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ASYMPTOTIC ANALYSIS AND EXTINCTION IN
A STOCHASTIC LOTKA–VOLTERRA MODEL

By F. C. Klebaner1 and R. Liptser1

University of Melbourne and Tel Aviv University

A stochastic Lotka–Volterra model is formulated by using the semi-
martingale approach. The large deviation principle is established, and is
used to obtain a bound for the asymptotics of the time to extinction of prey
population. The bound is given in terms of past-dependent ODEs closely
related to the dynamics of the deterministic Lotka–Volterra model.

1. Introduction. Main result.

1.1. Deterministic Lotka–Volterra system. The Lotka–Volterra system of
ordinary differential equations [Lotka (1925) and Volterra (1926)],

ẋt = �xt − �xtyt�

ẏt = �xtyt − �yt�
(1.1)

with positive x0� y0 and positive parameters �� �� �� � describes a behavior of
a predator–prey system in terms of the prey and predator “intensities” xt and
yt. Here, � is the rate of increase of prey in the absence of predator, � is a rate
of decrease of predator in the absence of prey while the rate of decrease in
prey is proportional to the number of predators �yt, and similarly the rate of
increase in predator is proportional to the number of prey �xt [see, e.g., May
(1976)]. The system (1.1) is one of the simplest nonlinear systems.
Since the population numbers are discrete, a description of the predator–

prey model in terms of continuous intensities xt� yt is based implicitly on
a natural assumption that the numbers of both populations are large, and
the intensities are obtained by a normalization of population numbers by a
large parameterK. Thus (1.1) is an approximation, an asymptotic description
of the interaction between the predator and prey. Although this model may
capture some essential elements in that interaction, it is not suitable to answer
questions of extinction of populations, as the extinction never occurs in the
deterministic model; see Figure 1 for the pair xt� yt in the phase plane.
We introduce here a probabilistic model which has as its limit the determin-

istic Lotka–Volterra model, evolves in continuous time according to the same
local interactions and allows evaluating asymptotically the time for extinction
of prey species.
There is a vast amount of literature on the Lotka–Volterra model, and a his-

tory of research on stochastic perturbations of this system both exact, approx-
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Fig. 1. r�x�y� when � = 5, � = 1, � = 5, � = 1.

imate and numerical; see, for example, Goel, Maitra and Montroll (1971),
Turelli (1977), Kesten and Ogura (1981), Hitchcock (1986), Watson (1987),
Roozen (1989) and references therein. We approach the problem of extinc-
tion via the theory of large deviations, thus obtaining new theoretical results,
which previously were studied numerically.
The system (1.1) possesses the first integral which is a closed orbit in the

first quadrant of phase plane x�y. It is given by

r�x�y� = cx− � log x+ �y− � log y+ r0�(1.2)

where r0 is an arbitrary constant. It depends only on the initial points �x0� y0�
(see Figure 1).

1.2. Stochastic Lotka–Volterra system. In this paper, we introduce and
analyze a probabilistic model of prey–predator population related to the clas-
sical Lotka–Volterra equations.
Let Xt, and Yt be numbers of prey and predators at time t. We start with

simple balance equations for prey–predator populations

Xt =X0 + π ′t − π ′′t �

Yt = Y0 + π̂ ′t − π̂ ′′t
(1.3)

where:

π ′t is a number of prey born up to time t.
π ′′t is a number of prey killed up to time t.
π̂ ′t is a number of predators born up to time t.
π̂ ′t is a number of predators died up to time t.
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We assume that π ′t� π
′′
t � π̂

′
t� π̂

′′
t , are double Poisson processes with the following

random rates: �Xt,
�
K
XtYt,

�
K
XtYt, �Yt, respectively and disjoint jumps [the

latter assumption reflects the fact that in a short time interval �t� t + δt�
only one prey might be born and only one might be killed, only one predator
might be born and only one might die, with the above-mentioned intensities;
moreover all these events are disjoint in time].
The existence of such a model is not obvious; therefore in Section 2 we give

its detailed probabilistic derivation.
Assume X0 = Kx0 and Y0 = Kx0 for some fixed positive x0� y0 and a

large integer parameter K. Introduce the normalized by K prey and predator
populations

xK
t =

Xt

K
and yK

t =
Yt

K
�

In terms of xK
t and yK

t the introduced intensities for double Poisson processes
can be written as

K
(
�xK

t � �x
K
t y

K
t � �x

K
t y

K
t � �y

K
t

)
�

We justify the choice of the probabilistic model given in (1.3) by Theorem 2
which states that the solution of the Lotka–Volterra equations is the limit (in
probability) for �xK

t � y
K
t �,(
xK
t � y

K
t

)→ �xt� yt�� K→∞�

Such an approximation is known as the fluid approximation. Results on the
fluid approximation for Markov discontinuous processes can be found in Kurtz
(1981) and are adapted to the case considered here, despite that in our case
the two intensities do not satisfy the linear growth condition in xK

t � y
K
t .

1.3. Fomulation of the problem. Here, we are interested in evaluation of
the prey extinction, namely, the asymptotics in K of

P
(
TK
ext ≤ T� inf

t≤T
yK
t > 0

)
= 0�

where TK
ext = inf�t > 0
 xK

t = 0� is the prey extinction time. Unfortunately,
the fluid approximation does not provide much information on the extinction
time TK

ext. Since for x0 > 0, y0 > 0 the “fluid limit” �xt� yt� remains positive
for any t > 0 (see Figure l), we have

lim
K→∞

P
(
TK
ext ≤ T� inf

t≤T
yK
t > 0

)
= 0�(1.4)

A historical comment onTK
ext of evaluation is due. There is a large amount of

literature on the subject of extinction mostly using some simplification of the
original problem, such as linearization, and numerical studies. For a somewhat
different model with a state-dependent noise, Hitchcock (1986) showed that
ultimate extinction is certain, and derived exact probabilities for the predators
to become eventually extinct when the prey birth rate is zero. A power series
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approximation for the extinction probabilities as well as the number of steps
to extinction in special cases were given. Numerical studies of probabilities of
extinction were also done in Smith and Mead (1979, 1980), and Watson (1987)
where a rough approximation (based on the normal approximation) was also
given.
Due to (1.4), the rate of convergence in (1.4) is of interest, and is the subject

of this paper. Neither fluid nor even diffusion approximations for the stretched
differences

√
K
(
xK
t − xt

)
�
√
K
(
yK
t − yt

)
are effective for such analysis.
Freidlin (1998), Freidlin and Weber (1998) carried out an effective asymp-

totic analysis for randomly perturbed oscillators and other Hamiltonian
systems. Their approach is based on the approximation of the first integral
process [in our case r�xK

t � y
K
t �] by a scalar diffusion. However, in our case this

approach does not seem to be of use, since at the time of extinction the first
integral process r�xK

t � y
K
t � explodes; see (1.2).

A large deviation (LD) type evaluation yields results in our case. The ran-
dom process �xK

t � y
K
t � is a vector semimartingale, so that it appears that one

can have the large deviation principle (LDP) by using a general results from
Pukhaskii (1999). However, the method from Pukhaskii does not serve the
model studied here, since the intensities of two double Poisson processes are
of quadratic form in xK

t � y
K
t . For the same reason we could not find adequate

methods for proving the (LDP) in the literature, for example, Wentzell (1989),
Dupuis and Ellis (1997), Freidlin and Wentzel (1984), Dembo and Zeitouni
(1993).
It is well known that the main helpful tool in verification of the LDP with

“unbounded intensities,” satisfying a linear growth condition, is the exponen-
tial negligibility for sets �supt≤T xK

t ≥ C�, �supt≤T yK
t ≥ C�, for large K, C

and every T > 0. In our case two from four intensities do not satisfy the lin-
ear growth condition. Nevertheless, specifics of the model and the fact that
xK
t � y

K
t are nonnegative processes with bounded jumps allow establishing the

above-mentioned exponential negligibility (Lemma 2) and deriving the LDP
similarly to Liptser and Pukhalskii (1992).
Although in principle the LDP allows finding the logarithmic rate with

norming 1
K
for

P
(
TK
ext ≤ T� inf

t≤T
yK
t > 0

)
�

a realistic procedure for determining the required rate depends heavily on the
structure of the LDP rate function. In our case we deal with purely discontin-
uous process and the rate function is extremely inconvenient for this purpose;
therefore, we restrict ourselves to finding only a lower bound for the required
rate.
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Fig. 2. Trajectory that attains the lower bound. Parameters are the same as for Figure 1.

