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Abstract
Shnerb et al. (2000), (2001) studied the following system of interacting particles on Zd: There are

two kinds of particles, called A-particles and B-particles. The A-particles perform continuous time simple
random walks, independently of each other. The jumprate of each A-particle is DA. The B-particles
perform continuous time simple random walks with jumprate DB , but in addition they die at rate δ and
a B-particle at x at time s splits into two particles at x during the next ds time units with a probability
βNA(x, s)ds+ o(ds), where NA(x, s) (NB(x, s)) denotes the number of A-particles (respectively B-particles)
at x at time s. Conditionally on the A-system, the jumps, deaths and splittings of different B-particles are
independent. Thus the B-particles perform a branching random walk, but with a birth rate of new particles
which is proportional to the number of A-particles which coincide with the appropriate B-particles. One
starts the process with all the NA(x, 0), x ∈ Zd, as independent Poisson variables with mean µA, and the
NB(x, 0), x ∈ Zd, independent of the A-system, translation invariant and with mean µB .

Shnerb et al. (2000) made the interesting discovery that in dimension 1 and 2 the expectation E{NB(x, t)}
tends to infinity, no matter what the values of δ, β,DA, DB , µA, µB ∈ (0,∞) are. We shall show here that
nevertheless there is a phase transition in all dimensions, that is, the system becomes (locally) extinct for
large δ but it survives for β large and δ small.
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1. Introduction and statement of result.
We investigate the survival/extinction of the system of A and B-particles described in the abstract. (A

somewhat more formal description of this system is given in Section 2.) This is essentially the system
introduced in Shnerb et al. (2000), which they view, among other interpretations, as a model for interacting
molecules or for individuals carrying specific genotypes. We have only changed the notation slightly and made
more explicit assumptions on the initial distributions than Shnerb et al. (2000). Shnerb et al. (2000) indicates
that in dimension 1 or 2 the B-particles “survive” for all choices of the parameters δ, β,DA, DB , µA, µB > 0.
However, they deal with some form of continuum limit of the system and we found it difficult to interpret
what their claim means for the system described in the abstract. For the purpose of this paper we shall say
that the B-particles survive if

lim sup
t→∞

P{NB(0, t) > 0} > 0, (1.1)

where P is the annealed probability law, i.e., the law governing the combined system of both types of particles.
We shall see that in all dimensions there are choices of δ, β,DA, DB , µA, µB > 0 for which the B-particles
do not survive in the sense of (1.1). A much weaker sense of survival is that

lim sup
t→∞

ENB(0, t) > 0. (1.2)

Our first theorem confirms the discovery of Shnerb et al. (2000) that even more than (1.2) holds in dimension
1 or 2 for all positive parameter values. Note that E denotes expectation with respect to P, so that this
theorem deals with the annealed expectation.

Theorem 1. If d = 1 or 2, then for all δ, β,DA, DB , µA, µB > 0

ENB(0, t) →∞ faster than exponentially in t. (1.3)

Despite this result, it is not true that (1.1) holds for all δ, β,DA, DB , µA, µB > 0. In fact our principal
result is the following theorem, which deals with the quenched expectation (i.e., in a fixed realization of the
catalyst system). Here

FA := σ-field generated by {NA(x, s) : x ∈ Zd, s ≥ 0}.

Theorem 2. For all β,DA, DB , µA, µB > 0 and for all dimensions d, there exists a δ0 < ∞ such that for
δ ≥ δ0 it holds

E{NB(0, t)|FA} ≤ e−δt/2 for all large t a.s., (1.4)

and consequently for all x
NB(x, t) = 0 for all large t a.s. (1.5)

In dimensions d ≥ 3 we can even show that the unconditional (annealed) expectation of NB(x, t) tends
to 0 when the birthrate β is small and the deathrate δ is large.

Theorem 3. If d ≥ 3, then there exists β0 > 0 and δ0 < ∞ (depending on DA, DB , µA, µB) such that for
β ≤ β0, δ ≥ δ0

ENB(0, t) ≤ µBe
−δt/2. (1.6)

Consequently, for β ≤ β0, δ ≥ δ0 and all x ∈ Zd,

NB(x, t) = 0 for all large t a.s. (1.7)

Remark 1. What can we say now about the phase diagram of survival/extinction of the B-particles ?
For which values of the parameters β, δ,DA, DB , µA, µB does survival in the sense of (1.1) occur ? Let us
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concentrate on the dependence of this phenomenon on the values of β and δ for some fixed strictly positive
values of DA, DB , µA, µB . We then see that in all dimensions, for fixed β > 0, there is no survival for δ large
enough. Since survival is less likely as δ becomes larger, there is for fixed β a critical value δc(β) <∞ such
that (1.1) holds for δ < δc, but not for δ > δc. (We have not excluded the possibility that δc = 0 for some
values of β.) The following argument shows that for fixed δ there is survival for large β. Let Z0 = NB(0, 0)
be the number of particles at the origin at time 0, and let Zn be the the number of B-particles at time n
which have been at 0 since the time they were born (necessarily at 0). {Zn}n≥0 is a branching process in
a stationary ergodic random environment. (See Athreya and Ney (1972), Section VI.5 for a description of
such processes.) The environment is determined by the values of NA(0, ·). The probability that a particle
which is alive in this process at time k is still alive at time k + 1 is at least exp[−δ −DB ]. The additional
term DB in the deathrate here represents the rate at which a particle jumps away from x; after such a jump
a particle and its descendants are not counted in Zn anymore. Also

E{Zk+1|Zi, i ≤ k,FA} ≥ Zk exp[−δ −DB + β]

× I[some A-particle stays at 0 during the whole time interval [k, k + 1)].

It is now easy to check that for large β the conditions of Theorem VI.5.3 in Athreya and Ney (1972) hold,
so that there is a strictly positive probability that the process {Zn} survives forever. Thus (1.1) holds for
large β. In fact, Theorem 5.3 of Tanny (1977) now shows that even

P{NB(0, t) →∞} > 0. (1.8)

We see from the above that
δc(β) →∞ as β →∞. (1.9)

We repeat that we have not excluded the possibility that δc = 0 for some values of β. In fact, we do not
know how δc(β) behaves for small β.

Remark 2. Professor Sorin Solomon has pointed out to us that the B-particles may survive if β is large
enough (compared to the other parameters), even if one starts with only one A-particle and one B-particle
in the entire system. Indeed one can look at the process of the B-particles which “follow the A-particle.”
More precisely, let the A-particle start at the origin and assume it jumps at the times s1 < s2 < . . . to the
positions x1, x2, . . . , respectively. Take s0 = 0, x0 = 0. Then consider the B-particles which are at xk during
[ 12sk + 1

2sk+1, sk+1) and jump to xk+1 during [sk+1,
1
2sk+1 + 1

2sk+2). The number of these B-particles at the
successive times sk is a branching process with ransom environments. One can show that for large β this
process has a positive probability of survival (see Athreya and Ney (1972), Theorem VI.5.3).

Remark 3. It is not difficult to deal with the boundary cases where exactly one of DA or DB equals 0. The
arguments for these cases are independent of the dimension.

Case i) DA = 0, DB > 0. In this case

lim inf
t→∞

P{NB(0, t) > 0} > 0. (1.10)

To see this, take K1 a large integer so that βK1 > δ + DB and let x be a site with NA(x, 0) ≥ K1. Now
condition on the A-process. Since the A-particles don’t move when DA = 0, there will be NA(x, 0) ≥ K1 A-
particles at x at all times. Now let Z(x, t) denote the number of B-particles at time t which have been at
x since the time they were born (or since time 0 for the particles which start at x). Then {Z(x, t)}t≥0 is
an ordinary binary splitting branching process, in which a particle splits at rate βNA(x, 0) ≥ βK1, and a
particle dies at rate δ+DB (see Remark 1 for explanation of the term DB in the deathrate here). Since the
birthrate exceeds the deathrate, by our choice of K1, the process Z(x, ·) is supercritical and

P{Z(x, t) > 0 for all t|FA} > 0
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(see Athreya and Ney (1972), Section 3.4). (1.10) now follows from the fact that P{NA(0, 0) > K1} > 0.
Case ii) DA > 0, DB = 0. In this case the B-process becomes extinct when δ is large enough, that is,

(1.4) and (1.5) hold for large δ. To see this, consider the process Z(0, ·) defined above, conditioned on the
A-process. Since the B-particles don’t move in this case, Z(0, t) is simply equal to NB(0, t). In this case,
this is a time inhomogeneous binary splitting branching process with splitting rate βNA(0, t) at time t and
death rate δ. By equation V.6.2 in Harris (1963), we have

E{NB(0, t)|FA, NB(0, 0)} = E{Z(0, t)|FA, NB(0, 0)}

= NB(0, 0) exp
[ ∫ t

0

(
βNA(0, s)− δ

)
ds

]
. (1.11)

Now the A-process is stationary and ergodic (in time) (see Derman (1955), Theorem 2) and therefore

lim
t→∞

1
t

∫ t

0

NA(0, s)ds = ENA(0, 0) = µA a.s.

