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In this paper we consider large θ approximations for the stationary
distribution of the neutral infinite alleles model as described by the the
Poisson–Dirichlet distribution with parameter θ . We prove a variety of
Gaussian limit theorems for functions of the population frequencies as the
mutation rate θ goes to infinity. In particular, we show that if a sample of size
n is drawn from a population described by the Poisson–Dirichlet distribution,
then the conditional probability of a particular sample configuration is
asymptotically normal with mean and variance determined by the Ewens
sampling formula. The asymptotic normality of the conditional sampling
distribution is somewhat surprising since it is a fairly complicated function
of the population frequencies. Along the way, we also prove an invariance
principle giving weak convergence at the process level for powers of the size-
biased allele frequencies.

1. Preliminaries and main results. Gillespie (1999) showed that population
size plays a significant role in molecular evolutionary dynamics. He considered
various models in which the per individual mutation rate u is held fixed and the
population size N is increased. In the case of the neutral model of evolution this
is equivalent to considering the limiting distributions when the scaled mutation
rate θ = 4Nu goes to infinity. From the point of view of genetic diffusions,
Gillespie’s simulations suggest that large θ limits are both natural and interesting.
In particular, they shed light on the difficulty of detecting certain types of selection.

For many population genetics models, statistical inference is complicated by
the fact that both the population and sample are random. Given a particular
evolutionary scenario, the composition of the current population is just one of
many possible that could have arisen under the same evolutionary forces. When
one considers a sample drawn from such a population, there are two probability
distributions of interest. First one can consider the conditional probability of
observing a particular sample given the current population, and secondly, one
can ask for the unconditional probability of observing a particular sample. The
unconditional distribution of the sample is calculated by averaging over all possible
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population frequencies. It is interesting to note, for the neutral infinite alleles model
with parameter θ , that the conditional probability distribution can be approximated
by the unconditional probability distribution if θ is large. In fact we establish a
normal limit theorem that can be used to assess the error in this approximation.

In this paper, we deal exclusively with the neutral infinite alleles model.
However, our original motivation came from trying to understand some surprising
non-neutral simulations in Gillespie (1999) in which the selection intensity and
the mutation rate get large together. The results of the present paper form the
theoretical foundation for comparing the neutral model to models with selection
when θ is assumed to be large. This will be treated in a forthcoming paper [cf.
Joyce, Krone and Kurtz (2001)].

We begin by establishing some notation and describing the model in more
detail. The neutral infinite alleles model is a diffusion process which arises from a
Wright–Fisher model in which each mutation gives rise to a completely new allele.
The reader is referred to Ethier and Kurtz (1986) or Ewens (1979) for an account
of this model. To get a nontrivial stationary measure, it turns out that one must
order the allele frequencies in some way. Thus, we consider the ordered infinite
simplex

∇ ≡
{
(x1, x2, . . .) :x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1
}
.

For the neutral infinite alleles model with mutation rate θ , the stationary
distribution, µ, of the allele frequencies X = (X1,X2, . . .) ∈ ∇ in descending
order is given by the Poisson–Dirichlet distribution with parameter θ [cf. Kingman
(1977)]. We will abbreviate this with the notation µ∼ PD(θ) or X ∼ PD(θ).

Our main results deal with the partition structure of a sample drawn from a
random population with relative frequencies X ∼ PD(θ). Let a = (a1, a2, . . . , an)

denote an allelic partition of a sample of n genes; that is, ai (i = 1, . . . , n) gives
the number of distinct alleles each of which is represented exactly i times in the
sample. Clearly, ai ≥ 0,

∑n
i=1 iai = n and

∑n
i=1 ai ≡ k gives the number of distinct

alleles in the sample. We write An = (A1,A2, . . . ,An) for the random partition
obtained by independently sampling n genes according to the relative frequencies
of the different alleles in the population. If the allele proportions are given by
x = (x1, x2, . . .) ∈ ∇ , then the conditional sampling probability P (An = a|X = x)
is given by the multinomial sampling function [cf. Kingman (1977)]:

P (An = a|X = x)= φa(x)≡ n!∏n
i=1(i!)ai

∑
ν∈Aa

x
ν1
1 x

ν2
2 · · · ,(1)

where Aa ≡ {ν = (ν1, ν2, . . .) ∈ Z+ × Z+ × · · · : #(i : νi = j)= aj } represents the
set of allele counts which are consistent with the partition a. In the neutral infinite
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alleles model, the stationary probability of observing the allelic partition a in a
sample of size n,

P (An = a)=
∫
∇
φa(x)µ(dx)=E(φa(X)

)
,(2)

can be expressed by the Ewens sampling formula

P (An = a)= ESF(θ,a)≡ n!
θ(n)

n∏
j=1

(
θ

j

)aj 1

aj ! ,(3)

where θ(n) = θ(θ + 1) · · · (θ + n− 1).
Note that Eφa(X) = P (An = a)→ 0 as θ → ∞, if a �= (n,0, . . . ,0). We will

show that φa(X)⇒ 0 and discuss the rate of convergence by deriving a normal
limit theorem. The main goal of this paper is to show that, when X ∼ PD(θ),
the conditional sampling function φa(X) is asymptotically normal for large θ
(and fixed n), with asymptotic mean given by the ESF(θ,a) and asymptotic
variance given by (ESF(θ,a))2/θ . A precise statement appears in Theorem 2. To
establish the asymptotic distribution of φa(X) we will first consider some simple
partitions. For a subsample of size m ≤ n, the probability that all m individuals
in the sample are the same type is given by

∑∞
i=1X

m
i . We refer to this sum as

the mth population moment. It can be thought of as a measure of the mth-order
population homozygosity. In the case of m = 2 the above formula is referred to
as the population homozygosity and plays a significant role in population genetic
analysis. Note that the Ewens sampling formula is consistent in the sense that
the sampling distribution for a sample of m individuals is the same as that of a
subsample of m from a larger sample of size n [cf. Joyce (1998)].

We will show that the asymptotics of φa(X) are determined by the asymptotics
of the population moments. To this end, define Zθ = (Z2,θ ,Z3,θ , . . .) ∈ R

∞ where

Zm,θ = √
θ

(
θm−1∑∞

i=1X
m
i − (m− 1)!

(m− 1)!
)
, m≥ 2,(4)

is the scaled mth population moment.
To see that Zm,θ is an appropriate transformation of

∑∞
i=1X

m
i , note that,

according to the Ewens sampling formula (3),

E

( ∞∑
i=1

Xmi

)
= P (Am = (0,0, . . . ,1))= m! θ

θ(m)m
,

when X ∼ PD(θ). Therefore, as θ → ∞, we get E(θm−1∑∞
i=1X

m
i )→ (m− 1)!

which suggests

θm−1∑∞
i=1X

m
i

(m− 1)! − 1 ⇒ 0.

