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STOCHASTIC PARTICLE APPROXIMATIONS FOR
SMOLUCHOSKI’S COAGULATION EQUATION1

By Andreas Eibeck and Wolfgang Wagner

Weierstrass Institute for Applied Analysis and Stochastics

This paper studies stochastic particle approximations for Smoluchow-
ski’s coagulation equation. A new stochastic algorithm with reduced vari-
ance is proposed. Its convergence behavior is investigated, when the num-
ber of simulation particles tends to infinity. Under appropriate assumptions
on the coagulation kernel, the limit is the unique solution of the coagula-
tion equation. Then detailed numerical experiments are performed, testing
the applicability and efficiency of the algorithm. In particular, the gelation
phenomenon (loss of mass in the coagulation equation) is studied numeri-
cally for several kernels. A striking feature of the new algorithm is a better
convergence after the gelation point, providing a tool for detecting the mass
of the gel.

1. Introduction. Smoluchowski’s coagulation equation [32]

∂

∂t
c�t� x� = 1

2

x−1∑
y=1

K�x− y�y� c�t� x− y� c�t� y�
(1.1)

−
∞∑
y=1

K�x�y� c�t� x� c�t� y��

where t ≥ 0 and x = 1�2� � � � � describes the time evolution of the average con-
centration of particles of a given size in some physical system. Concentration
of particles of size x increases as a result of coagulation of particles of sizes
x−y and y� It decreases if particles of size x merge with any other particles.
The intensity of the process is governed by the coagulation kernelK� The phe-
nomenon of coagulation occurs in a wide range of applications, for example,
in astrophysics, biology, chemistry and meteorology (see the survey papers [8]
and [2]).
Stochastic particle systems play an important role in the study and numer-

ical treatment of equation (1.1) and its continuous analogon
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−
∫ ∞

0
K�x�y�c�t� x�c�t� y� dy�

(1.2)
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where x ∈ �0�∞�� The standard stochastic model related to the coagulation
equation is a Markov jump process where two different clusters of size x and
y coagulate to a single cluster of size x + y with rate K�x�y�� This model
is called Marcus-Lushnikov process (cf. [26], [25]). Qualitative properties of
the coagulation equation and its generalizations have been studied using the
stochastic approach, for example, in [20], [16], [27], [10]. For more details
on the relationship between stochastic particle systems and the coagulation
equation we refer to the excellent review [2].
When dealing with a numerical algorithm, the basic problem is to study its

approximation properties. In case of stochastic algorithms for nonlinear equa-
tions, there are two main sources of error. First there is the systematic error
representing the deviation of the expectation from the correct value, which is
achieved when the number of particles goes to infinity. As in the determinis-
tic case, the convergence rate for this type of error is of considerable interest
with respect to the practical applicability of an algorithm. Second there is the
statistical error due to the fluctuations of the generated sample of the pro-
cess around its expected value. The presence of this type of error leads to a
specific problem in the case of stochastic numerical algorithms, namely the
problem of variance reduction - to construct stochastic processes having sim-
ilar convergence properties with respect to the systematic error, but smaller
fluctuations when estimating concrete functionals. This is a challenging prob-
lem in connection with stochastic algorithms for nonlinear equations (cf., e.g.,
[12], Chapter 4 concerning standard Monte Carlo theory).
Many stochastic algorithms for the coagulation equations (1.1), (1.2) are

based on the classical Marcus-Lushnikov process (cf. [14], [15], [7], [31], [13],
[18], [9]). These algorithms provide solutions in the limit of the number of
particles going to infinity. Corresponding convergence properties, under ap-
propriate assumptions on the coagulation kernel, can be derived from results
in [17], [20], [27], [10]. Various numerical methods for the coagulation equa-
tion are reviewed in [30], where also an extended list of references is given.
Some stochastic algorithms contain an additional approximation parameter
(time step), thus providing solutions to time discretized versions of the coag-
ulation equations (1.1), (1.2) (cf. [24], [22], [29], [28], [21]). An approach to the
variance reduction problem within this class of algorithms is presented in [3].
Some ideas of that approach will be used in the present paper.
The purpose of this paper is to propose a new stochastic algorithm for the

numerical treatment of the coagulation equations (1.1), (1.2) and to investigate
its systematic and statistical error. First we study the convergence behavior of
the new algorithm, when the number of simulation particles goes to infinity.
We show that, under appropriate assumptions on the coagulation kernel, the
limit is the same as for the classical Marcus-Lushnikov process, namely the
unique solution of the coagulation equation. Then a detailed numerical study
is performed, testing applicability and efficiency of the algorithm. The numeri-
cal experiments illustrate the theoretical results, but also provide some insight
into situations that have not yet been covered by the theory. For example, the
gelation phenomenon (loss of mass in the coagulation equation) occurs when
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the coagulation kernel grows sufficiently fast. A striking feature of the new
algorithm is a better convergence after the gelation point, providing a tool for
detecting the mass of the gel.
The paper is organized as follows. In Section 2 we introduce the basic objects

of our study. Together with a weak form of equations (1.1), (1.2) we consider
an equivalent equation for the flow of mass instead of the flow of concen-
trations. Section 3 contains the description of the new particle system. Two
theorems concerning its convergence properties are given. The proofs of these
theorems are collected in Section 4. In Section 5 we describe the algorithm
based on the new particle system, and the direct simulation algorithm based
on the Marcus-Lushnikov process that is used for comparison. In Section 6
we present results of numerical experiments. First we study the systematic
error of both algorithms for several non-gelling and gelling kernels. Then we
present a detailed quantitative study of the variance reduction effect result-
ing in a considerable efficiency gain for the new algorithm. Finally, Section 7
contains some conclusions.