Thus for δ > 2βµA the right hand side of (1.11)is almost surely no more than e−δt/2 for all large t. Thus,
(1.4) holds. We shall prove at the end of Section 4 that this also implies (1.5).

Remark 4. Both Theorem 2 and Theorem 3 depend on properties of the random walk performed by the
B-particles. It seems that most results of this paper remain valid if we let the particles perform random walks
which are not simple, but satisfy strong moment conditions. However, one cannot do away with all moment
conditions. For instance, one can show that if the A-particles move according to a simple random walk and the
B-particles perform a random walk which jumps from x to x+y with probability q(y) := K(1+‖y‖)−(d+1+ε)

for some ε > 0 and normalization constant K which makes q(·) into a probability distribution, then for some
β0 and any β ≥ β0, δ > 0 the B-particles survive, even in the sense that

NB(0, t) →∞ in probability as t→∞. (1.12)

Remark 5. A brief discussion of the existence of the system of A and B-particles which has the properties
listed in the abstract can be found in the next section.

Remark 6. There exist a large number of papers on branching systems with catalysts, or branching
random walks in random environments. See for instance the following papers and some of their references:
Carmona and Molchanov (1994), Dawson and Fleischmann (2000), Gärtner and F. den Hollander (2003),
Gärtner, König and Molchanov (2000), Klenke (2000a, 2000b) and Molchanov (1994). It appears that all of
these papers have a somewhat different setup, or investigate a different problem from those in the present
paper. To mention some differences, many of the previous papers have considered either an environment
which remains constant over time (equivalent to non-moving cvatalysts), or an environment whose states at
different times are independent. Often the catalyst only influences the branching rate, but not the branching
law. In addition the branching law is frequently a critical one. The closest paper to ours is probably Gärtner
and den Hollander (2003). It does consider moving catalysts which do influence the branching laws, but it
concentrates on asymptotics as t→∞ of moments of the annealed system.

It seems that the question of survival of a branching system with moving catalysts in the quenched
situation has not been investigated before.

The remainder of the paper is organized as follows: In Section 2 we discuss the construction of the
system and give some formulae for the conditional expectation of NB(x, t), given the A-sytem. Theorem 1 is
proven in Section 3, by using as a lower bound for NB(0, t) the number of B-particles all of whose ancestors
(including themselves) have stayed at 0 during all of [0, t]. This forms a branching process in a stationary
random environment, and it is not hard to give a lower bound on its expectation.
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Theorem 3 is proven in Section 4. There we decompose the expectation of the number of particles
according to the path followed by their ancestors (see (4.2)). This reduces the problem to estimating the
expectation of exp[βL(λ, π)], where L(λ, π) denotes the amount of time during [0, t] when a given B-particle
λ is on a given path π. In dimension d, the probability that λ is at π(s) is O

(
(1+ s)−d/2

)
. This rather crude

bound is enough in dimension 3 or higher to control the right hand side of (4.2).
Theorem 2 has by far the most involved proof here. We first prove (1.4) for a discrete time approximation

to our model in Section 5. This discrete time model is easier to handle than the original continuous time
model. We give an outline of the proof in the beginning of Section 5. The proof for the continuous time
model has the same structure as for the discrete time model, and is given in Section 6.
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Institute in Djursholm, while he was supported by a Tage Erlander Professorship. H. K. thanks the Swedish
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2. Construction of the process and estimates for its expectation.
We briefly discuss here a construction of the process

{NA(x, t), NB(x, t)}x∈Zd,t≥0 (2.1)

and then give an expression for E{NB(x, t)|FA}. We shall use a particular construction of the process (2.1),
because this will allow us to establish monotonicity in the birthrate (see (2.5) below) by means of coupling.
It also leads us naturally to formulae for certain expectations which will be needed in the later proofs.
However, we believe that there is only one process that agrees with the description given in the abstract.
More precisely, we believe that the finite dimensional distributions of NA(xi, ti), NB(xi, ti), 1 ≤ i ≤ k, for
any choice of the xi, ti are unique. We have not investigated this question of uniqueness of the process, but
briefly comment on this some more immediately after the proof of Lemma 2.

Throughout the rest of this paper Ki will denote a constant which is strictly positive and finite. The
precise values of these constants are unimportant and the same symbol Ki may stand for different constants
in different formulae. We further use Ci for some other strictly positive and finite constants which remain
the same throughout the paper. Both the Ki and the Ci are independent of t.

First we note that the construction of the A-process for all time is trivial, since the A-particles by
themselves merely perform independent continuous time simple random walks. We shall take the paths
of each of the A-particles right continuous. In order to construct the process in (2.1) we must therefore
construct the B-process conditionally on a fixed realization of the A-process. Now, conditionally on the
A-configuration, each of the B-particles present at time 0 is the progenitor of a branching random walk
with deathrate δ and with splitting rate βNA(x, t) per particle at the site x at time t. The branching
random walks generated by different starting particles are independent. The construction therefore breaks
into two parts. First we must construct the branching random walk generated by a single particle. Once
this is done, there is no difficulty in constructing the branching random walks for all the initial B-particles
together. Because these branching random walks are independent one simply uses a product space with
each component corresponding to the branching random walk generated by one particle. One then defines
NB(x, t) as the total number of B-particles at x at time t in all these branching random walks together. As
a second step we must show that this NB(x, t) is almost surely finite for all (x, t). Once this is done, the
resulting process {NA(x, t), NB(x, t)} is a version of the desired process. We remark that the construction of
a branching random walk starting with one particle has been carried out in the time-homogeneous case in a
long article Ikeda, Nagasawa and Watanabe (1968a,1968b), and has been discussed further in Savits (1969).
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It will be convenient to carry out the first step for more general birthrates. For each x ∈ Zd, let b(x, ·) :
[0,∞) → [0,∞] be a locally integrable function. We want to construct a branching random walk which has
birthrate b(x, t) per particle at (x, t). The process starts with one particle at some site. We shall denote this
progenitor by σ. We represent the process of descendants of σ at time t as a collection of particles which
are indexed by (p + 1)-tuples 〈σ, i1, . . . , ip〉 with p ≥ 0. The usual interpretation of these (p + 1)-tuples is
that 〈σ, i1, . . . , ip〉 is the ip-th child of the ip−1-th child · · · of the i1-th child of 〈σ〉 := σ. However, this
interpretation has no significance for us, and we shall in fact drop it in the coupling construction leading to
(2.5) below. As usual, not all possible particles 〈σ, j1, . . . , jp〉 will occur in our process. Only the particles
which are alive at some time are realized in the process (see Harris (1963), Sect. VI.2, and Jagers (1975),
Sect. 1.2, for more details). For the construction we choose for each possible (p + 1)-tuple 〈σ, j1, . . . , jp〉
(with ji = 1, 2, . . . ) and for each x ∈ Zd, several Poisson processes, denoted by P(x, σ, j1, j2, . . . , jp, E). E
denotes one of the possible changes which a particle can undergo. There is one process for E = ±ei, which
correspond to the particle making a jump ±ei, 1 ≤ i ≤ d. These 2d processes each have the constant
rate DB/(2d). There is a process with E = death which has the constant rate δ and which corresponds to
the death (without offspring) of the particle 〈σ, j1, . . . , jp〉. Finally there is a process with E = split which
corresponds to the particle 〈σ, j1, . . . , jp〉 splitting into the two particles 〈σ, j1, . . . , jp, 1〉 and 〈σ, j1, . . . , jp, 2〉.
This last process, P(x, σ, j1, . . . , jp, split) has the nonconstant rate b(x, ·). The family tree of the branching
random walk is now constructed by “following the instructions of the Poisson processes”. More specifically,
we begin with one particle σ alive at time 0. If a particle 〈σ, i1, . . . , ip〉 is alive and at x at time t, then
it stays at x till the next point t′ ≥ t in one of the Poisson processes P(x, σ, i1, . . . , ip, E) associated to the
site x and the particle 〈σ, i1, . . . , ip〉. If this first point is a point of the process P(x, σ, i1, . . . , ip,±ei), then
the particle 〈σ, i1, . . . , ip〉 jumps at time t′ to the position x ± ei and then waits there till the next point
in one of the processes P(x ± ei, σ, i1, . . . , ip, E). If the first point during [t,∞) in the Poisson processes
P(x, σ, i1, . . . , ip, E) is a point of P(x, σ, i1, . . . , ip,death), then the particle 〈σ, i1, . . . , ip〉 dies at that time
and has no further offspring in the family tree. Finally, if the first point in the Poisson processes at x is
a point of P(x, σ, i1, . . . , ip, split), then the particle 〈σ, i1, . . . , ip〉 itself disappears, but it is replaced by the
two particles 〈σ, i1, . . . , ip, 1〉 and 〈σ, i1, . . . , ip, 2〉 at position x. We shall occasionaly denote the process
constructed in the above manner by W = Wσ.

