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RIGIDITY PERCOLATION AND BOUNDARY CONDITIONS

By Alexander E. Holroyd

University of California, Los Angeles

We study the effects of boundary conditions in two-dimensional rigid-
ity percolation. Specifically, we consider generic rigidity in the bond
percolation model on the triangular lattice. We introduce a theory of bound-
ary conditions and define two different notions of “rigid clusters,” called
r0-clusters and r1-clusters, which correspond to free boundary conditions
and wired boundary conditions respectively. The definition of an r0-cluster
turns out to be equivalent to the definition of a rigid component used in
earlier papers by Holroyd and Häggström. We define two critical proba-
bilities, associated with the appearance of infinite r0-clusters and infinite
r1-clusters respectively, and we prove that these two critical probabilities
are in fact equal. Furthermore, we prove that for all parameter values p
except possibly this unique critical probability, the set of r0-clusters equals
the set of r1-clusters almost surely. It is an open problem to determine
what happens at the critical probability.

1. Introduction. Consider the standard bond percolation model, in which
each edge of a graph is declared open with probability p and closed otherwise,
independently for different edges. The standard theory of percolation focuses
on the connectivity properties of the resulting graph of open edges. For details,
see [2]. Recently, there has been interest in the study of properties of the graph
other than connectivity. Two such properties of particular physical significance
are entanglement (see [3, 5, 6]) and rigidity (see [4, 7]).

Our focus here is rigidity. Roughly speaking, a graph is said to be rigid if it
cannot be deformed when it is regarded as a structure made up of solid bars
and pivots. We shall be concerned with the question of whether the graph
of open edges contains large rigid subgraphs. Such questions have important
physical applications, in particular to the study of glassy materials; see [8]
for details. The combinatorial theory of graph rigidity is also important in its
own right; for details see [1].

There are several different concepts of rigidity, but we shall restrict our
attention to so-called generic rigidity in two dimensions. We shall give a defi-
nition of this in Section 2; for more detailed discussion the reader is referred
to [1, 7, 8]. We shall further restrict our attention to percolation on the two-
dimensional triangular lattice. Many of our techniques would be valid in
higher dimensions also, but we shall make use of some results in rigidity
theory which are not. The choice of the triangular lattice is a matter of conve-
nience only, and our results could be extended to other planar two-dimensional
lattices.
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Rigidity is most naturally defined for finite graphs. In [7], the definition for
a finite graph was extended in a natural way to infinite graphs. It was proved
in [7] that there is a critical probability pr for the appearance of infinite rigid
graphs, and that pc < pr < 1, where pc is the usual connectivity critical
probability. A maximal open rigid graph is called an r-cluster. In [4] it was
proved that whenever an infinite r-cluster exists, it is almost surely unique.
(A weaker version of this statement was obtained earlier in [7]).

We now discuss the concept of boundary conditions, which has its origins in
the theory of statistical physics. The motivation is as follows. Rather than con-
sidering infinite rigid graphs in the infinite lattice, we concentrate on a (large)
finite portion of the lattice, and try to take the limits of quantities of interest
as the size of this finite portion increases. This program presents several chal-
lenges. First, which quantities should we consider, and how can we ensure that
their limits exist? Second, how should the boundary of the finite portion of the
lattice be treated? Different choices of boundary conditions may in principle
give different results. We shall develop a detailed theory of boundary condi-
tions for the rigidity percolation model, focusing on the two extremal boundary
conditions: “free” boundary conditions, in which we declare all edges outside
the finite portion to be closed, and “wired” boundary conditions, in which we
declare all such edges to be open.

Aside from its intrinsic mathematical interest, the subject of boundary con-
ditions is of importance in the physical applications of rigidity, and also in
numerical simulation (in [8] for example, simulations with two different types
of boundary conditions were used to estimate the critical probability and cer-
tain exponents). Furthermore, the rigorous study of boundary conditions has
the potential to provide new facts relating to other issues, such as continuity
of the rigidity percolation probability.

We shall define two different notions of “rigid clusters,” called r0-clusters
and r1-clusters, which correspond to free boundary conditions and wired
boundary conditions, respectively. We shall see that the definition of an r0-
cluster is in fact equivalent to the definition of an r-cluster mentioned earlier.
Thus the previous rigorous studies of rigidity percolation [4, 7] can be regarded
as treating the free boundary conditions case. In contrast with the situation
for connected clusters, where the choice of boundary conditions has only triv-
ial effects, we shall see that there exist configurations for which there is an
infinite r1-cluster but no infinite r0-cluster. (A similar phenomenon occurs in
the case of entanglement; see [3]). The question arises whether such configu-
rations can actually occur with positive probability.

