�α�P++c�α����−P+c+c�α��−1�(7.9)

and V+�α� = �V+i �α�� i = 1� � � � �N� with V+i �α� = 0, for i ∈ +c and
V++�α� = −µ+�α� + λ+�α� + µ+�α�P++�α� + ν++c�α�P+c+�α��(7.10)

and notice that under Assumption A, the matrix �pij�α�� i� j = 1� � � � �N� as
well as the matrix �pij� i� j = 1� � � � �N� has a spectral radius less than unity.
Then Lemma 7.2 together with Proposition 6.1 imply the following statement.

Proposition 7.1. Suppose that

ν++c�α� < µ+c�α��
Then

lim inf
n→+∞

1
n
log��α�0�+

(
sup
t∈
0� n�

�X+�0� t� −V+�α�t� < δn
)
= 0

for all δ > 0�

8. The properties of the functions l�(·). In this section we study the
properties of the functions l+�·�. In particular, a relationship between the
above functions and the fluid approximation (typical behavior) of twisted Mar-
kov processes is established. These results will be used for the proof of the local
lower large deviation bound.

Recall that

l+�v� = sup
α∈�+

��α� v� −R�α�	� + ⊆ �1� � � � �N	�

where

R�α� = ∑
y∈�N

q�y��e�α�y� − 1�

and

�+ =
{
α ∈ �N� αj ≤ log

( N∑
i=1
pjie

αi + pj0
)
for all j ∈ +c

}
�

We start by rewriting the values l+�v� for given + ⊆ �1� � � � �N	 and v ∈
�N� v+c = 0� as a maximum of a strictly concave function β→ �β� v�−R�α�β��
in the convex set

�+�N≤0 = �β ∈ �N� βi ≤ 0 for all i ∈ +c	�
The following proposition gives a diffeomorphism α�·� from �+�N≤0 to �+ for
which the function R�α�·�� is strictly convex.
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Proposition 8.1. Let + ⊆ �1� � � � �N	. Consider the system
αi = βi� for i ∈ +,

αj − log
( N∑
k=1
pjke

αk + pj0
)
= βj� for j ∈ +c,(8.1)

and let

�+�N<ε = {β ∈ �N� βj < ε for all j ∈ +c
}
�

Then there exists ε0 > 0, such that:

(i) For any β ∈ �+�N<ε0 , the system (8.1) has a unique solution α�β�,
αi�β� = βi� for i ∈ +,
αi�β� = log

{ ∑
j∈+
m+ij�β�eβj +m+i0�β�

}
� for i ∈ +c,(8.2)

where given β ∈ �+�N<ε0 and i� j ∈ �0�1� � � � �N	� i 
= 0� we denote

m+ij�β� = pijeβi +
∑
n≥1

∑
j1�����jn∈+c

pij1pj1j2 · · ·pjnj exp
(
βi +

n∑
k=1
βjk

)
�

(ii) α�·��R�α�·�� ∈ C∞��+�N<ε0 � and the function R�α�·�� is strictly convex
everywhere on �+�N<ε0 .

(iii) For any v ∈ �N such that v+c = 0,

l+�v� = sup
β∈�+�N≤0

��β� v� −R�α�β��	�(8.3)

(iv) For every c ∈ �+ and v ∈ �N such that v+c = 0� the set{
β ∈ �+�N≤0 � R�α�β�� − �β� v� ≤ c

}
is a compact subset of �N�

We shall prove this proposition in the Appendix.
The following proposition relates the function R�α�·�� and the fluid approx-

imation of the twisted Markov process �X+�t� y�� relative to �
�α�
y�+. Recall that

this fluid approximation can be described by using the vectors ν++c�α� and
V+�α� which are defined by (7.9) and (7.10), respectively.

Proposition 8.2. Given + ⊆ �1� � � � �N	� let α�β� be the unique solution
of the system (8.1). Consider

∇β+cR�α�β�� =
(
∂

∂βi
R�α�β��

)
i∈+c
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and

∇β+R�α�β�� =
(
∂

∂βi
R�α�β��

)
i∈+
�

Then for any β ∈ �+�N<ε0 ,

∇β+cR�α�β�� = ν++c�α�β�� − µ+c�α�β��(8.4)

and

∇β+R�α�β�� = V++�α�β���(8.5)