2. Notation and basic equations. For a metric, locally compact and
separable space E� let C�E� denote the set of all continuous functions on E,
Cb�E� the set of all bounded f ∈ C�E�, Cc�E� the set of all f ∈ C�E� having
compact support and C0�E� the set of all f ∈ C�E� vanishing at infinity. We
denote the supremum norm by 	 · 	� Let � �E� be the set of non-negative
Borel measures on E equipped with the vague topology. A sequence µn ∈
� �E� is called vaguely convergent to µ ∈ � �E� if �f�µn� → �f�µ� ∀f ∈
Cc�E�� For any µ ∈ � �E� and any measurable function f we denote �f�µ� =∫
E fdµ� The symbol

v→ is used to denote vague convergence, and the symbol
⇒ denotes weak convergence of distributions. Let ���0�∞��� �E�� be the set
of all continuous paths in � �E� and ���0�∞��� �E�� denote the Skorokhod
space of right continuous functions with left limits taking values in � �E��
Multiplication with some test function ϕ and integration with respect to

the size variable x transform equation (1.2) into

∫ ∞

0
ϕ�x�c�t� x� dx

=
∫ ∞

0
ϕ�x�c0�x� dx

+
∫ ∞

0
dxϕ�x�

∫ t
0
ds

[
1
2

∫ x
0
K�x− y�y�c�s� x− y� c�s� y�dy

−
∫ ∞

0
K�x�y�c�s� x�c�s� y� dy

]

=
∫ ∞

0
ϕ�x�c0�x� dx+

∫ t
0

∫ ∞

0

∫ ∞

0

[ 1
2ϕ�x+ y� − ϕ�x�]

×K�x�y�c�s� x�c�s� y�dydxds�

(2.1)
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Here the identity

∫ ∞

0

∫ ∞

0
ψ�x�y�dydx =

∫ ∞

0

∫ x
0
ψ�x− y�y�dydx

has been used. Having in mind (2.1), we consider the coagulation equation in
the form (cf. [27], [10])

�ϕ�P�t�� = �ϕ�P0� +
∫ t
0

∫
Z

∫
Z

[ 1
2 ϕ�x+ y� − ϕ�x�]

×K�x�y�P�s� dx�P�s� dy�ds
(2.2)

where t ≥ 0 and ϕ ∈ Cc�Z�� The size space is either Z = �0�∞�� corresponding
to equation (1.2), or Z = �� corresponding to equation (1.1). A function P ∈
���0�∞��� �Z�� is called a solution (with initial condition P0) if it satisfies
(2.2) and

∫ t
0

∫
Z

∫
Z
K�x�y�P�s� dx�P�s� dy� < ∞ ∀t > 0�(2.3)

The coagulation kernel K is supposed to be non-negative, measurable and
symmetric.
The solution P�t� dx� of equation (2.2) represents the flow of concentra-

tion in the size space Z� The total mass of the system is determined as∫
Z xP�t� dx�� We call the function

Q�t� dx� = xP�t� dx�� t ≥ 0�(2.4)

the mass flow and consider the mass flow equation

�ϕ�Q�t�� = �ϕ�Q0�
(2.5)

+
∫ t
0

∫
Z

∫
Z

[
ϕ�x+ y� − ϕ�x�]K�x�y�

y
Q�s� dx�Q�s� dy�ds

where t ≥ 0 and ϕ ∈ Cc�Z�� The discrete version of equation (2.5) has been
used in [3] for constructing a discretized in time stochastic algorithm for equa-
tion (1.1).
A function Q ∈ ���0�∞��� �Z�� is called a solution (with initial condition

Q0) if it satisfies (2.5) and∫ t
0

∫
Z

∫
Z

K�x�y�
xy

Q�s� dx�Q�s� dy� < ∞ ∀t > 0�(2.6)

Lemma 2.1. Let some measure-valued functionsP andQ satisfy (2.4). Then
Q is a solution of the mass flow equation (2.5) if and only if P is a solution of
the coagulation equation (2.2).



STOCHASTIC PARTICLE APPROXIMATIONS 1141

Proof. Obviously, Q ∈ ���0�∞��� �Z�� iff P ∈ ���0�∞��� �Z��� and
(2.3) is satisfied iff (2.6) is satisfied. Let g�x� = x, x ∈ Z and ϕ ∈ Cc�Z��
Note that �ϕ�Q�t�� = �ϕg�P�t��� Using symmetry, one obtains∫

Z

∫
Z

[
1
2
ϕ�x+ y� �x+ y� − ϕ�x�x

]
K�x�y�P�s� dx�P�s� dy�

=
∫
Z

∫
Z

�ϕ�x+ y�x− ϕ�x�x� K�x�y�
xy

Q�s� dx�Q�s� dy�

=
∫
Z

∫
Z

�ϕ�x+ y� − ϕ�x�� K�x�y�
y

Q�s� dx�Q�s� dy��

and the equivalence follows.

3. Mass flow particle system. In this section we introduce a sequence of
stochastic particle systems and study its approximation properties regarding
the solution of equation (2.5).
Suppose

K�x�y� ≤ h�x�h�y� ∀x�y ∈ Z�(3.1)

where h ∈ C�Z� is positive and
h�x�
x

is non-increasing.(3.2)

Let bN > 0� β > 0� and define

�N
β =

{
p = 1

N

n∑
i=1
δxi ∈ � �Z� � xi ∈ Z ∩ �0� bN��

∫
Z

h�x�
x

p�dx� ≤ β
}
�(3.3)

where δ denotes the Dirac measure. We introduce the generator

�N �p� = 1
N

∑
1≤i�j≤n

[
 �J�p�xi� xj�� − �p�

]K�xi� xj�
xj

�  ∈ Cb��N
β ��(3.4)

where

J�p�x�y� =



p− 1

N
δx + 1

N
δx+y� x+ y ≤ bN�

p− 1
N
δx� x+ y > bN�

(3.5)

Note that condition (3.2) guarantees

J�p�x�y� ∈ �N
β �(3.6)

By (3.1) and the truncation in (3.3) one obtains the estimate

sup
p∈�N

β

∣∣�N �p�∣∣ ≤ 2 	 	N sup
p∈�N

β

∫
Z

∫
Z

K�x�y�
y

p�dx�p�dy� ≤ 2	 	NbNβ2�
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Thus the generator �N is bounded for every N� and a corresponding jump
process UN exists for any initial distribution on the state space �N

β (cf. [11],
page 162). Since �N

β is a subset of

�β =
{
p ∈ � �Z� �

∫
Z

h�x�
x

p�dx� ≤ β
}
�(3.7)

UN can be regarded as a stochastic process with trajectories in ���0�∞���β��
The basic approximation properties of the sequence UN are given by the fol-
lowing two theorems.

Theorem 3.1. Suppose the coagulation kernel K satisfies (3.1), (3.2). Then
�UN�∞

N=1 is relatively compact in ���0�∞���β� and for any weak limit U,

P
(
U ∈ ���0�∞���β�

) = 1�(3.8)

Theorem 3.2. Suppose the coagulation kernelK ∈ C�Z×Z� satisfies (3.1),
(3.2) and

lim
x+y→∞

K�x�y�
h�x�h�y� = 0�(3.9)

Let

bN → ∞(3.10)

and

UN
0 ⇒ Q0 ∈ �β�(3.11)

Then any weak limit point of �UN�∞
N=1 solves almost surely the mass flow

equation (2.5) with initial condition Q0�

Note that Theorems 3.1, 3.2 imply existence of solutions to the mass flow
equation (2.5) and, via Lemma 2.1, to the coagulation equation (2.2). This
existence result is closely related to [27], Theorem 4.1. Though the notions of
solution are slightly different, the assumptions on the initial condition and the
coagulation kernel are the same. In particular, condition (3.2) is equivalent to

h�λx�
λx

≤ h�x�
x

∀x > 0� λ ≥ 1�

that is, sublinearity of h�

h�λx� ≤ λh�x� ∀x > 0� λ ≥ 1�

However, our purpose is not a new existence theorem but the justification of
the approximation properties of the mass flow process.
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4. Proofs.