We shall define two critical probabilities, for the existence of infinite r0-
clusters and infinite r1-clusters respectively. Our main result (Theorem 7) is
that these two critical probabilities in fact coincide. Furthermore, we prove
(Theorem 14) that at all values of p except possibly the unique critical proba-
bility (pr), the r0-clusters and the r1-clusters are identical almost surely. (That
is, choice of boundary conditions has no effect, except possibly at the critical
point). We shall also give some results about continuity of the percolation
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probability functions, and present an open problem concerning their behavior
at the critical point pr.

The paper is organized as follows. In Section 2 we first review background
material and previous results on rigidity percolation, and then present our
main result on boundary conditions. A detailed treatment of boundary condi-
tions is given in Section 3. Much of the material in Section 3 is not used in
the subsequent proofs, but helps to demonstrate the significance of the main
result. Finally, the main result is proved in Section 4.

2. Background and results. In this section we review previous results
in two-dimensional generic rigidity percolation and present the new results to
be proved.

We start with some definitions. A graph is pair G = �V�E�, where V is a
countable set, and E is a set of subsets of size 2 of V. The elements of V are
called the vertices of G, and the elements of E are called the edges of G. We
shall write v ∈ G (respectively, e ∈ G) to indicate that v (e) is a vertex (edge)
of G. If A = �VA�EA� and B = �VB�EB� are graphs, we define the graphs
A∪B = �VA ∪VB� EA ∪EB� and A∩B = �VA ∩VB� EA ∩EB�. We say that
A is a subgraph of B if VA ⊆ VB and EA ⊆ EB.

The triangular lattice is the graph � = �V�E� with vertex set

V = {
a�1�0� + b�1/2�√3/2�
 a� b ∈ �

} ⊆ �2�

and edge set

E = {�x�y� ⊆ V
 
x− y
 = 1
}
�

where 
 ·−·
 denotes Euclidean distance. The origin is the vertex O = �0�0� ∈
V. We consider the standard bond percolation model on �. That is, for a param-
eter p ∈ �0�1�, each edge of � is declared open with probability p, and closed
otherwise, independently for different edges. More formally, we consider the
product probability measure Pp on the sample space �0�1�E. An element ω of
the sample space is called a configuration, and an edge e is open if ω�e� = 1
and closed if ω�e� = 0. We write Ep for the expectation operator associated
with Pp. We write W = W�ω� for the graph having the same vertex set as �,
and whose edge set is the set of all open edges.

The connected components of W are called clusters. In particular, the (con-
nectivity) critical probability pc is defined as

pc = sup
{
p
 Pp�O lies in an infinite cluster� = 0

}
�

It is a standard result that 0 < pc < 1. See [2] for more details of percolation
theory.

We now give a brief treatment of (generic) two-dimensional rigidity of
graphs. For a more detailed and general account, see [1, 7].

Let G = �V�E� be a finite graph. An embedding of G is an injective map
r
 V → �2. The pair �G�r� is called a framework. A motion of a framework
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�G�r� is a differentiable family �rt
 t ∈ �0�1�� of embeddings of G with r = r0,
and such that


rt�x� − rt�y�
 is constant in t�(1)

whenever �x�y� is an edge of G. We say that a motion is rigid if (1) holds for
all pairs of vertices x�y ∈ V. We say that a framework is rigid if all of its
motions are rigid.

The following is a standard result of graph rigidity theory. (See [1] for
details.)

Proposition 1. For any finite graph G, either �G�r� is rigid for almost all
embeddings r, or �G�r� is not rigid for almost all embeddings r, where “almost
all” refers to Lebesgue measure on �2�V�.

We therefore say that a finite graph G is rigid if the framework �G�r� is
rigid for almost all embeddings r of G.

The next step is to extend the above definition to infinite graphs. The follow-
ing very natural definition was introduced in [7] and was used subsequently
in [4]:

A graph G is said to be rigid if every finite subgraph
of G is a subgraph of some rigid finite subgraph of G.(2)

(This definition is consistent with the earlier one in the case when G is finite).
The following is a fundamental property of rigid graphs.

Proposition 2. Let A and B be graphs with vertex sets VA and VB,
respectively.

(i) If A and B are rigid, and �VA ∩VB� ≥ 2, then A ∪B is rigid.
(ii) If �VA ∩VB� ≤ 1, then A ∪B is not rigid.