Proof. Indeed, using (2.4) together with (8.1) we get

R�α�β�� = ∑
j∈+c

µj�exp�−βj� − 1� + ∑
j∈+c

λj�exp�αj�β�� − 1�

+ ∑
j∈+
λj�exp�βj� − 1�

+ ∑
j∈+
µj

(∑
k∈+
pjk exp�βk − βj�

+ pj0 exp�−βj� +
∑
k∈+c

pjk exp�αk�β� − βj� − 1
)
�

(8.6)

for any β ∈ �+�N<ε0 . Consider

aij�β� =
∂

∂βj
αi�β�� i� j ∈ �1� � � � �N	�

let A+c+c�β� = �aij�β�� i� j ∈ +c�, and A+c+�β� = �aij�β�� i ∈ +c� j ∈ +�. Then
by (8.1),

A+c+c�β� = ��+c+c −P+c+c�α�β���−1

and

A+c+�β� = ��+c+c −P+c+c�α�β���−1P+c+�α�β���
Using the above expression for A+c+c�β� and A+c+�β� together with (8.6) we
get (8.4) and (8.5), and therefore, Proposition 8.2 holds. ✷

Proposition 8.1 and Proposition 8.2 imply the following statement.

Proposition 8.3. Let + ⊆ �1� � � � �N	 and v ∈ �N such that v+c = 0.

(i) Then there exists αv ∈ �+ such that

l+�v� = �αv� v� −R�αv��(8.7)

αv is a unique point of a local maximum of the function α→ �α� v� −R�α� in
�+ (and hence α

v is unique for given + and v).
(ii) V+�αv� = v and ν++c�αv� ≤ µ+c�αv�.
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(iii) Suppose, moreover, that for some i ∈ +c, either ν+i �αv� − µi�αv� = 0 or
αvi < log�∑N

j=1pije
αvj + pi0�, then

l+�v� = l+∪�i	�v��(8.8)

Proof. Let α�β� be the unique solution of the system (8.1) for given +.
Proposition 8.1 shows that α�·� is a homeomorphism from �+�N≤0 to �+ and for
α = α�β�,

�α� v� = �β� v�
because v+c = 0 and α+ = β+. The above implies that

l+�v� = sup
β∈�+�N≤0

��β� v� −R�α�β��	�

Proposition 8.1 proves moreover that the function R�α�·�� is strictly convex
on �+�N≤0 and set �β ∈ �+�N≤0 � R�α�β�� − �β� v� ≤ 0	 is compact and nonempty,

because R�α�0�� = 0. Hence, there exists a unique βv ∈ �+�N≤0 such that

l+�v� = �βv� v� −R�α�βv���(8.9)

Clearly, βv is a unique point of a local maximum of the function β→ �β� v� −
R�α�β�� in �+�N≤0 .

Consider now αv = α�βv� ∈ �+� Since α�·� is a homeomorphism from �+�N≤0
to �+ then αv achieves the maximum of the function �α� v� −R�α� in �+,

l+�v� = �αv� v� −R�αv�
and, moreover, αv is a unique point of a local maximum of this function in �+.
The first part of our proposition is therefore verified with αv = α�βv�.

To prove the second part of Proposition 8.3, let us notice that

∇β+R�α�β���β=βv = v+(8.10)

and

∇β+cR�α�β���β=βv ≤ 0(8.11)

because βv is a point of a local maximum of the function β→�β� v�−R�α�β�� in
�+�N≤0 = {β ∈ �N� βi ≤ 0 for all i ∈ +c}�

But Proposition 8.1 shows that

∇β+R�α�β���β=βv = V++�α�βv�� = V++�αv�
and

∇β+cR�α�β���β=βv = ν++c�α�βv�� − µ+c�α�βv�� = ν++c�αv� − µ+c�αv�
and hence, relations (8.10) and (8.11) imply that V++�αv� = v+ and ν++c�αv� ≤
µ+c�αv�� The second part of Proposition 8.3 is therefore proved.
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Suppose now that αvi < log�∑N
j=1pij exp�αvj� +pi0� for some i ∈ +c, then αv

is a point of a local maximum of the function α→ �α� v�−R�α� in �+∪�i	, and
since it is unique, then

l+∪�i	�v� = sup
α∈�+∪�i	

{�α� v� −R�α�} = �αv� v� −R�αv� = l+�v�
and the relation (8.8) holds.