1.4. Main result. To formulate the main result, we need to introduce a
system of past-dependent differential equations parameterized by q > 0,

φ̇
q
t = φ

q
t

(
�− �ψ

q
t

)− qe−
∫ t
0 ��−�ψ

q
t �ds

√
�φ

q
t ψ

q
t �

ψ̇
q
t = ψ

q
t

(
�φ

q
t − ���

(1.5)

subject to the initial condition ψ
q
0 = y0, φ

q
0 = x0, and denote

Tq = inf�t > 0
 φq
t = 0��(1.6)

Theorem 1. For every T > 0,

lim inf
K→∞

1
K

log P
(
TK
ext ≤ T� inf

t≤T
yK
t > 0

)
≥ − x20

2
∫ Tq∗
0 e−2

∫ t
0 ��−�ψ

q∗
t �ds�φq∗

t ψ
q∗
t dt

�

where Tq∗ is associated with the smallest q = q∗ for which Tq∗ ≤ T.

1.5. Example. We give here an example with � = 5, � = 1, � = 5, � = 1 and
T = 15. The trajectories for φq

t �ψ
q
t , on which the lower bound is attainable, are

given in the phase plane (see Figure 2). Parameter q∗ ≈ 0�0023 and Tq∗ ≈ 15,
while the value of the rate function defined later in (4.2) is J∗�φq∗� ψq∗� ≈
0�0018.

1.6. Remark. We can show for a stochastic Lotka–Volterra model with a
different noise structure (much simpler and somewhat artificial) the exact
asymptotic relation in Theorem 1 (rather than a lower bound), as well as that
the minimum of the rate function in the LDP occurs on the solution similar
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to (1.5). Therefore, loosely speaking, (1.5) (see Figure 2) gives a likely path to
extinction in the stochastic Lotka–Volterra model.
The article is organized as follows. In Section 2 we give description of the

stochastic model, in Section 3 we show the fluid approximation, in Section 4
we formulate the LDP and prove the main result. The verification of the LDP,
which is quite technical, is done in the Appendix.

2. The model: description of stochastic dynamics.

2.1. Existence. In this section, we show that the random process �Xt�Yt�
is well defined by (1.3). To this end, let us introduce four independent
sequences of processes,

��
t =

(
��

t �1����
t �2�� � � �

)
�

�
�/K
t = (

�
�/K
t �1����/K

t �2�� � � �)�
�

�/K
t = (

�
�/K
t �1����/K

t �2�� � � �
)
�

��
t =

(
��

t �1����
t �2�� � � �

)
�

Each of them is a sequence of i.i.d. Poisson processes characterized by rates
�, �

K
, �

K
, �, respectively. Define the processes �Xt�Yt� by the system of Itô

equations

Xt=X0 +
∫ t

0

∑
n≥1

I�Xs− ≥ n�d��
s�n� −

∫ t

0

∑
n≥1

I�Xs−Ys− ≥ n�d��/K
s �n��

Yt=Y0 +
∫ t

0

∑
n≥1

I�Xs−Ys− ≥ n�d��/K
s �n� −

∫ t

0

∑
n≥1

I�Ys− ≥ n�d��
s�n��

(2.1)

governed by these Poisson processes, which obviously has a unique solution
on the time interval �0�T∞�, where

T∞ = inf�t > 0
 Xt ∨Yt = ∞��
The double Poisson processes involved in (1.3) are obtained then in the follow-
ing way:

π ′t=
∫ t

0

∑
n≥1

I�Xs− ≥ n�d��
s�n��

π ′′t =
∫ t

0

∑
n≥1

I�Xs−Ys− ≥ n�d��/K
s �n��

π̂ ′t=
∫ t

0

∑
n≥1

I�Xs−Ys− ≥ n�d��/K
s �n��

π̂ ′′t =
∫ t

0

∑
n≥1

I�Ys− ≥ n�d��
s�n��

(2.2)
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Let us show that π ′t, π
′′
t , π̂

′
t, π̂

′′
t defined in �2�2� satisfy the required prop-

erties. Since all Poisson processes are independent, their jumps are disjoint,
so that the jumps of π ′t, π

′′
t , π̂

′
t, π̂

′′
t are disjoint as well. To describe structure

of intensities for π ′t, π
′′
t , π̂

′
t, π̂

′′
t , let us introduce a stochastic basis ���� �F =

��t�t≥0�P� supplied by the filtration F generated by all Poisson processes and
satisfying the general conditions. Then, obviously, the random process

A′t =
∫ t

0

∑
n≥1

I�Xs ≥ n��ds

is the compensator of π ′t. On the other hand, since Xs is an integer-valued
random variable, we have

∑
n≥1 I�Xs ≥ n� = Xs; that is, A′t =

∫ t
0 �Xs ds and

the intensity of π ′t is �Xt. Analogously, others compensators are seen to be

A′′t =
∫ t

0

�

K
XsYs ds� Â′t =

∫ t

0

�

K
XsYs ds� Â′′t =

∫ t

0
�Ys ds�

and thus all other intensities have the required form.
We now show that the process �Xt�Yt�t≥0 does not explode.
Lemma 1.

P�T∞ = ∞� = 1�

Proof. Set TX
n = inf�t > 0
 Xt ≥ n�, n ≥ 1 and denote by TX

∞ =
limn→∞TX

n . Due to (2.1) it holds that

EXt∧TX
n
≤X0 +

∫ t

0
�EXs∧TX

n
ds

and so, by the Gronwall–Bellman inequalityEXTX
n ∧T ≤X0e

�T for everyT > 0.
Hence by the Fatou lemma EXTX∞∧T ≤X0e

�T. Consequently,

P�TX
∞ ≤ T� = 0 ∀T > 0�

Set TY
� = inf�t
 Yt ≥ ��, � ≥ 1 and denote by TY

∞ = lim�→∞TY
� . Due to (2.1)

it holds that

EYt∧TX
n ∧TY

t
≤ Y0 +

∫ t

0

�

K
E�Xs∧TX

n ∧TY
�
Ys∧TX

n ∧TY
�
�ds

≤ Y0 +
∫ t

0

�

K
nEYs∧TX

n ∧TY
�
ds�

Hence, by the Gronwall–Bellman inequality for every T>0 we have
EYT∧Tx

n∧Ty
�
≤ Y0e

�nT and by the Fatou lemma,

EYT∧TX
n ∧TY∞ ≤ Y0e

��/K�nT� n ≥ 1�

Consequently, P�TY
∞ ≤ TX

n ∧ T� = 0� ∀ T > 0, n ≥ 1 and, since TX
n ↗ ∞,

n→∞, we obtain

P�TY
∞ ≤ T� = 0 ∀ T > 0�

Since T∞ = TX
∞ ∧ TY

∞, P�T∞ ≤ T� = P�TX
∞ ≤ T� + P�TY

∞ ≤ T�, and we
have P�T∞ ≤ T� = 0 for any T > 0. ✷
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Corollary 1. For Tn = inf�t
 Xt ∨Yt ≥ n�,

lim
n→∞P�Tn ≤ T� = 0 ∀ T > 0�

The above description of the model allows claiming that �Xt�Yt� is a
continuous-time pure jump Markov process with jumps of two possible sizes
in both coordinates: “1” and “−1” and infinitesimal transition probabilities (as
δt→ 0�,

P�Xt+δt =Xt + 1�Xt�Yt� = �Xtδt+ o�δt��

P�Xt+δt =Xt − 1�Xt�Yt� =
�

K
XtYtδt+ o�δt��

P�Yt+δt = Yt + 1�Xt�Yt� =
�

K
XtYtδt+ o�δt��

P�Yt+δt = Yt − 1�Xt�Yt� = �Ytδt+ o�δt��

2.2. Semimartingale description for �xK
t � y

K
t �. Let A′t, A

′′
t , Â

′
t, Â

′′
t be the

compensators of π ′t, π
′′
t , π̂

′
t, π̂

′′
t defined above. Introduce martingales

M′
t = π ′t −A′t� M′′

t = π ′′t −A′′t � M̂′
t = π̂ ′t − Â′t� M̂′′

t = π̂ ′′t − Â′′t �

and also normalized martingales

mK
t =

M′
t −M′′

t

K
and m̂K

t =
M̂′

t − M̂′′
t

K
�(2.3)

Then, from (1.3) it follows that the process �xK
t � y

K
t � admits the semimartin-

gale decomposition

xK
t = x0 +

∫ t

0

[
�xK

s − �Ks x
K
s y

K
s

]
ds+mK

t �(2.4)

yK
t = y0 +

∫ t

0

[
�xK

s y
K
s − �yK

s

]
ds+ m̂K

t �(2.5)

which is a stochastic analogue (in integral form) of (1.1)
In the sequel we need quadratic variations of the martingales in (2.4) and

(2.5). It is well known [see, e.g., Liptser and Shiryaev (1998), Chapter 18 or
Klebaner (1998), Theorem 9.3] that all martingales are locally square inte-
grable and possess the predictable quadratic variations

�M′�t = A′t� �M′′�t = A′′t and �M̂′�t = Â′t� �M̂′′�t = Â′′t �(2.6)

and zero mutual predictable quadratic variations �M′�M′′�t≡0� � � �
�M̂′� M̂′′�t ≡ 0, implied by the disjointness of jumps for π ′t, π