For a proof, see [1] or [7]. One simple consequence of Proposition 2(ii) is
that every rigid graph is connected.

For any graph G, we define an r-component of G to be a maximal (in the
sense of subgraphs) rigid subgraph of G. It is straightforward to show that
any isolated vertex of G forms an r-component, and that the edge sets of
the r-components of G form a partition of the edge set of G (this follows
from Proposition 2). Every vertex of G lies in at least one r-component of G,
but it may lie in more than one (in contrast with the situation for connected
components).

We now return to the percolation model. For a given configuration ω, the
r-components of the graph of open edges W�ω� are called r-clusters (of ω). For
a fixed edge e of �, we define the function

φ�p� = Pp�e lies in an infinite r-cluster��
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It is easily seen that this probability does not depend on the choice of e, and
that it is a (nonstrictly) increasing function of p. We define the rigidity critical
probability pr by

pr = sup�p
 φ�p� = 0��
The following was proved in [7].

Theorem 3. We have

pc < pr < 1�

The following theorems were proved in [4].

Theorem 4. For all p such that φ�p� > 0, there is exactly one infinite
r-cluster almost surely.

Theorem 5. The function φ is continuous on the interval �pr�1�, and φ is
left-continuous or right-continuous (or both) at pr.

(Earlier, in [7], Theorem 4 was obtained for all but countably many values
of p, and partial progress was made towards Theorem 5).

We now introduce the concept of boundary conditions. We shall give a full
treatment in Section 3; here we give only the definitions needed to state our
main result.

We start by defining some special subgraphs of �. If x�y are vertices of �,
we write d�x�y� for their graph-theoretic distance in �. If U is a set of vertices
of �, we write ��U� for the graph whose vertex set is U, and whose edge set
consists of all edges of � having both vertices in U. For n a nonnegative integer
we define the graph

Hn = �
(�v ∈ �
 d�O�v� ≤ n�)�

(Hn takes the form of a hexagon of side length n centered at the origin). Later,
we shall also make use of the set of vertices,

∂Hn = �v ∈ �
 d�O�v� = n��
and the graph

Jn = �
(�v ∈ �
 n− 1 ≤ d�O�v� ≤ n�)�

(Jn is a kind of “hexagonal annulus” of thickness 1).
For ω a configuration, n a nonnegative integer and i equal to 0 or 1, we

define a new configuration ωi
n by

ωi
n�e� =

{
ω�e�� if e ∈ Hn,
i� if e /∈ Hn.

We focus on ω1
n. (We shall turn our attention to ω0

n in Section 3). It is easy to
see that the configuration ω1

n has exactly one infinite r-cluster, and we denote
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it I1
n. Furthermore, since W�ω1

n+1� is a subgraph of W�ω1
n� (for any ω), the

sequence of graphs �I1
n
 n ≥ 0� is decreasing. We define the graph

I1 = I1�ω� = ⋂
n

I1
n�

It is easily seen that I1 is either empty or infinite. If I1 is infinite, it may
be thought of as “the infinite rigid cluster when wired boundary conditions
are added.” We will show later that the distribution of I1 is invariant under
automorphisms of �. There are configurations (see Figures 1 and 2) for which
I1 is infinite but there is no infinite r-cluster. We shall discuss these matters
in detail in Section 3.

Let e be a fixed edge of � incident to O. We define

φ1�p� = Pp�e ∈ I1��
Clearly φ1 is an increasing function. We therefore define

p1
r = sup�p
 φ1�p� = 0��

We shall see in Section 3 that the quantities φ�p� and pr already defined
arise in a natural way from a consideration of the configurations ω0

n (the “free”
boundary conditions case). In the light of this we write φ0 = φ and p0

r = pr.
It is straightforward to show that φ1 ≥ φ0, and hence p1

r ≤ p0
r . We also have

the following.

Proposition 6. The function φ1 is right-continuous.

This will be proved below.
We remark that, by using techniques from [4] involving “surrounding cir-

cuits,” it may be shown that φ1 is left-continuous on �p1
r �1�, and that if

φ0�p� > 0 then φ1�p� = φ0�p�. However, both of these statements (and more)
follow from Theorem 7 below, which we shall prove using a different method.

Theorem 7. We have p0
r = p1

r . Furthermore φ0�p� = φ1�p� for all p except
possibly p = p0

r = p1
r .