We say that no explosion occurs during [0, t] in Wσ, if “following the instructions” gives only finitely
many changes in the family tree of Wσ during [0, t]. No explosion occurs means that no explosion occurs
during any finite interval [0, t]. The preceding construction gives a well defined process Wσ which is a
strong Markov process with the correct rates for jumping, death and splitting, provided that almost surely
no explosion occurs in Wσ. We shall soon prove that no explosion occurs in any Wσ in our case, which
has b(x, t) = βNA(x, t). We shall even show that in the full process of (2.1) there are almost surely never
infinitely many particles at one site.

Before we proceed we make the following simple, but important monotonicity observation. Suppose that
b′(·) and b′′(·) are both locally integrable functions from [0,∞) to [0,∞] satisfying

b′(x, t) ≤ b′′(x, t) for all x ∈ Zd and t ≤ T. (2.2)

We can then choose Poisson processes P ′(x, σ, j1, . . . , jp, E) and P ′′(x, σ, j1, . . . , jp, E) such that

P ′(x, σ, j1, . . . , jp, split) ∩ [0, T ] ⊂ P ′′(x, σ, j1, . . . , jp, split) ∩ [0, T ] (2.3)

and

P ′(x, σ, j1, . . . , jp, E) ∩ [0, T ] =P ′′(x, σ, j1, . . . , jp, E) ∩ [0, T ]

for all x, j1, . . . , jp and E 6= split. (2.4)

(Here we abused notation somewhat by viewing a Poisson process P simply as the set of times at which
it has a jump.) We now want to use the Poisson processes P ′ and P ′′ to couple two branching random
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walks with birthrates per particle equal to b′ and b′′, respectively (but with the same constant deathrate per
particle and jumprate as before). To do this, we construct the process W ′′

σ in the above manner, but with
the P ′′ processes replacing the processes P. However, the process W ′

σ corresponding to b′ is not obtained
by merely replacing P by P ′. We also have to change the indexing of our particles and use the P ′ process
which has the changed index. Specifically, suppose we already obtained some particle 〈σ, i1, . . . , ip〉 which
belongs to both processes, and this particle splits into the particles 〈σ, i1, . . . , ip, 1〉 and 〈σ, i1, . . . , ip, 2〉 at
some position x and time t in W ′′

σ . This means that t is a point of P ′′(x, i1, . . . , ip, split). If t is also a point
of P ′(x, i1, . . . , ip, split), then of course the particle 〈σ, i1, . . . , ip〉 splits also at time t in W ′

σ into the particles
〈σ, i1, . . . , ip, 1〉 and 〈σ, i1, . . . , ip, 2〉. However, if t is not a point of P ′(x, i1, . . . , ip), we will still rename the
particle 〈σ, i1, . . . , ip〉 of W ′

σ to 〈σ, i1, . . . , ip, 1〉 in W ′
σ and it will start using the processes P ′(x, i1, . . . , ip, 1, E)

from time t until it dies, splits or is renamed again. W ′
σ will never have a particle 〈σ, i1, . . . , ip, 2〉 in this

scenario. Particles which exist in both processes (when using the above renaming procedure) will die or
jump together in both processes (by virtue of (2.4)). This renaming of particles in W ′

σ has the effect that
for both W ′

σ and W ′′
σ we always use a Poisson process with the same index at the same point of space-time.

It is clear that under this construction

W ′′
σ has at least as many particles alive at x, t as W ′

σ, for all x and all t ≤ T . (2.5)

In fact, we have an even stronger monotonicity property. To explain this we introduce the piece till time T
of the path associated to a B-particle ρ in a process W . Consider first a particle ρ which is alive at time T
in W . For such a ρ, there was at each time s ∈ [0, T ] a unique B-particle which was the ancestor of ρ and
this ancestor had a position, x(s, ρ) say (note that this ancestor may equal ρ). By the piece till T of the
path associated to ρ we then mean the path {x(s, ρ)}0≤s≤T . If ρ is a particle which lived at some time in
W , but died or was replaced at time T ′ ≤ T , then the piece till T of path associated to ρ is taken to be the
path {x(s, ρ)}0≤s≤T ′ . It follows from our construction that for the processes W ′

σ and W ′′
σ corresponding to

b′ and b′′ which satisfy (2.2)

the piece till T of any path in W ′
σ is also a piece till T of a path in W ′′. (2.6)

In particular, if no explosion occurs in W ′′
σ during [0, T ], then the same holds for W ′

σ. It is also the case that
W ′

σ is a process with the same distribution as a process with birthrate b′ per particle, because the switching
from P(x, i1, . . . , ip, E) to P(x, i1, . . . , ip, 1, E) at a certain time t which is a splitting time for W ′′

σ but not
for W ′

σ, has no influence on the distribution of the Poisson processes during [t,∞).
We shall need some formulae for the expected size of a branching random walk in the time inhomogeneous

case.

Lemma 1. If b(x, s) = b for all x and s ≤ t, then, for any given progenitor σ,

E{number of descendants of σ alive at time t in Wσ} = e(b−δ)t. (2.7)

If, for some fixed x the splitting rate b(x, ·) is piecewise linear and right continuous on [0, t], then, for any
given progenitor σ at x at time 0,

E{number of descendants of σ alive at time t in Wσ

whose associated path stayed at x for all of [0, t]}

= exp
[ ∫ t

0

b(x, s)ds− (δ +DB)t]. (2.8)

Proof. First assume that the splitting rate is equal to a constant b for all x, s ≤ t. Then the birthrate is
independent of position so that we can ignore the positions of the particles. For each particle corresponding
Poisson events with E = death or split occur at rates δ and b, respectively. Thus (2.7) is just a special case
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of the formula for the mean of a continuous time branching process which can be found in Harris (1963),
equation V.6.2.

Next consider (2.8) and assume that b(x, s) = b for all s ≤ t, but just for the single x under consideration.
Then the number of descendants of σ whose associated path stayed at x all the time is a time homogeneous
branching process with splitting rate b and deathrate δ +DB , for the same reasons as in Remark 1. Just as
in the argument for (2.7) we find that expectation in the left hand side of (2.8) equals exp[(b − δ − DB)t]
in this situation. More generally, the expected number of descendants of Z particles whose associated path
stays at x during all of [0, t] is Z exp[(b − δ −DB)t]. Finally, assume that b(x, t) = bi for si ≤ s < si+1 for
some sequence of times s0 = 0 < s1 < · · · < sm = t. Let Z(s) be the number of descendants of σ alive at
time s in Wσ whose associated path stayed at x for all of [0, s]. Then the preceding argument gives

E{Z(si+1)|Z(u), u ≤ si} = Z(si) exp[(bi − δ −DB)(si+1 − si)]

= Z(si) exp[
∫ si+1

si

b(x, s)ds− (δ +DB)(si+1 − si)].

(2.8) follows by induction on m in this case. �

We claim that in order to show that almost surely no explosion occurs during any finite time interval, it
is enough to show that almost surely only finitely many particles are born during any finite interval [0, t].
Indeed, if there are only finitely many births, then there are also only finitely many deaths. Moreover, if only
finitely many particles are born, then following the instructions can lead to meeting infinitely many Poisson
points with E equal to a jump only if there is a fixed particle 〈σ, i1, . . . , ip〉 which follows a path which makes
infinitely many jumps during [0, t]. However, the rates of the processes P(x, σ, i1, . . . , ip,±ei), x ∈ Zd, are all
the same, and therefore the probability that the particle 〈σ, i1, . . . , ip〉 makes infinitely many jumps during
[0, t] is zero. This proves our claim. It follows that the probability (in a given configuration of the A-system)
that there are infinitely many instructions to follow during [0, t] for the descendants of a given σ can be
strictly positive only if

lim
N→∞

P{some particle 〈σ, i1, . . . , iN 〉 is born during [0, t]|FA} > 0. (2.9)

In turn, (2.9) can only be the case if

E{number of particles 〈σ, i1, . . . , iN 〉 (with some N

and i1, . . . , iN ) born during [0, t]|FA} = ∞. (2.10)

The next lemma shows that (2.10) fails for almost all realizations of the A-process.
In this proof we find it useful to write PA for the probability measure governing the A-system only.

Similarly PB will be short for the conditional probablity measure governing the B-system, given the A-
configuration. Actually, until the construction of the process (2.1) is completed, we have to regard PB as
the distribution of all the Poisson processes P(x, σ, i0, . . . , ip, E) and of {NB(x, 0), x ∈ Zd}. As before, P will
be used for the probability measure for the combined A and B-system (the so-called annealed probability
measure). EA, EB and E denote the expectations with respect to PA, PB and P, respectively.

Lemma 2.