′′
t , π̂

′
t, π̂

′′
t .
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Hence

�mK� m̂K�t≡0�

�mK�t=
1
K

∫ t

0

(
�xK

s + �xK
s y

K
s

)
ds�

�m̂K�t=
1
K

∫ t

0

(
�xK

s y
K
s + �yK

s

)
ds�

(2.7)

2.3. Stochastic exponential and cumulant function. In the large deviation
theory we use stochastic exponential, and to this end the following represen-
tation is more convenient:

xK
t =x0 =

π ′t
K
− π ′′t

K
�

yK
t =y0 =

π̂ ′t
K
− π̂ ′′t

K
�

(2.8)

π ′t
K
, π ′′t

K
, π̂ ′t

K
, π̂ ′′t

K
are counting process with jumps of the unit size K−1 and com-

pensators A′t
K
, A′′t

K
, Â′t

K
, Â′′t

K
, respectively. With every pair �π ′t

K
, A′t

K
�, � � �, � π̂ ′′t

K
, Â′′t

K
�

and a predictable process ν�t� such that for any T > 0 and K large enough,∫ T

0
e�ν�t��/K

(
xK
t + yK

t + xK
t y

K
t

)
dt <∞� P-a.s.

we associate nonnegative processes

z′t
( ν

K

)
= exp

(∫ t

0

ν�s�
K

dπ ′s − �eν�s�/K − 1�dA′s
)
�

������������������������������������������������������������������������(2.9)

ẑ′′t
( ν

K

)
= exp

(∫ t

0

ν�s�
K

dπ̂ ′′s − �eν�s�/K − 1�dÂ′s
)
�

Applying the Itô formula to z′t� νK�, we find

dz′t
( ν

K

)
= z′t−

( ν

K

)�eν�t�/K − 1�d�π ′t −A′t��

that is, z′t� νK� is a local martingale [analogously z′′t � νK�, ẑ′t� νK�, ẑ′′t � νK� are local
martingales as well]. All these martingales are nonnegatives, so that they
are supermartingales [see Problem 1.4.4 in Liptser and Shiryayev (1989) or
Theorem 7.20 in Klebaner (1998)]. Hence for any Markov time τ we have
Ez′τ� νK� ≤ 1� � � � �Eẑ′′t � νK� ≤ 1.
Introduce also (for predictable processes λ and µ)

zKt �λ�µ� = z′t
( λ

K

)
z′′t
(
− λ

K

)
ẑ′t
( µ

K

)
ẑ′′t
(
− µ

K

)
�(2.10)
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Applying the Itô formula to zKt �λ�µ� and taking into account that jumps of
π ′t, π

′′
t , π̂

′
t, π̂

′′
t are disjoint we find

dZK
t �λ�µ� = zKt−�λ�µ�

{
�eλ�t�/K − 1�d�π ′t −A′t� + �e�λ�t�/K� − 1�d�π ′′t −A′′t �

+ �eµ�t�/K − 1�d�π̂ ′t − Â′t� + �e�µ�t�/K� − 1�d�π̂ ′′t − Â′′t �
}
�

so that ZK
t �λ�µ� is a positive local martingale as well as a supermartingale

with

EZK
τ �λ�µ� ≤ 1

for any Markov time τ.
Set

Gφ�λ�u� v�=λ��− �v�u+ �eλ − 1− λ��u+ �e−λ − 1+ λ��uv�
Gψ�µ�u� v�=µ��u− ��v+ �eµ − 1− µ��uv+ �e−µ − 1+ µ��v�

(2.11)

and define the so-called cumulant function,

G�λ�µ�u� v� = Gφ�λ�u� v� +Gψ�µ�u� v��(2.12)

Using the cumulant function, (2.10) can be written as

ZK
t �λ�µ�= exp

{∫ t

0

(
λ�s�dxK

s +
∫ t

0
µ�s�dyK

s

)}
× exp

{
−
∫ t

0
KG

(
λ�s�
K

�
µ�s�
K

�xK
s � y

K
s

)
ds

}
�

(2.13)

Hence an equivalent multiplicative decomposition holds for the exponential
semimartingale

exp
(∫ t

0

(
λ�s�dxK

s + µ�s�dyK
s

))
= ZK

t �λ�µ�VK
t �λ�µ�

with the positive local martingale ZK
t �λ�µ� and a positive predictable process

VK
t �λ�µ� = exp

{∫ t

0
KG

(
λ�s�
K

�
µ�s�
K

�xK
s � y

K
s

)
ds

}
�

3. Fluid approximation. In this section we justify the choice of the
stochastic dynamics by showing that the Lotka–Volterra equations describe
a limit (fluid approximation) for the family(

xK
t � y

K
t

)
� K↗∞�

In what follows �xt� yt� is a solution of the Lotka–Volterra equation (1.1).

Theorem 2. For any T > 0 and η > 0,

lim
K→∞

P

(
sup
t≤T

(
�xK

t − xt� + �yK
t − yt�

)
> η

)
= 0�
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Proof. Set

TK
n = inf

{
t
 xK

t ∨ yK
t ≥ n

}
�(3.1)

Since TK
n = TnK (see Corollary 1 to Lemma 1),

lim
n→∞ lim sup

K→∞
P
(
TK

n ≤ T
) = 0�(3.2)

Hence, it suffices to show that for every n ≥ 1,

lim
K→∞

P

(
sup

t≤TK
n ∧T

(
�xK

t − xt� + �yK
t − yt�

)
> η

)
= 0�(3.3)

Since supt≤TK
n ∧T�xK

t ∨yK
t � ≤ n+1, there is a constant Ln, depending on n and

T, such that for t ≤ TK
n ∧T,∣∣(�xK

t − �xK
t y

K
t

)− (
�xt − �xtyt

)∣∣ ≤ Ln

(∣∣xK
t − xt

∣∣+ ∣∣yK
t − yt

∣∣)�∣∣(�xK
t y

K
t − �yK

t

)− (
�xtyt − �yt

)∣∣ ≤ Ln

(∣∣xK
t − xt

∣∣+ ∣∣yK
t − yt

∣∣)�
These inequalities and (1.1), (2.4) imply∣∣xK

TK
n ∧T − xTK

n ∧T
∣∣+ ∣∣yK

TK
n ∧T − yTK

n ∧T
∣∣

≤ 2Ln

∫ t

0

(∣∣xK
s∧TK

n
− xs∧TK

n

∣∣+ ∣∣yK
s∧TK

n
− ys∧TK

n

∣∣)ds
+ sup

t≤TK
n ∧T

∣∣mK
t

∣∣+ sup
t≤TK

n ∧T

∣∣m̂K
t

∣∣�
Now, by the Gronwall–Bellman inequality we find

sup
t≤TK

n ∧T

(
�xK

t − xt� + �yK
t − yt�

)
≤ e2LnT

(
sup

t≤TK
n ∧T
�mK

t � + sup
t≤TK

n ∧T
�m̂K

t �
)
�

Therefore (3.3) holds, if both supt≤TK
n ∧T �mK

t � and supt≤TK
n ∧T �m̂K

t � converge
in probability to zero as K→∞. By the Doob inequality for martingales (see,
e.g., Theorem 1.9.1(3) and Problem 1.9.2 in Liptser and Shiryayev (1989) the
required convergence takes place provided that both �mK�TK

n ∧T and �m̂K�TK
n ∧T

converge to zero in probability as K → ∞. But by (2.7) �mK�TK
n ∧T ≤ const�

K
,

�m̂K�TK
n ∧T ≤ const�

K
, and the proof is complete. ✷

4. Formulation of the LDP and the proof of Theorem 1.

4.1. LDP. The random process �xK
t � y

K
t �t≥0 has nonnegative paths from

the Skorokhod space �2 = �2
�0�∞�. Since we are going to apply the LDP

for asymptotic analysis of the extinction time on a finite interval �0�T�, we
examine the LDP in �2

�0�T�. Because of the fluid approximation, the limit for
�xK

t � y
K
t �t≤T is �xt� yt�t≤T with continuous differentiable functions xt and yt.
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This fact allows examining the LDP in the metric space ��2
�0�T�� 0� supplied

by the uniform metric 0
 �x′� x′′ ∈ �2
�0�T�� and

0�x′� x′′� =
2∑

j=1
sup
t≤T
�x′t�j� − x′′t �j���(4.1)

More exactly, since xK
t ≥ 0, yK

t ≥ 0 and

τKx = inf�t > 0
 xK
t = 0�� τKy = inf�t > 0
 yK

t = 0�
are also absorption points for processes xK

t and yK
t , respectively, let us intro-

duce a subspace �2�+
�0�T� of nonnegative function from �2

�0�T�. It is obvious that

�2�+
�0�T� is a closed subset of �

2
�0�T� in the metric 0.

