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LONG TERM BEHAVIOR OF SOLUTIONS OF
THE LOTKA–VOLTERRA SYSTEM UNDER

SMALL RANDOM PERTURBATIONS

By R. Z. Khasminskii1 and F. C. Klebaner2

Wayne State University and University of Melbourne

A stochastic analogue of the Lotka–Volterra model for predator–prey
relationship is obtained when the birth rate of the prey and the death rate
of the predator are perturbed by independent white noises with intensities
of order ε2, where ε > 0 is a small parameter. The evolution of this system
is studied on large time intervals of O�1/ε2�. It is shown that for small ini-
tial population sizes the stochastic model is adequate, whereas for large ini-
tial population sizes it is not as suitable, because it leads to ever-increasing
fluctuations in population sizes, although it still precludes extinction. New
results for the classical deterministic Lotka–Volterra model are obtained
by a probabilistic method; we show in particular that large population sizes
of predator and prey coexist only for a very short time, and most of the time
one of the populations is exponentially small.

1. Introduction. The Lotka–Volterra system of ordinary differential
equations, proposed originally by Lotka (1925) and Volterra (1926) is one of
the simplest models of interacting populations. It describes the behavior of a
predator–prey system by the following dynamics:

ẋ = dx

dt
= x�a− by�� ẏ = dy

dt
= y�−c+ fx� �x0� y0� a� b� c� f > 0��(1.1)

where x = x�t� the density of prey and y = y�t� that of the predator and
the coefficients a� b� c and f are positive constants. This model reflects the
assumption that the growth rate of the prey population, in absence of preda-
tors, is a > 0, but decreases linearly with presence of predators, and in the
absence of prey, the predators die at a constant rate c > 0, but increase lin-
early with with the density of prey [see, e.g., May (1976)]. The system starts
at some point of the positive quadrant �x�0�� y�0��.

It is well known (and easy to check) that the trajectories of the system (1.1)
in the phase space x�y are closed curves described by the first integral,

r�x�y� = fx−c−cln
(
1+�fx−c�/c)+by−a−aln

(
1+�by−a�/a)�

= constant=r�
(1.2)

that is, for any t ≥ 0, r�x�t�� y�t�� = r�x�0�� y�0��. We have chosen to write the
first integral in such a form that for all x�y, r�x�y� ≥ 0; moreover, r�x�y� = 0
if and only if x∗ = c/f and y∗ = a/b.
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It is also known that solutions are periodic; we denote the period
corresponding to the value r of the first integral by T = T�x�0�� y�0�� = T�r�.

System (1.1) has two fixed points, �0�0� and �x∗� y∗� = �c/f� a/b�, with the
latter being the only equilibrium state in the positive quadrant.

Random perturbations to the Lotka–Volterra model were considered in the
literature; see, for example Goel, Maitra and Montroll (1971) and Arnold,
Horsthemke and Stucki (1979). It was shown in Arnold, Horsthemke and
Stucki (1979) in particular, that when the coefficient a is randomly perturbed
by white Gaussian noise in the Itô sense then the resulting system cannot have
a stationary distribution; see also our remark in Section 2. Here we consider
a more natural type of random perturbations (in the sense of Stratonovich) of
both coefficients a and c. Arguments of Arnold, Horsthemke and Stucki (1979)
do not work in this situation. However, under natural assumption of smallness
of perturbations we obtain results by the stochastic method of averaging.

The paper is organized as follows. In Section 2 we introduce a stochastic
Lotka–Volterra system, obtained by small random perturbations of the deter-
ministic model, and give a limit theorem. The diffusion occurring as a limit
involves unknown quantities of the deterministic system, which are found in
Section 3. Analysis carried out in that section shows that the Lotka–Volterra
model is a good model for small initial population sizes, but not for the large
ones, since a noisy system leads to ever-increasing fluctuations in population
sizes, which is not what is observed in nature. The stochastic model, however,
precludes extinction, which may seem surprising at first look, as the popula-
tion sizes become exponentially small. In Section 4 we give a new result on the
coexistence of predator and prey as well as bounds on the population sizes for
the deterministic Lotka–Volterra system, which is obtained by a probabilistic
method.