To obtain a nontrivial limit for the above equation we scale by
√
θ .



104 P. JOYCE, S. M. KRONE AND T. G. KURTZ

THEOREM 1. Suppose X ∼ PD(θ) and let Zθ = (Z2,θ ,Z3,θ , . . .) ∈ R
∞

where Zm,θ is defined by (4). Then

Zθ ⇒ Z as θ → ∞,
where Z is an R

∞-valued random vector. The joint distribution of any finite
number of components of Z has a multivariate normal distribution with mean 0
and

Cov(Zi,Zj )= (i + j − 1)! − i!j !
(i − 1)!(j − 1)! , i, j = 2,3, . . . .(5)

REMARK. Asymptotic normality of the homozygosity (
∑
X2
i ) was observed

by Griffiths (1979) for a similar K-allele model, in the limit as K and θ go to
infinity together. He, in effect, proved that Z2,θ converges in distribution to Z2,
which is a special case of Theorem 1. For other asymptotic results involving the
neutral model see Watterson and Guess (1977).

The proof of Theorem 1 will require several preliminary results and appears
in the next section. In our quest to prove that φa(X), when properly scaled,
is asymptotically normal, we will be aided by the following lemma which
demonstrates that the large θ asymptotics of φa(X) are determined by those
of Zθ . This will allow us to focus on simple allelic sub-partitions of the form
a = (0, . . . ,0,m); that is, all the information we need is contained in the mth
population moments.

LEMMA 1. Suppose X ∼ PD(θ) and let a be a partition corresponding to a
sample of size n drawn from a population with ordered frequencies X. If a1 �= n,
then

n∑
i=2

aiZi,θ = √
θ

(
φa(X)− ESF(θ,a)

ESF(θ,a)

)
+Ra(θ)

where θ1/2−εRa(θ)→ 0 as θ → ∞ for all ε > 0.

This lemma will be proved in Section 2.
In the next theorem, we combine these results to show how the scaled

conditional sampling function converges to the projection of a multivariate normal
onto the allelic partition. First note that, as the mutation rate θ → ∞, with
sample size n held fixed, all the probability moves to the allelic partition a1 ≡
(n,0,0, . . . ,0) with a1 = n, giving all different alleles in the sample. This is
intuitively clear from the infinite alleles assumption. It also follows quickly
from (3) that

P (An = a1)= Eφa1(X)=
n!
θ(n)

θn

n! → 1,(6)
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and for a �= a1,

Eφa(X)→ 0,(7)

as θ → ∞.
Therefore, to establish the appropriate scaling factor required for asymptotic

normality of φa(X), we will need to consider the cases a �= a1 and a = a1
separately. The following theorem is our main result.

THEOREM 2. Suppose X ∼ PD(θ) and let φa be the multinomial sampling
function corresponding to a sample of size n, given by (1). Let (Z2,Z3, . . . ,Zn)

have a multivariate normal distribution with mean 0 and covariance given by (5).
Then the following limits hold as θ → ∞:

(i) If a = (a1, . . . , an) is an allelic partition such that a1 �= n, then

√
θ

(
φa(X)− ESF(θ,a)

ESF(θ,a)

)
⇒

n∑
i=2

aiZi.(8)

(ii) If a1 = (n,0, . . . ,0) and a2 = (n− 2,1,0, . . . ,0) are the allelic partitions
with n singletons and n− 2 singletons, respectively, then

√
θ

(
φa1(X)− ESF(θ,a1)

ESF(θ,a2)

)
⇒Z2 ∼ N(0,2).(9)

Theorem 2 follows immediately from Lemma 1 and Theorem 1 provided at least
two individuals in the sample have the same type; that is a1 �= n. The case where
a1 = n requires a separate argument and appears in the next section after the proof
of Theorem 1.

2. Proofs. The Poisson–Dirichlet distribution is difficult to deal with directly,
so the first step in proving the above results is to express this stationary distribution
in terms of the GEM distribution [cf. Donnelly and Joyce (1989)]. To define the
GEM distribution, suppose that

U1,U2, . . . are i.i.d. Beta (1, θ) random variables(10)

with common density f (x; θ)= θ(1 − x)θ−1, x ∈ [0,1]. Then set

V1,θ =U1,

Vk,θ = (1 −U1)(1 −U2) · · · (1 −Uk−1)Uk for k ≥ 2.
(11)

The random point (V1,θ , V2,θ , . . .) in the unordered infinite simplex

 ≡
{
(x1, x2, . . .) :xi ≥ 0 ∀i,

∞∑
i=1

xi = 1

}
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is said to have the GEM(θ ) distribution [cf. Donnelly and Joyce (1989)]. This
gives the neutral stationary allele proportions in “size-biased order” rather than
descending order. The construction in (11) is sometimes referred to as “stick
breaking.” Note that ∇ ⊆ and so µ∼ PD(θ) can be thought of as a probability
measure on which puts all its mass on ∇ . If ρ:  → ∇ is the “descending order
map,” then we have the relationship ρ(Vθ ) ∼ PD(θ) if Vθ = (V1,θ , V2,θ , . . .) ∼
GEM(θ ) [cf. Donnelly and Joyce (1989)]. In particular, since the multinomial
sampling function is invariant under reordering of the variables, we can write

φa(X)= φa(Vθ ).(12)

2.1. Proof of Theorem 1. To guide the reader through the technical material
that follows, a few words on our strategy are in order. Our ultimate goal is to
establish asymptotic normality for

∑∞
i=1 V

m
i,θ [which is equal to

∑∞
i=1X

m
i by (12)]

as θ → ∞. This is a four step process.

1. We truncate the series and consider
∑[θt]
i=1 V

m
i,θ .

2. Since Vm1,θ = Um1 , and Vmi,θ = Umi exp{m∑i−1
j=1 log(1 − Uj)} when i ≥ 2, we

next establish limit theorems for
∑[θt]
i=1U

m
i and

∑[θt]
i=1 log(1 − Ui), properly

scaled. This is done in Lemmas 2 and 3.
3. Writing

∑[θt]
i=1 V

m
i,θ as a stochastic integral involving Umi and log(1 − Ui), we

then use a theorem of Kurtz and Protter (1991) to establish a limit result for∑[θt]
i=1 V

m
i,θ , again with suitable scaling. This is done in Theorem 3.