Therefore we formulate the LDP in metric space ��2�+
�0�T�� 0�.

Theorem 3. For every T > 0, the family �xK
t � y

K
t �t≤T, K ↗ ∞ obeys the

LDP in the metric space ��2�+
�0�T�� 0� with the rate of speed 1

K
and the (good)

rate function

JT�φ�ψ�=


∫ T

0
sup
λ�µ

(
λφ̇t+µψ̇t−G�λ�µ�φt�ψt�

)
dt� �dφt dt�dψt dt

φ0=x0�ψ0=y0 ,

∞� otherwise.

(4.2)

The proof of the LDP is given in the Appendix.

4.2. Proof of Theorem 1. Denote by 2o the interior of the set{
�φ�ψ� ∈ �2�+

�0�T�
 inf
t≤T

φt = 0� inf
t≤T

ψt > 0
}
�

Due to the LDP,

lim inf
K→∞

1
K

logP
(
inf
t≤T

xK
t = 0� inf

t≤T
yK
t > 0

)
≥ − inf

�φ�ψ�∈2φ
JT�φ�ψ��(4.3)

It is clear that

inf
�φ�ψ�∈2o

JT�φ�ψ� ≤ inf
�φ�ψ�∈2o

JT�φ�ψ���

where 2φ is a subset of 2o of absolutely continuous functions φt, ψt with
φ0 = x0, ψ0 = y0 and for any φ = �φt�t≤T,

ψ̇t = ψt��φt − ���(4.4)

To emphasize the fact that ψt is a solution of (4.4) we use the notation ψ
φ
t .

The function ψ
φ
t remains positive for any finite time interval and moreover,

sup
λ�µ

{
λφ̇t + µψ̇

φ
t −G�λ�µ�φt�ψ

φ
t �
} = sup

λ

{
λφ̇t −Gφ�λ�φt�ψ

φ
t �
}

= sup
λ

{
λ�φ̇t −φt��− �ψ

φ
t �� − �eλ − 1− λ��φt − �e−λ − 1+ λ��φtψ

φ
t

}
�
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Taking into account that functions �φt�’s from 2φ have to be absorbed on �0�T�,
we choose a subset 2φ<0 of 2

φ with functions φt’s satisfying the property

φ̇t −φt��− �ψ
φ
t � < 0�

In this case, we claim

sup
λ∈�

{
λ�φ̇t −φt��− �ψ

φ
t �� − �eλ − 1− λ��φt − �e−λ − 1+ λ��φtψ

φ
t

}
= sup

λ<0

{
λ�φ̇t −φt��− �ψ

φ
t �� − �eλ − 1− λ��φt − �e−λ − 1+ λ��φtψ

φ
t

}
≤ sup

λ<0

{
λ�φ̇t −φt��− �ψ

φ
t �� − �e−λ − 1+ λ��φtψ

φ
t

}
≤ sup

λ<0

{
λ�φ̇t −φt��− �ψ

φ
t �� −

λ2

2
�φtψ

φ
t

}

=
 �φ̇t −φt��− �ψ

φ
t ��2

2�φtψ
φ
t

� φt > 0 (excluding absorption point of φt�,
0� φt = 0.

For a square integrable on �0�T� and nonnegative function u�t� introduce a
system of differential euations

φ̇t=φt��− �ψt� − u�t�
√
�φtψ

φ
t �

ψ̇
φ
t =ψ

φ
t ��φt − ���

(4.5)

subject to φ0 = x0, ψ
φ
0 = y0. We use now an obvious inequality

inf
�φ�ψ�∈2o

JT�φ�ψ� ≤ inf
u�t�
 inf t≤T φt=0

1
2

∫ T

0
u2�t�dt�

Thus we get

lim inf
K→∞

1
K

log P
(
inf
t≤T

xK
t = 0� inf

t≤T
yK
t > 0

)
≥ − inf

u�t�
 inf t≤T φt=0
1
2

∫ T

0
u2�t�dt�

(4.6)

We now specify the infu�t�
 inf t≤T φt=0
1
2

∫ T
0 u2�t�dt.

Set T′ = inf�t
 φt = 0� and show that u�t� exists so that T′ ≤ T. Since
φt ≥ 0, it holds ψφ

t ≥ y0e
−�T and thereby

φ̇t ≤ �
√
φt

(√
φt − u�t�

√
�e−�T

�

)
�

With r =
√
�e−�T
� u�t� ≡ � >

√
x0
r

and p��� = −��√x0 − �r� we have
φ̇t ≤ −p���

√
φt�
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that is,
√
φt ≤ √x0 − p���t. Now, for any T′ > 0, the choice p��� =

√
x0
T′

guarantees T′ ≤ T.
If some u�t� is chosen and associated with T′ < T, it is obvious that u�t� ≡ 0

for t ∈ �T′�T�. Then, particularly, in (4.6) the integral
∫ T
0 u2�t�dt is replaced

by
∫ T′

0 u2�t�dt. On the other hand, due to φT′ = 0 we have

0 = e
∫T′
0 ��−�ψ

φ
s �ds

(
x0 −

∫ T′

0
e−

∫ t
0 ��−�ψ

φ
s �dsu�t�

√
�φtψ

φ
t dt

)
�

that is, x0 =
∫ T′

0 e−
∫ t
0 ��−�ψ

φ
s �dsu�t�

√
�φtψ

φ
t dt. Further, the Cauchy–Schwarz

inequality implies

∫ T′

0
u2�t�dt ≥ x20∫ T′

0 e−2
∫ t
0 ��−�ψ

φ
s �ds�φtψ

φ
t dt

�(4.7)

Take any positive q and u�t� = qe−
∫ t
0 ��−�ψ

φ
s �ds

√
�φtψ

φ
t then the inequality given

in (4.7) becomes an equality, and only for

q′ = x0∫ T′
0 e−2

∫ t
0 ��−�ψ

φ
s �ds�φtψ

φ
t dt

�(4.8)

we have φT′ = 0.
Let �q�Tq� be a pair such that (1.6) holds with q′ and T′ replaced by q and

Tq respectively and Tq ≤ T. Denote by φ
q
t and ψ

q
t the solution of (1.5) on

�0�Tq� corresponding to the pair �q�Tq�. Then we get the lower bound

lim inf
K→∞

1
K

log P
(
TK
ext ≤ T� inf

t≤T
yK
t > 0

)
≥ − inf x20

2
∫ Tq

0 e−2
∫ t
0 ��−�ψ

φ
s �dsu�t��φq

t ψ
q
t dt

�

where “inf ” is taken over all Tq ≤ T .
The final step of the proof uses the property

q′ < q′′ !⇒ x20∫ Tq′

0 e−2
∫ t
0 ��−�ψ

q′
s �ds�φq′

t ψ
q′ dt

<
x20∫ Tq′′

0 e−2
∫ t
0 ��−�ψ

q′′
s �ds�φq′′

t ψ
q′′
t dt

�

implied by (4.8). Consequently q has to be chosen as small as possible with
Tq ≤ T. ✷



ANALYSIS AND EXTINCTION IN LOTKA–VOLTERRA MODEL 1277

APPENDIX

Verification of LDP.

A.1. Preliminaries. We will follow here Liptser and Pukhalskii (1992). By
their Theorem 1.3, the family

�xK
t � y

K
t �t≤K�K↗∞

obeys the LDP in the metric space ��2
�0�T�� 0� with the rate of speed 1

K
and the

rate function JT given in (4.2) provided that this family is C-exponentially
tight and obeys C-local LDP. Due to Pukhalskii (1991), adapted to the case
considered, C-exponential tightness holds, if

lim
C→∞

lim sup
K→∞

1
K

logP
(
sup
t≤T

xK
t + sup

t≤T
yK
t > C

)
= −∞�(A.1)

lim
δ→0

lim sup
K→∞

1
K

log supP
(
sup
t≤δ

(∣∣xK
t+τ − xK

τ

∣∣+ sup
t≤δ

∣∣yK
t+τ − yK

τ

∣∣) > η

)
= −∞

(A.2)

for any η > 0, where “sup” is taken over all stopping times τ ≤ T. C local LDP
is valid, if for any �φ�ψ� ∈ �2

�0�T�

lim sup
δ→0

lim sup
K→∞

1
K

logP�0��xK�yK�� �φ�ψ�� ≤ δ� ≤ −JT�φ�ψ��(A.3)

lim inf
δ→0

lim inf
K→∞

1
K

logP�0��xK�yK�� �φ�ψ�� ≤ δ� ≥ −JT�φ�ψ��(A.4)

Since the linear growth condition for intensities of counting processes is
lost, a verification of (A.1) requires a different technique from the one used in
Liptser and Pukhalskii (1992). We verify (A.1) in the next subsection.

