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1 Introduction

Our interest in asymptotic distributions in this paper grew out of problems on sums of record values in
insurance. Assume that the claim sizes {Xi, i ≥ 1} are independent and identically distributed (i.i.d.)
positive random variables with a common distribution function F . Xk is called a record value if

Xk > max
1≤i≤k−1

Xi.

By convention, X1 is a record value and denoted by X (1). Define

L1 = 1, Ln = min{k > Ln−1, Xk > XLn−1} for n ≥ 2.(1.1)

{Ln, n ≥ 1} is called the “record occurrence time” sequence of {Xn, n ≥ 1}. Let

X(n) = XLn .(1.2)

Then {X(n), n ≥ 1} is the record sequence of {Xn, n ≥ 1}. According to insurance theory, what
leads to bankruptcy of an insurance company is usually those large claims that come suddenly. Thus,
studying the laws of large claims is of significant importance for insurance industry. The limiting
properties of the record values have been extensively studied in literature. Tata (1969) obtained a
necessary and sufficient condition for the existence of non-degenerate limiting distribution for the
standardized X(n). de Haan and Resnick (1973) found almost sure limit points for record values X (n).
Arnold and Villasenor (1998) recently studied the limit laws for sums of record values

Tn =
n
∑

i=1

X(i).(1.3)

When Xi has an exponential distribution, Arnold and Villasenor proved that a standardized Tn is
asymptotic normal. We refer to Embrechts, Klüppelberg and Mikosch (1997), Mikosch and Nagaev
(1998), Su and Hu (2002) for recent developments in this area.

A key observation in those proofs is that (see Tata (1969) and Resnick (1973)) if F is an expo-
nential distribution with mean one, then {X (n), n ≥ 1} and {Gn :=

∑n
i=1Ei, n ≥ 1} have the same

distribution, where Ei are independent exponentially distributed random variables with mean one.
For a general random variable X with a continuous distribution function F , it is well-known that
F (X) is uniformly distributed on (0, 1) and R(X) := − ln(1− F (X)) has an exponential distribution
with mean 1. Write

F−1(x) = inf{y : F (y) ≥ x}, ψ(x) = inf{y : R(y) ≥ x} for x ≥ 0.

Then ψ(x) = F−1(1 − e−x), and {X(n), n ≥ 1} and {ψ(R(X(n))), n ≥ 1} have the same distribution.
Thus, we have

{X(n), n ≥ 1} d.
= {ψ(Gn), n ≥ 1}

and in particular,

Tn =
n
∑

i=1

X(i) d.
=

n
∑

i=1

ψ(Gi) =
n
∑

i=1

ψ
( Gi

Gn+1
Gn+1

)

.
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Let {Ui, i ≥ 1} be i.i.d uniformly distributed random variables on (0, 1) independent of {Ei, i ≥ 1},
and let Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the order statistics of {Ui, 1 ≤ i ≤ n}. It is known that

{Un,i, 1 ≤ i ≤ n} d.
= {Gi/Gn+1, 1 ≤ i ≤ n}

and that {Gi/Gn+1, 1 ≤ i ≤ n} and Gn+1 are independent. Therefore

Tn
d.
=

n
∑

i=1

ψ(Un,iGn+1) =
n
∑

i=1

ψ(UiGn+1).(1.4)

The main purpose of this paper is to study the asymptotic normality and Berry-Esseen bounds
for the standardized Tn and solve an open problem posed by Arnold and Villasenor (1998).

This paper is organized as follows. The main results are stated in the next section, an application
to the sum of record values is discussed in Section 3, and proofs of main results are given in Section
4. Throughout this paper, f(x) ∼ g(x) denotes limx→∞ f(x)/g(x) = 1, f(x) ³ g(x) means 0 <
lim infx→∞ f(x)/g(x) ≤ lim supx→∞ f(x)/g(x) <∞.