4. We extend the results of Theorem 3, by taking the limit as t → ∞. This
extension requires that the tails of the series go to zero uniformly in θ , and
this is established in Lemma 4 and then used to prove Theorem 1.

Recall that U1,U2, . . . are i.i.d. Beta (1, θ) random variables. In light of
statement 2 above, we define a sequence of R

n-valued random vectors Jθ (1),
Jθ (2), . . . by

Jθ (i)≡ (
J1,θ (i), J2,θ (i), . . . , Jn,θ (i)

)
= (−θ log(1 −Ui), (θUi)2, . . . , (θUi)n).(13)

The factor of θ which has been introduced is natural, as will be seen below; for
example, all the moments of θUi are easy to compute. All of the limit theorems
that follow will involve functions of the components of the Jθ (i)’s. The next two
lemmas establish limit theorems for the R

n-valued processes

Yθ (t)= (
Y1,θ (t), . . . , Yn,θ (t)

)= 1

θ

[θt]∑
i=1

Jθ (i),(14)

Wθ (t)= (
W1,θ (t), . . . ,Wn,θ (t)

)= 1√
θ

[θt]∑
i=1

(
Jθ (i)−E(Jθ (i))),(15)
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with sample paths in DRn[0,∞). Here and below,DRn[0,∞) denotes the space of
right-continuous functions from [0,∞) to R

n which possess left limits under the
Skorohod topology. Let

C = (Cij ) where Cij = (i + j)! − i!j !. �(16)

LEMMA 2. There exists a process W(·) ≡ (W1(·),W2(·), . . . ,Wn(·)) with
continuous sample paths and independent Gaussian increments satisfying
W(0)= 0, E(W(t)) = 0 and Cov(Wi(t),Wj (t)) = tCij such that, as θ → ∞,
Wθ (·)⇒ W(·) in DRn[0,∞). Also,Wi(t)Wj (t)− tCij is an (F W

t )-martingale.

In particular, the Wi(t)’s are correlated Brownian motions with VarWi(t) =
Cii t .

PROOF OF LEMMA 2. To prove the lemma, we will apply the martingale
central limit theorem [cf. Ethier and Kurtz (1986), page 339]. To this end, we
use equation (13) to define

ξθ (i)≡ 1√
θ

(
Jθ (i)−E(Jθ (i))), i ≥ 1.

It follows from (15) that

Wθ (t)=
[θt]∑
k=1

ξθ (k).

Letting F θ
k = σ {ξθ (i) : 1 ≤ i ≤ k} and denoting by ξθ (k)

′ the column vector giving
the transpose of ξθ (k), we define the symmetric n× n matrix-valued process

Cθ (t)≡
[θt]∑
k=1

E[ξθ (k)′ξθ (k)|F θ
k−1] =

[θt]∑
k=1

E[ξθ (k)′ξθ (k)],

the last equality following by independence of the Jθ (i)’s. The ξθ (k) form a
martingale difference array; that is, Wθ (t) is a martingale with respect to the
filtration (F θ[θt]).

Verification of the hypotheses in the martingale central limit theorem rests
on some standard results for moments of Beta (1, θ) random variables. If Uk ∼
Beta (1, θ), then

E(θUk)
m =m! θ

m+1

θ(m+1)
,(17)

Cov
(
(θUk)

i, (θUk)
j )= (i + j)! θ

i+j+1

θ(i+j+1)
− i! θ

i+1

θ(i+1)
· j ! θ

j+1

θ(j+1)
,(18)

where θ(j) = θ(θ + 1)(θ + 2) · · · (θ + j − 1). In addition, note that (1 − Uk)θ ∼
Unif (0,1) and therefore

J1,θ (k)≡ −θ log(1 −Uk)∼ Exp(1).(19)
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It follows from (13) and (18) that, for i, j = 2, . . . , n,

Cov
(
Ji,θ (k), Jj,θ (k)

)= (i + j)! θ
i+j+1

θ(i+j+1)
− i! θ

i+1

θ(i+1)
· j ! θ

j+1

θ(j+1)
(20)

and this →Cij , as θ → ∞. To calculate the covariance of J1,θ (k) and Jj,θ (k), we
begin with

E[J1,θ (k)Jj,θ (k)] = E[J1,θ (k)(θUk)
j ]

= θjE[J1,θ (k)
(
1 − exp{−J1,θ (k)/θ})j ].

By the usual Taylor expansion we get

1 − exp{−J1,θ (k)/θ} = J1,θ (k)/θ +Rθ

where Rθ is the remainder and |Rθ | ≤ J1,θ (k)
2

θ2 . Therefore,

lim
θ→∞E[J1,θ (k)Jj,θ (k)] = lim

θ→∞ θ
jE
[(
J1,θ (k)/θ

)j
J1,θ (k)

]
= E[J1,θ (k)

j+1]= (j + 1)!
and hence

lim
θ→∞ Cov

(
J1,θ (k), Jj,θ (k)

)= (j + 1)! − j ! =C1j .(21)

Also, Cov(J1,θ (k), J1,θ (k))= 1 =C11.
Now note that the entries of the matrix Cθ (t) are given by

(
Cθ (t)

)
i,j = [θt]

θ
Cov

(
Ji,θ (k), Jj,θ (k)

)
(i, j = 1,2, . . . , n).(22)

It follows from the above limits that

lim
θ→∞ Cθ (t)= tC,(23)

where C is the matrix defined in (16).
Similarly, straightforward calculations show for each finite T ,

lim
θ→∞E

[
sup
t≤T

|Cθ (t)− Cθ (t−)|
]

≤ lim
θ→∞

1

θ

n∑
j=1

n∑
i=1

Cij = 0,(24)

lim
θ→∞E

[
sup
t≤T

|Wθ (t)− Wθ (t−)|2
]

= 0,(25)

and Wθ (t)
′Wθ (t)− Cθ (t) defines a matrix-valued (F θ[θt])-martingale.

Thus the conditions of the martingale central limit theorem are satisfied and we
have Wθ ⇒ W where W is a process with independent Gaussian increments with
W(0)= 0, E(W(t))= 0 and covariance matrix E(W(t)′W(t))= tC. �
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LEMMA 3. Let Yθ (t) be defined by equation (14) and set y(t) = t (1!,2!,
. . . , n!). Then, as θ → ∞, Yθ (·) P−→ y(·) in DRn [0,∞).