A.2. Exponential negligibility of supt≤T xK
t , supt≤T yK

t .

Lemma 2. For every T > 0,

lim
L→∞

lim sup
K→∞

1
K

logP
(
sup
t≤T

xK
t ≥ L

)
= −∞�

lim
C→∞

lim sup
K→∞

1
K

logP
(
sup
t≤T

yK
t ≥ C

)
= −∞�
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Proof. Recall that xK
t = x0 + π ′t−π ′′t

K
and M′

t = π ′t − A′t; that is, dx
K
t ≤

dπ ′t
K
= �xK

t dt + dM′
t

K
and so xK

t ≤ e�t�x0 + 1
K

∫ t
0 e
−�s dM′

s�. Consequently, the
first statement of the lemma is valid provided that

lim
L→∞

lim sup
K→∞

1
K

logP
(
sup
t≤T

∫ t

0
e−�s dM′

s ≥KL

)
= −∞�

It is clear that with σK
L = inf�t
 ∫ t

0 e
−�s dM′

s ≥KL� it suffices to establish

lim
L→∞

lim sup
K→∞

1
K

logP
(
σK
L ≤ T

)
= −∞�(A.5)

To this end, with r > 0 and ν�s� = re−�s we define z′t�ν� by the first formula in
(2.9) with ν�s�

K
replaced by ν�s� and use an obvious modification of this formula,

z′t�ν� = exp
(∫ t

0
ν�s�dM′

s −
∫ t

0
�eν�s� − 1− ν�s��dA′s

)
�(A.6)

Recall that z′t�ν� is a supermartingale with Ez′
σK
L ∧T
�ν� ≤ 1. We use this

inequality for the next one,

1 ≥ Ez′
σK
L ∧T
�ν�I(σK

L ≥ T
)
�(A.7)

We sharpen that inequality, by evaluating below z′
σK
L ∧T
�ν� on the set �σK

L ≤ T�,

log z′
σK
L ∧T
�ν� = r

∫ σK
L ∧T

0
e−�s dM′

s −
∫ σK

L ∧T

0

(
ere

−�s − 1− re−�s
)
K�xK

s ds

≥ rKL−
∫ σK

L ∧T

0
�er − 1− r�K�xK

s ds

≥ rKL−
∫ T

0
�er − 1− r�K�xK

s∧σK
L
ds�

To continue this evaluation we find an upper bound for xK
s∧σK

L

. Since

∫ σK
L ∧T

0
e−�sdM′s ≤KL+ 1

(recall that jumps of
∫ t
0 e
−�sdM′s is bounded by 1), we claim

xK
σK
L ∧t
≤ e�t�x0 + 1+L��

Hence, with p = e�T�x0+1+L�
L

, we arrive at the lower bound

log z′
σK
L ∧T
�λ� ≥KL�r− �er − 1− r��T′p��

It is clear that r◦ > 0 can be chosen so that r◦ − �er◦ −1−r◦��Tp 
= � > 0 and
therefore log z′

σK
L ∧T
�λ◦� ≥KL� �� > 0�.
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Thus, (A.7) with ν�s� = re�s replaced by ν◦�s�r◦e�s, implies
1
K

logP�σK
L ≤ T� ≤ −L�→−∞� L→∞�

that is, (A.5) holds.
The proof of the second statement of the lemma uses (A.5) heavily. Since{

sup
t≤T

yK
t ≥ C

}
⊆
{

sup
t≤σK

L ∧T
yK
t ≥ C

}
∪ {σK

L ≤ T
}

and thereby

P

(
sup
t≤T

yK
t ≥ C

)
≤ 2

(
P

(
sup

t≤σK
L ∧T

yK
t ≥ C

)∨
P
(
σK
L ≤ T

))
�

by virtue of (A.5) it suffices to check that for every fixed L,

lim
C→∞

lim sup
K→∞

1
K

logP
(

sup
t≤σK

L ∧T
yK
t +C

)
= −∞�(A.8)

The verification of (A.8) is similar to the proof of the first statement of the
lemma. It is clear that there is a positive constant RL so that I�σK

L ≥ t�xK
t ≤

RL, t ≥ 0. Further, due to dyK
t ≤ �xK

t y
K
t dt+ 1

K
dM̂′

t we have

dyK
t∧σK

L
≤ �I�σK

L ≥ t�xK
t y

K
t dt+ 1

K
dM̂′

t∧σK
L

≤ �RLy
K
t dt+ 1

K
dM̂′

t∧σK
L

and hence yK
t∧σK

L

≤ e�RLt�y0 +
∫ t∧σK

L

0 e−�RLdM̂
′
s�� Now, introduce

τKL�C = inf
{
t


∫ t∧σK
L

0
e−�RLdM̂′

s ≥ C

}
and note that (A.8) holds provided that

lim
C→∞

lim sup
K→∞

1
K

logP
(
τKL�C ≤ T

) = −∞ ∀ L > 0�(A.9)

The proof of (A.9) is similar to the proof of (A.5), so here we give only a sketch
of it. Set �′ = �RL and for positive r take ν�s� = re−�

′s. Introduce a super-
martingale

ẑ′t�ν� = exp
(∫ t

0
ν�s�dM̂′

s −
∫ t

0

(
eν�s� − 1− ν�s�)dÂ′s)�

Due to Eẑ′
σK
L ∧TK

L�C∧T
�ν� ≤ 1 write 1 ≥ Eẑ′

σK
L ∧TK

L�C∧T
�ν�I�τKL�C ≤ T� and evaluate

from below ẑ′
σK
L ∧TK

L�C∧T
�ν� on the set �τKL�C ≤ T� as

log ẑ′
σK
L ∧TK

L�C∧T
�ν� ≥KC�r− �er − 1− r��′Tp��
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With r◦ such that r◦ − �er◦ − 1r◦��′Tp =
 � > 0 similarly to the proof of the
first statement of the lemma we obtain 1

K
logP�τKL�C ≤ T� ≤ −C� and (A.9)

holds. ✷

A.3. C-Exponential tightness. (A.1) is implied by Lemma 2.
To verify (A.2), let us note that

xK
t+τ − xK

τ =
1
K

[
π ′t+τ − π ′τ

]+ 1
K

[
π ′′t+τ − π ′′τ

]
�

yK
t+τ − yK

τ =
1
K

[
π̂ ′t+τ − π̂ ′τ

]+ 1
K

[
π̂ ′′t+τ − π̂ ′′τ

]
�

Evidently, it suffices to establish the validity of (A.2) for every

1
K

[
π ′t+τ − π ′τ

]
� � � � �

1
K

[
π̂ ′′t+τ − π̂ ′′τ

]
separately.
Recall that the Markov time TK

n is defined in (3.1). By virtue of Lemma 2
we claim that limn→∞ lim supK→∞

1
K
logP�TK

n ≤ T� = −∞. Hence, with any
n ≥ 1 we have to verify (A.2) only for

lim
K→∞

1
K

log sup
τ≤T

P
(
π ′�τ+δ�∧TK

n
− π ′τ∧TK

n
> Kη

)
= 0�

������������������������������������������������������������������������

lim
K→∞

1
K

log sup
τ≤T

P
(
π̂ ′′�τ+δ�∧TK

n
− π̂ ′′τ∧TK

n
> Kη

)
= 0�

The proofs for the above relations are similar. So, we give below only one of
them for π ′′t . With r > 0 set ν̇�s� = rI�τ∧TK

n � �τ+δ�∧TK
n ��s�. The random process

ν�s� is bounded and left continuous (and thereby predictable). Consequently
[compare (2.9)], the random process

z′′t �ν� = exp
(∫ t

0
ν�s�dπ̂ ′′s −

∫ t

0

(
eν�s� − 1)dA′′s)

is a supermartingale with Ez′′T+δ�λ� ≤ 1. Therefore,

1 ≥ Ez′′T+δ�ν�I
(
π ′′�τ+δ�∧TK

n
− π ′′τ∧TK

n
> Kη

)
�(A.10)

Since �A′′�τ+δ�∧TK
n
−A′′τ∧TK

n
� ≤ δ �

K
�n+ 1�2, on the set �π ′′�τ+δ�∧TK

n
−π ′′τ∧TK

n
> Kη�,

log z′′T+δ�ν� = r
[
π ′′�τ+δ�∧TK

n
− π ′′τ∧TK

n

]
− �er − 1�

[
A′′�τ+δ�∧TK

n
−A′′τ∧TK

n

]
≥K�rη− �er − 1�δ��n+ 1�2��

Now, with δ small enough and r = log� η
δ��n+1�2 �,

z′′T+δ�ν� ≥ exp
(
K

[
η log

(
η

δ��n+ 1�2
)
− η+ �δ�n+ 1�2

])
�
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Hence

1
K

log sup
τ≤T

P
(
π ′′�τ+δ�∧TK

n
− π ′′τ∧TK

n
> Kη

)
≤ −η log

(
η

δ��n+ 1�2
)
− η+ �δ�n+ 1�2→−∞� δ→ 0� ✷

A.4. C-Local-LDP. Upper bound. Obviously, for φ0 &= x0 or ψ0 &= y0 the
upper bound is equal to −∞. The proof that for φ0 = x0 and ψ0 = y0 and
�φ�ψ� ∈ �2