Lemma 4.1. Let µn�µ ∈ � �E� and G ∈ C�E� non-negative. If µn
v→ µ�

then

�G�µ� ≤ lim inf
n

�G�µn��(4.1)

Proof. Define νn� ν ∈ � �E� by
νn�dx� = G�x�µn�dx�� ν�dx� = G�x�µ�dx��

Let ϕ ∈ Cc�E�. Since ϕG ∈ Cc�E�, we obtain
�ϕ� νn� = �ϕG�µn� → �ϕG�µ� = �ϕ� ν�

so that νn
v→ ν� and (4.1) follows from [4], Lemma 30.3. ✷

Remark 4.2. The set �β [cf. �3�7�] is compact, since it is relatively com-
pact, according to [4, Theorem 31.2], and closed, by (4.1).

Let �ψk�∞
k=1 ⊂ Cc�Z� be dense with respect to uniform convergence. For any

m ∈ � choose

em ∈ Cc�Z� � 0 ≤ em ≤ 1� em�x� = 1� x ∈ Z ∩ �1/m�m� �(4.2)

Reorder the elements of the countable set

�ψk � k ∈ �� ∪ �ψk · em � k�m ∈ �� ∪ �em � m ∈ ��(4.3)

and denote them by �ϕk�∞
k=1. Then

dv�µ� ν� =
∞∑
k=1

1
2k

min �1� ��ϕk�µ� − �ϕk� ν��� � µ� ν ∈ � �Z��(4.4)

is a complete metric generating the vague topology on � �Z� so that �� �Z��
dv� is Polish (cf. [4], Theorem 31.5). By Remark 4.2 the set �β is closed so
that the Skorokhod space ���0�∞���β� is also Polish.
For ϕ ∈ Cc�Z� define  ∈ Cb��N

β � by  �p� = �ϕ�p� and denote �N�ϕ�p� =
�N �p� (cf. (3.4)) so that

�N�ϕ�p� = N
∫
Z

∫
Z
��ϕ�J�p�x�y�� − �ϕ�p�� K�x�y�

y
p�dx�p�dy��(4.5)

The corresponding martingale is

MN
ϕ �t� = �ϕ�UN�t�� − �ϕ�UN�0�� −

∫ t
0
�N�ϕ�UN�s��ds�(4.6)
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Lemma 4.3. Suppose the coagulation kernel K satisfies (3.1), (3.2). Then,
for t ≥ 0 and ϕ ∈ Cc�Z��

sup
N

Ɛ sup
s≤t

∣∣�N�ϕ�UN�s��∣∣ < ∞(4.7)

and

lim
N→∞

Ɛ sup
s≤t

∣∣MN
ϕ �s�∣∣ = 0�(4.8)

Proof. We introduce the notation

B�ϕ� = sup�x ∈ Z � ϕ�x� �= 0�� ϕ ∈ Cc�Z��(4.9)

By (4.5), (3.5) one obtains

∣∣�N�ϕ�UN�s��∣∣ ≤ β2 sup
x�y∈Z

[
x max

(
�ϕ�x��� �ϕ�x� − ϕ�x+ y��

)]

≤ 2β2B�ϕ� 	ϕ	�
and (4.7) follows. Since  2 ∈ Cb��N

β �� we obtain

Ɛ
[
MN

ϕ �t�]2 = Ɛ
∫ t
0

[
�N 2 − 2 �N 

] �UN�s��ds

= N Ɛ
∫ t
0

∫
Z

∫
Z

[
�ϕ�J�UN�s�� x� y�� − �ϕ�UN�s��

]2

×K�x�y�
y

UN�s� dx�UN�s� dy�ds

≤ 1
N

Ɛ
∫ t
0

∫
Z

∫
Z

[
�ϕ�x+ y� − ϕ�x��2 + ϕ�x�2

]

×K�x�y�
y

UN�s� dx�UN�s� dy�ds

≤ 5β2B�ϕ� 	ϕ	2 t
N

�

Applying Doob’s inequality, we obtain(
Ɛ sup
s≤t

∣∣MN
ϕ �s�∣∣)2

≤ 4 Ɛ
[
MN

ϕ �t�]2 �
and thus (4.8). ✷

Proof of Theorem 3.1. We prove the relative compactness of the se-
quence UN using a criterion from [11], Corollary 3.7.4. By Remark 4.2, the
first condition of the criterion is fulfilled. The second condition is stated in
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terms of the following modulus of continuity. For y ∈ ���0�∞��� �Z��� δ > 0
and T > 0� define

w�y� δ�T� = inf
�ti�

max
i

sup
s�t∈�ti−1�ti�

dv�y�s�� y�t���

where �ti� ranges over all partitions of the form 0 = t0 < t1 < · · · < tn−1 <
T ≤ tn with min1≤i≤n�ti − ti−1� > δ and n ≥ 1� To prove relative compactness,
it remains to show that

∀T�η > 0� ∃δ > 0 � lim sup
N→∞

P�w�UN�δ�T� ≥ η� ≤ η�

Notice that, for δ < 0t and ti = i 0t�

w�y� δ�T� ≤ 2max
ti<T

sup
s∈�ti�ti+1�

dv�y�s�� y�ti���

Thus, it is enough to show

lim sup
N→∞

P

(
max
ti<T

sup
s∈�ti�ti+1�

dv�UN�s��UN�ti�� ≥ η
)

≤ η�(4.10)

for sufficiently small 0t. By definition (4.4) and the martingale representation
(4.6), for t ≤ s� we obtain

dv�UN�s��UN�t��

=
∞∑
k=1

1
2k

min
{
1�

∣∣∣∣�ϕk�UN�s�� − �ϕk�UN�t��
∣∣∣∣
}

≤
∞∑
k=1

1
2k

min
{
1�

∣∣∣∣MN
ϕk

�s� −MN
ϕk

�t�
∣∣∣∣ +

∫ s
t

∣∣∣∣�N�ϕk�UN�r��
∣∣∣∣dr

}
�

Applying Chebyschev’s inequality gives

P

(
max
ti<T

sup
s∈�ti�ti+1�

dv�UN�s��UN�ti�� ≥ η
)