2 Main results

Instead of focusing only on the sum of record values, we shall consider asymptotic distributions and
Berry-Esseen bounds for a general randomly weighted sum.

Let {Un, n ≥ 1} be independent uniformly distributed random variables, and {Yn, n ≥ 1} be i.i.d.
non-negative random variables with EYi = 1 and Var(Yi) = c20. Denote Sn =

∑n
i=1 Yi and assume that

(U1, · · · , Un) and Sn+1 are independent for every fixed n. Let ψ : [0,∞)→ [0,∞) be a non-decreasing
continuous function. Put

Wn =
n
∑

i=1

ψ(UiSn+1)

and define

α(x) =

∫ 1

0
ψ(ux)du,

β2(x) =

∫ 1

0
(ψ(ux)− α(x))2du =

∫ 1

0
ψ2(ux)du− α2(x),

γ(x) =

∫ 1

0
ψ3(ux)du.

Let
σ2n = β2(n+ 1) + n(n+ 1)c20[α

′(n+ 1)]2 ,

where α′(x) = d
dxα(x) .

We first give a central limit theorem for a standardized Wn.

Theorem 2.1 Assume that the following conditions are satisfied:
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(A1) ∀ a > 1, lim
n→∞ sup

|x−n|≤a
√
n

γ(x)

n1/2β3(x)
= 0,

(A2) ∀ a > 1, lim
n→∞

1

nσ2n
sup

|x−n|≤a
√
n

ψ4(x)

β2(x)
= 0,

(A3) ∀ a > 1, lim
n→∞

ψ(n) +
∫ a
√
n

−a
√
n
|ψ(x+ n)− ψ(n)|dx
√
nσn

= 0.

Then we have
Wn − nα(n+ 1)√

nσn

d.−→ N(0, 1)(2.1)

Next theorem provides a Berry-Esseen bound.

Theorem 2.2 Assume that E(Y 3
i ) <∞ and that ψ is differentiable. Then

sup
x
|P
(Wn − nα(n+ 1)√

nσn
≤ x

)

− Φ(x)|(2.2)

≤ Cn−1/2
(

c−30 EY 3
1 +Rn+1,1 +Rn+1,2 + c−20 EY 3

1 Rn+1,3

)

for n ≥ (2c0)
3, where C is an absolute constant,

Rn,1 = sup
|x−n|≤c0n2/3

γ(x)

β3(x)
, Rn,2 =

1

nα′(n)
sup

|x−n|≤c0n2/3

ψ2(x)

β(x)
,

Rn,3 =
1

nα′(n)
sup

|x−n|≤c0n2/3

(ψ(x) + xψ′(x)).

The results given in Theorems 2.1 and 2.2 are especially appealing when ψ is a regularly varying
function of order θ. A Borel measurable function l(x) on (0,∞) is said to be slowly varying (at ∞) if

∀ t > 0, lim
x→∞

l(tx)

l(x)
= 1.

ψ(x) is a regularly varying function of order θ if ψ(x) = xθl(x), where l(x) is slowly varying. It is
known that for θ > −1 (see, for example, [2])

lim
x→∞

∫∞
0 ψ(u)du

xψ(x)
=

1

1 + θ
.(2.3)

In particular, as x→∞ for θ > 0

α(x) ∼ ψ(x)

1 + θ
,(2.4)
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α′(x) ∼ θ

1 + θ

ψ(x)

x
,(2.5)

β(x) ∼ θ

(1 + θ)
√
1 + 2θ

ψ(x),(2.6)

γ(x) ≤ 1

1 + 3θ
ψ3(x),(2.7)

σ2n ∼ θ2

(1 + θ)2
(

1

1 + 2θ
+ c20)ψ

2(n).(2.8)

Thus, we have

Theorem 2.3 Let ψ(x) = xθl(x), where θ > 0 and l(x) is slowly varying. Then (2.1) holds. In
addition if E(Y 3

i ) <∞, and |ψ′(x)| ≤ c1x
θ−1l(x) for x > 1, then

sup
x
|P
(Wn − nα(n+ 1)√

nσn
≤ x

)

− Φ(x)| ≤ An−1/2,(2.9)

where A is a constant depending only on c0, c1 and EY
3
1 .