2. Stochastic Lotka–Volterra system. We consider small random per-
turbations in the birth rate of the prey a and the death rate of the predator c
by independent Gaussian white noises with intensities ε2σ2

1 and ε2σ2
2 , where

ε > 0 is a small parameter. Then from (1.1) we have

Ẋε = Xε�a+ εσ1Ẇ1 − bYε��
Ẏε = Yε�−c+ εσ2Ẇ2 + fXε� �x0� y0� a� b� c� f > 0��(2.1)

In applications, Gaussian white noise is usually used as an approximation to
a real noise with a short correlation interval (short memory). It is well known
[see, e.g., Hasminskii (1980), paragraph 5 of Chapter 5] that when the limit
is taken when the correlation function tends to Dirac’s δ-function, a system of
stochastic differential equations (SDE) in the Stratonovich form results:

dXε�t� = Xε�t�(a− bYε�t�)dt+ εσ1X
ε�t� ◦ dW1�t��

dYε�t� = Yε�t�(−c+ fXε�t�)dt+ εσ2Y
ε�t� ◦ dW2�t��

where Wi�t� are independent standard Brownian motions.
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Remark. Note here that if the noise in (2.1) is treated in the Itô sense,
then it is easy to see by Itô’s formula that

dRε�t� = dr
(
Xε�t��Yε�t�) = εσ1

(
fXε�t� − c

)
dW1�t�

+ εσ2
(
bYε�t� − a

)
dW2�t� + 1/2ε2

(
cσ2

1 + aσ2
2

)
dt�

Therefore,

Er
(
Xε�t��Yε�t�) = Er�x0� y0� + 1/2ε2

(
cσ2

1 + aσ2
2

)
t�

so that the expectation grows linearly and there is no stationary distribution
for the system [analogous arguments were used in Arnold, Horsthemke and
Stucki (1979)]. Here we consider a more natural type of random perturbations
in the sense of Stratonovich of both coefficients a and c. Arguments of Arnold,
Horsthemke and Stucki do not work in this situation, however, under the
assumption that perturbations are small we can use the averaging to obtain
a result. It turns out that the resulting limiting diffusion is the same for both
Itô and Stratonovich types of noise [see Theorem 1 and (3.3)].

It follows from the properties of the Stratonovich integral [see, e.g., Protter
(1992) or Klebaner (1998)] that (2) is equivalent to the following system of Itô
stochastic equations:

dXε�t� = Xε�t�(a+ ε2σ2
1/2− bYε�t�)dt+ εσ1X

ε�t�dW1�t��
dYε�t� = Yε�t�(−c+ ε2σ2

2/2+ fXε�t�)dt+ εσ2Y
ε�t�dW2�t��

The process Rε�t� = r�Xε�t��Yε�t�� is a slowly changing component for (2),
and Itô’s formula gives

dRε�t� = ε2

2

(
fσ2

1X
ε�t� + bσ2

2Y
ε�t�

)
dt

+ ε
(
σ1

(
fXε�t� − c

)
dW1�t� + σ2

(
bYε�t� − a

)
dW2�t�

)
�

(2.2)

So we can consider the system (2) as a system with two time scales: a slow coor-
dinate Rε�t�, and a fast coordinate [for which we can take, for instance, one of
the equations in (2)]. For SDEs with two time scales a result of Khasminskii
(1968) can be applied. According to this result, the evolution of the slow coor-
dinate Rε�t� on time intervals of O�1/ε2� can be approximated by a diffusion
with coefficients given by the averages along the trajectories of the correspond-
ing deterministic process. More precisely we have the following theorem.