≤ P
(
max
ti<T

sup
s

∞∑
k=1

1
2k

min
{
1�

∣∣MN
ϕk

�s� −MN
ϕk

�ti�
∣∣

+
∫ s
ti

∣∣�N�ϕk�UN�r��∣∣dr} ≥ η
)

≤ 1
η

∞∑
k=1

1
2k

min

{
1�2Ɛ sup

s≤T+0t

∣∣MN
ϕk

�s�∣∣ + 0tƐ sup
s≤T+0t

∣∣�N�ϕk�UN�s��∣∣
}
�

Using Lemma 4.3, we obtain (4.10) for sufficiently small 0t� and the proof of
relative compactness is complete. The vague distance of two consecutive states
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in �N
β is bounded by

∞∑
k=1

1
2k

min
{
1�
2 	ϕk	
N

}

and (3.8) follows from [11], Theorem 3.10.2(a).

To prepare the proof of Theorem 3.2 we introduce the notation

� �ϕ�p� =
∫
Z

∫
Z

�ϕ�x+ y� − ϕ�x�� K�x�y�
y

p�dx�p�dy�(4.11)

and

Mϕ�q� t� = �ϕ�q�t�� − �ϕ�q�0�� −
∫ t
0
� �ϕ�q�s��ds�(4.12)

where ϕ ∈ Cc�Z�� p ∈ �β and q ∈ ���0�∞���β�� With these notations, the
mass flow equation (2.5) takes the formMϕ�q� t� = 0�

Lemma 4.4. Suppose the coagulation kernel K ∈ C�Z ×Z� satisfies (3.1),
(3.2) and (3.9). Let ϕ ∈ Cc�Z�� qn ∈ ���0�∞���β� and q ∈ ���0�∞���β�� If
qn → q w.r.t. Skorokhod topology then

Mϕ�qn� t� → Mϕ�q� t�� t ≥ 0�(4.13)

Proof. Given δ > 0� we represent the kernel in the form K = K1 +K2�
where K1 ∈ Cc�Z×Z� and 0 ≤ K2 ≤ K is supported on{

�x�y� � x ≤ δ
}

∪
{
�x�y� � y ≤ δ

}
∪
{
�x�y� � x+ y ≥ δ−1

}
�

Introduce the notation

gi�x�y� = �ϕ�x+ y� − ϕ�x�� Ki�x�y�
y

� i = 1�2�

For any p ∈ �β� we obtain [cf. (4.9)]∫ ∫
x≤δ

�g2�x�y��p�dx�p�dy� ≤ 2 	ϕ	 δβ2�
∫ ∫

y≤δ
�g2�x�y��p�dx�p�dy� ≤ B�ϕ� sup

�x−y�≤δ
�ϕ�x� − ϕ�y�� β2

and ∫ ∫
x+y≥δ−1

�g2�x�y��p�dx�p�dy� ≤ 2 	ϕ	B�ϕ� sup
x+y≥δ−1

K�x�y�
h�x�h�y� β

2�

Thus, given ε > 0� one can find δ > 0 so that∫
Z

∫
Z

�g2�x�y��p�dx�p�dy� ≤ ε� ∀p ∈ �β�(4.14)
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Here condition (3.9) has been used. Let pn�p ∈ �β such that pn
v→ p� Then

pn × pn
v→ p× p and∫
Z

∫
Z
g1�x�y�pn�dx�pn�dy� →

∫
Z

∫
Z
g1�x�y�p�dx�p�dy��(4.15)

Using (4.14) and (4.15), we obtain [cf. (4.11)] limsupn �� �ϕ�pn�−� �ϕ�p�� ≤ 2ε
so that

lim
n

� �ϕ�pn� = � �ϕ�p��(4.16)

According to (3.1) [cf. (4.9)],∣∣� �ϕ�qn�s��
∣∣ ≤ 2 	ϕ	B�ϕ�β2�(4.17)

Since q is continuous, qn�s�
v→ q�s� for every s. Finally, (4.16), (4.17) and the

dominated convergence theorem imply (4.13). ✷

Lemma 4.5. Suppose the coagulation kernel satisfies (3.1) and (3.2). If q ∈
���0�∞���β� satisfies equation (2.5) for all ϕk [cf. �4�2�, �4�3�] then q satisfies
equation (2.5) for all ϕ ∈ Cc�Z��

Proof. For any ϕ ∈ Cc�Z� there exist m > 1 and a subsequence �ϕkn�∞
n=1

such that

	ϕ− ϕkn	 → 0 and �x � ϕkn�x� �= 0� ⊂ �1/m�m� �(4.18)

Drop the index n� By the dominated convergence theorem

�ϕk� q�t�� → �ϕ�q�t��� t ≥ 0�(4.19)

Consider

gk�x�y� = �ϕk�x+ y� − ϕk�x�� K�x�y�
y

→ �ϕ�x+ y� − ϕ�x�� K�x�y�
y

= g�x�y��

Using [cf. (4.18)]

�gk�x�y�� ≤ 2m sup
k

	ϕk	
h�x�
x

h�y�
y
�(4.20)

the dominated convergence theorem implies∫
Z

∫
Z
gk�x�y�q�s� dx�q�s� dy�

(4.21)
→

∫
Z

∫
Z
g�x�y�q�s� dx�q�s� dy�� s ≥ 0�

Moreover, one obtains from (4.20) that

sup
k

sup
s≤t

∫
Z

∫
Z
gk�x�y�q�s� dx�q�s� dy� ≤ 2m sup

k

	ϕk	β2�
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Thus (4.19), (4.21) and a further application of the dominated convergence
theorem give

�ϕ�q�t�� = lim
k

�ϕk� q�t��

= lim
k

[
�ϕk� q�0�� +

∫ t
0

∫
Z

∫
Z
gk�x�y�q�s� dx�q�s� dy�ds

]

= �ϕ�q�0�� +
∫ t
0

∫
Z

∫
Z
g�x�y�q�s� dx�q�s� dy�ds�

This completes the proof. ✷

Proof of Theorem 3.2. Let ϕ ∈ Cc�Z�� Note that [cf. (4.5), (3.5), (4.11)]