�0�T�\�2
�0�T� the upper bound is equal to −∞ under the C-exponential

tightness can be found in Theorem 1.3 in Liptser and Pukhalskii (1992).
Thus, the proof is concentrated on the case �φ�ψ� ∈ �2

�0�T� with φ0 = x0,
ψ0 = y0. Let ZK

t � λK� µ
K
� be defined in (2.13) with piecewise constant (deter-

ministic) functions λ�t�and µ�t�. Since EZK
T �Kλ�Kµ� ≤ 1, write

1 ≥ EZK
T

(
λ

K
�
µ

K

)
I
(
0��xK�yK�� �φ�ψ�� ≤ δ

)
�(A.11)

On the set �0��xK�yK�� �φ�ψ�� ≤ δ�, we evaluateZK
t � λK� µ

K
� from below. Since

λ�µ are piecewise constant functions notations,
∫ T
0 λ�t�dφt

∫ T
0 µ�t�dψt will be

used for ∑
tj≤T

λ�tj−1��φtj
−φtj−1� and

∑
ti≤T

µ�ti−1��ψti
− ψti−1��

respectively. Obviously, a positive constant c can be chosen such that

logZK
T

(
λ

K
�
µ

K

)
≥ −K

(
cδ+

∫ T

0
�λ�t�dφt + µ�t�dψt − G�λ�t�� µ�t��φt�ψt�dt�

)
�

Therefore, this lower bound jointly with (A.11) imply

lim sup
δ→0

lim sup
K→∞

1
K

logP�0��xK�yK�� �φ�ψ�� ≤ δ�

≤ −
∫ T

0
�λ�t�dφt + µ�t�dψt −G�λ�t�� µ�t��φt�ψt�dt��

Since the left side of this inequality is independent of λ�t�� µ�t� the required
upper bound is obtained by minimization of the right side in λ�t�� µ�t�. As in
Liptser and Pukhalskii [(1992), Theorem 6.1], we find that for not absolutely
continuous φt or ψt the minimal value of the right-hand side is equal to −∞,
while if both φt�ψt are absolutely continuous functions the minimal value
coincides with −JT�φ�ψ�. ✷
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A.5. C-Local-LDP. Lower bound. It suffices to verify (A.4) only for JT�φ,
ψ� < ∞. That supposes the verification of (A.4) for absolutely continuous
functions �φt�ψt�t≤T from �2�+

�0�T� with φ0 = x0� ψ0 = y0. Moreover, to satisfy
JT�φ�ψ� < ∞ functions φt�φt have to be absorbed on axis “x = 0”; “y = 0”
(recall that xK

t � y
K
t are absorbed on these axes). For definiteness we denote

the class of the above-mentioned functions φt�ψt by 	.
Set Tφ = inf�t > 0
 φt = 0� and Tψ = inf�t > 0
 ψt = 0� �inf�(� = ∞� and

introduce

J
φ
T�φ�ψ� =

∫ Tφ∧T

0
sup
λ
�λφ̇t −Gφ�λ�φt�ψt�dt��(A.12)

J
ψ
T�φ�ψ� =

∫ Tψ∧T

0
sup
µ
�µψ̇t −Gψ�µ�φt�ψt�dt��(A.13)

Then, obviously, we have JT�φ�ψ� = J
φ
T�φ�ψ� + J

ψ
T�φ�ψ�. Below we give

detailed description of λ∗�t� = argmaxλ�λφ̇t − Gφ�λ�φt�ψt�� and µ∗�t� =
argmaxµ�µψ̇t −Gψ�µ�φt�ψt�� for Tφ ∧Tψ = ∞,

λ∗�t�= log
(

φ̇t

2�φt

+
√

φ̇2
t

4��φt�2
+ �ψt

�

)
�

µ∗�t�= log
(

ψ̇t

2�φtψt

+
√

ψ̇2
t

4��φtψt�2
+ �

�φt

)
�

(A.14)

A.5.1. Main Lemma.

Lemma 3. Assume

(i) �φ�ψ� ∈ 	.
(ii) Tφ ∧Tψ = ∞.
(iii) φ̇t ≤ const�� ψ̇t ≤ const�

Then there is a positive constant L�φ�ψ�, depending on L�φ�ψ�, such that
for δ > 0 small enough,

lim inf
K→∞

1
K

logP�0��xK�yK�� �φ�ψ�� ≤ δ� ≥ −JT�φ�ψ� −L�φ�ψ�δ�

Proof. Set τKφ = inf�t
 �xK
t − φt� ≥ δ� and τKψ = inf�t
 �yK

t − ψt� ≥ δ�.
Since jumps of xK

t � yK
t are bounded by 1

K
, by the triangular inequality we

have �xK
t −φt� ≤ �xK

t− −φt� + 1
K
and �yK

t −ψt� ≤ �yK
t− −ψt� + 1

K
. Consequently
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with K ≥ δ
4 the inclusion holds:{

sup
t≤T
�xK

t −φt� + sup
t≤T
�yK

t − ψt� ≤ δ

}
⊇
{
sup
t≤T
�xK

t− −φt� + sup
t≤T
�yK

t− − ψt� ≤
δ

2

}
=
{
sup

t≤τKφ ∧T
�xK

t− −φt� + sup
t≤τKψ ∧T

�yK
t− − ψt� ≤

δ

2

}
�

Hence, the first lower bound we use is the following:

P�0��xK�yK�� �φ�ψ�� ≤ δ�

≥ P

(
sup

t≤τKφ ∧T
�xK

t− −φt� + sup
t≤τKψ ∧T

�yK
t− − ψt� ≤

δ

2

)
�

(A.15)

For K large enough set

λK�t−�= log
(

φ̇t

2�xK
t−
+
√

φ̇2
t

��xK
t−�2

+ �xK
t−y

K
t−

�xK
t−

)
� t ≤ τKφ ∧T�

µK�t−�= log
(

ψ̇t

2�xK
t−y

K
t−
+
√

ψ̇2
t

�2�xK
t−y

K
t−�2

�yK
t−

�xK
t−y

K
t−

)
� t ≤ τKψ ∧T�

(A.16)

[λK�t�� µK�t� are defined similarly with an obvious change]. It is clear that
for K large enough λK�t��µK�t� are bounded and strictly positive.
We define now the positive supermartingale [compare (2.13)]

ZK
t �λK�µK�= exp

{
K

∫ t∧τKφ ∧T

0

[
λK�t−�dxK

t −Gφ�λK�t��xK
t � y

K
t �dt

]}
× exp

{
K

∫ t∧τKψ ∧T

0

[
µK�t−�dyK

t −Gψ�µK�t��xK
t � y

K
t �dt

]}
�

(A.17)

We show that �ZK
t �λK�µK��t≤T is the square integrable martingale with

EZK
T �λK�µK� = 1�

To prove this property we have to check that E�ZK
T �λK�µK��2 < ∞. (A.17)

implies

�ZK
T �λK�µK��2 = ZK

T �2λK�2µK�

× exp
{
K

∫ τKφ ∧T

0

[
Gφ

(
2λK�t��xK

t � y
K
t

)− 2Gφ

(
λK�t��xK

t � y
k
t

)]
dt

}

× exp
{
K

∫ τKφ ∧T

0

[
Gψ

(
2µK�t��xK

t � y
K
t

)− 2Gψ

(
µK�t��xK

t � y
k
t

)]
dt

}
�
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The process �ZK
T �2λK�2µK��t≤T is a supermartingale as well; that is

EZK
T �2λK�2µK� ≤ 1�

and at the same time under assumptions of the lemma Gφ�2λK�t��xK
t � y

K
t �,

Gφ�λK�t��xK
t � y

K
t � and Gψ�2µK�t��xK

t � y
K
t ��Gψ�µK�t��xK

t � y
K
t � are bounded

functions on the time intervals �0� τKφ ∧T� and �0� τKψ ∧T�, respectively. Con-
sequently, �ZK

T �λK�µK��2 has a finite expectation.
Now, ���� �F = ��t�t≥0�QK� with dQK = ZK

T �λK�µK�dP is the stochastic
basis. Due to the positiveness of ZK

T �λK�µK� not only QK  P but also P 
QK with dP = �ZK

T �λK�µK��−1 dQK. We apply this formula for the right side
of (A.15). With the notation


K
δ =

{
sup

t≤τKφ ∧T
�xK

t− −φt� + sup
t≤τKψ ∧T

�yK
t− − ψt� ≤

δ

2

}
we have

P�
K
δ � =

∫

K

δ

�ZK
T �λK�µK��−1 dQK�(A.18)