Another special case is ψ(x) = exp(c xτ l(x)).

Theorem 2.4 Assume that ψ(x) = exp(cxτ l(x)), where c > 0, 0 < τ < 1/2 and l(x) is slowly varying
at ∞. Assume that there exist 0 < c1 ≤ c2 <∞ and x0 > 1 such that

c1x
τ−1l(x) ≤ (xτ l(x))′ ≤ c2x

τ−1l(x) for x ≥ x0.(2.10)

Then

sup
x
|P
(Wn − nα(n+ 1)√

nσn
≤ x

)

− Φ(x)| ≤ An−1/2+τ l(n),(2.11)

where A is a constant depending only on c0, c1, c2, x0, τ and EY 3
1 .

Remark 2.1 Hu, Su and Wang (2002) recently proved that if τ > 1/2, there is no standardized
Wn that has non-degenerate limiting distribution, which in turn indicates that assuming τ < 1/2 in
Theorem 2.4 is necessary.

3 An application to the sum of record values

As we have seen in Section 1, the sum of record values Tn is a special case of Wn with Yi i.i.d.
exponentially distributed random variables. So, Theorems 2.1, 2.2 and 2.3 hold with c0 = 1. When
ψ(x) = x or ψ(x) = lnx, Arnold and Villasenor (1998) proved the asymptotic normality for Tn and also
proved that the limiting distribution is not normal if ψ(x) = 1− exp(−x/β). They then conjectured
that the central limit theorem holds if ψ(x) ∼ xθ lnv(x), θ ≥ 0, v ≥ 0, θ + v > 0. Theorem 2.3 already
implies that their conjecture is true if θ > 0. Next theorem confirms that it is also true if θ = 0 and
v > 0.
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Theorem 3.1 Let ψ(x) = lnv(1 + x), v > 0. Then

sup
x
|P
(Tn − nα(n+ 1)√

nσn
≤ x

)

− Φ(x)| ≤ An−1/2 ln3(1 + n),(3.1)

where α(n+ 1) and σn are defined in Section 2, and A is a constant depending only on v.

Proof. Obviously, for v > 0 and any positive integer p, it holds

∫ 1

0
ψp(ux)du =

∫ 1

0
(ln(1 + ux))pvdu =

1

x

∫ 1+x

1
(ln t)pvdt .

Letting

cp =

∫ e

1
(ln t)pvdt , p = 1, 2,

we have

α(x) =
c1
x

+
1

x

∫ 1+x

e
lnvt dt ∼ (lnx)v−1(3.2)

and

α
′

(x) = − c1
x2

+

(

1

x

∫ 1+x

e
lnvt dt

)

′

(3.3)

= − c1
x2

+
lnv(x+ 1)

x
− 1

x2

∫ 1+x

e
lnvtdt

=
e− c1
x2

− lnv(x+ 1)

x2
+

v

x2

∫ 1+x

e
lnv−1tdt

∼ v

x
lnv−1(1 + x) .

To estimate β2(x), we need a more accurate estimate for α(x):

α(x) =
c1
x

+
1

x

∫ 1+x

e
lnvt dt(3.4)

=
1 + x

x
lnv(1 + x) +

v(v − 1)

x

∫ 1+x

e
lnv−2 tdt

−1 + x

x
vlnv−1(1 + x) + o(lnv−1(1 + x)) .