E{number of descendants born during [0, t] of any particle starting at 0} <∞. (2.11)

Remark 7. For convenience the proof has been written only in the case where the A and B-particles
perform a simple random walk. However, after minor changes the proof of this lemma works for any choice
of the random walks for the particles.
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Proof. If there are no particles at 0 at time 0, then the number in braces in (2.11) vanishes. Otherwise, let σ
be a generic particle at 0 at time 0. Any descendant 〈σ, i1, . . . , ip〉 of σ born during [0, t] either is still alive at
time t, or dies without offspring, or splits during [0, t]. For brevity we write ρ for the particle 〈σ, i1, . . . , ip〉.
Consider first the case that ρ is still alive at time t. Then the piece till t of the path associated to ρ (see
the lines before (2.6) for definition) is almost surely given by a sequence 0 < s1(ρ) < · · · < s`(ρ) < t of
jumptimes and a sequence x1, x2, . . . , x` of positions right after the jumps such that

x(s, ρ) = 0 for 0 ≤ s < s1,

x(s, ρ) = xk for sk ≤ s < sk+1, k + 1 ≤ `,

x(s, ρ) = x` for s` ≤ s ≤ t (2.12)

(` depends on σ and t). Let us first estimate only the number of particles still alive at [0, t]. We decompose
the number of descendants alive at time t of a particle starting at 0 according to the path associated to these
descendants. We then get the following contribution to the left hand side of (2.11):∑

`≥0

∑
x1,...,x`

∫
0<s1<···<s`<t

E{number of particles ρ alive at t which

descend from a particle at 0 at time 0 and whose
associated path has jumptimes in ds1, ds2, . . . , ds`

and positions x1, x2, . . . , x` after the jumps}. (2.13)

We shall first condition on the A-system in the last expectation. If the A-system is fixed, then the splittingrate
for the B-particles at a site x at time s is βNA(x, s). It is not hard to show that this is a right continuous,
piecewise linear function of s, because only finitely many A-particles visit a given site in a bounded time
interval. (This is a simple special case of (2.26) below.) Let q(·) be the distribution of a jump of simple
random walk, that is

q(±ei) =
1
2d
, 1 ≤ i ≤ d, and q(y) = 0 otherwise. (2.14)

Then the probability that a given B-particle 〈σ, i1, . . . , ip〉 alive at x′ at time s makes a jump from x′ to x′′

during the next small interval of length ds is the probability of a point in P(x′, σ, i1, . . . , ip, x′′ − x′) during
the next ds units of time, i.e., DBq(x′′ − x′)ds+ o(ds). Define further, with s0 = 0, x0 = 0,

J({si, xi}) =
∑̀
i=1

∫ si

si−1

NA(xi−1, u)du+
∫ t

s`

NA(x`, u)du. (2.15)

β times this expression can be thought of as the total birthrate along the path given by the si and xi. A
small extension of the argument for Lemma 1 then allows us to write

EB{number of particles ρ which descend from a particle
at 0 at time 0 and whose associated path has jumptimes in

ds1, ds2, . . . , ds` and positions x1, x2, . . . , x` after the jumps|FA}

= µB exp[−(δ +DB)t+ βJ({si, xi})]
∏̀
i=1

[DBq(xi − xi−1)]ds1 . . . ds`. (2.16)

Substitution of this into (2.13) gives

E{number of particles ρ which descend from a particle at 0

and are alive at time t}

= µB

∑
`≥0

∑
x1,...,x`

exp[−(δ +DB)t]
∏̀
i=1

[DBq(xi − xi−1)]

×
∫

0<s1<···<s`<t

EA exp[βJ({si, xi})]ds1 . . . ds`. (2.17)
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Essentially the same argument gives

E{number of particles ρ which descend from a particle at 0

and which die without offspring or which split before time t}

= µB

∑
`≥0

∑
x1,...,x`

∏̀
i=1

[DBq(xi − xi−1)]
∫ t

0

ds`+1 exp[−(δ +DB)s`+1]

×
∫

0<s1<···<s`<s`+1

EA

{(
δ + βNA(xs`

, s`+1)
)
exp[βĴ({si, xi})]

}
ds1 . . . ds`, (2.18)

where

Ĵ({si, xi}) =
∑̀
i=1

∫ si

si−1

NA(xi−1, u)du+
∫ s`+1

s`

NA(x`, u)du.

(s`+1 here represents the time at which a particle dies without offspring or splits).
For the time being we concentrate on (2.17). We must work on EA exp[βJ({si, xi})]. Note that J({si, xi})

represents the total time spent by all A-particles on the path which is at xi−1 during [si−1, si) and at x`

during [s`, t). Let us denote this path by π = π(si, xi). Then J({si, xi}) can be written as the sum over all
A-particles λ present at time 0, of the time spent by λ on π during [0, t]. Denote this time spent by λ on π
by L(λ) = L(λ, π). Define further

FA,0 := σ-field generated by all NA(x, 0), x ∈ Zd. (2.19)

Then, for given π, and conditionally on FA,0, the random variables L(λ, π) for different λ are independent.
Thus

EA{exp[βJ({si, xi})]|FA,0} =
∏
λ

EA{exp[βL(λ, π)]|FA,0}. (2.20)

Let
κ(λ) = κ(λ, π) = inf{s : λ is on π at time s}

(κ = ∞ if the set on the right is empty). Since λ cannot spend any time on π before κ(λ, π), a first entry
decomposition gives

EA{exp[βL(λ, π)]|FA,0}

= PA{κ(λ, π) > t|FA,0}+
∫ t

0

PA{κ(λ, π) ∈ du|FA,0}EA{exp[βL(λ′, π′(u))]|FA,0}, (2.21)

where λ′ is a particle at π(u) = π′(0) at time 0, and π′(u) is the path obtained from π by a time shift of size
u. More precisely, π′(u) is a path defined on the time interval [0, t − u); moreover, if sk < u ≤ sk+1, then
π′(u) is at xk at times in [0, sk+1 − u), at xj at times in [sj − u, sj+1 − u) for k < j < ` and at x` for times
in [s` − u, t− u). We now write for any path π′ of length t− u.

L(λ′, π′(u)) =
∫ t−u

0

I[λ′ is on π′ at time v]dv.

This leads to the relation

EA{exp[βL(λ′, π′(u))]|FA,0}

=
∞∑

p=0

βp

p!
EA{[L(λ′, π′(u))]p|FA,0}

=
∞∑

p=0

βp

∫
0<v1<v2<···<vp≤t−u

PA{λ′ is on π′ at times v1, . . . , vp|FA,0}dv1 . . . dvp. (2.22)
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We shall work on a good bound for EA{[L(λ′, π′(u))]p|FA,0} in a later lemma. For now we merely use
the trivial bound

L(λ′, π′(u)) ≤ t− u ≤ t. (2.23)

Substituting this bound into (2.21) and (2.20) gives

EA{exp[βL(λ, π)]FA,0} ≤ PA{κ(λ, π) > t|FA,0}+ PA{κ(λ, π) ≤ t|FA,0}eβt

and

EA{exp[βJ({si, xi})]|FA,0}

≤
∏
λ

[
1− PA{κ(λ, π) ≤ t|FA,0}+ PA{κ(λ, π) ≤ t|FA,0}eβt

]
≤ exp

[ ∑
λ

PA{κ(λ, π) ≤ t|FA,0}(eβt − 1)
]
. (2.24)

Now, let {Ss}s≥0 be a continuous time simple random walk with jumprate DA, starting at 0. Each A-particle
performs (a translate of) such a random walk. Then for any A-particle λ starting at a given site x and any
given path π,

PA{κ(λ, π) ≤ t|FA,0} = P{x+ Ss is on π for some s ≤ t}.

Moreover, since the number of A-particles at x at time 0 has a Poisson distribution with mean µA,

EA{exp
[ ∑

λ

PA{κ(λ, π) ≤ t|FA,0}(eβt − 1)
]
}

= exp
[
µA

∑
x

(
exp

[
P{x+ Ss is on π for some s ≤ t}(eβt − 1)

]
− 1

)]
≤ exp

[
Γ

∑
x

P{x+ Ss is on π for some s ≤ t}
]
, (2.25)

where Γ = Γ(t) = µAe
βt exp[eβt].

To complete the estimate of (2.17) we shall prove that if π has ` jumptimes, then∑
x

P{x+ Ss is on π for some s ≤ t} ≤ (tDA + `). (2.26)

Together with (2.17) and (2.24) this will imply that

E{number of descendants of any particle starting at 0 which are alive at t}

≤ µB

∑
`≥0

∑
x1,...,x`

exp[−(δ +DB)t]
∏̀
i=1

[DBq(xi − xi−1)]∫
0<s1<···<s`<t

exp[Γ(tDA + `)]ds1 . . . ds`

= µB

∑
`≥0

[eΓtDB ]`

`!
exp[ΓtDA − (δ +DB)t]

= µB exp[
(
eΓDB + ΓDA − δ −DB

)
t] <∞. (2.27)

It remains to prove (2.26). To this end, note that the expression in (2.26) equals

E{number of distinct particles which coincide with π at some time during [0, t]},
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where we now start with one particle at each site x and the particles move with the same random walk as
the A-particles. A particle may coincide with π for the first time in an interval [s, s + ds) because π has
a jump to the position of the particle during this interval, or because the particle jumps to the position of
π during this interval. If π jumps only at si to xi for 1 ≤ i ≤ ` during [0, t), then the contribution of the
former kind of jumps to the left hand side of (2.26) is at most

E
{ ∑̀

i=1

(number of particles present at xi at time si)
}

=
∑̀
i=1

∑
x

P{x+ Ssi = xi} = `. (2.28)

Similarly, the expected number of particles which jump to a given position y during [s, s+ ds) equals∑
x,z∈Zd

P{x+ Ss = z}q(y − z)DAds = DAds.