Finally, if for some i ∈ +c,
ν+i �αv� − µi�αv� = 0�

then because of Proposition 8.2,

∂

∂βi
R�α�β��

∣∣∣∣
β=βv

= 0�

and since the function R�α�·�� is convex everywhere on �+�Nε0 , the above rela-
tion together with (8.10) and (8.11) imply that βv is a point of a local maximum
of the function β→ �β� v� −R�α�β�� in

D = {β ∈ �+ × �+
c � βi < ε0 and βj ≤ 0 for j ∈ +c� j 
= i}�

Observe that the mapping β→ α�β� is a homeomorphism from D to

� =
{
α ∈ �+ × �+

c � αi < ε0 + log
( N∑
k=1
pike

αk + pi0
)
and

αj ≤ log
( N∑
k=1
pjke

αk + pj0
)
for j ∈ +c� j 
= i

}
and the set � is open in �+∪�j	 with respect to the topology induced by
Euclidean topology in �N. This proves that αv = α�βv� is the point of a local
maximum of the function α→ �α� v� −R�α� in �+∪�j	, and since this point is
unique, the relation (8.8) holds. Proposition 8.3 is proved. ✷

9. Local large deviation bounds. Given + ⊆ �1� � � � �N	� consider
a Markov process �X+�t� y�� with the set of states �+�N+ , initial stateX+�0� y�
= y ∈ �+�N+ and generator (5.1). The main result of this section is the following
proposition. It completes the proof of Theorem 1.

Proposition 9.1. For any τ > 0 and v ∈ �N such that v+c = 0, the follow-
ing relation holds:

l+�v� = −1
τ
lim
δ→0

lim inf
n→∞

1
n
log�0� +

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)

= −1
τ
lim
δ→0

lim sup
n→∞

1
n
log�0� +

(
sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
)
�
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Proof. Let v ∈ �N and v+c = 0. Denote

Anδ =
{

sup
t∈
0� nτ�

�X+�t�0� − vt� < δn
}
�

To prove our theorem we have to verify the upper large deviation bound,

lim
δ→0

lim sup
n→∞

1
n
log�0� +�Anδ� ≤ −τl+�v�(9.1)

and the lower large deviation bound,

lim
δ→0

lim inf
n→∞

1
n
log�0� +�Anδ� ≥ −τl+�v��(9.2)

We start with the proof of the upper large deviation bound. Let �
�α�
0� + be the

exponential change of the measure �0� + for α ∈ �N (see Section 7). Then
using (7.4) we get

�0� +�Anδ�
(9.3)

= Ɛ
�α�
0� +

(
��Anδ	 exp

{
−�α�X+�nτ�0�� +

∫ nτ
0
R+�α�X+�t�0��ds

})
�

where

R+�α� z� =
∑

y∈�+�N+
q�y− z��exp��α�y− z�� − 1�� z ∈ �+�N+ �

Furthermore, using (1.1) it follows that

R+�α� z�

= R�α� − ∑
i∈+c

��zi=0	µi

( N∑
j=1
pij exp�αj − αi� + pi0 exp�−αi� − 1

)
�

(9.4)

and hence, for any α such that

αi ≤ log
( N∑
j=1
pije

αj + pi0
)

for all i ∈ +c �⇔ α ∈ �+��

we have

R+�α� z� ≤ R�α� for all z ∈ �+�N+ �

The above inequality, together with (9.3), gives

�0� +�Anδ� ≤ Ɛ
�α�
0� +

(
��Anδ	 exp�−�α�X+�nτ�0�� + nτR�α�	)�(9.5)

for all α ∈ �+. Notice now that for any trajectory X+�t�0�� t ∈ �+� for which
Anδ holds, we have

�X+�nτ�0� − vnτ� < δn�(9.6)
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and hence (9.5) implies that for α ∈ �+,

log�0� +�Anδ� ≤ δ�α�n− nτ��α� v� −R�α���
The above relation gives the upper large deviation bound (9.1).

Let us prove the lower large deviation bound (9.2). For this we shall use an
induction with respect to k+ = �+c� =N−�+�� If k+ = 0, that is + = �1� � � � �N	�
then our Markov process �X�1�����N	�t�0�� is a homogeneous random walk in
�N with the generator

� f�x� = ∑
z∈�N

q�y��f�y� − f�x���

and the inequality (9.2) for that follows from the large deviation principle for
homogeneous random walks in �N.