Similarly, we have

1

x

∫ 1+x

1
ln2v tdt =

c2
x

+
1

x

∫ 1+x

e
ln2vt dt(3.5)

=
1 + x

x
ln2v(1 + x)− 1 + x

x
2vln2v−1(1 + x)

+
2v(2v − 1)

x

∫ 1+x

e
ln2v−2tdt+ o(ln2v−2(1 + x)) .
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From (3.4) and (3.5) it follows that

β2(x) =
1

x

∫ 1+x

1
ln2v tdt− α2(x)(3.6)

∼ 2v(1− v)(x+ 1)

x2
lnv(1 + x)

∫ 1+x

e
lnv−2tdt

+
2v(2v − 1)

x

∫ 1+x

e
ln2v−2tdt−

(

v(1 + x)

x
lnv−1(1 + x)

)2

∼ v2 ln2v−2(1 + x) .

Thus, by the above estimates

Rn,1 ≤ A ln3(1 + n), Rn,2 ≤ A ln2(1 + n), Rn,3 ≤ A ln(1 + n).(3.7)

This proves Theorem 3.1, by Theorem 2.2 and (3.7).

4 Proofs

The proofs are based on the fact that given Sn+1, {ψ(UiSn+1), 1 ≤ i ≤ n} is a sequence of i.i.d. random
variables with mean α(Sn+1) and variance β(Sn+1), and that Sn+1/(n+ 1)→ 1 with probability one
by the law of large numbers. Let

Hn =

∑n
i=1 ψ(UiSn+1)− nα(Sn+1)√

nβ(Sn+1)
.(4.1)

Then we have

Wn − nα(n+ 1)√
nσn

=
β(Sn+1)

σn
Hn +

√
n

σn
(α(Sn+1)− α(n+ 1))(4.2)

:= Hn,1 +Hn,2,

where

Hn,1 =
β(n+ 1)

σn
Hn +

c0α
′(n+ 1)

√

n(n+ 1)

σn

(Sn+1 − (n+ 1))√
n+ 1c0

,(4.3)

Hn,2 =
β(Sn+1)− β(n+ 1)

σn
Hn +

√
n

σn

∫ Sn+1

n+1
(α′(t)− α′(n+ 1))dt.(4.4)

We need some facts on α′(x), α′′(x) and β′(x). The proof will be given in the Appendix.

Lemma 4.1 We have

α′(x) =
1

x2

∫ x

0
(ψ(x)− ψ(u))du,(4.5)

|α′(x)| ≤ ψ(x)

x
;(4.6)

|β′(x)| ≤ ψ2(x)

xβ(x)
,(4.7)

|α′(x)− α′(y)| ≤ 2(y − x)ψ(x)
xy

+
ψ(y)− ψ(x)

y
for y ≥ x > 0,(4.8)
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and

|α′′(x)| ≤ 2ψ(x)

x2
+
ψ′(x)
x

(4.9)

if ψ(x) is differentiable.

Proof of Theorem 2.1. By (4.2), it suffices to show that

Hn,1
d.−→ N(0, 1)(4.10)

and
Hn,2 → 0 in probability.(4.11)

In view of conditions (A1) - (A3), there exists a sequence of an such that an →∞, an ≤ 1/2
√
n and

(A1)∗ lim
n→∞ sup

|x−n|≤an
√
n

γ(x)

n1/2β3(x)
= 0,

(A2)∗ lim
n→∞

1

nσ2n
sup

|x−n|≤an
√
n

ψ4(x)

β2(x)
= 0,

(A3)∗ lim
n→∞

a2nψ(n) +
∫ an

√
n

−an
√
n
|ψ(x+ n)− ψ(n)|dx
√
nσn

= 0.