We therefore revert to the use of the symbol pr for the unique critical prob-
ability p0

r = p1
r . In the light of Theorems 5 and 7 and Proposition 6, exactly

one of the following must hold:

(i) φ0 and φ1 are equal everywhere and continuous everywhere.
(ii) φ0 and φ1 are equal everywhere and continuous except at pr, where

both are right-continuous.
(iii) φ0 and φ1 are equal and continuous except at pr, where they are

unequal, and φ1 is right-continuous while φ0 is left-continuous.

It is a fascinating unsolved problem to determine which of (i)–(iii) is correct.
The main step in our proof of Theorem 7 will be the following.
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Lemma 8. The set �p
 φ1�p� > φ0�p�� contains no interval of positive
length.

Finally in this section we prove Proposition 6 and deduce Theorem 7 from
Lemma 8 and results stated earlier.

Proof of Proposition 6. The function φ1�p� is the decreasing limit as
n → ∞ of Pp�e ∈ I1

n�. The event �e ∈ I1
n� depends on the states of only finitely

many edges in ω, and so Pp�e ∈ I1
n� is a continuous function of p. Thus φ1 is

upper semicontinuous and increasing, and hence right-continuous. ✷

Proof of Theorem 7. Since φ1 ≥ φ0, Lemma 8 implies immediately that
p0

r = p1
r . Clearly φ0�p� = φ1�p� for p < pr (since both are zero). Finally if

p > pr, combining Lemma 8 with the facts that φ1 ≥ φ0, φ1 is increasing,
and φ0 is right-continuous at p (Theorem 5), we obtain φ0�p� = φ1�p�. ✷

3. Clusters and boundary conditions. The purpose of this section is to
develop a theory of boundary conditions for two-dimensional rigidity
percolation.

Fix a configuration ω and recall the definitions of the configurations ωi
n

(i = 0�1) from Section 2. For i equal to 0 or 1, we wish to consider the r-clusters
of the configuration ωi

n (that is, the r-components of the graph W�ωi
n�), and

take some kind of limit as n → ∞. In order to make sense of this, compare
the r-clusters ωi

n with those of ωi
n+1. Since the sequence of configurations

�ω0
n
 n ≥ 0� is increasing, every r-cluster of ω0

n is a subgraph of some r-cluster
of ω0

n+1. On the other hand, since the sequence �ω1
n
 n ≥ 0� is decreasing, every

r-cluster of ω1
n+1 is a subgraph of some r-cluster of ω1

n.
In the light of the above, we make the following definitions. We say that a

graph C0 is an r0-cluster (of ω) if there exists an increasing (in the sense of
subgraphs) sequence of graphs �C0

n
 n ≥ 0� such that C0
n is an r-cluster of ωn

0
for each n, and

C0 = ⋃
n

C0
n�

(Recall in particular that an isolated vertex of a graph constitutes an r-cluster).
We say that a nonempty graph C1 is an r1-cluster (of ω) if there exists a
decreasing (in the sense of subgraphs) sequence of graphs �C1

n
 n ≥ 0� such
that C1

n is an r-cluster of ωn
1 for each n, and

C1 = ⋂
n

C1
n�

We note that the definition (2) plays no role in the definition of an r0-cluster,
because the configuration ω0

n has only finitely many open edges. Definition (2)
does play a role in the definition of an r1-cluster, since ω1

n has infinitely many
open edges. However, the definition of an r1-component could, if desired, be
reformulated in terms of the graph W�ω1

n� ∩ Hn+2, which has only finitely
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many edges; the use of the infinite graph W�ω1
n� is a matter of convenience

only. Hence (2) is not used in any “essential” way in the definitions of ri-
clusters.

In Propositions 9–13 below we present some simple properties of ri-clusters.
These propositions hold for every configuration ω. The proofs, all of which are
elementary, are deferred until the end of the section.

Proposition 9. (i) For each of i = 0�1, every isolated vertex of W forms
an ri-cluster, and the edge sets of the ri-clusters form a partition of the edge
set of W.

(ii) Every r1-cluster is a union of r0-clusters.

The next result states that there is nothing special about the choice of the
sequence of graphs �Hn
 n ≥ 0�. Suppose �Ĥn
 n ≥ 0� is an increasing sequence
of finite graphs with the property that

⋃
n Ĥn = �, and define an r̂i-cluster

analogously to an ri-cluster, but replacing Hn with Ĥn in the definition of ωi
n.