�N�ϕ�p� = � �ϕ�p� −
∫ ∫

x+y>bN
ϕ�x+ y� K�x�y�

y
p�dx�p�dy��

By (4.12), (4.6) this representation implies

Ɛ
∣∣Mϕ�UN� t�∣∣ ≤ Ɛ

∣∣MN
ϕ �t�∣∣

+Ɛ
∫ t
0

∫ ∫
x+y>bN

�ϕ�x+ y�� K�x�y�
y

UN�s� dx�UN�s� dy�ds

≤ Ɛ
∣∣MN

ϕ �t�∣∣ + 2 	ϕ	B�ϕ� t β2 sup
x+y>bN

K�x�y�
h�x�h�y� �

According to (4.8) and assumptions (3.9), (3.10), we conclude that

lim
N→∞

Ɛ
∣∣Mϕ�UN� t�∣∣ = 0� t ≥ 0�(4.22)

Suppose UNn ⇒ U. By (3.8) and Lemma 4.4, we obtain Mϕ�UNn� t� ⇒
Mϕ�U� t�� An application of Fatou’s lemma (cf. [11], page 492) and (4.22) imply

Ɛ
∣∣Mϕ�U� t�

∣∣ = 0�(4.23)

Taking into account (3.8) we obtainMϕ�U� ·� ∈ ���0�∞���� a.e. so that (4.23)
implies

Mϕ�U� t� = 0 ∀t ≥ 0� a.e.

and, by Lemma 4.5,

Mϕ�U� t� = 0 ∀t ≥ 0� ∀ϕ ∈ Cc�Z�� a.e.
According to (3.11) we have U�0� = Q0 almost everywhere. Condition (2.6)
follows from (3.1) and (3.7) so that U is almost surely a solution of the mass
flow equation with initial condition Q0� ✷
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5. Description of the algorithms. The stochastic process studied in the
previous sections provides a random approximate solution to the mass flow
equation (2.5) and, via (2.4), also to the coagulation equation (2.2). If the cur-
rent state of the process is represented by particles x1�t�� � � � � xn�t��t�� then
functionals of the solution P to equation (2.2) are approximated as

I �=
∫
Z
ϕ�x�P�t� dx� ∼ 1

N

n�t�∑
i=1

ϕ�xi�t��
xi�t�

=� ξN�(5.1)

for some test function ϕ and t ≥ 0� In particular, the sum concentrations

C�t� a� b� = P�t� �a� b��� 0 < a < b�(5.2)

and the moments

mδ�t� =
∫
Z
xδ P�t� dx�� δ ≥ 0�(5.3)

are suitable functionals for our subsequent numerical studies. The numerical
algorithm consists of:

• generating trajectories of the process and
• calculating estimators ξN for various functionals I of the solution.

The standard stochastic model related to the coagulation equation (2.2)
is the Marcus-Lushnikov process mentioned in the Introduction. Here two
different clusters of size x and y coagulate to a single cluster of size x+y with
rate K�x�y�� If the current state of the process is represented by particles
y1�t�� � � � � yn�t��t�� then functionals are approximated by (contrast this with
(5.1))

∫
Z
ϕ�x�P�t� dx� ∼ 1

N

n�t�∑
i=1
ϕ�yi�t�� =� ξ̃N�(5.4)

In the following subsections we first describe details of the algorithm based
on the mass flow particle system, then we introduce the standard direct sim-
ulation algorithm (used later for comparison), and finally we discuss the issue
of comparing stochastic algorithms with respect to their efficiency.

5.1. The mass flow algorithm. The mass flow process determined by the
generator (3.4), (3.5) is a pure jump process. For an efficient generation of
trajectories we replace the coagulation kernel by the majorant product ker-
nel h�x�h�y� [cf. (3.1)] and introduce fictitious jumps. This leads to an easy
calculation of the time step and to an independent generation of the colli-
sion partners. For more details of this common numerical approach we refer
to [9].
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The resulting simulation procedure is as follows:

1. Generate the initial state �x1� � � � � xn� [cf. (3.3)].
2. Wait an exponentially distributed time step τ with parameter

1
N

n∑
i=1
h�xi�

n∑
j=1

h�xj�
xj

�

3. Choose the first collision partner i according to the distribution

h�xi�∑n
k=1 h�xk�

� i = 1� � � � � n�(5.5)

and the second collision partner j independently according to the distribu-
tion

h�xj�
xj∑n

k=1
h�xk�
xk

� j = 1� � � � � n�(5.6)

4. With probability

K�xi� xj�
h�xi� h�xj�

�

remove xi and, if xi + xj ≤ bN� add xi + xj�
5. Go to step 2.

The generalization of this procedure to other majorant kernels, like sums of
products, is straightforward.
Note that, for the special choices h�x� = c and h�x� = c x� c > 0� one of the

distributions (5.5) and (5.6) becomes uniform. In general, these distributions
are of the form

qi∑n
j=1 qj

� i = 1� � � � � n�

where the weights satisfy 0 < qi ≤ B� and can be generated via an acceptance
rejection technique. Namely, the weights qi are ordered according to their size
in γ groups

�0�B1�� �B1�B2�� � � � � �Bγ−1�Bγ�� 0 < B1 < � � � < Bγ−1 < Bγ = B�

Then a group index 1 ≤ j ≤ γ is generated according to the group weights
and a weight index i is chosen uniformly among all weight indices in the jth
group. With probability qi

Bj
the weight index is accepted else a new weight

index is chosen within the same group.
We call the above simulation procedure combined with this acceptance re-

jection technique mass flow algorithm �MFA�.
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5.2. The direct simulation algorithm. For an efficient generation of trajec-
tories of the Marcus-Lushnikov process, we can apply similar techniques (in-
troduction of fictitious jumps, acceptance-rejection technique) as for the mass
flow process. For sake of completeness, we describe the resulting algorithm for
the special choice of the product majorant kernel h�x�h�y�:
1. Generate the initial state �y1� � � � � yn��
2. Wait an exponentially distributed time step τ with parameter

1
N

(
n∑
i=1
h�yi�

)2

�

3. Choose the collision partners i and j independently according to the dis-
tribution

h�yl�∑n
k=1 h�yk�

� l = 1� � � � � n�

4. If i = j then go to step 2. Else with probability

K�yi� yj�
h�yi� h�yj�

remove the clusters yi and yj and add the cluster yi + yj�
5. Go to step 2.

Due to the physical meaning of the Marcus-Lushnikov process we call the
above simulation procedure direct simulation algorithm �DSA�.