Let Z1 and Z2 be independent standard normal random variables independent of {Ui, i ≥ 1} and
{Yi, i ≥ 1}. For given Sn+1 satisfying |Sn+1 − (n + 1)| ≤ an

√
n+ 1, applying the Berry-Esseen (see,

e.g., [8]) bound to Hn yields

sup
x
|P (Hn,1 ≤ x)− P

(β(n+ 1)

σn
Z1 +

c0α
′(n+ 1)

√

n(n+ 1)

σn

(Sn+1 − α(n+ 1))√
nc0

≤ x
)

|(4.12)

≤ P (|Sn+1 − (n+ 1)| > an+1

√
n+ 1)

+10n−1/2E
( γ(Sn+1)

β3(Sn+1)
I{|Sn+1 − (n+ 1)| ≤ an+1

√
n+ 1}

)

≤ Var(Y1)

a2n+1

+ 10n−1/2 sup
|s−(n+1)|≤an+1

√
n+1

γ(s)

β3(s)

→ 0

as n→∞, by (A1)∗. Now, for given Z1, applying the central limit theorem to (Sn+1 − n− 1)/
√
n+ 1c0

gives

sup
x

| P
(β(n+ 1)

σn
Z1 +

c0α
′(n+ 1)

√

n(n+ 1)

σn

(Sn+1 − n− 1)√
nc0

≤ x
)

(4.13)

−P
(β(n+ 1)

σn
Z1 +

c0α
′(n+ 1)

√

n(n+ 1)

σn
Z2 ≤ x

)

| → 0
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as n→∞. It is easy to see that

β(n+ 1)

σn
Z1 +

c0α
′(n+ 1)

√

n(n+ 1)

σn
Z2

has a standard normal distribution, by the definition of σn. This proves (4.10), by (4.12) and (4.13).
As to (4.11), observe that conditioning on Sn+1, Hn is a standardized sum of i.i.d. random variables

and hence

σ−2n E
{

(β(Sn+1)− β(n+ 1))2I{|Sn+1 − (n+ 1)| ≤ an+1

√
n+ 1}H2

n

}

(4.14)

= σ−2n E
{

(β(Sn+1)− β(n+ 1))2I{|Sn+1 − (n+ 1)| ≤ an+1

√
n+ 1}

}

≤ σ−2n sup
|x−(n+1)|≤an+1

√
n+1

(β′(x))2E(Sn+1 − (n+ 1))2

≤ (n+ 1)c20σ
−2
n sup

|x−(n+1)|≤an+1
√
n+1

ψ4(x)

x2β2(x)

≤ 4c20
nσ2n

sup
|x−(n+1)|≤an+1

√
n+1

ψ4(x)

β2(x)

→ 0

as n→∞, by (A2)*.
It follows from (4.8) that

I{|Sn+1 − (n+ 1)| ≤ an+1

√
n+ 1}

∫ Sn+1

n+1
|α′(t)− α′(n+ 1)|dt

≤
∫ an+1

√
n+1

−an+1
√
n+1

|α′(t+ n+ 1)− α′(n+ 1)|dt

≤ 8ψ(n+ 1)

n2

∫ an+1
√
n+1

−an+1
√
n+1

|t|dt+ 1

n

∫ an+1
√
n+1

−an+1
√
n+1

|ψ(t+ n+ 1)− ψ(n+ 1)|dt

≤ 8ψ(n+ 1)a2n+1

n
+

1

n

∫ an+1
√
n+1

−an+1
√
n+1

|ψ(t+ n+ 1)− ψ(n+ 1)|dt.

Thus, by (A3)∗

√
n

σn
I{|Sn+1 − n− 1| ≤ an+1

√
n+ 1}|

∫ Sn+1

n+1
(α′(t)− α′(n+ 1))dt|(4.15)

≤ 8ψ(n+ 1)a2n+1√
nσn

+
1√
nσn

∫ an+1
√
n+1

−an+1
√
n+1

|ψ(t+ n+ 1)− ψ(n+ 1)|dt

→ 0.

In view of the fact that |Sn+1 − (n + 1)| = o(an+1

√
n+ 1) in probability, (4.11) holds by (4.14) and

(4.15).

The proof of Theorem 2.2 is based on the following Berry-Esseen bound for non-linear statistics.
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Lemma 4.2 [Chen and Shao (2003)] Let {ξi, 1 ≤ i ≤ n} be independent random variables, gi : R
1 →

R1 and ∆ = ∆(Xi, 1 ≤ i ≤ n) : Rn → R1 are Borel measurable functions. Put Gn =
∑n

i=1 gi(Xi).
Assume that

Egi(Xi) = 0,
n
∑

i=1

Eg2i (Xi) = 1.