Proposition 10. For any sequence of graphs �Ĥn
 n ≥ 0� satisfying the
above conditions, the set of r̂i-clusters is identical to the set of ri-clusters, for
i = 0�1.

An important consequence of Proposition 10 is that the definition of an
ri-cluster is invariant under the symmetries of �. More precisely, let " be a
graph automorphism of �. Then " induces a natural mapping from subgraphs
of � to subgraphs of �, which we denote also by ". Furthermore, if ω is a
configuration, we define "�ω� to be the configuration whose graph of open
edges W�"�ω�� is "�W�ω�� [that is, "�ω��e� = ω�"−1e�]. Then we have the
following.

Proposition 11. For any graph automorphism " of �, "�C� is an ri-cluster
of "�ω� if and only if C is an ri-cluster of ω, for i = 0�1.

Next we study the properties of r0-clusters and r1-clusters separately.

Proposition 12. The set of r0-clusters is identical to the set of r-clusters.

Recall the definitions of I1
n and I1 from Section 2.

Proposition 13. (i) Every finite r1-cluster is an r0-cluster.

(ii) Either (a) I1 is empty and there is no infinite r1-cluster or (b) I1 is the
unique infinite r1-cluster.

Thus, for any configuration, knowledge of the r-clusters and of I1 is equiv-
alent to knowledge of the r0-clusters and r1-clusters.
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Fig. 1. This configuration has an infinite r1-cluster but no infinite r0-cluster.

In consequence of Propositions 11, 12 and 13, we see that the functions φ0

and φ1 defined in Section 2 may be written as

φ0�p� = Pp�e lies in an infinite r0-cluster��
φ1�p� = Pp�e lies in an infinite r1-cluster��

for any edge e ∈ �.
We note that there exist configurations for which I1 is not rigid, for example

any configuration having more than one infinite r-cluster. Hence r0-clusters
and the r1-clusters are not necessarily the same. There also exist configura-
tions for which there is an infinite r1-cluster but no infinite r0-cluster; for
example, if W is the infinite graph illustrated in Figure 1, it is easy to check
that each triangle is an r0-cluster (so that all r0-clusters are finite), while there
is an infinite r1-cluster containing all the open edges. Can such configurations
occur in the percolation model? In Figure 1, although there is no infinite r0-
cluster, there exist infinitely many edges e ∈ � with the property that adding
e to the set of open edges would create an infinite r0-cluster. But it is straight-
forward to show that for any p, the event just described has Pp-probability
zero. On the other hand, in the configuration illustrated in Figure 2, it may
be shown that there is an infinite r1-cluster but no infinite r0-cluster, and that
these statements remain true if we change the states of any finite set of edges.
The question therefore arises whether configurations such as this can actually
occur with positive probability.

Theorem 7 allows us to deduce the following.

Theorem 14. For every p except possibly p = pr, almost surely with
respect to Pp, the set of r0-clusters is identical to the set of r1-clusters.

Proof. If p < pr, almost surely there are only finite r1-clusters, so the
required conclusion follows from Proposition 9 and Proposition 13(i). If p > pr,
by Proposition 13(i), each finite r1-cluster is an r0-cluster. There is a unique
infinite r1-cluster, I1 (Proposition 13), and by Theorem 7, I1 is almost surely
equal to the union of all infinite r0-clusters. But by Theorem 4, there is almost
surely exactly one infinite r0-cluster. The required conclusion now follows by
Proposition 9. ✷

Finally in this section we sketch the proofs of Propositions 9–13.
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Fig. 2. This configuration has an infinite r1-cluster but no infinite r0-cluster, and these properties
are robust to local changes to the configuration.

Proof of Proposition 9. The statements in (i) follow trivially from the
corresponding statements for r-components of a graph. For (ii), note that
W�ω0

n� is a subgraph of W�ω1
n�, hence every r-cluster of ω0

n is a subgraph
of some r-cluster of ω1

n; the result now follows. ✷

Proof of Proposition 10. Let �Ĥn
 n ≥ 0�, �Ȟn 
 n ≥ 0� be two sequences
of graphs as described, and note that �Hn
 n ≥ 0� is itself an example of such a
sequence. Define an ři-cluster in the obvious way. By the same argument as for
ri-clusters, the r̂i-clusters and the ři-clusters each partition W. We show that
for i = 0�1, any r̂i-cluster is a subgraph of some ři-cluster; since by symmetry
the same holds with r̂i and ři reversed, this proves the result. To show that
any r̂1-cluster is a subgraph of some ř1-cluster, we observe that for any n,
there exists m such that Ȟn is a subgraph of Ĥm, and hence (with obvious
notation) W�ω̂1

m� is a subgraph of W�ω̌1
n�. The argument for the case i = 0 is

similar. ✷
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Proof of Proposition 11. This follows from Proposition 10 on taking
Ĥn = "�Hn�. ✷