Consider now + ⊆ �1� � � � �N	� such that +c 
= � and suppose that for all
j ∈ +c,

lim
δ→0

lim inf
n→∞

1
n
log�0� +∪�j	

(
sup
t∈
0� nτ�

�X+∪�j	�0� t� − vt� < δn
)

(9.7)
≥ −τl+∪�j	�v��

For + ⊂ +′ ⊆ �1� � � � �N	, Proposition 5.2 yields

lim
δ→0

lim inf
n→∞

1
n
log�0� +

(
sup
t∈
0� nτ�

�X+�0� t� − vt� < δn
)

≥ lim
δ→0

lim inf
n→∞

1
n
log�0� +′

(
sup
t∈
0� nτ�

�X+′ �0� t� − vt� < δn
)

and hence, if

l+�v� = l+∪�j	�v� for some j ∈ +c�
then our lower large deviation bound (9.2) follows from (9.7). Otherwise,

l+�v� < l+∪�j	�v� for all j ∈ +c�
and because of Proposition 8.3, there exists a unique αv ∈ �+ such that

l+�v� = �αv� v� −R�αv��(9.8)

αvj = log
( N∑
k=1
pjke

αvk + pj0
)

for all j ∈ +c�(9.9)

ν+j �αv� − µj�αv� < 0 for all j ∈ +c(9.10)

and

V+�αv� = v�(9.11)

Relation (9.9) together with (9.4) implies that

R+�αv� z� = R�αv� for all z ∈ �+�N+ �
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and hence, using (9.3), we get

�0� +�Anδ� = Ɛ
�αv�
0� +

(
��Anδ	 exp�−�αv�X�+	�nτ�0�� + nτR�αv�	)�

Furthermore, using (9.6), it follows that

log�0� +′ �Anδ� ≥ nτ�R�αv� − �αv� v�� − δ�αv�n+ log��α
v�

0� +�Anδ��(9.12)

Finally, Proposition 7.1 together with (9.10) and (9.11) yields

lim inf
n→+∞

1
n
log��α

v�
0� +′ �Anδ� = 0 for all δ > 0�

and hence, using (9.12) we obtain

lim inf
n→+∞

1
n
log�0� +′ �Anδ� ≥ τ�R�αv� − �αv� v�� − δ�αv��

The above relation together with (9.8) implies the local lower large deviation
bound. Proposition 9.1 is therefore proved. ✷

10. The explicit expression of the local rate function. In this section
we prove Theorem 2. Given + ⊆ �1� � � � �N	, consider the set

�+ =
{
α ∈ �N� αj = log

( N∑
k=1
pjke

αk + pj0
)
for all j ∈ +c

}
�

It is clear that α ∈ �+ if and only if

α = α�β�
∣∣∣
β+=α+�β+c=0

�

where α�·� is the unique solution of the system (8.1) for given + and hence,
for α ∈ �+, one can rewrite the function R�α� and the vector ν++c�α� in terms
of α+ as follows:

R�α��α∈D+ = R�α�β��
∣∣∣
β+=α+�β+c=0

�(10.1)

ν++c�α� = ν++c�α�β��
∣∣∣
β+=α+�β+c=0

�(10.2)

The following lemma gives the explicit form for them.

Lemma 10.1. For any α ∈ �+, R�α� =H+�α+� where

H+�α+� =
∑
i∈+

(
νi −

∑
j∈+
νjm

+
ji

)
�exp�αi� − 1�

(10.3)
+∑
i∈+
µi

(∑
j∈+
m+ij exp�αj − αi� +m+i0 exp�−αi� − 1

)
�

and

ν+j �α� =
(
νj +

∑
i∈+
�µi exp�−αi� − νi�m+ij

)
exp�αj�� j ∈ +c�(10.4)
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where

αj = log
( ∑
j∈+c

m+jk exp�αk� +m+j0
)
�

�νi� is the solution of the traffic equations (1.2) and

m+ij = pij +
N∑
n=1

∑
k1�����kn∈+c

pik1pk1k2 · · ·pknj� i ∈ �1� � � � �N	� j ∈ + ∪ �0	�

Proof. Indeed, for β ∈ �N with β+ = α+ and β+c = 0, the relation (8.6)
gives

R�α�β�� =∑
i∈+
λi�exp�αi� − 1� + ∑

j∈+c
λj�exp�αj�β�� − 1�

+∑
i∈+
µi

(∑
j∈+
pij exp�αj − αi� + pi0 exp�−αi�(10.5)

+ ∑
j∈+c

pij exp�αj�β� − αi� − 1
)

and the identity (8.2) implies that

exp�αj�β�� =
∑
k∈+
m+jk exp�αk� +m+j0� j ∈ +c�(10.6)