5.3. Comparison of stochastic algorithms. To compare the efficiency of two
algorithms means to compare the effort, which has to be spent in order to
reach a given level of accuracy. The quality of the algorithms depends on the
convergence properties of the estimators defined in (5.1), (5.4) (characterized by
the expectations EξN� E ξ̃N and variances Var ξN� Var ξ̃N), and on the mean
computational effort per trajectory rN or r̃N� Averaging over R independent
trajectories is used to get estimates of those quantities.
Note that properties as

• convergence of EξN and Eξ̃N to I� or
• convergence of Var ξN and Var ξ̃N to zero,

depend only on the underlying processes. However, the effort depends on the
procedure for generating trajectories, in particular on the choice of the majo-
rant kernels, and on the implementation of this procedure on the computer.
Let the systematic error

eNsys = ∣∣EξN − I∣∣ and ẽÑsys =
∣∣∣Eξ̃Ñ − I

∣∣∣
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take the value ε > 0� for some parameters N = N�ε� and Ñ = Ñ�ε�� The
length of the confidence intervals, which are constructed using empirical val-
ues, is proportional to√

Var ξN

R
and

√
Var ξ̃Ñ

R̃
�

These statistical error bounds take the value ε when

R = Var ξN

ε2
or R̃ = Var ξ̃Ñ

ε2

trajectories are used, so that the corresponding effort is

1
ε2
rN Var ξN or

1
ε2
r̃Ñ Var ξ̃Ñ�

Finally, the fraction

κ = r̃Ñ Var ξ̃Ñ

rN Var ξN
(5.7)

gives the gain factor when using ξN instead of ξ̃Ñ�

6. Numerical results. We restrict our numerical investigation to the dis-
crete coagulation equation (1.1) with monodisperse initial condition

c�0�1� = 1� c�0� k� = 0� k ≥ 2�(6.1)

and start the MFA and the DSA (defined in the previous section) with the
initial state

xi�0� = yi�0� = 1� i = 1� � � � �N�

Kernels satisfying

K�i� j� ≤ c �i+ j�� c > 0�

provide unique mass-conserving solutions (cf. [19], [27]). In this class we con-
sider the kernel

K�i� j� =
√
1
i

+ 1
j

(
i1/3 + j1/3)2 �(6.2)

which corresponds to the so-called free molecular collision regime and is used
in practical studies of aerosol dynamics [23]. The kernel (6.2) satisfies the
conditions of Theorems 3.1, 3.2 so that convergence for MFA follows.
One of the most interesting phenomena related to coagulation processes is

the fact that sufficiently fast increasing coagulation kernels lead to solutions
exhibiting gelation, that is, a loss of initial mass in finite time (cf. [2], Section
2.3, [20]). Define the gelation time for a solution P of the coagulation equation
by [cf. (5.3)]

tg = inf
{
t ≥ 0 � m1�t� < m1�0�

}
(6.3)
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and call the solution gelling if tg < ∞� A kernel is called gelling if there is a
gelling solution. The condition

∃ c > 0� 0�5 < ε < 1 � c �ij�ε ≤ K�i� j� and K�i� j� = o�ij�
is sufficient to provide existence of gelling solutions [20], Corollary 1. Under
some additional assumptions, uniqueness has been proved up to the gelation
point [27], so that convergence follows from Theorems 3.1, 3.2 for MFA, and
related results for DSA. Note that convergence of the algorithms after the
gelation time has not been established so far. However, if they converge, then
to a solution. As an example in this class of gelling kernels we consider the
product kernel

K�i� j� = �i j�α� 0�5 < α < 1�(6.4)

A kernel satisfying

K�c i� c j� = cγK�i� j� ∀c > 0�(6.5)

is called homogeneous with exponent γ� Such kernels are expected to be gelling
if γ > 1� Many kernels of practical relevance satisfy (6.5). In particular, the
kernel (6.2) is homogeneous with exponent γ = 1/6� Note that the kernel (6.4)
is homogeneous with γ = 2α� We also consider the kernel

K�i� j� = 2�ij�γ
�i+ j�γ − iγ − jγ � 1 < γ ≤ 2�(6.6)

which is homogeneous with exponent γ�
The kernel (6.6) takes the form

K�i� j� = i j�(6.7)

if γ = 2� In this case the unique solution to the discrete coagulation equation
(1.1) with monodisperse initial condition (6.1) is given by

c�t� k� =



kk−2

k!
tk−1 exp�−kt�� 0 ≤ t ≤ 1�

kk−2

k!
exp�−k� t−1� 1 < t

(6.8)

and the mass by

m1�t� =
{
1� 0 ≤ t ≤ 1�

t−1� 1 < t
(6.9)

so that tg = 1� According to [1], it is expected that tg = 1 for all kernels of the
form (6.6). For the multiplicative kernel (6.7) it has been proved in [6] that
the Marcus-Lushnikov process converges to

ĉ�t� k� = kk−2

k!
tk−1 exp�−kt�� t ≥ 0�(6.10)
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which agrees with (6.8) only in the pre-gelation phase. Its mass can be calcu-
lated from

m̂1�t� =


1� 0 ≤ t ≤ 1�

t∗

t
� 1 < t�

(6.11)

where t∗ = t∗�t� is determined by the equation
t∗ exp�−t∗� = t exp�−t�� t∗ ∈ �0�1�� t > 1�

The main purpose of the numerical examples is to illustrate the new features
of the MFA compared to the DSA. There are three main aspects:

• the systematic error of MFA is significantly smaller;
• MFA is convenient for calculations beyond the gelation point;
• MFA is more efficient for many functionals due to considerable variance
reduction.

We first analyze the convergence behavior of the MFA and DSA for non-gelling
and gelling kernels. Then we consider the issue of efficiency.

6.1. Systematic error and convergence in the non-gelling case. The conver-
gence behavior of both algorithms for the kernel (6.2) is illustrated in Figure 1.
Since exact solutions are not available for this kernel, the results for the DSA
started with 108 monomer particles are used as a reference solution (dashed
lines). Results are shown for the functional C�t�100�200� [cf. (5.2)] in the
upper plots, and for the second moment m2�t� [cf. (5.3)] in the lower plots.
Data for DSA (left plots) are given for N = 29�210� � � � �213 initial monomers.
Data for MFA (right plots) were obtained for N = 16 initial particles and
bN = 1000� Note that the influence of the truncation parameter bN is negligi-
ble if it is chosen sufficiently large.
Figure 1 provides a first observation of the fact that MFA has much smaller

systematic error. This effect is partly due to the decrease of the particle number
in DSA. For the kernel (6.2) the initial particle number is reduced by a factor
200 at the end of the considered time interval. However, the results for MFA
with N = 16 particles are in better agreement with the reference trajectory
than the results for DSA even withN = 212 > 16×200 (having more particles
at the end). In the following we will investigate this effect in more detail.
We consider the second moment m2�t�� Curves for the quantities NeNsys�t�

and Ñ ẽÑsys�t� are shown in Figure 2 for DSA with Ñ = 211 (solid) and Ñ = 213

(dashed), and for MFA withN = 16 (solid) andN = 64 (dashed). These results
indicate that the order of convergence is the same for both algorithms. Note
that such numerical investigations are rather limited, since the confidence
intervals have to be kept very small in order to detect the systematic error
sufficiently accurately.
Now we take into account the number of particles, which decreases drasti-

cally for DSA. The question is whether, at a fixed time t� the systematic error
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Fig. 1. Approximation of functionals (5.2), (5.3) for kernel (6.2) using DSA (left) and MFA (right).