PROOF. The result follows immediately from Lemma 2 and the fact that, as
θ → ∞, EJθ (k)→ (1!,2!, . . . , n!). �

We are now ready to derive a large θ limit for the truncated sum
∑[θt]
k=1V

m
k,θ . To

motivate the scaling in the following theorem, first note that it is natural to multiply
by θm so that the easily-handled terms (θUk)m will appear. The resulting sum has
mean

E

[
θm

[θt]∑
k=1

Vmk,θ

]
=

[θt]∑
k=1

E
[
(θUk)

m
]
E

[
k−1∏
j=1

(1 −Uj)m
]

=m! θ
m+1

θ(m+1)

[θt]∑
k=1

E

[
exp

{
−m
θ

k−1∑
j=1

J1,θ (j)

}]

=m! θ
m+1

θ(m+1)

[θt]∑
k=1

(
1

1 +m/θ
)k−1

=m! θ
m+1

θ(m+1)

1 − (1 +m/θ)−[θt]

1 − (1 +m/θ)−1

∼m! θ
m+1

θ(m+1)

θ

m
(1 − e−mt) (for large θ)

=m! θ
m+1

θ(m+1)
θ

∫ t
0
e−ms ds.

(26)

This suggests that centering θm
∑[θt]
k=1 V

m
k,θ by this last expression (which will be

easier to work with than the exact mean) and dividing by
√
θ should produce a

nontrivial limit as θ → ∞. The following theorem gives an invariance principle
for partial sums of the powers of the size-biased allele frequencies.

THEOREM 3. Let Hθ = (H2,θ ,H3,θ , . . . ,Hn,θ ) and H = (H2,H3, . . . ,Hn) be
processes with sample paths in D

Rn−1[0,∞), defined for 2 ≤m≤ n by

Hm,θ (t)≡ θm−1/2
[θt]∑
k=1

Vmk,θ −m! θ
m+1

θ(m+1)

√
θ

∫ t
0
e−ms ds(27)

and

Hm(t)≡
∫ t

0
e−msdWm(s)−m ·m!

∫ t
0
e−msW1(s) ds,(28)
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where W = (W1,W2, . . . ,Wn) is the R
n-valued process with independent Gaus-

sian increments defined in Lemma 2. Then Hθ ⇒ H in D
Rn−1[0,∞), as θ → ∞.

PROOF. Recall that Yθ (t)= (Y1,θ (t), Y2,θ (t), . . . , Yn,θ (t)) is given by

Y1,θ (t)= −
[θt]∑
i=1

log(1 −Ui) and Ym,θ (t)= 1

θ

[θt]∑
i=1

(θUi)
m, 2 ≤m≤ n,

exp{−mY1,θ (t)} =
[θt]∏
i=1

(1 −Ui)m,

and for 2 ≤m≤ n,

Wm,θ(t)= 1√
θ

[θt]∑
i=1

[(θUi)m −E(θUi)m].(29)

Recall that Ui ∼ Beta(1, θ), and hence

E[(θUi)m] =m! θ
m+1

θ(m+1)
.(30)

Thus, for 2 ≤m≤ n,

Hm,θ (t)= θm−1/2
[θt]∑
k=1

Umk

k−1∏
i=1

(1 −Ui)m −m! θ
m+1

θ(m+1)

√
θ

∫ t
0
e−ms ds

= √
θ

∫ t
0

exp{−mY1,θ (s−)}dYm,θ (s)−m! θ
m+1

θ(m+1)

√
θ

∫ t
0
e−ms ds

= √
θ

∫ t
0
e−msdYm,θ (s)−m! θ

m+1

θ(m+1)

√
θ

∫ t
0
e−ms ds

+ √
θ

∫ t
0

(
exp{−mY1, θ (s−)} − e−ms)dYm,θ (s).

(31)

Note that the product in the first line of (31) is defined to be 1 when k = 1.
We write Hθ = H(1)θ + H(2)θ and H = H(1)+ H(2) where, for 2 ≤m≤ n,

H
(1)
m,θ (t)≡

√
θ

∫ t
0
e−msdYm,θ (s)−m! θ

m+1

θ(m+1)

√
θ

∫ t
0
e−ms ds,(32)

H
(2)
m,θ (t)≡

√
θ

∫ t
0

(
exp{−mY1, θ (s−)} − e−ms)dYm,θ (s),(33)

H(1)m (t)≡
∫ t

0
e−ms dWm(s),(34)

H(2)m (t)≡ −m ·m!
∫ t

0
W1(s)e

−ms ds.(35)
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To prove Hθ ⇒ H as θ → ∞, we show that(
H(1)θ ,H

(2)
θ

)⇒ (
H(1),H(2)

)
(36)

in D
R2n−2[0,∞).

Note that, for 2 ≤m≤ n,

H
(1)
m,θ (t)=

√
θ

[θt]∑
k=1

1

θ
(θUk)

me−mk/θ −m! θ
m+1

θ(m+1)

√
θ

∫ t
0
e−ms ds

= 1√
θ

[θt]∑
k=1

[
(θUk)

m −m! θ
m+1

θ(m+1)

]
e−mk/θ

+m! θ
m+1

θ(m+1)

√
θ

[ [θt]∑
k=1

e−mk/θ 1

θ
−
∫ t

0
e−ms ds

]
,

and hence it follows from equations (29) and (30) that

H
(1)
m,θ (t)=

∫ t
0
e−ms dWm,θ (s)

(37)

+m! θ
m+1

θ(m+1)

√
θ

[ [θt]∑
k=1

e−mk/θ 1

θ
−
∫ t

0
e−ms ds

]
.

It is easy to see that
∑[θt]
k=1 e

−mk/θ 1
θ

is a Riemann sum approximation of∫ t
0 e

−ms ds and converges at rate 1/θ as θ → ∞. Therefore

m! θ
m+1

θ(m+1)

√
θ

[ [θt]∑
k=1

e−mk/θ 1

θ
−
∫ t

0
e−ms ds

]
→ 0.(38)

We now establish the analogue of equation (37) for H(2)θ (t). Recall that
J1,θ (i) ≡ −θ log(1 − Ui) has an exponential distribution with mean 1 and
Y1,θ (t) = 1

θ

∑[θt]
i=1 J1,θ (i). For some ξ between s and t , we have the Taylor

expansion

e−mt = e−ms −me−ms(t − s)+ rm(ξ, s, t),
where rm(ξ, s, t)= m2e−mξ

2 (t − s)2. Substituting Y1,θ (s) for t yields

e−mY1,θ (s) = e−ms −me−ms(Y1,θ (s)− s)+ rm(ξ, s, Y1,θ (s)
)
.(39)

Note that

√
θrm

(
ξ, s, Y1,θ (s)

)≤ m2

2

√
θ
(
Y1,θ (s)− s)2.(40)
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Furthermore, it follows from Doob’s submartingale inequality that

E
[

sup
0≤s≤t

√
θ
(
Y1,θ (s)− s)2]= √

θ E

[
sup

0≤s≤t

(
1

θ

[θs]∑
i=1

(
J1,θ (i)− 1

))2]

≤
√
θ

θ2
E

( [θt]∑
i=1

(
J1,θ (i)− 1

))2

= θ−3/2[θt] ≤ t√
θ
.