Proof of Proposition 12. If C0 = ⋃
n C

0
n is an r0-cluster, then it follows

immediately from the definition of a rigid graph, (2), that C0 is rigid. On the
other hand if there exists a rigid subgraph D of W with C0 a strict subgraph of
D, then it is easily seen that there must exist n such that C0

n contains edges
belonging to D but not to C0, giving a contradiction. Thus we have proved
that every r0-cluster is an r-cluster, and the converse follows because both the
r0-clusters and the r-clusters partition W. ✷

Proof of Proposition 13. For (i), suppose C1 =⋂
nC

1
n is a finite r1-cluster.

Then C1 is a subgraph of Hm for some m. Hence, for n sufficiently large,
Jm+2∩C1

n is empty. But C1
n is rigid, and therefore connected, so it follows that

for n sufficiently large, C1
n is finite. Hence for n sufficiently large, C1

n = C1. It
follows that for all sufficiently large n, C1 is an r-cluster of ω0

n, so, from the
definition of an r0-cluster, C1 is an r0-cluster.

We now turn to (ii). It is a triviality that I1 is an r1-cluster provided it is
nonempty. Now if C1 = ⋂

n C
1
n is an infinite r1-cluster, then each C1

n is infinite,
so C1

n = I1
n and hence C1 = I1. On the other hand, if I1 is finite, there must

exist m such that I1 is a subgraph of Hm. Hence Jm+2 ∩ I1
n is empty for n

sufficiently large. But I1
n is connected, so this implies that Hm ∩ I1

n is empty
for n sufficiently large, and this implies that I1 is empty. ✷

4. Main proof. The purpose of this section is to prove Lemma 8. Our
proof depends on Lemmas 15–19 below.

Lemma 15. Let A�B be graphs such that A ∪ B is rigid, and let B′ be a
rigid graph with the property that VB′ ⊇ VA ∩ VB. Then the graph A ∪ B′

is rigid.

Lemma 15 is proved in [7].
Let G = �V�E� be a finite graph. We introduce the quantity F�G�, defined

to be the minimum number of extra edges needed to make G rigid:

F�G� = min
{�X�
 �V�E ∪X� is a rigid graph

}
�

We remark that F�G� has physical significance, being exactly three less
than the number of “degrees of freedom” or “floppy modes” of G. Here is an
informal explanation of these terms; for more details see [8]. A graph with
no edges has two degrees of freedom for each vertex, corresponding to two
possible translations. Adding an edge to a graph may reduce the number of
degrees of freedom by one or leave it unaltered. A rigid graph with more than
one vertex has three degrees of freedom, corresponding to two translations
and one rotation. As we shall see, F�G� also has an interpretation in the
combinatorial theory of rigidity (see [1]).
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If G = �V�E� is a graph and e = �x�y� is an edge such that x�y ∈ V, we
write G ∪ e for the graph �V�E ∪ �e��, and G \ e for the graph �V�E \ �e��.

Lemma 16. Let G = �V�E� be a finite graph and let e = �x�y� be an edge
such that x�y ∈ V. Then

F�G ∪ e� =
{
F�G�� if G has an r-component R with x�y ∈ R,
F�G� − 1� otherwise.

The proof of Lemma 16 uses tools from the combinatorial theory of rigidity,
and is deferred to the end of this section.

Lemma 17. If the graphs A and B have the same vertex set V, and A is a
subgraph of B, then for any edge e = �x�y� with x�y ∈ V, we have

F�A� −F�A ∪ e� ≥ F�B� −F�B ∪ e��

We omit the proof of Lemma 17, which is elementary, either directly from
the definition of F or from Lemma 16.

Given a configuration ω, we say that an edge e = �x�y� of � is special
if the following two statements hold:

(i) x and y are vertices of I1.
(ii) There is no r-cluster C with x�y ∈ C.

Note that property (ii) implies that a special edge is closed.

Lemma 18. If p is such that φ1�p� > φ0�p�, then for any edge e of �
we have

Pp�e is special� > 0�

Our proof of this seemingly obvious lemma is somewhat involved and is
deferred to the end of the section.

Our final lemma concerns a kind of “upper integral” for positive functions.