of MFA started withN initial monomers is comparable to the systematic error
of DSA started with Ñ/m0�t� initial monomers. We consider a representation
for the systematic error of the form

eNsys�t� ∼ c�t�
N
� ẽÑsys�t� ∼ c̃�t�

Ñm0�t�
�(6.12)

The quotient

c̃�t�
c�t� ∼ ẽÑsys�t� Ñm0�t�

eNsys�t�N
�(6.13)

obtained using data from Figure 2, is shown in Figure 3. Since this quantity is
roughly constant, we obtain the following conclusions for the particular case
under consideration. Both algorithms have the same order of convergence with
respect toN� The time dependent constant for DSA carries an additional factor
m0�t�−1�However, even taking into account the decreasing number of particles
for DSA, there is still a factor of about six in favor of MFA.

6.2. Systematic error and convergence in the gelling case. Here we apply
the algorithms to study the gelation phenomenon. The question arises how to
approximate the gelation time (6.3) and, moreover, the mass of the gel

g�t� = m1�0� −m1�t�� t ≥ 0�
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Fig. 2. Normalized systematic error form2�t� and kernel (6.2) using DSA �left� and MFA �right�.

Since the mass flow algorithm is not mass conserving, a straightforward ap-
proximation is [cf. (5.1)]

gN�t� = m1�0� − n�t�
N

�(6.14)

It is not so obvious how to determine the mass of the gel using the direct
simulation algorithm. In [7] the truncation function  �N� = 0�5N is used
to analyze the emergence of a “superparticle” having mass proportional to
the mass of the system (cf. [5] and [20], Theorem 5 concerning more general
truncation functions  ). The emergence of a “superparticle” is closely related
to one of Spouge’s conjectures [31]: for the product kernel (6.4) the sizeM1�t�
of the maximal cluster is of order N after the gelation time, and the gel mass
can be identified with the maximal cluster, that is,

g̃N�t� = M1�t�
N

�(6.15)

This property is known for the multiplicative kernel (6.7) from random graph
theory (cf. [2], Section 4.4. and citations therein).

Fig. 3. Quotient (6.13) of normalized systematic errors for m2�t� and kernel (6.2).
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Fig. 4. Approximation of sum concentrations of kernel (6.7) using MFA.

First we consider the multiplicative kernel (6.7) so that analytical solutions
are available. Figure 4 shows numerical approximations for various function-
als of the form (5.2) using MFA with N = bN = 105� The dashed lines cor-
respond to the exact solutions (6.8). Though Theorem 3.2 does not cover this
case, the numerical results show convergence of MFA to the unique solution.
As mentioned above, DSA converges to the different limit (6.10). Figure 5
shows results concerning the approximation of the gel mass. The curves cor-
respond to (6.14) for MFA with N = bN = 105 (lower curve) and (6.15) for
DSA with N = 107� These simulation results coincide with the exact curves
(dashed) for the gel mass [cf. (6.9), (6.11)]. This observation strongly supports
the conjecture that the MFA approximation (6.14) converges to the correct gel
mass.
Next we consider the kernel (6.6), which reduces to the multiplicative kernel

(6.7) for γ = 2� It is of interest to check which qualitative properties of the
solutions are independent of γ� To get some impression, we consider the case
γ = 1�5� Figure 6 shows results concerning the approximation of the gel mass.
The curves correspond to (6.14) for MFA (lower curve) and (6.15) for DSA. The
simulation results for different particle numbers (MFA: N = 104�105� bN =

Fig. 5. Approximations of gel mass for kernel (6.7).
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Fig. 6. Approximations of gel mass for kernel (6.6) with γ = 1�5�

105� DSA: N = 107�108) coincide. Again we observe convergence of DSA and
MFA to different solutions.
Finally we consider the product kernel (6.4) with α = 0�8� Results concern-

ing the approximation of the gel mass are displayed in Figure 7. The curves
on the right plot correspond to (6.14) for MFA with initial monomer number
N = 102�103�104�105 and bN = 100N� The results for N = 104 and N = 105

almost coincide indicating convergence of MFA. The conjecture that the limit
is the mass of the gel is supported by the case of the multiplicative kernel
considered above. The curves on the left plot correspond to (6.15) for DSA per-
formed with N = 105� � � � �109 (solid lines from above to below). The dashed
line indicates the result obtained from MFA with N = 105�
Note that DSA does not converge numerically, even for extremely large

initial numbers of particles. This behavior is qualitatively different compared
to results from Figures 5, 6. If the size of the maximal cluster was of smaller
order than N then the curves would vanish in the limit N → ∞. If Spouge’s
conjecture [cf. (6.15)] is correct, then the curves will come close to the dotted
line. Moreover, there is the possibility that the curves stabilize between the

Fig. 7. Approximations of gel mass for kernel (6.4) with α = 0�8�
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time coordinate and the dotted line. Unfortunately, the true behavior cannot
be concluded from these numerical results.
The poor convergence properties of DSA observed above have strong impact

on the systematic error, even when calculating sum functionals (5.2). The
convergence behavior of both algorithms for the functionals C�t�20�30� (upper
plots) andC�t�1000�1200� (lower plots) is illustrated in Figure 8. The left plots
show the DSA results. The solid lines belong to the simulations according to
N = 105� � � � �109� from below to above. The dashed line represents the results
for MFA with N = 105� The MFA results (right plots) for N = 103�104�105

and bN = 106 almost coincide so that convergence is expected.
Again, convergence for DSA cannot be seen from these results (even for

N = 109). Thus in the post-gelation phase the effect with the systematic error
discussed in the previous subsection intensifies. Note that the number of par-
ticles for DSA at time t = 4 is still 15% of the initial number. However, in the
case considered here one would expect convergence to the same limit (provided
uniqueness of the solution). Slow convergence of DSA may be considered as
a tendency, which becomes predominant in the limiting case i j� where both
algorithms converge to different solutions.