It is clear that for every j ∈ +c,∑
k∈+
m+jk +m+j0 = 1�

and for all i� k ∈ +,
pik +

∑
j∈+c

pijm
+
jk =m+ik

and hence, using (10.5) together with (10.6) and (10.1) we get that for any
α ∈ �+� R�α� =H+�α+� where

H+�α+� =
∑
i∈+

(
λi +

∑
j∈+c

λjm
+
ji

)
�exp�αi� − 1�

+∑
i∈+
µi

( ∑
j∈+
m+ij exp�αj − αi� +m+i0 exp�−αi� − 1

)
�

(10.7)

Furthermore, by iterating the traffic equations

νi = λi +
∑
j∈+
νjpji +

∑
j∈+c

νjpji� i = 1� � � � �N
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(where we will iterate only the third term in the right-hand side) we obtain

νi = λi +
∑
j∈+
νjm

+
ji +

∑
j∈+c

λjm
+
ji� i = 1� � � � �N(10.8)

and using the last relation together with (10.7) we get (10.3).
To prove the equality (10.4), we notice that for β ∈ �N with β+ = α+ and

β+c = 0, the identity (7.9) implies

ν+j �α�β�� =
(
λj +

∑
i∈+c

λim
+
ij +

∑
i∈+
µim

+
ij exp�−αi�

)
exp�αj�β��� j ∈ +c

and hence, using again relations (10.6) and (10.8) we obtain (10.4). Lemma
10.1 is therefore proved. ✷

Consider now the function

H∗
+�v� = sup

α∈�+

{�α� v� −R�α�}�(10.9)

The following proposition proves the first part of Theorem 2.

Proposition 10.1. For each + ⊆ �1� � � � �N	 and v ∈ �N such that v+c = 0,
the supremum (10.9) is achieved in the unique point α̃v ∈ D+; α̃v+ is a unique
solution of the system

∇H+�α+� = v+(10.10)

and for i ∈ +c,

α̃vi = log

( ∑
j∈+
m+ij exp�α̃vj� +m+i0

)
�(10.11)

Proof. Indeed, let α�β� be the unique solution of the system (8.1) for given
+. Proposition 8.1 proves that:

(i) The mapping β → α�β� defines a homeomorphism from the convex set
�β� β+c = 0	 to �+.
(ii) The function R�α�·�� is strictly convex on �β� β+c = 0	.
(iii) The set

�β� R�α�β�� ≤ 0andβ+c = 0	
is compact and nonempty because R�α�0�� = R�0� = 0.

This implies that the supremum (10.9) is achieved in a unique point. Denote
this point by α̃v, then the relations (10.11) hold because α̃v ∈ �+. Moreover, in
view of Lemma 10.1,

H∗
+�v� = sup

α+∈�+

{�α+� v+� −H+�α+�
}
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and clearly, α̃v+ is a unique point which achieves the supremum in the right-
hand side of the above equality. This implies that α̃v+ is a unique solution of
the equation ∇H+�α+� = v+ and Proposition 10.1 is therefore proved. ✷

Clearly, �+ ⊂ �+ and hence, for any v ∈ �N such that v+c = 0,

H∗
+�v+� = sup

α∈D+

{�α� v� −R�α�}
≤ sup
α∈�+

{�α� v� −R�α�} = l+�v��(10.12)

The following statement gives a necessary and sufficient condition for

l+�v� =H∗
+�v+�

and completes the proof of Theorem 2. ✷

Proposition 10.2. Let + ⊆ �1� � � � �N	 and v ∈ �N such that v+c = 0.
Consider α̃v ∈ �+ for which (10.10) holds. Then:

(i) l+�v� =H∗
+�v+� if

ν+j �α̃v� ≤ µj for all j ∈ +c�(10.13)

(ii) Suppose that (10.13) does not hold, and consider

+̃ = �j ∈ +c� ν+j �α̃v� > µj	�
then

l+�v� = min
j∈+̃

l+∪�j	�v��(10.14)

Proof. Consider the point αv ∈ �+ which achieves the maximum in the
right-hand side of (10.12). Because of Proposition 8.3, the above αv ∈ �+ is
unique and hence l+�v� =H∗

+�v+� if and only if αv = α̃v.
Furthermore, let α�·� be the unique solution of the system (8.1). Recall that