Lemma 19. Let a < b and let σ 
 �a� b� → �0�1� be a positive function.
There exists a number I�σ� > 0 such that for every continuously differentiable
function f which satisfies

d

dx
f�x� ≥ σ�x� for x ∈ �a� b��

we have f�b� − f�a� ≥ I�σ�.

Proof. Define the function σ̄ on �a� b� by σ̄�x� = limh→0 supy∈�x−h�x+h�
σ�y�. The function σ̄ is upper semicontinuous and therefore Lebesgue-
integrable. Furthermore, σ̄ ≥ σ , and any continuous function g which satisfies
g ≥ σ on �a� b� also satisfies g ≥ σ̄ . We therefore define I�σ� = ∫ b

a σ̄�x�dx. ✷
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Proof of Lemma 8. For a given configuration ω and a positive integer n
we define graphs Ui

n�ω� for i = 0�1 as follows. The vertex sets of U0
n and U1

n

are both equal to the vertex set of Hn. The edges of U0
n are the open edges of

Hn, while U1
n = U0

n ∪Jn (recall the definition of Jn from Section 2). We think
of U0

n�ω� and U1
n�ω� as “finite versions” of W�ω0

n� and W�ω1
n�, respectively.

The number of edges of Jn is bounded above by kn for some fixed constant
k, and hence we have for each ω,

F�U0
n� − kn ≤ F�U1

n� ≤ F�U0
n��

We take expectations and write

fi
n�p� = Ep�F�Ui

n��
to give

f0
n�p� − kn ≤ f1

n�p� ≤ f0
n�p� for all n and p�(3)

Note that fi
n�p� is a polynomial in p which is decreasing and nonnegative on

the interval �0�1�.
For a finite graph G and an edge e = �x�y� with x�y ∈ G, we say that e is

F-pivotal for G if

F�G ∪ e� = F�G \ e� − 1�

[Note that exactly one of G∪e and G\e is equal to G and that F�G∪e�−F�G\e�
always equals either 0 or −1; see Lemma 16.] Using an extension of Russo’s
formula to random variables (Theorem (2.32) of [2]) we obtain

− d

dp
fi
n�p� = Ep

∣∣�e ∈ Hn
 e is F-pivotal for Ui
n�

∣∣�
for i = 0�1.

Since U0
n is a subgraph of U1

n, Lemma 17 implies that any edge which is
F-pivotal for U1

n is also F-pivotal for U0
n. Hence the above equation yields

− d

dp

(
f0
n�p� − f1

n�p�
)

= Ep

∣∣�e ∈ Hn
 e is F-pivotal for U0
n but not for U1

n�
∣∣�(4)

for all n.
Next we claim that, for any given configuration ω, if e is a special edge and

if e ∈ Hn, then e is F-pivotal for U0
n but not for U1

n. To prove this, suppose
e = �x�y� ∈ Hn is a special edge. First, since W has no r-component containing
both x and y, U0

n has no r-component containing x and y (because U0
n is a

subgraph ofW). SinceU0
n\e = U0

n, this implies by Lemma 16 that e isF-pivotal
for U0

n. Second, since x and y lie in I1, they lie in some rigid subgraph of the
graph W�ω1

n�. Since W�ω1
n� is obtained from W by adding edges of � outside

Hn−1, and since Jn is a rigid graph containing all the vertices of ∂Hn−1, an
application of Lemma 15 shows that x and y lie in some rigid subgraph of
U1

n. Now if e ∈ Hn \Jn, then U1
n \ e = U1

n, so Lemma 16 implies that e is not
F-pivotal for U1

n. On the other hand, it is easy to see that Jn remains rigid
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even if any one edge is removed, so if e ∈ Jn, then U1
n \ e has an r-component

containing x and y, and hence e is not F-pivotal for U1
n in this case also. We

have therefore proved the above claim.
The right-hand side of (4) may now be bounded below by the expected num-

ber of special edges in Hn. By Proposition 11, the probability that an edge is
special is the same for all edges, so defining

σ�p� = Pp�e is special�
for a fixed edge e, we obtain

− d

dp

(
f0
n�p� − f1

n�p�
) ≥ cn2σ�p�

for all n, where c is a fixed positive constant.
Finally suppose that φ1�p� > φ0�p� for all p ∈ �a� b� where a < b. By

Lemma 18, σ�p� > 0 for all p ∈ �a� b�. We now appeal to Lemma 19. (Actually,
it may be shown that the function σ�p� is Lebesgue-integrable, so Lemma 19
is not necessary. However, the argument we give is slightly more concise).
We obtain

−f0
n�b� + f1

n�b� + f0
n�a� − f1

n�a� ≥ cI�σ�n2

for all n, where cI�σ� > 0. This contradicts (3) when n is large. ✷

Finally, we give the proofs Lemmas 16 and 18. We shall use methods from
the combinatorial theory of rigidity; for more information about this see [1]; a
brief treatment of some of the relevant material also appears in [7]. We start
with some definitions. If G is a graph, the complete graph of G is the graph
K�G� which has the same vertex set as G, and which has an edge between
every pair of vertices.