This, together with (40), yields

sup
0≤s≤t

√
θrm

(
ξ, s, Y1,θ(s)

) P−→ 0(41)

as θ → ∞.
It follows from (39) that

H
(2)
m,θ (t)=

√
θ

∫ t
0

[
exp{−mY1,θ (s−)} − e−ms]dYm,θ (s)

=
∫ t

0

[
−√

θ
(
Y1,θ (s−)− s)me−ms + √

θ rm
(
ξ, s, Y1,θ(s−))]dYm,θ (s).

So, sinceW1,θ (t)=
√
θ (Y1,θ (t)− [θt]/θ),

H
(2)
m,θ (t)=

∫ t
0

[
−W1,θ (s−)me−ms

(42)

+ √
θ
{
(s − [θs]/θ)me−ms + rm(ξ, s, Y1,θ (s−))}]dYm,θ (s).

Note that the second term in the integrand goes to 0 in probability. By Lemma 3

we have Yθ (·) P−→ y(·) as θ → ∞ in DRn[0,∞). Since this last function is
deterministic, it follows from Lemma 2 that

(Wθ ,Yθ )⇒ (W,y) in DR2n [0,∞)
[cf. Billingsley (1968)].

Let M
nn denote the space of real-valued n× n matrices. To apply the theorem

of Kurtz and Protter on convergence of stochastic integrals, define the following
M
nn-valued processes:

�(s)= diag(e−s, e−2s, . . . , e−ns),
�θ (s)=W1,θ (s)diag(e−s,2e−2s, . . . , ne−ns)

and

�(s)=W1(s) diag(e−s,2e−2s, . . . , ne−ns).
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We then have

(�,Wθ )⇒ (�,W) and (�θ ,Yθ )⇒ (�,y)

in DMnn×Rn [0,∞). Applying Theorem 2.2 of Kurtz and Protter (1991), we obtain∫ ·
0

�(s−) dWθ (s)⇒
∫ ·

0
�(s−) dW(s)

and ∫ ·
0

�θ (s−)dYθ (s)⇒
∫ ·

0
�(s−) dy(s),

where the integrators should be thought of as column vectors. It is an easy exercise
to see that these actually converge jointly in D

R2n[0,∞).
Now use this together with (37) and (42) and the limits established in (38)

and (41) to get (H(1)θ ,H
(2)
θ )⇒ (H(1),H(2)), and therefore Hθ = H(1)θ + H(2)θ ⇒

H(1)+ H(2) = H in D
Rn−1[0,∞). �

LEMMA 4. Given ε > 0, there exists t0 = t0(ε) <∞ such that

P

(∣∣∣∣θm−1/2
∞∑

k=[θt0]+1

V mk,θ − (m− 1)! θ
m+1

θ(m+1)

√
θe−mt0

∣∣∣∣> ε
)
<
ε

2
(43)

for all θ ≥m.

REMARK. Note that t0 depends only on ε and not on θ . Therefore, the above
lemma shows that the tail of the series converges in probability to zero uniformly
in θ .

PROOF OF LEMMA 4. By the same argument used to derive (31) we have

θm−1/2
∞∑

k=[θt0]+1

Vmk,θ − (m− 1)! θ
m+1

θ(m+1)

√
θe−mt

= θm−1/2
∞∑

k=[θt]+1

Umk

k−1∏
i=1

(1 −Ui)m −m! θ
m+1

θ(m+1)

√
θ

∫ ∞
t
e−ms ds

= √
θ

∫ ∞
t

(
exp{−mY1,θ (s−)} − e−ms)dYm,θ (s)

+ √
θ

∫ ∞
t
e−ms dYm,θ (s)−m! θ

m+1

θ(m+1)

√
θ

∫ ∞
t
e−ms ds.

(44)

So to prove Lemma 4 we need only show that

√
θ

∫ ∞
t
e−msdYm,θ (s)−m! θ

m+1

θ(m+1)

√
θ

∫ ∞
t
e−msds P−→ 0(45)
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and

√
θ

∫ ∞
t

(
exp{−mY1,θ (s−)} − e−ms)dYm,θ (s) P−→ 0(46)

as t → ∞, uniformly in θ .

To show (45), we note that

∣∣∣∣√θ
∫ ∞
t
e−msdYm,θ (s)−m! θ

m+1

θ(m+1)

√
θ

∫ ∞
t
e−ms ds

∣∣∣∣

=
∣∣∣∣∣
√
θ

∞∑
k=[θt]+1

1

θ
(θUk)

me−mk/θ −m! θ
m+1

θ(m+1)

√
θ

∫ ∞
t
e−ms ds

∣∣∣∣∣
≤
∣∣∣∣∣

∞∑
k=[θt]+1

(
(θUk)

m −E(θUk)m)e−mk/θ√
θ

∣∣∣∣∣
+m! θ

m+1

θ(m+1)

√
θ

∣∣∣∣∣
∞∑

k=[θt]+1

e−mk/θ 1

θ
−
∫ ∞
t
e−ms ds

∣∣∣∣∣.

(47)

We now treat each of the last two quantities separately.

Since Var[(θU)m] ≤ (2m)! when U ∼ Beta (1, θ), Chebyshev’s inequality and
independence of the Uk’s implies

P

(∣∣∣∣∣
∞∑

k=[θt]+1

(
(θUk)

m −E(θUk)m)e−mk/θ√
θ

∣∣∣∣∣> ε
)

≤ (2m)!
ε2

∞∑
k=[θt]+1

e−2mk/θ

θ

≤ (2m)!
ε2

∫ ∞
t
e−2ms ds

= (2m− 1)!
ε2

e−2mt .

(48)

So the first term in (47) converges in probability to 0 as t → ∞, uniformly in θ .
The other term is non-random, so we just need to bound it by quantities that go
to 0 as t → ∞, uniformly in θ .