Therefore the contribution to the left hand side of (2.26) which is due to jumps of some particle to the
position of π is at most ∫ t

0

DAds = tDA.

Adding this to the contribution (2.28) gives (2.26).
Thus we proved that the expression in (2.17) is finite. To show that (2.18) is also finite, we merely observe

that Ĵ({si, xi}) ≤ J({si, xi}) and that

EA

[
NA(xs`

, s`+1) exp[βĴ({si, xi})]
]

≤
{
EA

[
NA(xs`

, s`+1)
]2}1/2{

EA exp[2βĴ({si, xi})]
}1/2

≤
{
EA

[
NA(xs`

, s`+1)
]2}1/2

EA exp[2βĴ({si, xi})]

= [µ2
A + µA]1/2EA exp[2βĴ({si, xi})].

We leave further details to the reader. �

As explained before, this lemma shows that almost surely, none of the branching processes of descendants
of one particle explodes. This shows that our procedure indeed constructs a branching random random walk
with the correct rates for the descendants of a single particle. In fact, we think that given the A-system and
some B-particle at time 0, any other construction of the process of descendants of σ must give a process with
the same finite dimensional distributions as Wσ. This is based on the Corollary on p. 273 of Ikeda, Nagasawa
and Watanabe (1968a, 1968b). The required independence properties of the A-particles, and conditionally
on FA of the B-particles, therefore make the process in (2.1) unique in the sense of finite dimensional
distributions. We should make two comments to this. Firstly, a Markov branching process with property C
of Ikeda, Nagasawa and Watanabe (1968a, 1968b) is automatically a minimal process, i.e., it is trapped in
a special point after the first explosion (see Theorem 1.1 and property C1 in this paper). Secondly, Ikeda,
Nagasawa and Watanabe (1968a,1968b) deals with a compact space for the positions of the particles and
the time-homogeneous case only. To apply their theory we have to first go over to the space-time process, so
that the possible states of the particles have the form (x, t) with x ∈ Zd and t ∈ [0,∞). In order to have the
particles move in a compact space we then have to let our particles move in the one point compactification
of Zd × [0,∞), with the point at infinity taken as a trap. We shall not pursue this matter of uniqueness of
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the process, and assume from now on that we work with the process constructed from the Poisson processes
P(x, σ, j1, . . . , jp, E) by the above method.

In order to show that the proces which we constructed is a “good” process we next show that almost
surely

NA(x, t) <∞ and NB(x, t) <∞ for all x, t. (2.29)

The finiteness of the NA(x, t) for all x ∈ Zd and integral t is clear from the fact that EANA(x, t) ≡ µA <∞.
It then also follows for arbitrary t ≥ 0 from the maximal inequality

PA{NA(x, k) ≥ 1
2
Ne−DA} ≥ 1

2
PA{ sup

k−1≤s≤k
NA(x, s) ≥ N}, (2.30)

which holds for all N ≥ some N0. One easy way to see (2.30) is that when NA(x, τ) ≥ N at some stopping
time τ , then the number of particles which stay at x during [τ, τ + 1] is stochastically larger than a random
variable with a binomial distribution corresponding to N trials with success probability exp[−DA]. Thus

PA{NA(x, k) ≥ 1
2
Ne−DA

∣∣ sup
k−1≤s≤k

NA(x, s) ≥ N} → 1

as N →∞.
The finiteness of the NB(x, t) is proven in the next lemma.

Lemma 3. Almost surely [P] NB(x, t) <∞ for all x ∈ Zd, t ≥ 0.

Proof. For the sake of argument take x = 0 and fix t ≥ 0. Each B-particle at 0 at time t must be a
descendant of a particle starting at some site x. Thus,

NB(0, t) =
∑

x

(number of particles at 0 at time t which descend

from a particle at x at time 0).

By translation invariance we now have

ENB(0, t) =
∑

x

E(number of particles at 0 at time t which descend

from a particle at x at time 0)

=
∑

x

E(number of particles at −x at time t which descend

from a particle at 0 at time 0)

= E(number of descendants of some particle at 0 which

are alive at time t). (2.31)

The right hand side here was shown to be finite in Lemma 2. Thus almost surely NB(0, k) is finite for all
integral k, and by translation invariance the same is true for all NB(x, k). The finiteness of all NB(x, t), x ∈
Zd, t ≥ 0, now follows in essentially the same way as for the NA. Indeed, we now have analogously to (2.30)

PB{ sup
k−1≤s≤k

NB(x, s) ≥ N} ≤ 2PB{NB(x, k) ≥ 1
2
Ne−δ−DB}, (2.32)

for large N and uniformly in the A-configuration, because the probability for a B-particle alive at x at time
τ to stay alive at x during [τ, τ + 1] is exp [−δ −DB ].

�
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We end this section with a proof that for estimating E{NB(0, t)|FA} we may restrict ourselves to a particle
system with particles restricted to the cube

C(C1t log t) := [−C1t log t, C1t log t]d (2.33)

for s ≤ t and a suitable constant C1, and with NA(x, s) bounded by log t. This estimate will not be used until
Section 6, but we derive it here because it uses the same methods as the proof of Lemma 2. In accordance
with (2.33) we use the notation

C(r) = [−r, r]d ∩ Zd. (2.34)

It is also convenient to have the A-system defined for negative times as well. Since the A-system is stationary
in time such an extension exists, and in this extension NA(x, t) still has a Poisson ditribution with mean µA

for all x, t, and all the A-particles perform independent simple random walks with jumprate DA.

Lemma 4. There exist constants 0 < C1, C2 <∞ such that almost surely for all large t

there are no A-particles which visit both C(
1
2
C1t log t) and

the complement of C(C1t log t) during [0, t], (2.35)

sup{NA(x, s) : x ∈ C(C1t log t),−t ≤ s ≤ t} ≤ log t, (2.36)

for all x /∈ C(C1t log t), sup{NA(x, s) : −t ≤ s ≤ t} ≤ log ‖x‖, (2.37)

and for any A-configuration which satisfies (2.35)-(2.37) it holds that

EB{number of B-particles which are alive at 0 at time t and whose associated

path has been outside C(
1
2
C1t log t) during [0, t] or coincided at some

time in [0, t] with an A-particle which has been outside C(C1t log t)}
≤ C2e

−δt. (2.38)

Proof. We need an estimate on the fluctuations of {Ss}. We shall write ‖a‖ for ‖a‖∞ = max1≤s≤d |a(s)|
when a = (a(1), . . . , a(d). First note a standard large deviation estimate: if X1, X2, . . . are i.i.d. bounded,
mean zero, d-dimensional random vectors, then

P{
∥∥∥ n∑

i=1

Xi

∥∥∥ ≥ x} ≤ d exp
[
−K1

x2

n+ x

]
, x ≥ 0, (2.39)

for some constant K1 depending on the common distribution of the Xi (apply for instance Chow and Teicher
(1988), Exercise 4.3.14 to one coordinate at a time). Now, if Xi denotes the i-th jump of the random walk
{Ss}s≥0 and N(t) the number of such jumps during [0, t], then, for another constant K2 > 0

P{‖St‖ ≥ x} =
∞∑

n=0

P{N(t) = n}P{
∥∥ n∑

i=1

Xi

∥∥ ≥ x}

≤
∞∑

n=0

e−tDA
(tDA)n

n!
d exp

[
−K1

x2

n+ x

]
≤ 2d exp

[
−K2

x2

t+ |x|
]

(2.40)
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(check this separately for x ≤ 2tDA and for x > 2tDA). In particular,

P{‖Ss‖ ≤ K3

√
s+ 1} ≥ 1

2
, s ≥ 0, (2.41)

for yet another constant K3. Finally, by the maximal inequality (Billingsley (1986), Theorem 22.5),

P{ sup
0≤s1,s2≤t

‖Ss1 − Ss2‖ ≥ x}

≤ P{sup
s≤t

P{‖Ss‖ ≥ x/2}

≤ 4 sup
s≤t

P{‖Ss‖ ≥ x/8} ≤ 8d exp
[
− K2x

2

64(t+ |x|)

]
. (2.42)

With the estimate (2.42) in hand we turn to the proof of (2.35). Note that the proof we are about to
present remains valid no matter which strictly positive value we take for C1. Let us estimate