The random process ZK
t∧T�λK�µK� is the martingale with respect to P and

since P ∼ QK it is a semimartingale with respect to QK [see, e.g., Liptser and
Shiryayev (1989), Chapter 4, Section 5]. For further analysis QK semimartin-
gale description of ZK

t∧T�λK�µK� is required. To this end,we use the fact that
P-semimartingales xK

t � y
K
T are QK semimartingales as well [see Liptser and

Shiryayev (1989), Chapter 4, Section 5] and find their semimartingale decom-
positions. Let us note that π ′t� π

′′
t � π̂

′
t� π̂

′′
t are counting processes with respect to

both measures P and QK. Recall that A′t�A
′′
t � Â

′
t� Â

′′
t are their compensators

with respect to P and denote by A
′Q
t �A

′′Q
t � Â

′Q
t � Â

′′Q
t their compensators with

respect to QK. Then the P-martingale mK
t = 1

K
��π ′t −A′t� − �π ′′t −A′′t �� obeys

the semimartingale decomposition (P-and QK-a.s.)

mK
t =

1
K

([
π ′t −A

′Q
t

]− [
π ′′t −A

′′Q
t

])
− 1
K

([
A′t −A

′Q
t

]− [
A′′t −A

′′Q
t

])
=m

K�Q
t − 1

K

([
A′t −A

′Q
t

]− [
A′′t −A

′′Q
t

])
(A.19)

withQK- square integrable martingalesmK�Q
t with the predicatable quadratic

variation �mK�Q�t = 1
K
�A′Qt + A

′′Q
t �. Analogously, the QK-semimartingale

decomposition m̂K
t = m̂

K�Q
t − 1

K
��Â′t − Â

′Q
t � − �Â′′t − Â

′′Q
t �� holds with the

square integrable martingale m̂K�Q
t with �m̂K�Q�t = 1

K
�Â′Qt +Â′′Qt � and �mK�Q,

m̂K�Q�t ≡ 0 (recall that disjointness for jumps of counting processes remains
valid with respect to QK).
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We give now formulas for A
′Q
t �A

′′Q
t � Â

′Q
t � Â

′′Q
t . With 9π ′t = π ′t − π ′t−1� � � �,

9π̂ ′′t = π̂ ′′t − π̂ ′′t we have

ZK
t �λK�µK�=XK

t−�λK�µK� exp�λK�t−��9π ′t − 9π ′′T�
+µK�t−��9π̂ ′t − 9π̂ ′′t ���

(A.20)

�A′Qt �: It is well known that A′Qt is defined by integral equation: for any
bounded and predictable function u�t�ω�,

∫
�

∫ T

0
u�t�ω�dπ ′t dQK =

∫
�

∫ T

0
u�t�ω�dA′Qt dQK�

Taking into account that dQK = ZK
T �λK�µK�P and ZK

t∧T�λK�µK� is the mar-
tingale with respect to P we get

∫
�

∫ T

0
u�t�ω�dπ ′′t dQK =

∫
�

∫ T

0
u�t�ω�ZK

T �λK�µK� dπ ′t dP

=
∫
�

∫ T

0
u�t�ω�ZK

t �λK�µK�dπ ′t dP�

Since jumps of counting processes are disjoint the right side of the above equal-
ity is equal to [see (A.20)]

∫
�

∫ T
0 u�t�ω�ZK

t−�λK�µK�eλK�t−�9π ′tdπ ′tdP or, what is
the same,

∫
�

∫ T
0 u�t�ω�ZK

t−�λK�µK�eλK�t−� dπ ′t dP. Now, since ZK
t−�λK�µK� is

the predictable process, the latter integral coincides with

∫
�

∫ T

0
u�t�ω�ZK

t−�λK�µK�eλK�t−� dA′t dP�

which, due to the martingale property of ZK
t �λK�µK�, is equal to

∫
�

∫ T

0
u�t�ω�ZK

T �λK�µK�eλK�t−� dA′t dP 
=
∫
�

∫ T

0
u�t�ω�eλK�t−� dA′t dQK�

Consequently,

dA
′Q
t = eλ

K�t−� dA′t

and dA
′′Q
t = e−λ

K�t−� dA′′t � dÂ
′Q
t = eµ

K�t−� dÂ′t� dÂ
′′Q
t = e−µ

K�t−�dÂ′′t are
obtained in the same way.
Hence

dmK
t = dm

K�Q
t + ((

eλ
K�t� − 1)�xK

t −
(
e−λ

K�t� − 1)�xK
t y

K
t

)
dt�

dm̂K
t = dm̂

K�Q
t + ((

eµ
K�t� − 1)�xK

t y
K
t −

(
e−µ

K�t� − 1)�yK
t

)
dt
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and thereby we find the semimartingale decomposition with respect to QK:

dxK
t =

{
xK
t

(
�− �yK

t

)
+((eλK�t� − 1)�xK

t −
(
e−λ

K�t� − 1)�xK
t y

K
t

)}
dt+ dm

K�Q
t

= ∂

∂λ
Gφ

(
λK�t��xK

t � y
K
t

)
dt+ dm

K�Q
t = φ̇t dt+ dm

K�Q
t

dyK
t =

{
yK
t

(
�xK

t − �
)

+((eµK�t� − 1)�xK
t y

K
t −

(
e−µ

K�t� − 1)�yK
t

)}
dt + dm̂

K�Q
t �

= ∂

∂µ
Gψ

(
µK�t��xK

t � y
K
t

)
dt+ dm̂

K�Q
t = ψ̇t dt+ dm̂

K�Q
t �

(A.21)

The use of this decomposition allows to obtain a description for 1
K
log ZK

T �λK,
µK� with respect to QK:

1
K

logZK
T �λK�µK�

=
∫ τKφ ∧T

0
λK�t−�dmK�Q

t +
∫ τKφ ∧T

0

(
λK�t�φ̇t −Gφ�λK�t��xK

t � y
K
t �

)
dt

+
∫ τKψ ∧T

0
µK�t−� dm̂K�Q

t +
∫ τKψ ∧T

0

(
µK�t�ψ̇t −Gψ�µK�t��xK

t � y
K
t �

)
dt�

Let us estimate above the right side of this equality on the set 
K
δ . There are

positive constants cφ and cψ so that

sup
t≤τKφ ∧T

�λK�t� − λ∗�t�� + sup
t≤τKφ ∧T

�Gφ�λK�t��xK
t � y

K
t � −Gφ�λ∗�t��φt�ψt�� ≤ cφδ�

sup
t≤τKψ ∧T

�µK�t� − µ∗�t�� + sup
t≤τKψ ∧T

�Gψ�µK�t��xK
t � y

K
t � −Gψ�µ∗�t��φt�ψt�� ≤ cψδ�

Further, since

λ∗�t�φ̇t −Gφ�λ∗�t��φt�ψt� = sup
λ
�φ̇t −Gφ�λ�φt�ψt���

µ∗�t�ψ̇t −Gψ�µ∗�t��φt�ψt� = sup
µ
�ψ̇t −Gψ�µ�φt�ψt��

and

JT�φ�ψ� =
∫ τKφ ∧T

0
sup
λ
�φ̇t −Gφ�λ�φt�ψt��dt

+
∫ τKψ ∧T

0
sup
µ
�ψ̇t −Gψ�µ�φt�ψt��dt

we find

1
K

logZK
T �λK�µK� ≤

∣∣∣ ∫ τKφ ∧T

0
λK�t−�dmK�Q

t

∣∣∣+ ∣∣∣ ∫ τKψ ∧T

0
µK�t−�dm̂K�Q

t

∣∣∣
+�cφ + cψ�Tδ+JT�φ�ψ��
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This upper bound implies the lower one,

ZK
T �λK�µK�≥exp�−K�JT�φ�ψ�+�cφ+cψ�Tδ��

×exp
(
−K

∣∣∣∫ τKφ ∧T

0
λK�t−� dmK�Q

t

∣∣∣−K∣∣∣∫ τKψ ∧T

0
µK�t−� dm̂K�Q

t

∣∣∣)�
which, being applied in (A.18), gives

P�
K
δ � ≥ exp�−K�J�φ�ψ� + �cφ + cψ�Tδ��

×
∫

K

δ

exp
(
−K

∣∣∣ ∫ τKφ

0
λK�t−�dmK�Q

t

∣∣∣
−K

∣∣∣ ∫ τKψ ∧T

0
µK�t−�m̂K�Q

t

∣∣∣)dQK�

(A.22)