Approximating the integral by upper and lower Riemann sums,

∞∑
k=[θt]+1

e−mk/θ
1

θ
≤
∫ ∞
t
e−ms ds ≤

∞∑
k=[θt]

e−mk/θ
1

θ
,
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allows us to bound the quantity at the end of (47):

m! θ
m+1

θ(m+1)

√
θ

∣∣∣∣∣
∞∑

k=[θt]+1

e−mk/θ 1

θ
−
∫ ∞
t
e−ms ds

∣∣∣∣∣
≤m! θ

m+1

θ(m+1)

√
θ

[ ∞∑
k=[θt]

e−mk/θ 1

θ

]

−m! θ
m+1

θ(m+1)

√
θ

[ ∞∑
k=[θt]+1

e−mk/θ 1

θ

]

=m! θm+1

θ(m+1)
√
θ
e−m[θt]/θ

≤m! e−m(t−1).

(49)

Therefore, (45) follows from (48) and (49).
To show (46), begin with a simple Laplace transform calculation to get

E
[
exp

(−mY1,θ (t)
)]= E

[
exp

{
−m
θ

[θt]∑
i=1

J1,θ (i)

}]

= (1 +m/θ)−[θt]

= exp
{−[θt] log(1 +m/θ)}

≤ exp
{
−[θt]m

2θ

}
,

(50)

provided θ ≥ m. The last line of (50) follows from the fact that log(1 + x) ≥
x/(x + 1)≥ x/2 when 0 ≤ x ≤ 1.

Now,

|e−my − e−mx | =
∣∣∣∣
∫ y
x
me−mu du

∣∣∣∣≤me−mmin{x,y}|y − x|,
so defining Rθ(s)= min{Y1,θ (s), s}, we have

E

∣∣∣∣√θ
∫ ∞
t

(
exp{−mY1,θ (s−)} − e−ms)dYm,θ (s)

∣∣∣∣
≤ √

θE

∫ ∞
t
m exp {−mRθ(s)}

∣∣Y1,θ (s−)− s
∣∣ dYm,θ (s)

≤
∞∑

k=[θt]+1

E

[
m exp{−mRθ(k/θ)} |

∑k
i=1 J1,θ (i)− k|√

θ

(θUk)
m

θ

]

=
∞∑

k=[θt]+1

E[Q1(k)Q2(k)Q3(k)],
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where

Q1(k)=m exp {−mRθ(k/θ)} ,

Q2(k)= |∑k
i=1 J1,θ (i)− k|√

θ

and

Q3(k)= (θUk)
m

θ
.

The generalized version of Hölder’s inequality yields

E[Q1Q2Q3] ≤ [E(Q4
1)]1/4[E(Q2

2)]1/2[E(Q4
3)]1/4.

It follows from equation (50) that

E(Q4
1)=m4E[exp{−4mRθ(k/θ)}]

=m4E
[
exp

{−4m(Y1,θ (k/θ)∧ (k/θ)}]
≤m4E[exp{−4mY1,θ (k/θ)}] +m4 exp{−4mk/θ}
≤m4 exp{−2mk/θ} +m4 exp{−4mk/θ}
≤ 2m4 exp{−2mk/θ}.

Therefore,

E[(Q4
1)]1/4 ≤ 21/4m exp{−mk/(2θ)}

Since J1,θ (1), J1,θ (2), . . . are independent exponentials with mean one, we have

[E(Q2
2)]1/2 =

[
1

θ
Var

(
k∑
i=1

J1,θ (i)

)]1/2

=
√
k

θ
.

Using (30), we have

[E(Q4
3)]1/4 ≤ 1

θ
[(4m)!]1/4.

Therefore,

E

∣∣∣∣√θ
∫ ∞
t

(
exp{−mY1,θ (s−)} − e−ms)dYm,θ (s)

∣∣∣∣
≤ 21/4m[(4m)!]1/4

θ

∞∑
k=[θt]+1

√
k

θ
exp{−mk/(2θ)}

≤m21/4[(4m)!]1/4
∫ ∞
t

√
se−(ms)/2 ds,

(51)



POISSON–DIRICHLET LIMITS 117

the last line following by a Riemann sum approximation. Thus we have shown

E

∣∣∣∣√θ
∫ ∞
t

(
exp{−mY1,θ (s−)} − e−ms)dYm,θ (s)

∣∣∣∣→ 0,

uniformly in θ . This implies

√
θ

∫ ∞
t

(
exp{−mY1,θ (s−)} − e−ms)dYm,θ (s) P−→ 0,

uniformly in θ , as desired. �

LEMMA 5. Let H(·) be theD
Rn−1[0,∞)-valued process defined in Theorem 3.

Then H(∞)≡ limt→∞ H(t) exists and has a multivariate normal distribution with
mean 0 and covariance matrix given by

Cov
(
Hi(∞),Hj (∞))= (i + j − 1)! − i!j ! (i, j = 2, . . . , n).(52)

PROOF. We first note that the integration by parts formula for stochastic
integrals [cf. Karatzas and Shreve (1988)] implies∫ t

0
e−msdW1(s)= e−mtW1(t)+m

∫ t
0
e−msW1(s) ds.(53)

So

Hm(t)=
∫ t

0
e−ms dWm(s)−m ·m!

∫ t
0
e−msW1(s) ds

=
∫ t

0
e−ms dWm(s)−m!

∫ t
0
e−ms dW1(s)+m!e−mtW1(t).

(54)

Note that(∫ t
0
e−2s dW2(s), . . . ,

∫ t
0
e−ns dWn(s),

∫ t
0
e−2sdW1(s), . . . ,

∫ t
0
e−nsdW1(s)

)

defines a uniformly integrable martingale (bounded second moments) in R
2n−2,

and hence the limit exists as t → ∞, with probability one. Denote the limit by
(E,G), where

Em =
∫ ∞

0
e−ms dWm(s) and Gm =

∫ ∞
0
e−ms dW1(s) (m= 2, . . . , n).

Thus H(∞)= (H2(∞), . . . ,Hn(∞)), where

Hm(∞)=
∫ ∞

0
e−ms dWm(s)−m!