αv = α�βv� where βv ∈ �+�N≤0 is a unique point which achieves the maximum of

the strictly concave function �β� v�−R�α�β�� in �+�N≤0 (see Proposition 8.3), and

consider β̃v ∈ �+�N≤0 such that β̃v+ = α̃v+ and β̃v+c = 0. Then obviously α̃v = α�β̃v�
and hence, αv = α̃v if and only if βv = β̃v. It is clear that the above equality
is verified if and only if

∇β+R�α�β���β=β̃v = v+(10.15)

and

∇β+cR�α�β��
∣∣
β=β̃v ≤ 0�(10.16)

Since

∇β+R�α�β��
∣∣
β=β̃v = ∇H+�α+�

∣∣
α+=α̃v+

�
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then (10.15) holds because of Proposition 10.1. Moreover, Proposition 8.2 shows
that

∇β+cR�α�β��
∣∣
β=β̃v = ν++c�α�β̃v�� − µ+c�α�β̃v�� = ν++c�α̃v� − µ+c�α̃v��

where the vectors ν++c�α̃v� and µ+c�α̃v� are defined by (7.9) and (7.6), respec-
tively. Since α̃v ∈ �+, then (7.6) gives

µj�α̃v� = µj
(

N∑
k=1
pjk exp�α̃vk − α̃vj� + pj0 exp�−α̃vj�

)
= µj for all j ∈ +c

and therefore (10.16) is equivalent to (10.13). Hence βv = β̃v if and only if
(10.13) holds. This proves the first part of our proposition.

Suppose now that there exists i ∈ +c such that ν+i �α̃v� > µi and let

+̃ = �i ∈ +c� ν+i �α̃v� > µi	�
Consider again β̃v ∈ �N such that β̃v+ = α̃v+ and β̃v+c = 0. Then

∂

∂βi
R�α�β��

∣∣∣∣∣
β=β̃v

= ν+i �α̃v� − µi > 0 for all i ∈ +̃�

∂

∂βi
R�α�β��

∣∣∣∣∣
β=β̃v

= ν+i �α̃v� − µi = 0 for all i ∈ +c\+̃

and

∂

∂βi
R�α�β��

∣∣∣∣∣
β=β̃v

= V+i �α̃v� = vi for all i ∈ +�

Because the function R�α�·�� is strictly convex on �+�N≤0 , the above relations
imply that β̃v achieves the maximum of the function β→ �β� v� −R�α�β�� in
the subset {

β ∈ �+�N≤0 � β+̃ = 0
}
⊂ �+�N≤0

and hence, α̃v = α�β̃v� achieves the maximum of the function α→ �α� v�−R�α�
in �+ ∩�+.

Consider now the point αv which achieves the maximum of the function
�α� v� −R�α� in �+. It is clear that in this case αv 
= α̃v and since α̃v achieves
the maximum of the function α→ �α� v�−R�α� in �+ ∩�+, then αv 
∈ D+̃ and
hence there exists i ∈ +̃ such that

αvi < log

(
N∑
j=1
pij exp�αvj� + pi0

)
�



996 I. IGNATIOUK-ROBERT

Using now the last part of Proposition 8.3 we conclude that there exists i ∈ +̃
such that

l+�v� = l+∪�i	�v��(10.17)

But

l+�v� = sup
α∈�+

��α� v� −R�α�	 ≤ min
i∈+̃

sup
α∈�+∪�i	

��α� v� −R�α�	

= min
i∈+̃

l+∪�i	�v�

because �+ ⊂ �+∪�i	 for all i ∈ +̃, and hence relation (10.17) yields (10.14).
Proposition 10.2 is proved. ✷

APPENDIX

In this section we prove Proposition 8.1. For this, we shall use the following
lemma.

Lemma A.1. Consider the function

r�α� = ∑
y∈�N

a�y�e�α�y�� α ∈ �N�(A.1)

where a�y� ≥ 0 for all y ∈ �N� and let the set � = �y ∈ �N� a�y� 
= 0	 be finite.
(i) Suppose that the set � contains a basis in �N. Then the function r�·� is

strictly convex everywhere on �N�
(ii) Suppose moreover that for any y ∈ �N there exists n ∈ � and there exist

y0� � � � � yn ∈ � such that y = y0 + · · · + yn. Then for any v ∈ �N and for any
c ∈ �+ the level set

�α ∈ �N� r�α� − �α� v� ≤ c	
is a compact subset of �N�

Proof. Indeed, using (A.1) it follows that for all α� ξ ∈ RN�

�ξ� ∂2αr�α�ξ� =
N∑

i� j=1

∂2

∂αi∂αj
r�α�ξiξj =

∑
y∈�N

a�y�e�α�y��ξ� y�2�(A.2)