(A.22) can be sharpened as

P�
K
δ � ≥ e−K�JT�φ�ψ�+�cφ+cψ�Tδ+2ε�QK

(
�K

ε ∩�K
ε ∩
K

δ

)
�

where

�K
ε =

{∣∣∣ ∫ τKφ ∧T

0
λK�t−� dmK�Q

t

∣∣∣ < ε

}
and �K

ε =
{∣∣∣ ∫ τKψ ∧T

0
µK�t−� dm̂K�Q

t

∣∣∣ < ε

}
�

Hence

lim inf
K→∞

1
K

log P�
K
δ � ≥ −JT�φ�ψ− �cφ + cψ�Tδ− 2ε�

+ lim inf
K→∞

1
K

log QK
(
�K

ε ∩�K
ε ∩
K

δ

)
�

The latter inequality jointly with (A.15) imply the statement of the lemma
provided that for fixed ε and δ it holds lim infK→∞ QK��K

ε ∩�K
ε ∩
K

δ � = 1.
We derive that property from

lim
K→∞

QK
(
�\�K

ε

) = 0� lim
K→∞

QK
(
�\�K

ε

) = 0� lim
K→∞

QK
(
�\
K

δ

) = 0�(A.23)

The first part of (A.23) follows from the Chebyshev inequality (EK is the
expectation with respect to QK),

QK
(
�\�K

ε

) = QK

(∣∣∣ ∫ τKφ ∧T

0
λK�t−� dmK�Q

t

∣∣∣ ≥ ε

)

≤ 1
ε2

EK
∫ τKφ ∧T

0
�λK�t��2 d�mK�Q�t

≤ 1
K2ε2

EK
∫ τKφ ∧T

0
�λK�t��2�eλK�t� dA′t + e−λ

K�t� dA′′t �

≤ const�
Kε2

→ 0� K→∞�
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The validity of the second part of (A.23) is verified similarly. The third part
in (A.23) is verified similarly to the first and second ones since by virtue of
(A.21),

�\
K
δ =

{
sup

t≤τKφ ∧T

∣∣mK�Q
t

∣∣+ sup
t≤τKψ ∧T

∣∣m̂K�Q
t

∣∣ ≥ δ

2

}
� ✷

A.5.2. The lower bound under Tφ ∧Tψ = ∞.

Lemma 4. Assume

(i) �φ�ψ� ∈ 	.
(ii) Tφ ∧Tψ = ∞.

Then

lim inf
δ→0

lim inf
K→∞

1
K

logP
(
0��xK�yK�� �φ�ψ�� ≤ δ

) ≥ −JT�φ�ψ��

Proof. Set φn
t = x0 +

∫ r
0 φ̇sI�φs ≤ n�ds. Since ∫ T

0 �φ̇t�dt <∞, it holds

lim
n
sup
t≤T
�φt −φn

t � ≤
∫ T

0
I�φ̇t > n��φ̇t�dt = 0�

Similarly, for ψn
t = y0+

∫ r
0 ψ̇sI�ψs ≤ n�dswe have limn supt≤T �ψt−ψn

t � = 0. Let
us choose n0 so that for n ≥ n0 it holds supt≤T �φt−φn

t �+ supt≤T �ψt−ψn
t � ≤ δ

2 .
Since by the triangular inequality,

sup
t≤T

∣∣xK
t −φt

∣∣+ sup
t≤T

∣∣yK
t − ψt

∣∣+ sup
t≤T

∣∣xK
t −φn

t

∣∣+ sup
t≤T

∣∣yK
t − ψn

t

∣∣+ δ

2
�

for any n ≥ n0 we get

P�0��xK�yK�� �φ�ψ�� ≤ δ� ≥ P

(
0��xK�yK�� �φn�ψn�� ≤ δ

2

)
�

Therefore, by Lemma 3,

lim inf
K→∞

1
K

logP
(
0��xK�yK�� �φn�ψn�� ≤ δ

2

)
≥ −JT�φn�ψn� −Lφn�ψnδ�

Since inf t≤T φt > 0 and inf t≤T ψt > 0 and φt�ψt and approximated by φn
t �ψ

n
t

uniformly in t ≤ T, for n large enough a majorant Lφ�ψ for Lφn�ψn can be
chosen, so that

lim inf
K→∞

1
K

logP
(
0��xK�yK�� �φ�ψ�� ≤ δ

2

)
≥ −JT�φn�ψn� −Lφ�ψδ�

We show that

lim sup
n

JT�φn�ψn� ≤ JT�φ�ψ��(A.24)
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Since for n large enough inf t≤T φn
t > 0, inf t≤T ψn

t > 0, introduce

λ∗n�t�= log
(

φ̇n
t

2�φn
t

+
√
�φ̇n�2t
4��φn

t �2
+ �ψn

t

�

)
�

µ∗�t�= log
(

ψ̇n
t

2�φn
t ψ

n
t

+
√

�ψ̇n�2t
4��φn

t ψ
n
t �2
+ �

�φn
t

)(A.25)

and note that

JT�φn�ψn� =
∫ T

0
I�φ̇t ≤ n�(λ∗n�t�φ̇t −Gφ

(
λ∗n�t��φn

t �ψ
n
t

))
dt

+
∫ T

0
I�φ̇t > n�(−Gφ

(
λ∗n�t��φn

t �ψ
n
t

))
dt

+
∫ T

0
I�ψ̇t ≤ n�(µ∗n�t�ψ̇t −Gψ

(
µ∗n�t��φn

t �ψ
n
t

))
dt

+
∫ T

0
I�ψ̇t > n�(−Gψ

(
µ∗n�t��φn�ψn

))
dt

≤ JT�φ�ψ� +
∫ T

0

∣∣Gφ�λ∗�t��φt�ψt� −Gφ

(
λ∗n�t��φn

t �ψ
n
t

)∣∣dt
+

∫ T

0

∣∣Gψ

(
µ∗µ�t��φt�ψt

)−Gψ

(
λ∗n�t��φn

t �ψ
n
t

)∣∣dt�
The second and third terms in the right side of the above inequality converge
to zero, as n→∞, by virtue of the uniform (in t ≤ T) convergence �φn�ψn� →
�φ�ψ� and ∫ T

0 �φ̇n
t λ
∗
n�t� − φ̇tλ

∗�t��dt → 0 and
∫ T
0 �ψ̇n

t µ
∗
n�t� − ψ̇tµ

∗�t��dt → 0;
that is, (A.24) holds.
Thus

lim inf
K→∞

1
K

logP
(
0��xK�yK�� �φ�ψ�� ≤ δ

2

)
≥ −JT�φ�ψ� −Lφ�ψδ(A.26)

and the statement of the lemma holds. ✷

A.5.3. The lower bound under Tφ ∧Tψ < ∞. For �φ�ψ� ∈ 	 and h small
enough we have

lim inf
δ→0

lim inf
K→∞

1
K

logP�0��xK�yK�� �φ�ψ�� ≤ δ�

= lim inf
δ→0

lim inf
K→∞

P

(
sup

t≤Tφ∧T

∣∣xK
t −φt

∣∣+ sup
t≤Tψ∧T

∣∣yK
t − ψt

∣∣ ≤ δ

)

≥ lim inf
δ→0

lim inf
K→∞

P

(
sup

t≤�Tφ−h�∧T

∣∣xK
t −φt

∣∣+ sup
t≤�Tψ−h�∧T

∣∣yK
t − ψt

∣∣ ≤ δ

)
�
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On the other side, for φh
t ≡ φt, t ≤ Tφ − h, ψh

t ≡ ψt, t ≤ Tψ − h, and for
t > Tφ − h, t > Tψ − h,

φ̇h
t = φh

t

(
�− �ψh

t

)
� ψ̇h

t = ψh
t

(
�φh

t − �
)
�

respectively, we have

lim inf
δ→0

lim inf
K→∞

P

(
sup

t≤�Tφ−h�∧T

∣∣xK
t −φt

∣∣+ sup
t≤�Tψ−h�∧T

∣∣yK
t − ψt

∣∣ ≤ δ

)
= lim inf

δ→0
lim inf
K→∞

P�0��xK�yK�� �φh�ψh�� ≤ δ� ≥ −JT�φh�ψh��

where the latter inequality follows from Lemma 4.
Finally,

JY�φh�ψh� =
∫ �Tφ−h�∧T

0
sup
λ
�λφ̇t −Gφ�λ�φt�ψt��dt

+
∫ �Tψ−h�∧T

0
sup
µ
�µψ̇t −Gψ�µ�φt�ψt��dt

≤
∫ Tφ∧T

0
sup
λ
�λφ̇t −Gφ�λ�φt�ψt��dt

+
∫ Tψ∧T

0
sup
µ
�µψ̇t −Gψ�µ�φt�ψt��dt

= JT�φ�ψ��
Now combining the obtained results above we arrive at the required lower
bound,

lim inf
δ→0

lim inf
K→∞

1
K

logP�0��xK�yK�� �φ�ψ�� ≤ δ� ≥ −JT�φ�ψ�� ✷
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