∫ ∞
0
e−ms dW1(s)=Em −m!Gm.(55)

Now, (E,G) is multivariate normal (due to the deterministic integrands) with
mean 0 and its covariance matrix is determined by the covariance structure of W,
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given in Lemma 2. Therefore H(∞) is also multivariate normal with mean 0
and covariance matrix to be computed next. We begin by calculating, for i, j =
2, . . . , n,

Cov(Ei,Ej )=
∫ ∞

0
e−(i+j)sCij ds = Cij

i + j ,

Cov(Ei,Gj )= Ci1

i + j and Cov(Gi,Gj)= C11

i + j .
Hence, by (55),

Cov
(
Hi(∞),Hj (∞))= Cij − i!Cj1 − j !Ci1 + i!j !C11

i + j
= (i + j − 1)! − i!j !,

for i, j = 2, . . . , n. This completes the proof of Lemma 5. �

PROOF OF THEOREM 1. It follows from standard results for product spaces
[Ethier and Kurtz (1986)] that Zθ ⇒ Z as θ → ∞ if and only if (Z2,θ ,Z3,θ . . . ,

Zn,θ ) converges in distribution to (Z2,Z3, . . . ,Zn) as θ → ∞ for any integer n. It
follows from Lemma 5 and the definition of Z in Theorem 1 that

H(∞) d= (
Z2,2!Z3, . . . , (n− 1)!Zn),(56)

since both have multivariate normal distribution with mean 0 and covariance as in
(52). Define Hθ (∞)= limt→∞ Hθ (t). Then

Hm,θ (∞)= θm−1/2
∞∑
i=1

V mi,θ − (m− 1)!√θ θ
m+1

θ(m+1)

= (m− 1)!Zm,θ − (m− 1)!√θ
(
θm+1

θ(m+1)
− 1

)
.

(57)

Since the last term is O(1/
√
θ)→ 0, (56) and (57) imply that Zθ ⇒ Z will

follow if we can show that Hθ (∞) ⇒ H(∞). From Theorem 3 and Lemma 5
we know that limt→∞ limθ→∞ Hθ (t) = limt→∞ H(t) = H(∞). So to prove that
Hθ (∞)⇒ H(∞) we must justify the interchange of limits.

Given ε > 0, define ε = (ε, . . . , ε) ∈ R
n−1. By Lemma 4 we can choose t0 large

enough (and independent of θ ≥m) so that

P

(∣∣∣∣∣θm−1/2
∞∑

i=[θt0]+1

Vmi,θ − (m− 1)! θ
m+1

θ(m+1)

√
θe−mt0

∣∣∣∣∣> ε
)
<
ε

2
(58)

for all m= 2, . . . , n. Taking t0 even larger if necessary, we also have

P
(
H(∞)≤ x − ε

)− ε/2 ≤ P (H(t0)≤ x − ε
)
,

P
(
H(t0)≤ x + ε

)≤ P (H(∞)≤ x + ε
)+ ε/2.(59)
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It follows from equation (58) that for all m= 2, . . . , n,

P
(∣∣Hm,θ (∞)−Hm,θ (t0)∣∣> ε)< ε/2.(60)

Equation (60) implies that

P
(
Hθ (t0)≤ x − ε

)− ε/2 ≤ P (Hθ (∞)≤ x
)≤ P (Hθ (t0)≤ x + ε

)+ ε/2.(61)

Taking the limsup as θ → ∞ in equation (61) gives

P
(
H(t0)≤ x − ε

)− ε/2 ≤ lim sup
θ→∞

P
(
Hθ (∞)≤ x

)
≤ P (H(t0)≤ x + ε

)+ ε/2.(62)

Applying equation (59) to equation (62) we get

P
(
H(∞)≤ x − ε

)− ε ≤ lim sup
θ→∞

P
(
Hθ (∞)≤ x

)≤ P (H(∞)≤ x + ε
)+ ε.

Since H(∞) has a continuous distribution, we take the limit as ε→ 0 above to get

lim sup
θ→∞

P
(
Hθ (∞)≤ x

)= P (H(∞)≤ x
)
.

Theorem 1 follows after a similar argument for the lim inf. �

2.2. Proof of Lemma 1. The proof of Lemma 1 requires several approxima-
tions. In order to show that the remainder term, denoted by Ra(θ), goes to zero as
θ → ∞ appropriately, we will need to prove the following lemma.

LEMMA 6. Suppose X ∼ PD(θ) and let a be a partition of a sample of size
n drawn from a population with frequencies X. Define Fm =∑∞

i=1 θ
m−1Xmi . Then

for all ε > 0, as θ → ∞,

θ1/2−ε
(

1 −
n∏
m=2

(
Fm

(m− 1)!
)am)

⇒ 0.(63)

PROOF. Note that if a1 = n then ai = 0 for all i > 1. In this case the left hand
side of (63) is identically 0 and so the result follows trivially in this case. Therefore,
we will assume that a1 �= n. We proceed by induction on the sample size n. If
n= 2, then by our assumption, a2 must be 1 and hence, using (4), equation (63)
reduces to

θ1/2−ε(1 − F2)= −θ−εZ2,θ
d= θ−εZ2,θ .

and the result follows by Theorem 1. The induction hypothesis is that (63) is true
for all partitions of the integer n. Let a = (a1, a2, . . . , an+1) be a partition of n+ 1.
Since a1 �= n+ 1 there exist an aj ≥ 1 for some j > 1. Define aj = (aj1, . . . , ajn)
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to be a partition of n+1−j formed by removing one allele with j representatives.
That is, ajj = aj − 1 and aij = ai for all i �= j . Then

(
1 −

n+1∏
m=2

(
Fm

(m− 1)!
)am)

= Fj

(j − 1)!
(

1 −
n∏
m=2

(
Fm

(m− 1)!
)amj)

+ 1 − Fj

(j − 1)! .
(64)

By Theorem 1, as θ → ∞, Fj/(j − 1)! ⇒ 1 and θ1/2−ε(1 −Fj/(j − 1)!)⇒ 0. By
the induction hypothesis, as θ → ∞

θ1/2−ε
(

1 −
n∏
m=2

(
Fm

(m− 1)!
)amj)

⇒ 0.

Therefore the result follows by multiplying equation (64) by θ1/2−ε and taking the
limit as θ → ∞. �

PROOF OF LEMMA 1. Let n1, n2, . . . , nk be the allele frequencies, listed in
descending order, from a sample of size n (with k distinct alleles) drawn from
a population with allele relative frequencies x = (x1, x2, . . .) ∈ ∇; so n1 ≥ n2 ≥
· · · ≥ nk > 0 and n1 + · · · + nk = n. Now write

k∏
i=1

∞∑
j=1

x
ni
j = ∑

(i1,...,ik)∈D
x
n1
i1

· · ·xnkik + ∑
(i1,...,ik)∈R

x
n1
i1

· · ·xnkik ,(65)

where D is the set of distinct indices (i.e., ij �= im for all j �=m) and every vector
in R has at least two entries that are the same. We will now rewrite equation (65)
using the partition structure notation established by Kingman (1977). For a given
partition a, define Ca to be the collection of all partitions formed by coalescing
two or more of the classes associated with a. (For example, suppose n= 5, a1 = 1
and a2 = 2. Think of this as two red balls, two white balls, and one green. If we
coalesce the red and white balls into one class, we form a new partition b, where
b1 = 1, and b4 = 1. Note that b is one of the elements in Ca.)