Then

sup
x
|P (Gn +∆ ≤ x)− Φ(x)|

≤ 6.1(
n
∑

i=1

E|gi(Xi)|2I{|gi(Xi)| > 1}+
n
∑

i=1

E|gi(Xi)|3I{|gi(Xi)| ≤ 1})

+E|Gn∆|+
n
∑

i=1

E|gi(Xi)(∆−∆i)|(4.16)

for any Borel measurable functions ∆i = ∆i(Xj , 1 ≤ j ≤ n, j 6= i).

Proof of Theorem 2.2. In what follows, we use C to denote an absolute constant, but its value
could be different from line to line. By the Rosenthal inequality, we have

P (|Sn+1 − n− 1| > c0(n+ 1)2/3) ≤ n−2c−30 E|Sn+1 − n− 1|3 ≤ Cn−1/2c−30 EY 3
1(4.17)

Define

x̄ =











n+ 1− c0(n+ 1)2/3 for x < n+ 1− c0(n+ 1)2/3

x for n+ 1− c0(n+ 1)2/3 ≤ x ≤ n+ 1 + c0(n+ 1)2/3

n+ 1 + c0(n+ 1)2/3 for x > n+ 1 + c0(n+ 1)2/3,

β̄(x) = β(x̄) and β∗(x) = β(x)− β̄(x). Similar to (4.2), we have

Wn − nα(n+ 1)√
nσn

=
β(S̄n+1)

σn
Hn +

√
n

σn
(α(Sn+1)− α(n+ 1)) +

β∗(Sn+1)

σn
Hn(4.18)

= Hn,3 +Hn,4,

where

Hn,3 =
β(S̄n+1)

σn
Hn +

α′(n+ 1)
√
n

σn
(Sn+1 − n− 1) +

√
n

σn

∫ S̄n+1

n+1
(α′(t)− α(n+ 1))dt,

Hn,4 =
β∗(Sn+1)

σn
Hn +

√
n

σn

∫ Sn+1

S̄n+1

(α′(t)− α(n+ 1))dt.

Noting that Hn,4 = 0 on {|Sn+1 − (n+ 1)| > c0(n+ 1)2/3}, we only need to show that

sup
x
|P (Hn,3 ≤ x)− Φ(x)| ≤ Cn−1/2

(

c−30 EY 3
1 +Rn+1,1 +Rn+1,2 + c−20 EY 3

1 Rn+1,3

)

(4.19)
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by (4.17). Again, let Z1 and Z2 be independent standard normal random variables independent of
{Ui, i ≥ 1} and {Yi, i ≥ 1}. Let

Hn,3(Z1) =
β̄(Sn+1)

σn
Z1 +

α′(n+ 1)
√
n

σn
(Sn+1 − n− 1) +

√
n

σn

∫ S̄n+1

n+1
(α′(t)− α(n+ 1))dt.

Similar to (4.12)

sup
x
|P (Hn,3 ≤ x)− P (Hn,3(Z1) ≤ x)|(4.20)

≤ P (|Sn+1 − n− 1| > c0(n+ 1)2/3)

+10n−1/2E
( γ(Sn+1)

β3(Sn+1)
I{|Sn+1 − (n+ 1)| ≤ c0(n+ 1)2/3}

)

≤ Cn−1/2c−30 EY 3
1 + 10n−1/2Rn+1,1.

Rewrite

Hn,3(Z1) =
c0α

′(n+ 1)
√

n(n+ 1)

σn

(

Gn +∆+
β̄(n+ 1)Z1

c0α′(n+ 1)
√

n(n+ 1)

)

,

where

Gn =
Sn+1 − n− 1√

n+ 1c0
,

∆ =
(β̄(Sn+1)− β̄(n+ 1))Z1

c0α′(n+ 1)
√

n(n+ 1)
+

1

c0α′(n+ 1)
√
n+ 1

∫ S̄n+1

n+1
(α′(t)− α′(n+ 1))dt.