Suppose that � contains a basis in �N, then for any ξ ∈ �N, there exists
y ∈ � such that �ξ� y� 
= 0 and hence, using (A.2), we get

�ξ� ∂2αr�α�ξ� > 0 for all α� ξ ∈ �N�

The above implies that the function r�·� is strictly convex, and so the first part
of our lemma is proved.
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Let us prove the second one. Since the function α→ r�α� − �α� v� is contin-
uous for any v ∈ �N, it is sufficient to show that the set

�α ∈ �N� r�α� − �α� v� ≤ c	

is bounded for all v ∈ �N and c ∈ �+.
Suppose that for any y ∈ �N, there exists n ∈ � and there exist y0� � � � � yn ∈

� such that y = y0 + · · · + yn. Then for any v ∈ �N, there exist vy ≥ 0� y ∈ �
such that

v = ∑
y∈�
vyy�

and therefore,

�α� v� − r�α� = ∑
y∈�
�vy�α�y� − a�y� exp��α�y���

≤ ∑
y∈�

sup
t∈�
�vyt− a�y�et� ≤

∑
y∈�
�vy log�vy/a�y�� − vy��

The above implies that the Fenchel–Legendre transform of the function r�·�,

r∗�v� = sup
α∈�N

��α� v� − r�α��

is finite and continuous everywhere in �N (see [24]). Finally, using

�α� v� ≤ r�α� + r∗�v�� α� v ∈ �N�

we get

sup
v′∈�N� �v′ �≤1

�α� v′� ≤ c+ sup
v′∈�N� �v′ �≤1

r∗�v+ v′�

for all α ∈ �N such that r�α� − �α� v� ≤ c, and we conclude therefore, that the
set �α ∈ �N� r�α� − �α� v� ≤ c	 is bounded for all v ∈ �N and c ∈ �+. Thus the
second part of our lemma is also proved. ✷

Because of Assumption A, the function R�·� clearly satisfies the conditions
of Lemma A.1 and hence, using this lemma, we immediately get the following
statement.

Corollary A.1. The function R�·� is strictly convex and the set

�α ∈ �N� R�α� − �α� v� ≤ c	

is a compact subset of �N for all v ∈ �N and c ∈ �+�
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We are ready now to prove our proposition.

Proof of Proposition 8.1. Indeed, the system (8.1) is equivalent to the
following one:

αi = βi� for i ∈ +,
exp�αi� =

∑
j∈+c

pij exp�βi� exp�αj�

+ ∑
j∈+
pij exp�βi + βj� + pi0 exp�βi�� for i ∈ +c.

(A.3)

Moreover, because of Assumption A, the matrix �pij�i� j∈+c has a spectrum
radius less then unity and hence there exists ε0 > 0 such that for β ∈ �+�N<ε0 ,
the matrix �pijeβi�i� j∈+c has also a spectrum radius less then unity. The above
implies that for β ∈ �+�N<ε0 , the system (A.3) has a unique solution and the
iterating method applied to (A.3) gives (8.2). The first part of our lemma is
therefore proved.

Let us prove the second one. Indeed, the implicit function theorem applied
to the system (8.1) implies that α�·� ∈ C∞ everywhere in �+�N<ε0 , and therefore
R�α�·�� ∈ C∞ also everywhere in �+�N<ε0 .

Let us verify that the function R�α�·�� is strictly convex everywhere on
�+�N<ε0 . Indeed, observe that for any β ∈ �+�N<ε0 ,

R�α�β�� = ∑
j∈+c

µj�exp�−βj� − 1� + ∑
j∈+
λj�exp�βj� − 1�

+ ∑
j∈+c

λj�exp�αj�β�� − 1�
(A.4)

+∑
j∈+
µj

( ∑
k∈+
pjk exp�βk − βj� + pj0 exp�−βj�

+ ∑
k∈+c

pjk exp�αk�β� − βj� − 1

)

and consider the functions

r1�β� =
∑
j∈+c

µj�exp�−βj� − 1�
(A.5)

+ ∑
j∈+
µj

( ∑
k∈+
pjk exp�βk − βj� + pj0 exp�−βj� − 1

)

and

r2�α� =
N∑
j=1
λj�exp�αj� − 1� + ∑

j∈+�k∈+c
µjpjk exp�αk − αj��(A.6)
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Then R�α�·�� = r1�·�+r2�α�·�� and hence to prove that the function R�α�·�� is
strictly convex everywhere on �+�N<ε0 it is sufficient to show that the function
r1�·� is strictly convex and the function r2�α�·�� is convex everywhere on �+�N<ε0 .