Theorem 1. Let T0 > 0 be fixed, and let the process �Xε�Yε� start from
�x0� y0�. Then on the interval 0 ≤ t < T0, the process Rε�t/ε2� converges weakly
as ε → 0 to the diffusion process R�t� which solves the following stochastic
differential equation:

dR�t� = µ
(
R�t�)dt+ σ

(
R�t�)dW�t��(2.3)
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where W is a standard Brownian motion; for a solution of the deterministic
system (1.1) x�t�, y�t� starting at �x�0�� y�0��, r denotes the value of its first
integral in (1.2) r�x�0�� y�0�� = r�T = T�r� is its period, and for a function φ,

φ�x�y��r� denotes the average

φ�x�y��r� = 1
T

∫ T

0
φ
(
x�t�� y�t�)dt�

µ�r� = 1
2

(
fσ2

1 x̄�r� + bσ2
2 ȳ�r�

)(2.4)

and

σ2�r� = σ2
1 �fx− c�2�r� + σ2

2 �by− a�2�r��(2.5)

Thus the description of the approximating diffusion R has reduced to the
purely deterministic problem of finding first and second power averages of the
deterministic solution, namely the quantities in the coefficients (2.4) and (2.5).

3. Behavior of averages of the deterministic Lotka–Volterra system
and the limiting diffusion. In what follows,T = T�r� denotes the period of
a periodic solution x�t�� y�t� corresponding to the value r of the first integral.

By separating variables and integration it is easy to see from (1.1) that

ln
(
x�T�)− ln

(
x�0�) = ∫ T

0

(
a− by�t�)dt�(3.1)

Since x�t� is periodic, it follows that
ȳ = a/b�(3.2)

Similarly x̄ = c/f.
Therefore from (2.4) we obtain that the drift coefficient

µ�r� = 1
2�cσ2

1 + aσ2
2 �(3.3)

is a constant independent of r.
The expression for the average of the squares of solutions is more compli-

cated, and it seems that it is not available in the closed form. However, to
determine the long term properties, such as recurrence or transient property
of the limiting diffusion (2.3) we need only the behavior at zero and infinity
of σ�r�, which is done next.

It is convenient to introduce ξ = fx− c and η = by− a, since the diffusion
coefficient σ2�r� involves only ξ2 and η2.

In the new coordinates, the system (1.1) becomes

dξ

dt
= −η�ξ + c�� dη

dt
= ξ�η+ a��(3.4)

and from (1.2) its first integral is given by

r�ξ�η� = ξ − c ln�1+ ξ/c� + η− a ln�1+ η/a� = r = const.(3.5)
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Note that r�ξ�η� ≥ 0 for all ξ ≥ −c� η ≥ −a, and it achieves its minimum 0
at �0�0�.

It is immediate from (3.2) that

ξ̄ = 0 and η̄ = 0�(3.6)

Integrating (3.4) directly, and taking into account ξ̄ = 0 and η̄ = 0, we
obtain that

ξη = 0�(3.7)

Multiply now the first equation in (3.4) by ξ to obtain that

1
2dξ

2 = −ηξ2 − cηξ�

Integrating from 0 to T, it follows that

ξ2η = 0�(3.8)

Similarly, multiplying the second equation in (3.4) by η and integrating from 0
to T we obtain that

ξη2 = 0�(3.9)

Multiply now the equations in (3.4) by η and ξ respectively to obtain that

d�ξη� = −η2ξ − cη2 + ξ2η+ aξ2�

from which it follows that

cη2 = aξ2 
= g2�r��(3.10)

where the last equality is the definition of the function g2�r�. In what follows,
solutions to (3.4) corresponding to the value r of the first integral r�ξ�η�
in (3.5) as well as related quantities will be indexed by r, for example ξ�t� r�
and ξ2�r�, although sometimes it will not be stated explicitly, for example,
when we write ξ�t� instead of ξ�t� r�.

We analyze the behavior of g2�r� and hence that of σ2�r� for r → 0 in the
next section and then consider the case r → ∞.

3.1. Behavior of the system for r → 0.

Theorem 2. The generator L of the limiting diffusion R on �0�∞� has the
form for r → 0,

L = 1
2

(
cσ2

1 + aσ2
2

)( d

dr
+ r

(
1+ o�1�) d2

dr2

)
�(3.11)

The left boundary point 0 is unattainable and is an entrance boundary. There-
fore it cannot be reached from any positive state r; moreover, P�R�t� → 0
as t → ∞� = 0.
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It follows from the result that the noisy system can never reach the
deterministic equilibrium �x∗� y∗� (which corresponds to r = 0) but it can be
started there, in which case it will quickly leave equilibrium never to return.