P{∃ an A-particle which visits both C(
1
2
C1k log k)

and the complement of C(
3
4
C1k log k) during [0, k]}. (2.43)

Suppose there is particle starting at x for which the event in (2.43) occurs. We consider two cases:
Case (i) x ∈ C(2C1k log k). In this case we use that the probability of visiting both the complement of
C( 3

4C1k log k) and C( 1
2C1k log k) for a given particle at time 0 is at most

P{ sup
s1≤s2≤t

‖Ss1 − Ss2‖ ≥
1
4
C1k log k} ≤ 8d exp[−K4k log k], (2.44)

by virtue of (2.42). The particles starting at some x ∈ C(2C1k log k) therefore contribute, for large k at most

∑
x∈C(2C1k log k)

EA{NA(x, 0)}8d exp[−K4k log k] ≤ exp[−K4

2
k log k]

to the probability in (2.43) for large k.
Case (ii) x /∈ C(2C1k log k). Any such x has at least one coordinate > 2C1k log k in absolute value. For the
sake of argument let x1 > 2C1k log k. If a particle starting at such an x reaches C( 1

2C1k log k) before time
k, then the fluctuation in its path up till time k is at least (x1 − C1/2)k log k ≥ (x1/2). The probability of
such a fluctuation is at most 8d exp[−K4x1], again by virtue of (2.42). Consequently the particles starting
at points x in case (ii) contribute at most

16d2
∑

x:x1>2C1k log k

exp[−K4x1] ≤ exp[−K4

2
k log k]

to the probability in (2.43). The statement (2.35) now follows from these estimates and a straightforward
Borel-Cantelli argument.

The statement (2.36) is much easier to prove. Again the value of C1 > 0 has no influence on the argument.
By stationarity, each NA(x, t) has a Poisson distribution of mean µA and generating function

EAe
θNA(x,t) = exp[µA(eθ − 1)]. (2.45)
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This, together with (2.30), implies that for any θ > 0∑
x∈C(C1t log t)

PA{ sup
|s|≤t

NA(x, s) ≥ logbtc}

≤ 2
∑

x∈C(C1t log t)

∑
|k|≤dte

PA{NA(x, k) ≥ 1
2
e−DA logbtc}

≤ K5t[t log t]d exp[−θ
2
e−DA logbtc+ µA(eθ − 1)]. (2.46)

By taking θ = log log t we see that this is

O
(

exp[−K6 log t log log t]
)

as t→∞. (2.36) is now immediate by Borel-Cantelli again.
We leave the proof of (2.37) to the reader. The proof is essentially the same as for (2.36) and it is valid

for any value of C1 > 0.
Finally we turn to (2.38). It is here were we have to take C1 large. We begin with an estimate for the

number of descendants of some fixed particle σ which starts at a location y. Assume that the A-configuration
satisfies (2.35)-(2.37). As before, the process of descendants of σ is denoted by Wσ. We further define

FB,0 = σ-field generated by {NB(x, 0) : x ∈ Zd}.

We shall prove that for a suitable constant K7 and for t large enough, and uniformly in the starting position
y of σ

E{number of particles alive in Wσ at time t such that the piece till t

of its associated path intersects C(
1
8
C1t log t) and the complement of

C(
1
2
C1t log t) during [0, t]|FA ∨ FB,0}

≤ e−δt exp
[
−K7‖y‖

]
. (2.47)

To see this we use a decomposition with respect to the associated paths of the particles. As in (2.13) the
left hand side of (2.47) can be written as

∑
`≥0

∑
x1,...,x`

∫
0<s1<···<s`<t

E{number of particles which descend from σ

and whose associated path has jumptimes in ds1, ds2, . . . , ds`

and positions x1, x2, . . . , x` after the jumps|FA ∨ FB,0}, (2.48)

where the sum over the xi runs over all `-tuples with at least one xi in C( 1
8C1t log t) and at least one

xj /∈ C( 1
2C1t log t). Set x0 = y, s0 = 0 and

r = max{‖xi‖ : 0 ≤ i ≤ `}. (2.49)

Then
r ≥ 1

2
C1t log t.
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Then along the path which jumps to xk at time sk, k ≤ `, the birthrate per particle is never more than

sup
s≤t

sup
‖z‖≤r

βNA(z, s) ≤ β log r,

by virtue of (2.36) and (2.37). Therefore, by (2.6), the expectation appearing in (2.48) can only be increased
if we replace Wσ by a branching random walk, Ŵσ say, starting with σ and with birthrate per particle at
site x and time s equal to

β log r if ‖x‖ ≤ r, s ≤ t, and

βNA(x, s) if ‖x‖ > r or s > t. (2.50)

Now our construction of the branching random walk is such that particles of Ŵσ whose associated path lies
in the ball {x : ‖x‖ ≤ r} are not influenced by the birthrate at any site outside this ball. In other words, if
we restrict ourselves to particles whose associated path lies in {x : ‖x‖ ≤ r}, then

E{number of particles in Ŵσ which descend from σ and whose
associated path has jumptimes in ds1, ds2, . . . , ds` and

positions x1, x2, . . . , x` after the jumps|FA ∨ FB,0}

is unchanged if we replace Ŵσ by yet another branching random walk, W σ say, starting from σ, but with
the constant birthrate per particle of β log r at all sites and all times. However, we know from Lemma 1,
and the arguments for (2.16), that

E{number of particles in W σ which descend from σ and whose
associated path has jumptimes in ds1, ds2, . . . , ds` and

positions x1, x2, . . . , x` after the jumps|FA ∨ FB,0}

= exp[−(DB + δ)t+ βt log r]
∏̀
i=1

[DBq(xi − xi−1)]ds1 . . . ds`.

It follows that the expression in (2.48) is bounded by

∑
`≥0

∑
x1,...,x`

exp[−(DB + δ)t+ βt log r]
∫

0<s1<···<s`<t

∏̀
i=1

[DBq(xi − xi−1)]ds1 . . . ds`,

where the sum runs only over paths x1, . . . , x` with some xi in C( 1
8C1t log t) and some xj /∈ C( 1

2C1t log t),
and r is given by (2.49). The last expression is simply an expectation over random walk paths starting at y.
More precisely, it is at most

e−δtE
{

exp
[
βt log[sup

s≤t
‖y + Ss‖]

]
× I[y + Ss1 ∈ C(

1
8
C1t log t) and y + Ss2 /∈ C(

1
2
C1t log t) for some s1, s2 ≤ t]

}
≤ e−δt+βt log(‖y‖+1)E

{
exp

[
βt log[sup

s≤t
‖Ss‖]

]
× I[y + Ss1 ∈ C(

1
8
C1t log t) and y + Ss2 /∈ C(

1
2
C1t log t) for some s1, s2 ≤ t]

}
. (2.51)
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To estimate the right hand side here we set

F (z) = P{sup
s≤t

‖Ss‖ > z}.

By (2.42) we have for z ≥ t that F (z) ≤ 8d exp[−K8z]. Now take

C1 ≥
64β
K8

. (2.52)

First consider sites y with y /∈ C( 1
4C1t log t). For such y = (y(1), . . . , y(d))

E
{

exp
[
βt log[sup

s≤t
‖Ss‖]

]
× I[y + Ss1 ∈ C(

1
8
C1t log t) and y + Ss2 /∈ C(

1
2
C1t log t) for some s1, s2 ≤ t]

}
≤ E

{
exp

[
βt log[sup

s≤t
‖Ss‖]

]
I[sup

s≤t
‖Ss‖ ≥ max

i
|y(i)| − 1

8
C1t log t] > ‖y‖/2

}
≤ −

∫
(‖y‖/2,∞)

eβt log zdF (z)

= eβt log(‖y‖/2)F (‖y‖/2) +
∫ ∞

‖y‖/2

eβt log zF (z)dz

≤ exp[−1
8
K8‖y‖]. (2.53)

Use of this bound in (2.51) shows that (2.47) holds for y /∈ C( 1
4C1t log t). Next take y ∈ C( 1

4C1t log t). Now

E
{

exp
[
βt log[sup

s≤t
‖Ss‖]

]
× I[y + Ss1 ∈ C(

1
8
C1t log t) and y + Ss2 /∈ C(

1
2
C1t log t) for some s1, s2 ≤ t]

}
≤ E

{
exp

[
βt log[sup

s≤t
‖Ss‖]

]
I[sup

s≤t
‖Ss‖ ≥

1
4
C1t log t]

}
,

and the proof of (2.47) can be completed as in (2.53).
Thus, (2.47) holds in all cases. We now take the expectation over the NB(x, 0) and sum over all y ∈ Zd

to obtain for large t

EB{number of B-particles which are alive at 0 at time t

and whose associated path has been outside C(
1
2
C1t log t) during [0, t]}

≤ C2e
−δt (2.54)

for some constant C2. However, when the A-system satisfies (2.35), then any B-particle which stays inside
C( 1

2C1t log t) during [0, t] cannot meet any A-particle which also visits C(C1t log t) during [0, t]. Thus, under
(2.35), the left hand side of (2.38) and (2.54) are the same and the lemma follows. �

3. The expectation of NB increases faster than exponentially in dimensions 1 and 2. Here we
shall prove Theorem 1. In fact we shall prove a slightly stronger result.