To verify that the function r2�α�·�� is convex everywhere on �+�N<ε0 , we have
to show that for all β ∈ �+�N<ε0 and ξ ∈ �N,

�ξ� ∂2βr2�α�β��ξ� =
N∑

i� j=1

∂

∂βi∂βj
r2�α�β��ξiξj ≥ 0�(A.7)

For this we notice that the function r2�·� is convex everywhere on �N and for
any i ∈ +c the function αi�·� is convex everywhere on �+�N<ε0 as a limit of convex
functions [see (8.2)]. The above implies that for all β ∈ �+�N<ε0 and ξ ∈ �N,

�ξ� ∂2βr2�α�β��ξ� = �ξ�β�� ∂2αr2�α�ξ�β��

+ ∑
j∈+c

∂

∂αj
r2�α�

∣∣∣∣∣
α=α�β�

�ξ� ∂2βαj�β�ξ� ≥ 0�

where

ξj�β� =
N∑
i=1

∂

∂βi
αj�β�ξi� j = 1� � � � �N

and

�ξ�β�� ∂2αr2�α�ξ�β�� =
N∑

i� j=1

∂2

∂αi∂αj
r2�α�ξi�α�ξj�α� ≥ 0

because the function r2�·� is convex everywhere on �N,

�ξ� ∂2βαi�β�ξ� =
N∑

j� j=k

∂2

∂βj∂βk
αj�β�ξjξk ≥ 0 for all i ∈ +c�

because the functions αi�·�� i ∈ +c are convex everywhere on �+�N<ε0 and

∂

∂αj
r2�α� ≥ 0 for allj ∈ +c and α ∈ �N�

Thus (A.7) is verified and hence, the function r2�α�·�� is convex everywhere
on �+�N<ε0 .

Let us prove now that the function r1�·� is strictly convex. In view of
Lemma A.1, it is sufficient to show that for every i ∈ �1� � � � �N	 the ith
unit vector εi is included in the linear space spanned by the set

� = �εi� i ∈ +c	 ∪ �εi − εj� i� j ∈ +� pji 
= 0	 ∪ �εi� i ∈ +� pi0 
= 0	
(recall that by assumption µi > 0 for all i ∈ �1� � � � �N	).
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The above obviously holds for i ∈ +c. Consider now εi with i ∈ +. Then
because of Assumption (A) there exist a sequence i1� � � � � in ∈ + such that
either

pii1pi1i2 � � � pin−1inpin0 > 0�(A.8)

or for some j ∈ +c,
pii1pi1i2 � � � pin−1inpinj > 0�(A.9)

If (A.8) holds, then εi1 − ei� εi2 − ei1� εin − εin−1� εin ∈ � , and hence, the vector

εi = −�εi1 − ei + εi2 − ei1 + · · · + εin − εin−1� + εin
is included to the linear space spanned by � .

If (A.8) does not hold but (A.9) is verified, then εi1 − εi� εi2 − εi1� εin −
εin−1� εj − εin ∈ � . Since εj ∈ � for j ∈ +c, the above implies that in this case
the vector

εi = −�εi1 − ei + εi2 − ei1 + · · · + εin − εin−1 + εj − εin� + εj

is also included to the linear space spanned by � �
Thus, the function R�α�·�� is strictly convex everywhere on �+�Nε0 �
To complete the proof of our proposition, let us observe that the mapping α�·�

is an homeomorphism from �+�N≤0 to �+ and because of v+c = 0 the following
equality holds:

�α�β�� v� = �β� v��
The above immediately implies (8.3). To verify that for every c ∈ �+ and
v ∈ �N such that v+c = 0, the set �β ∈ �+�N≤0 � �β� v�−R�α�β�� ≤ c	 is compact,
it is sufficient to notice now that α�·� is an homeomorphism from the above
set to

�α ∈ �+� �α� v� −R�α� ≤ c	�
which is compact because the set �α ∈ �N� �α� v�−R�α� ≤ c	 is compact for all
c ∈ �+ and v ∈ �N (see Corollary A.1) and the set �+ is closed. Proposition 8.1
is therefore proved.
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Itô Calculus. Wiley, New York.
[26] Ruget, G. (1979). Quelques occurences des grands écarts dans la littérature électronique.
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Université de Cergy-Pontoise
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