By (4.6), (4.7) and (4.9), we have

E(|Gn∆| | Z1) ≤ |Z1|E|Gn(β̄(Sn+1)− β̄(n+ 1))|
c0nα′(n+ 1)

(4.21)

+
1

c0α′(n+ 1)
√
n
E
{

Gn

∫ S̄n+1

n+1
|α′(t)− α′(n+ 1)|dt

}

≤ |Z1|
c20n

3/2α′(n+ 1)
sup

|x−(n+1)|≤(n+1)2/3

ψ2(x)

xβ(x)
E(Sn+1 − n− 1)2

+
1

c20α
′(n+ 1)n

sup
|x−n−1|≤(n+1)2/3

(2ψ(x)

x2
+
xψ′(x)
x2

)

E|Sn+1 − n− 1|3

≤ C|Z1|
n3/2α′(n+ 1)

sup
|x−(n+1)|≤(n+1)2/3

ψ2(x)

β(x)

+
CEY 3

1

c20n
3/2α′(n+ 1)

sup
|x−n−1|≤(n+1)2/3

(ψ(x) + xψ′(x))

≤ C|Z1|n−1/2Rn+1,2 + CEY 3
1 c
−2
0 n−1/2Rn+1,3.
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To apply Lemma 4.2, let gi(Yi) = (Yi − 1)/(c0
√
n+ 1), S(i) = Sn+1 −Xi and

∆i =
(β̄(S(i))− β̄(n+ 1))Z1

c0α′(n+ 1)
√

n(n+ 1)
+

1

c0α′(n+ 1)
√
n+ 1

∫ S(i)

n+1
(α′(t)− α′(n+ 1))dt

for 1 ≤ i ≤ n+ 1. Following the proof of (4.21), we have

E(|gi(Yi)(∆−∆i)| | Z1)(4.22)

≤ |Z1|E|gi(Yi)(β̄(Sn+1)− β̄(S(i)))|
c0nα′(n+ 1)

+
1

c0α′(n+ 1)
√
n
E
{

gi(Yi)

∫ S̄n+1

¯S(i)
|α′(t)− α′(n+ 1)|dt

}

≤ C|Z1|n−3/2Rn+1,2 + CEY 3
1 c
−2
0 n−2Rn+1,3.

Letting

Hn,3(Z1, Z2) =
c0α

′(n+ 1)
√

n(n+ 1)

σn

(

Z2 +
β̄(n+ 1)Z1

c0α′(n+ 1)
√

n(n+ 1)

)

and applying Lemma 4.2 for given Z1 yields

sup
x
|P (Hn,3(Z1) ≤ x)− P (Hn,3(Z1, Z2) ≤ x)|(4.23)

≤ Cn−1/2c−30 EY 3
1 + Cn−1/2Rn+1,2E|Z1|+ CEY 3

1 c
−2
0 n−1/2Rn+1,3

≤ Cn−1/2
(

c−30 EY 3
1 +Rn+1,2 + c−20 EY 3

1 Rn+1,3

)

.

On the other hand, it is easy to see that Hn,3(Z1, Z2) has the standard normal distribution. This
proves (4.19), as desired.