Proof of Theorem 1. Assume that there is some B-particle, σ say, at the origin at time 0. Consider the
subprocess of those B-particles which are descendants of σ and such that they and all their ancestors back
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to time 0 have never moved away from the origin. Conditionaly on the A-system, this is a branching process
with birthrate βNA(0, s) at time s and constant death rate δ +DB (compare Remark 1). From Lemma 1
we see that the conditional expectation, given FA and NB(0, 0), of the number of B-particles at 0 at time t
in this subprocess is

NB(0, 0) exp
{ ∫ t

0

[βNA(0, s)− (δ +DB)]ds
}
.

Consequently

ENB(0, t) ≥ µBe
−(δ+DB)tEA

{
exp

{
β

∫ t

0

NA(0, s)ds
}}
.

It therefore suffices for (1.3) to prove that

EA

{
exp

{
β

∫ t

0

NA(0, s)ds
}}

goes to ∞ faster than exponentially in t. (3.1)

Now consider the A-particles which start somewhere at time 0 and reach the origin at some time during
[0, t/2]. Let us call the first arrival of such a particle at the origin a new arrival and let there be ν = νt such
arrivals and assume that they occur at the times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tν ≤ t/2. Write λi for the particle
which arrives at time ti and let Ti be the amount of time λi spends at the origin during [0, t], which is the
same as the amount of time spent at the origin during [ti, t]. By definition all the particles λi are distinct.
Therefore, conditionally on the ti, the random variables Ti, i = 1, 2, . . . , are independent. Moreover, the
conditional distribution of Ti is the distribution of the time spent at the origin during [ti, t] by an A-particle
which is at the origin at time ti. This distribution is the same as that of the time spent at the origin during
[0, t− ti] ⊃ [0, t/2] by a particle starting at the origin. Let us write G = Gt for the distribution of the total
time spent at the origin during [0, t/2] by an A-particle starting at the origin. Then, conditionally on the
ti, and the number ν of ti,

∑
i Ti is stochastically larger than the sum of ν i.i.d. variables each with the

distribution G. Now ∫ t

0

NA(0, s)ds ≥
∑

i

(time spent by λi at 0 during [0, t]),

so that also
∫ t

0
NA(0, s)ds is stochastically larger than the sum of ν independent random variables with

distribution G. In particular,

EA

{
exp

{
β

∫ t

0

NA(0, s)ds
}}

≥ EA

{[ ∫
eβuG(du)

]ν
}

≥
[ ∫

eβuG(du)
]EAν

(by Jensen’s inequality). (3.2)

Now recall that each A-particle performs a simple random walk. Since simple random walk is recurrent
in dimension 1 and 2, each A-particle does eventually reach the origin, so that νt → ∞ almost surely as
t→∞. Consequently also

EAνt →∞ as t→∞. (3.3)

In order to prove (3.1) we now prove that ∫
eβuGt(du) ≥ eβηt/2 (3.4)

for some constant η > 0. Clearly (3.2)-(3.4) will imply (3.1) and hence (1.3).
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To obtain the lower bound for
∫

exp(βu)G(du), consider a particle which starts at the origin and whose
position at time s is given by Ss with {Ss} as in the lines following (2.24). Then the time axis is partitioned
into alternating intervals with Ss = 0 and with Ss 6= 0. More precisely, there exist a1 = 0 < b1 < a2 < b2 <
. . . such that

Ss

{
= 0 if ai ≤ s < bi for some i
6= 0 if bi ≤ s < ai+1 for some i.

The amount of time spent at the origin during [0, t/2] by the particle is then at least∑
i≤ρ

[bi − ai],

where
ρ := max{i : bi ≤ t/2}.

Moreover, bi−ai, i ≥ 0, aj+1− bj , j ≥ 0 are all independent and the bi−ai have an exponential distribution
with mean 1/DA. It particular, by the weak law of large numbers, there exists some M such that

P
{ m∑

i=1

[bi − ai] ∈ [
m

2DA
,
2m
DA

]
}
≥ 1

2
for m ≥M. (3.5)

Thus, for any fixed η,K > 0 with

0 < (3KDA + 4)η <
1
2

(3.6)

and t large, we have

P{time spent at the origin during [0, t/2] by the particle ≥ ηt}

≥ P{ρ ≥ 2DAηt and
∑

i≤2DAηt

(bi − ai) ≥ ηt}

≥ P{(ai+1 − bi) ≤ K for all i ≤ 2DAηt}P{ηt ≤
∑

i≤2DAηt

(bi − ai) ≤ 4ηt}

≥
[
P{a2 − b1 ≤ K}

]2DAηt 1
2
. (3.7)

The one but last inequality in (3.7) holds because

(ai+1 − bi) ≤ K for all i ≤ 2DAηt

together with ∑
i≤2DAηt

(bi − ai) ≤ 4ηt

implies that

b⌈
2DAηt

⌉ ≤ K
[
2DAηt+ 1

]
+ 4ηt <

t

2
,

and consequently ρ ≥ 2DAηt. We have also used the independence of the bi − ai and the aj+1 − bj in this
inequality. The last inequality in (3.7) follows from (3.5).

(3.7) implies that ∫
eβuG(du) ≥ 1

2
exp[βηt]

[
P{a2 − b1 ≤ K}

]2DAηt

.

To satisfy (3.6) we take

K = K(η) =
⌊1− 10η

6DAη

⌋
.

By the recurrence of {Ss}, the variables bi+1−ai are all finite with probability 1 and consequently P{a2−b1 ≤
K(η)} → 1 as η ↓ 0. We can therefore choose η so small that (3.4) holds for large t. �
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4. An upper bound for the expectation of NB in dimensions ≥ 3.
In the preceding section we derived a lower bound for ENB(0, t). In this section we shall use an upper

bound for this expectation to derive Theorem 3.

Proof of Theorem 3. By (2.31)

ENB(0, t) = E(number of descendants of some particle at 0

which are alive at time t). (4.1)

By (2.13)-(2.20) we then have (in the notation of Lemma 2)

ENB(0, t) =µB

∑
`≥0

∑
x1,...,x`

exp[−(δ +DB)t]
∏̀
i=1

[DBq(xi − xi−1)]

×
∫

0<s1<···<s`<t

ds1 . . . ds`EA

{∏
λ

EA{exp[βL(λ, π)]|FA,0}
}
. (4.2)

Furthermore, (2.21) and (2.22) say

EA{ exp[βL(λ, π)]FA,0} = PA{κ(λ, π) > t|FA,0}

+
∫ t

0

PA{κ(λ, π) ∈ du|FA,0}

×
∞∑

p=0

βp

∫
0<v1<v2<···<vp≤t−u

PA{λ′ is on π′ at times v1, . . . , vp|FA,0}dv1 . . . dvp. (4.3)

For brevity denote the position of π′ at time vj by zj and set v0 = 0, z0 = 0. Note the simple inequality

sup
z
P{Ss = z} ≤ sup

z
P{Sbsc = z} = sup

z
P

{ bsc∑
k=1

[Sk − Sk−1] = z
}
.

Together with the local central limit theorem (see Spitzer (1976), Proposition 7.9 and the remark following
it) this implies that there exists a constant K1 such that

P{λ′ is at zj at time vj |λ′ is at z` at time v` for ` ≤ j − 1}

= P{Svj−vj−1 = zj − zj−1} ≤
K1

[vj − vj−1 + 1]d/2
.

We can therefore bound the last sum in the right hand side of (4.3) by

∞∑
p=0

βp

∫
0<v1<v2<···<vp≤t−u

p∏
j=1

P{Svj−vj−1 = zj − zj−1}dv1 . . . dvp

≤
∞∑

p=0

βp

∫
0<v1<v2<···<vp≤t−u

p∏
j=1

K1

[vj − vj−1 + 1]d/2
dv1 . . . dvp

≤
∞∑

p=0

βp
[ ∫ ∞

0

K1

(v + 1)d/2
dv

]p

. (4.4)
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If we define β0 by

2β0K1

∫ ∞

0

dv

(v + 1)d/2
= 1,

then β0 > 0 (recall that d ≥ 3 now). Moreover the right hand side of (4.4) will be ≤ 2 for β ≤ β0.
Substitution of this bound into (4.3) gives

EA{exp[βL(λ, π)]|FA,0}
≤ P{κ(λ, π) > t|FA,0}+ P{κ(λ, π) ≤ t|FA,0}2.