Proof. Once we show that L has the form (3.11), it is easy to check
that the left boundary point 0 is unattainable and is an entrance boundary
using Feller’s conditions for classification of boundaries [see, e.g., Karlin and
Taylor (1981)]. The form of L (3.11) follows from the next result by (3.3) and
(3.14). ✷

Theorem 3. As r → 0, the following hold:

ξ2�r� = cr+ o�r�� η2�r� = ar+ o�r��(3.12)

g2�r� = acr+ o�r��(3.13)

σ2�r� = (
σ2
1c+ σ2

2a
)
r+ o�r��(3.14)

Proof. Let ξ�t�� η�t� be a solution with the value of the first integral
equal to r; then it follows from (3.5) and the elementary inequality x−a ln�1+
x/a� ≥ 0 for all x ≥ −a that for all t ≥ 0,

0≤ξ�t�−cln
(
1+ξ�t�/c)≤r and 0≤η�t�−aln

(
1+η�t�/a)≤r�(3.15)

It follows from (3.15) that when r is small, ξ and η also must be small, and
that

�ξ� <
√
2cr+ o�√r�� �η� <

√
2ar+ o�√r��(3.16)

and we have from (3.5)

ξ2

2c
+ η2

2a
= r+ o�r�� r → 0�(3.17)

Equation (3.17) shows that for small r the trajectories of the system (3.4) are
approximately ellipses. This conclusion is known [see, e.g., Goel, Maitra and
Montroll (1971)]. Averaging (3.17) we obtain

ξ2

2c
+ η2

2a
= r+ o�r�� r → 0�(3.18)

and taking into account (3.10), we have (3.12), and consequently by (3.10) we
have (3.13). (3.14) now follows from (2.5). ✷

3.2. Behavior of the system for r → ∞.

Theorem 4. The generator L, the limiting diffusion R�t�, has the following
form for r → ∞:

L = 1
2
�cσ2

1 + aσ2
2 �
(
d

dr
+ r

2

(
1+ o�1�) d2

dr2

)
�(3.19)
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Therefore the limiting diffusion R�t� is transient; moreover, it converges to +∞
almost surely, P�R�t� → ∞ as t → ∞� = 1.

For the proof, once the form (3.19) is established, the result follows by
Feller’s test for recurrence [see, e.g., Gihman and Skorohod (1972), Klebaner
(1998)]. Equation (3.19) follows from the next result by (3.3) and (2.5).

Remark. It is known that the periodT�r� is an increasing function of r [see
Waldvogel (1985) or Rothe (1985)]. Transient property implies that the trajec-
tories of the stochastic system will expand to higher and higher values of
the first integral r and the periods grow with time. Since it is not observed in
nature, the Lotka–Volterra model is not good enough for the large size of initial
populations [more precisely, when fx�0�+c ln�1/x�0��+by�0�+a ln�1/y�0� � 1�
if random perturbations of coefficients take place.

The next theorem is the main result of this section.

Theorem 5. The function g2�r� = aξ2�r� = cη2�r� has the following
asymptotics for r → ∞:

g2�r� = ac

2
r+O�r2/3 ln2 r��(3.20)

The proof of this theorem relies on auxiliary propositions.

Lemma 1.

ξ2 = cξ ln�1+ ξ/c�� η2 = aη ln�1+ η/a��(3.21)

Proof. Multiplying (3.5) by ξ and averaging on the trajectory, we have

ξ2 − cξ ln�1+ ξ/c� + ξη− aξ ln�1+ η/a� = rξ�

Since ξη = rξ̄ = 0, it is enough to prove that

ξ ln�1+ η/a� = 0�(3.22)

We can write from the second equation of (3.4),∫ t

0
ξ�s�ds = −

∫ t

0

dη�s�
η�s� + a

= ln
(
1+ η�0�/a)− ln

(
1+ η�t�/a)�

Now, multiplying by ξ�t� and integrating we have
∫ T

0
ξ�t�

∫ t

0
ξ�s�dsdt = ln

(
1+ η�0�/a) ∫ T

0
ξ�t�dt−

∫ T

0
ξ�t� ln(1+ η�t�/a)dt�

However,
∫ T

0
ξ�t�

∫ t

0
ξ�s�dsdt = 1

2

(∫ T

0
ξ�t�dt

)2

= 0�

and the lemma follows. ✷
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The next lemma establishes two useful inequalities.