6.3. Statistical error and effort. Here we discuss the issue of comparing
the two algorithms regarding their efficiency. For many functionals, the mass
flow algorithm provides estimators with lower variance compared to the direct

Fig. 8. Approximation of sum concentrations for kernel (6.4) with α = 0�8 using DSA �left� and
MFA �right�.
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simulation algorithm. This leads to a considerable gain in efficiency. The vari-
ance reduction is due to the fact that large particle sizes are resolved much
more accurately.
Figure 9 gives an illustration of the described effect. Various bounded func-

tionals of the form (5.2) are calculated for the product kernel (6.4) with α = 0�8�
The results in form of confidence bands are shown for DSA withN = 107 (left
column) and for MFA with N = bN = 105 (right column). The number of rep-
etitions is R = 10 for DSA and R = 30 for MFA leading to approximately
the same computation time. The systematic error is sufficiently small for both
algorithms in the pre-gelation phase (cf. Figures 7, 8). The reference solution
(dashed line) has been obtained from DSA with N = 109�

Fig. 9. Confidence intervals for sum concentrations and kernel (6.4) with α = 0�8 using DSA
�left� and MFA �right�.



STOCHASTIC PARTICLE APPROXIMATIONS 1161

We will now study the structure of the gain factor (5.7) in more detail, in
order to get a better understanding of the various quantities influencing effi-
ciency. The variances Var ξ̃N�t��Var ξN�t� and the values r̃N� rN (mean effort
per trajectory) are asymptotically proportional to N−1 and N� respectively.
Thus, it makes sense to define the derived quantities

lim
N→∞

N Var ξ̃N�t� = C̃var�t�� lim
N→∞

N Var ξN�t� = Cvar�t�

and

lim
N→∞

r̃N�t�
N

= C̃eff �t�� lim
N→∞

rN�t�
N

= Ceff �t��

The gain factor (5.7) is then approximated (as Ñ�N → ∞) in the form

κ�t� ∼ C̃eff �t�
Ceff �t�

C̃var�t�
Cvar�t�

=� κeff �t�κvar�t��

Thus the relationship of the mean effort per trajectory and of the variances of
the two estimators can be studied separately.
Note that the coefficient κeff �t�� representing the relationship of the effort,

does not depend on the functional to be calculated. Figure 10 shows κeff �t�
for the kernel (6.2), indicating a considerable advantage of DSA on longer
time intervals. This is not surprising since the number of particles in DSA
permanently decreases, which makes this algorithm much faster.
Next we consider the coefficient κvar�t�� representing relationship of the

variances. Note that this quantity depends on the functional to be evaluated.
Figure 11 shows variance gain of MFA for different concentration function-

als c�t� k� and kernel (6.2) at time t = 30� The fluctuations are due to the fact
that empirical estimates of the variances are used. A mean square fit (solid

Fig. 10. Effort coefficient κeff �t� for the kernel (6.2).
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Fig. 11. Variance coefficient κvar�t� k� for concentration functionals and kernel (6.2) at t = 30�

line) suggests the approximation

κvar�t� k� ∼ k�(6.16)

The property (6.16) has been observed for the different kernels at any fixed
time t < tg� Thus, one obtains

κ�t� k� ∼ k κeff �t��
which means that MFA resolves the cluster of size k > κeff �t�−1 more efficient
than DSA.
Figure 12 shows the variance coefficient κvar�t� and the efficiency gain factor

κ�t� for the second moment m2�t� and kernel (6.2). These curves show that
MFA resolves the second moment more efficient than DSA, with the gain
factor growing in time. Note that for the constant kernel a similar qualitative
behavior is observed. In particular, a gain factors 20 is reached on the time
interval �0�200��

Fig. 12. Variance coefficient κvar�t� and efficiency gain factor κ�t� for the second moment and
kernel (6.2).
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7. Concluding remarks. A new Markov jump process approximating so-
lutions of the coagulation equations (1.1), (1.2) has been introduced. Conver-
gence results for the stochastic particle system were established, using tech-
niques that had been successfully applied to the Marcus-Lushnikov process
before. A stochastic numerical algorithm based on the new process has been
described, and detailed numerical tests of this algorithm were presented. The
numerical experiments illustrate the theoretical results, but also provide some
insight into situations that have not yet been covered by the theory. This pro-
vides several suggestions and serves as a motivation for further theoretical
investigations.
Our basic goal was the development of a stochastic algorithm for the nu-

merical treatment of the coagulation equation, which has lower statistical
fluctuations than the standard direct simulation algorithm (variance reduc-
tion). As the numerical tests show, this has been achieved to a considerable
extent. Even when taking into account the effort needed to generate trajec-
tories of the new process, the gain in efficiency is remarkable. However, the
construction of a single algorithm and its successful testing in a number of
examples can only be considered as a first step towards a general theory of
variance reducing algorithms for the coagulation equation. It seems to be clear
that, following the ideas of this paper, a whole class of algorithms can be con-
structed, where the single interaction between numerical particles consists in
a transfer of appropriately chosen weights (instead of handling an interaction
by imitating the physical process).
The new algorithm was constructed using an auxiliary equation for the

mass flow of the coagulating system. This led to the conservation of the num-
ber of numerical particles (corresponding to mass conservation in the direct
simulation) before the gelation point. This feature is very convenient from
a computational point of view. Note that in the direct simulation approach
several modifications have been introduced in order to keep the number of
simulation particles sufficiently large. These modifications, which also pro-
duce a variance reducing effect, have not yet been compared to the mass flow
algorithm.
One of the interesting features of the new algorithm is the much better

convergence behavior (compared to the direct simulation algorithm) after the
gelation point for kernels of the form (6.4). This seems to be due to the fact
that there is no gel-sol interaction in the mass flow algorithm, while there
is such an interaction in the direct simulation algorithm. For kernels (6.4)
this interaction is not strong enough to be kept in the limit, but it causes
additional systematic error for finite particle systems. On the other hand, for
kernels of the form (6.6) the gel-sol interaction is so strong that both algo-
rithms converge to different limits. However, a reasonable conjecture based
on the numerical observations is that the mass loss detected by the mass flow
algorithm converges to the correct mass of the gel in Smoluchowski’s coagu-
lation equation. A further interesting feature of the mass flow process is that
it seems to show explosion at the gelation point (if the truncation parameter
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tends to infinity). This would connect the gelation phenomenon (a property of
the limiting equation) with the explosion time of a stochastic process.
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