Proof of Theorem 2.4. Let ρ(x) = c xτ l(x). It is easy to see that condition (2.10) implies for
a > 0

∫ x

0
eaρ(t)dt ³ x

ρ(x)
eaρ(x)(4.24)

as x→∞, where g(x) ³ h(x) denotes 0 < lim infx→∞ g(x)/h(x) ≤ lim supx→∞ g(x)/h(x) <∞. Thus,
we have

α(x) ³ 1

ρ(x)
eρ(x), α′(x) ³ 1

x
eρ(x),(4.25)

β2(x) ³ 1

ρ(x)
e2ρ(x), γ(x) ³ 1

ρ(x)
e3ρ(x)

Let dn = n/ρ(n). Then

P (|Sn+1 − (n+ 1)| > dn) ≤ (dn)
−2Var(Sn) ≤ 2c20ρ

2(n)/n = 2c20(cn
τ−1/2l(n))2.
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Following the proof of Theorem 2.2, we have

sup
x
|P
(Wn − nα(n+ 1)√

nσn
≤ x

)

− Φ(x)|(4.26)

≤ A(nτ−1/2l(n))2 +An−1/2
(

R∗n,1 +R∗n,2 +R∗n,3
)

,

where

R∗n,1 = sup
|x−n−1|≤dn

γ(x)

β3(x)
, R∗n,2 =

1

nα′(n)
sup

|x−n−1|≤dn

ψ2(x)

β(x)
,

R∗n,3 =
1

nα′(n)
sup

|x−n−1|≤dn

(ψ(x) + xψ′(x)).

Note that for x satisfying |x− n− 1| ≤ dn, by (2.10)

|ρ(x)− ρ(n)| ≤ A1|x− n|ρ(n)/n ≤ A2dnρ(n)/n ≤ A3,

where A1, A2, A3 denote constants that do not depend on n. Hence

ψ(x) = ψ(n)eρ(x)−ρ(n) ³ ψ(n),

which combines with (4.25) gives

R∗n,1 ≤ Aρ1/2(n), R∗n,2 ≤ Aρ1/2(n), R∗n,3 ≤ Aρ(n).(4.27)

This proves (2.11), by (4.26) and (4.27).
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5 Appendix

Proof of Lemma 4.1. Rewrite

α(x) =
1

x

∫ x

0
ψ(u)du.

Recall that ψ(x) is non-decreasing and continuous. We have

α′(x) =
−1
x2

∫ x

0
ψ(u)du+

ψ(x)

x
=

1

x2

∫ x

0
(ψ(x)− ψ(u))du,

0 ≤ α′(x) ≤ ψ(x)

x
,

(β2(x))′ = − 1

x2

∫ x

0
ψ2(u)du+

ψ2(x)

x
− 2α(x)α′(x)

=
1

x2

∫ x

0
(ψ2(x)− ψ(u))du− 2

x3

∫ x

0
ψ(u)du

∫ x

0
(ψ(x)− ψ(v))dv,

|β′(x)| = |(β
2(x))′

2β(x)
| ≤ ψ2(x)

xβ(x)
,

α′(y)− α′(x) =
1

y2

∫ y

0
(ψ(y)− ψ(u))du− 1

x2

∫ x

0
(ψ(x)− ψ(u))du,

=
1

y2

∫ y

x
(ψ(y)− ψ(u))du+

( 1

y2
− 1

x2

)

∫ x

0
(ψ(x)− ψ(u))du+

1

y2

∫ x

0
(ψ(y)− ψ(x))du,

α′(y)− α′(x) ≤ 1

y2

∫ y

x
(ψ(y)− ψ(x))du+

1

y2
x(ψ(y)− ψ(x)) = ψ(y)− ψ(x)

y
for y > x > 0

α′(y)− α′(x) ≥
( 1

y2
− 1

x2

)

∫ x

0
(ψ(x)− ψ(u))du

≥ (x2 − y2)
x2y2

xψ(x)

≥ 2(x− y)ψ(x)
xy

for y > x > 0

and if ψ(x) is differentiable,

α′′(x) = − 2

x3

∫ x

0
(ψ(x)− ψ(u))du+

1

x2

∫ x

0
ψ′(x)du

= − 2

x3

∫ x

0
(ψ(x)− ψ(u))du+

ψ′(x)
x

,

|α′′(x)| ≤ 2ψ(x)

x2
+
ψ′(x)
x

.

This proves Lemma 4.1.
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