Lemma 2. Suppose that

x− ln�1+ x� ≤ r�(3.23)

Then for any r > 3,

− 1+ e−1e−r < x ≤ r+ 2 ln r�(3.24)

Moreover, for r > 7,

0 < x ln�1+ x� < 2r ln r�(3.25)

Proof. Denote by h1�x� = x − ln�x + 1� defined for x > −1. Then h1 is
strictly increasing for x ≥ 0 and is strictly decreasing for −1 < x ≤ 0. It is
easy to check that h1�r+2 ln r� > r for any r > 3. This gives the upper bound
on x. Verifying that h1�−1 + e−1e−r� > r for all r, gives the lower bound on
x in (3.24). The function h2�x� = x ln�1 + x� is increasing for x > 0, and for
r > 7 the following is true:

�r+ 2 ln r� ln�1+ r+ 2 ln r� < 2r ln r�(3.26)

Therefore it follows from the upper bound in (3.24) that if x > 0, then

0 < x ln�1+ x� < 2r ln r�(3.27)

The function h2�x� is decreasing on −1 < x ≤ 0, and it follows from the lower
bound in (3.24) that if x < 0, then

0 < x ln�1+ x� < r+ 1 < 2r ln r�(3.28) ✷

Corollary 1. There is a constant C such that for any r > C solutions of
(3.4) corresponding to the value r of the first integral satisfy

− c+ e−1e−r/c < ξ�t� ≤ r+ 2 ln r� −a+ e−1e−r/a < η�t� ≤ r+ 2 ln r�(3.29)

Moreover,

0<ξ�t� ln(1+ ξ�t�/c) < �2/c�r ln r�
0<η�t� ln(1+ η�t�/a) < �2/a�r ln r�

(3.30)

Proof. Recall that if ξ�t�� η�t� is such a solution, then for all t ≥ 0 it
satisfies (3.15),

0≤ ξ�t� − c ln
(
1+ ξ�t�/c) ≤ r and

0≤η�t� − a ln
(
1+ η�t�/a) ≤ r�

(3.31)

The result now follows from the previous lemma by replacing ξ�t�/c by x. ✷
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Lemma 3. There is a constant C such that for any r > C solutions of (3.4)
corresponding to the value r of the first integral satisfy

ξ2�r� ≤ �2c�r ln r� η2�r� ≤ �2a�r ln r�(3.32)

Proof. By Lemma 1, ξ2�r� = cξ ln�1+ ξ/c��r�. The statement follows from
inequality (3.30). ✷

Consider now the function

γ�t� r� = −c ln(1+ ξ�t�/c)− a ln
(
1+ η�t�/a)�(3.33)

where dependence on r is understood in the following way: ξ�t�, and η�t�
correspond to the value of r of the first integral (3.5).

We can see from (3.5) that

γ�t� r� = r− ξ�t� − η�t��(3.34)

and taking averages,

γ�t� r� = r�(3.35)

For fixed r consider a probability measure on �0�T�r�� defined by Pr�dt� =
dt/T�r�. Then the solution of (3.4) with the value r in (3.5) and any measur-
able function of it are the random variables on this space.

It is clear that the expectation with respect to Pr is given by

Er�φ� = φ̄�

and the variance

Varr�φ� = �φ− φ̄�2�
The functions ξ, η have zero mean by (3.6), and Lemma 3 yields the follow-

ing corollary.

Corollary 2. There is a constant C such that for all r large enough,

Varr
(
ξ�r�) ≤ Cr ln r� Varr

(
η�r�) ≤ Cr ln r�(3.36)

The following lemma is Chebyshev’s inequality coupled with the bound
(3.36).