We define the rigidity closure operator �·� as follows. If G is a (finite or
infinite) graph, the closure of G is the graph

�G� = ⋃
H
 H is an r−component of G

K�H��(5)

Note that �G� has the same vertex set as G, because any vertex of a graph
lies in some r-component. The rigidity closure operator has the following
properties.

Lemma 20. For any graphs A�B and edges s� t we have:

(i) �A� ⊇ A.
(ii) If A ⊆ B then �A� ⊆ �B�.
(iii) ��A�� = �A�.
(iv) If s ∈ �A ∪ t� but s �∈ �A�, then t ∈ �A ∪ s� but t �∈ �A�.

Furthermore, it is straightforward to show that G is rigid if and only if
�G� = K�G�. Parts (i)–(iii) of Lemma 20 are reasonably intuitive, but (iv)
is perhaps less so. Details of the proof of Lemma 20 may be found in [1],
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and a summary appears in [7]. Actually, the usual approach is to define the
rigidity closure operator in a different way, and then prove that both (5) and
Lemma 20 hold.

Proof of Lemma 16. For a given finite set V of vertices of �, let � be
the set of all graphs having V as vertex set. Let K be the complete graph
with vertex set V. The closure operator �·� maps � to itself. The assertions of
Lemma 20 are precisely the statement that �·� is amatroid closure operator on
� (or, actually, on the edge set of K). For more details, see [1, 9]. Also, for any
graph G ∈ � , we have that F�G� is the minimum number of edges of K which
must be added to G to give a graph whose closure is K. A straightforward
application of the tools of matroid theory yields that for any matroid closure
operator, the function F defined in this way satisfies

F�G ∪ e� =
{
F�G�� if e is an edge of �G�,
F�G� − 1� otherwise,

for e an edge of K; this follows on noting that F�G� is equal to the rank of
the matroid minus the rank of G; for more details see [1] or [9].

The result now follows from the definition of the closure operator. ✷

Proof of Lemma 18. We shall make use of the rigidity closure operator
and of Lemma 20.

Suppose that φ1�p� > φ0�p�. Then, almost surely with respect to Pp, the
graph I1 is infinite and not rigid. Hence almost surely there exist two vertices
u� v of I1 which do not lie in any one r-cluster. It follows that there exist two
fixed vertices u� v of � such that

Pp�u� v ∈ I1 but no r-cluster contains u and v� > 0�

Now, there exists a fixed finite rigid subgraph R of � with u� v ∈ R (since �
is rigid). Consider the edge �u� v�, which is not necessarily an edge of �. On
the displayed event above, we have

�u� v� �∈ �W��
but

�u� v� ∈ �W ∪R�
[where for the second statement we have used Lemma 20(i), (ii)]. Hence, writ-
ing the edge set of R as �r1� � � � � rm�, there exists k such that

�u� v� �∈ �W ∪ r1 ∪ · · · ∪ rk−1��
but

�u� v� ∈ �W ∪ r1 ∪ · · · ∪ rk−1 ∪ rk��
Since u� v ∈ I1, we also have that

�u� v� ∈ �W�ω1
n��

for each n.
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It follows from the above statements that there exist fixed vertices u� v ∈ �
and a fixed edge r ∈ � such that with positive Pp-probability, the following
three statements all hold:

�u� v� �∈ �W��(6)

�u� v� ∈ �W ∪ r��(7)

�u� v� ∈ �W�ω1
n�� for all n�(8)

Supposing that (6)–(8) hold, we now apply Lemma 20(iv) to (6) and (7) to
deduce that

r �∈ �W�(9)

but
r ∈ �W ∪ �u� v���(10)

Finally, combining (10) with (8) and using Lemma 20(i)–(iii) yields

r ∈ �W�ω1
n�� for all n�(11)

But now (9) and (11) imply that r is a special edge. ✷
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