Recall the multinomial sampling function φa(x) defined by equation (1). It
follows that, for ν ∈ Aa,

∑
(i1,...,ik )∈D

x
n1
i1

· · ·xnkik =
n∏
i=1

ai !
∑
ν∈Aa

x
ν1
1 x

ν2
2 · · · =

∏n
i=1 ai !(i!)ai
n! φa(x)(66)

where the non-zero entries of ν = (ν1, ν2, . . .) are given by nj = νij , and∑
(i1,...,ik)∈R

x
n1
i1

· · ·xnkik = ∑
b∈Ca

lbφb(x),(67)
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where lb is a combinatorial factor that we could in principle determine. Fortunately,
the proof does not depend on knowing the explicit form of this constant.

An alternative way to express the left side of (65) is

n∏
i=1

( ∞∑
j=1

xij

)ai
=

k∏
i=1

∞∑
j=1

x
ni
j .

Equations (66) and (67) give an alternative way to express the right side of equation
(65). Therefore,

n∏
i=1

( ∞∑
j=1

xij

)ai
=
∏n
i=1 ai !(i!)ai
n! φa(x)+

∑
b∈Ca

lbφb(x).(68)

Note that if a1 = n then (68) degenerates to the equation 1=1. So, again, we can
assume that a1 �= n. Evaluate equation (68) at X ∼ PD(θ) and multiply both sides
of the equation by θn−k∏n

i=2((i−1)!)ai and recall that
∑n
i=1 iai = n and

∑n
i=1 ai = k to

get

n∏
i=2

( ∞∑
j=1

θi−1Xij

(i − 1)!
)ai

= θn−k
∏n
i=1 ai !iai
n! φa(X)

+ θn−k∏n
i=2((i − 1)!)ai

∑
b∈Ca

lbφb(X)

= θn

θ(n)

φa(X)
E(φa(X))

+ θn−k∏n
i=2((i − 1)!)ai

∑
b∈Ca

lbφb(X).

(69)

Recall that Fi = ∑∞
j=1 θ

i−1Xij . It is a simple consequence of the Ewens

sampling formula (3) that E(φa(X))=O(θk−n). Since b has fewer than k alleles
we see that θn−kE

(∑
b∈Ca

φb(X)
)

= O(1/θ). Note also that θn/θ(n) − 1 =
O(1/θ). Now take the log of both sides of (69) to get

n∑
i=2

ai log
(

Fi

(i − 1)!
)

= log
(
φa(X)
E(φa(X))

+O(1/θ)
)
.(70)

Note that, for any real number y, we have (y−1)2/y ≤ logy ≤ y−1. Therefore,

0 ≤ y − 1 − logy ≤ (y − 1)2/y.

So the linear approximation to logy is

logy = y − 1 − r(y)(71)
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where 0 ≤ r(y)≤ (y − 1)2/y. Applying (71) to both sides of (70) we get

log
(

Fi

(i − 1)!
)

= Fi

(i − 1)! − 1 − r
(

Fi

(i − 1)!
)

and

log
(
φa(X)
E(φa(X))

+O(1/θ)
)

= φa(X)
E(φa(X))

− 1 +O(1/θ)− r
(
φa(X)
E(φa(X))

)
.

It follows from Theorem 1 that for any ε > 0,

θ1−2εr

(
Fi

(i − 1)!
)

≤ θ−2ε
(√
θ

(
1 − Fi

(i − 1)!
))2/

Fi

(i − 1)! ⇒ 0(72)

as θ → ∞. It follows from Lemma 6 and equation (69) that we have the following
limit in distribution:

lim
θ→∞ θ

1/2−ε
(

1 − φa(X)
E(φa(X))

)
= lim
θ→∞ θ

1/2−ε
(

1 −
n∏
i=2

(
Fi

(i − 1)!
)ai)

= 0

implying

θ1−2εr

(
φa(X)
E(φa(X))

)
⇒ 0(73)

as θ → ∞.
So we can now apply the linear approximations to both sides of of (70) to get

n∑
i=2

ai

(
Fi

(i − 1)! − 1
)

= φa(X)
E(φa(X))

− 1 +O(1/θ)− r
(
φa(X)
E(φa(X))

)

+
n∑
i=1

air

(
Fi

(i − 1)!
)
.

Multiply both sides of the above equation by
√
θ and define Ra(θ) to be

√
θ times

the last three terms on right side of the above equation. That is,

Ra(θ)=O(1/
√
θ)− √

θr

(
φa(X)
E(φa(X))

)
+ √

θ

n∑
i=1

air

(
Fi

(i − 1)!
)
.(74)

Therefore,

n∑
i=2

aiZi,θ = √
θ

n∑
i=2

ai

(
Fi

(i − 1)! − 1
)

= √
θ
φa(X)−E(φa(X))

E(φa(X))
+Ra(θ).

It follows from (72), (73) and (74) that limθ→∞ θ1/2−εRa(θ)= 0. �
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2.3. Proof of Theorem 2. As previously stated, if a1 �= n then equation (8)
follows immediately from Lemma 1 and Theorem 1. We need only show (9). Note
that

φa1(X)= 1 − ∑
a �=a1

φa(X).

Therefore

φa1(X)−E
(
φa1(X)

)= E
( ∑

a �=a1

φa(X)
)

− ∑
a �=a1

φa(X)

= E(φa2(X)
)− φa2(X)+

∑
a �=a1,a2

(
E
(
φa(X)

)− φa(X)
)
.

It follows from equation (8) that if
∑
ai = |a| then

θn−|a|(φa(X)−E(φa(X)
))⇒ 0(75)

as θ → ∞. Note that if a �= a1,a2 then n− |a| ≥ 2. Note also that ESF(θ,a2) =
O(θ−3/2). Therefore, it follows from equation (75) that

∑
a �=a1,a2

φa(X)−E(φa(X))
E(φa2(X))

⇒ 0(76)

as θ → ∞. This gives the limit in distribution

lim
θ→∞

φa1(X)−E(φa1(X))
E(φa2(X))

= lim
θ→∞

E(φa2(X))− φa2(X)
E(φa2(X))

= −Z2
d=Z2. �
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