Lemma 4. For any ε > 0 there is a constant C, such that

Pr��ξ� > r1/2+ε� ≤ Cr−2ε ln r�(3.37)

Of course, a similar inequality holds for η.
We now prove the main Theorem 5.
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Proof of Theorem 5. Due to (3.10) and Lemma 1,

g2�r� = 1
2

(
aξ2�r� + cη2�r�)

= ac

2

(
ξ ln�1+ ξ/c� + η ln�1+ η/a�)

= −ac

2

(
c ln�1+ ξ/c� + a ln�1+ η/a�

)

+ ac

2

(
�ξ + c� ln�1+ ξ/c� + �η+ a� ln�1+ η/a�

)

= ac

2
γ̄�r� + ac

2

(
�ξ + c� ln�1+ ξ/c� + �η+ a� ln�1+ η/a�

)

= ac

2
r+ ac2

2
I1 +

a2c

2
I2�

(3.38)

where I1 = �1+ ξ/c� ln�1+ ξ/c� and I2 = �1+ η/a� ln�1+ η/a�.
To bound I1 we write

�I1� ≤
1
T

(∫
A

∣∣(1+ ξ�t�/c) ln(1+ ξ�t�/c)∣∣dt
+

∫
Ac

∣∣(1+ ξ�t�/c) ln(1+ ξ�t�/c)∣∣dt
)
�

(3.39)

with

A = �t
 �ξ�t�� > r1/2+ε��
and Ac its complement.

The first integral is bounded by using the global bound in (3.30) and Cheby-
shev’s inequality above:

1
T

∫
A

∣∣(1+ ξ�t�/c) ln(1+ ξ�t�/c)∣∣dt ≤ Cr1−2ε ln2 r�(3.40)

To bound the second integral in (3.39) notice that the function �x+1� ln�x+1�
is bounded on −1 ≤ x ≤ 0, and monotone increasing for x > 0. This allows
replacing ξ�t� by its upper bound on Ac, which is r1/2+ε, to obtain the bound

1
T

∫
Ac

∣∣(1+ ξ�t�/c) ln(1+ ξ�t�/c)∣∣dt ≤ Cr1/2+ε ln r�(3.41)

The bound for I2 is similar. Choosing ε = 1/6 completes the proof. ✷

4. The most visited region of the deterministic system. Note that
Pr�φ�t� ∈ A� gives the proportion of time a function φ�t� on �0�T�r�� spends
in a set A,

Pr
(
φ�t� ∈ A

) = 1
T�r�

∫
�t:φ�t�∈A�

dt�(4.1)
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Theorem 6. There exists a constant C > 0, such that for large values of r
and any ε > 0 solutions of (1.1) satisfy

Pr
(
x�t�<e−r/�2c�+r

ε+1/2/�2c� or y�t�<e−r/�2a�+r
ε+1/2/�2a�

)
>1−Cr−2ε�(4.2)

The result states that a vast majority of time one of the populations is very
small. Note that in view of the inequality (3.29) the populations never get
closer than exponentially close to zero: for all t ≥ 0,

x�t� > �1/ef�e−r/c� y�t� > �1/eb�e−r/a�(4.3)

Proof. By squaring (3.34) we have Varr�γ�r�� = ξ2�r� + η2�r�, which by
Theorem 5 is asymptotically �a+ c�/2r. Therefore,

Varr
(
γ�r�) ≤ Cr�(4.4)

Apply now Chebyshev’s inequality to γ and take into account γ�r� = r to
obtain

Pr
(�γ�t� r� − r� > rε+1/2

) ≤ r−1−2ε Varr
(
γ�r�) ≤ Cr−2ε�(4.5)

Therefore,

Pr
(�γ�t� r� − r� < rε+1/2

)
> 1−Cr−2ε�(4.6)

It is easy to see from the definition of γ (3.33) that the event ��γ�t� r� − r� <
rε+1/2� can happen only if the variables are near the coordinates

x�t� < �c/f�e−r/�2c�+rε+1/2/�2c�

or

y�t� < �a/b�e−r/�2a�+rε+1/2/�2a��(4.7) ✷

Remark. Our result should be compared to that of Rothe (1985) who gives
the asymptotics of the times the system spends above and below the equi-
librium: if (in his notations) T++ is the time when both x and y are above
x∗� y∗, and T+−, T−− are defined similarly, then as r → ∞ T++ = O�ln r/r�,
T+− = O�ln r�, and T−− = O�r�.
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