As in (2.24) and (2.25) (with eβt replaced by 2) this gives

EA

{∏
λ

EA{exp[βL(λ, π)]
∣∣FA,0}

}
≤ exp

[
K2

∑
x

P{x+ Ss is on π for some s ≤ t}
]

≤ exp[K2(tDA + `)],

for some constant K2 which does not depend on t this time (use (2.26)). Finally, (4.2) shows that

ENB(0, t) ≤ µB

∑
`≥0

(DBt)`

`!
exp

[
− (δ +DB)t+K2(tDA + `)

]
(compare (2.27))

= µB exp
[(
DBe

K2 +K2DA − δ −DB

)
t
]
.

This implies (1.6) for β ≤ β0, δ ≥ δ0 if we take δ0 = 2(DBe
K2 +K2DA −DB).

Finally we show that (1.6) implies (1.7). Clearly (1.6) and the Borel-Cantelli lemma show that for each
fixed x ∈ Zd, almost surely NB(x, k) = 0 for all large integers k. But if G(t) denotes the σ-field generated
by the A-system for all times and the B-system up till time t, then one easily sees that for k − 1 < t ≤ k it
holds that

P{NB(x, k) ≥ 1|G(t)} ≥ e−δ−DB a.e. on {NB(x, t) ≥ 1}.

Indeed, no matter what the configuration at time t is, as long as there is at least one B-particle at x at
time t, there is a conditional probability of at least exp[−(δ+DB)(k− t)] ≥ exp[−δ−DB ] that this particle
survives and does not move till time k (see the argument for (2.32)). The same argument shows that

P{NB(x, dτ(t)e) ≥ 1
∣∣G(τ(t)} ≥ e−δ−DBa.e. on {τ(t) <∞},

where τ(t) = inf{s ≥ t : NB(x, s) ≥ 1}. But then the martingale convergence theorem implies that
NB(x, k) ≥ 1 for infinitely many k almost everywhere on the event {NB(x, t) ≥ 1 for arbitrarily large t} (see
Breiman (1968), Exercise 5.6.9). Thus (1.7) must hold. �

5. A discrete time approximation.
We begin with an outline of the proof of a discrete time version of Theorem 2. This section can

be viewed as a warm-up exercise for the full proof of Theorem 2. The principal ideas for the full proof are
all present here and will come out clearer because we make the simplification that both types of particles
perform discrete time random walks. To avoid periodicity problems we shall allow these random walks to
stand still. That is, an A-particle at x during [k − 1, k) will at time k stay at x with probability 1 − DA,
and jump to x± ei with probability DAq(±ei) = DA/(2d) (with q(·) as in (2.14)). (We take our path right
continuous, so that at time k the particle is at its new position. We also assume that 0 < DA, DB < 1
now.) All A-particles move independently of each other. As before we write NA(x, k) and NB(x, k) for the
number of A and B-particles at x at time k, respectively. Assume now that the A-configuration is given.
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A B-particle which is at x during [k − 1, k) will then produce i B-particles at time k with probability αi.
These probabilities satisfy

αi ≥ 0,
∞∑

i=0

αi = 1 and
∞∑

i=0

iαi = e−δ+βNA(x,k−1). (5.1)

Thus the expected number of B-particles at time k produced by a B-particle at x at time k− 1 is exp[−δ+
βNA(x, k− 1)], which imitates the situation in the true model (compare Lemma 1). The new B-particles, if
any, will then independently stay at x with probability 1−DB , or make a jump of size ±ei with probability
DBq(±ei) = DB/(2d). They then stay at their new location for the whole interval [k, k + 1). Only the
expectations

∑
i iαi will play a role in this section, and not the values of the αi themselves.

The proof of (1.4) rests on showing that for almost all A-configurations, the conditional expectation
E{NB(0, t)|FA} does not grow faster than exponentially in t. Then the process must die out if the death
rate δ is made greater than the rate at which E{NB(0, t)|FA} grows. It is easy to give a fairly explicit
expression for this last conditional expectation (see (5.2) below). This expression shows that for our purposes
it is enough to show that

∑t−1
`=0NA(x`, `) does not grow faster than Kt for some constant K, along most

paths (x0, x1, . . . , xt) in [−t, t]d. Here we call (x0, x1, . . . , xt) a path if x`+1 − x` ∈ {0,±ei, 1 ≤ i ≤ d} for
each `. Of course EA

{ ∑t−1
`=0NA(x`, `)

}
= µAt for any path (x0, . . . , xt) so that we have to establish some

kind of large deviation estimate for the A-system. We have to show that there are “few paths” in space-time
with

∑t−1
`=0NA(x`, `) much larger than its expectation µAt. Note that E{NB(0, t)|FA} contains a sum of

exponentials like exp[β
∑t−1

`=0NA(x`, `)], so it is quite posible for
∑t−1

`=0NA(x`, `) typically to be of order t
and still to have E{NB(0, t)} grow faster than exponentially (as asserted in d = 1, 2 by Theorem 1).

Now to control
∑t−1

`=0NA(x`, `) we break up this sum into subsums; the r-th subsum contains the terms
for which γrµAC

dr
0 < NA(x`, `) ≤ γr+1µAC

d(r+1)
0 . Here γr is more or less constant, and C0 is some large

integer, so we should think of the sizes of the terms in the subsums as growing exponentially in r. We have to
show (at least) that there are only o(tC−dr

0 ) terms in the r-th subsum. To this end we partition space-time,
Zd × Z, into the cubes

Br(i, k) :=
( d∏

s=1

[i(s)∆r, (i(s) + 1)∆r

)
× [k∆r, (k + 1)∆r),

with ∆r = C6r
0 and i = (i(1), . . . , i(d) ∈ Zd, k ∈ Z. We call these cubes r-blocks. We divide the r-blocks

into bad ones and good ones. Roughly speaking, an r-block is bad if it contains a vertex (x, k) ∈ Zd × Z for
which NA(x, k) > γrµAC

dr
0 , but the actual definition of a bad r-block is somewhat more complicated. For

any path π = (x0, . . . , xt) of length t we then define φr(π) as the number of bad r-blocks which intersect
the space-time path

(
(x0, 0), (x1, 1), . . . , (xt, t)

)
. We further define Φr = sup{φr(π) : π ⊂ [−t, t]d}. It is then

not hard to see that
∑t−1

`=0NA(x`, `) ≤ γ1µAC
d
0 t+

∑
r≥1 Φrγr+1µAC

r(d+6)+d
0 for any path π ⊂ [−t, t]d. Thus

our problem reduces to finding a good estimate for Φr. The first observation is that we can take Φr = 0
for r ≥ R, where R is the smallest integer with CR

0 ≥ [log t]1/d. This is so, because NA(x, k) ≤ log t for all
(x, k) ∈ [−t, t]d × [0, t] (outside an event of negligable probability). This rests on a coarse estimate for the
Poisson distribution (recall that each NA(x, k) has a Poisson distribution with mean µA). The principal step
in the proof is a recursive inequality Φr ≤ C

6(d+1)
0 Φr+1+ a random term. The first term in the right hand

side is an upper bound for the number of bad r-cubes inside bad (r + 1)-cubes, which simply comes from
the fact that any (r + 1)-cube contains exactly C6(d+1)

0 r-cubes. The random term in the right hand side is
the supremum over π of the number of bad r-cubes which intersect π and which lie in a good (r + 1)-cube.
To control this, we show, roughly speaking, that the collection of indicator functions of good (r + 1)-cubes
which contain some bad r-cube is bounded above by an independent collection of zero-one valued random
variables with a small probability of taking the value 1. This small probability is basically the probability
of finding a bad r-cube inside a good (r + 1)-cube, which is estimated by routine large deviation estimates
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for a random walk. Finally some percolation estimates then show that with high probability there are very
few good (r + 1)-cubes which contain any bad r-cubes. This gives the desired recursive bound on Φr.

Iteration of the recursive bound finally estimates Φr in terms of ΦR, which is zero, and controllable
quantities. This results in a bound on

∑t−1
`=0NA(x`, `) which is linear in t.

We now turn to the details of the proof. In this section t will be an integer. We call (x0, . . . , xt) a path
if x` − x`−1 equals 0 or ±ei for 1 ≤ ` ≤ t. We define the piece till time t of the associated path (or just
the associated path, for short) of a particle ρ, alive at time t, to be the path {x(`, ρ)}0≤`≤t, where x(`, ρ) is
the position of the ancestor of ρ alive at time `. We shall use the notation qA and qB to denote the “jump
probabilities” for the A and B-particles respectively, that is

qA(y) =
{

1−DA if y = 0

DA/(2d) if y = ±ei, 1 ≤ i ≤ d,

and similarly when A is replaced by B. {S̃k}k≥0 will be a typical random walk as performed by the A-
particles, that is S̃k will be the sum of k independent random variables, each with the distribution qA.

It is then easy to see that for any given B-particle σ at x0 at time 0, and for any path (x0, x1, . . . , xt),
the expected number of descendants of σ alive at time t and whose associated path is (x0, . . . , xt), equals[ t∏

i=1

qB(xi − xi−1)
]
exp[−tδ + β

t−1∑
q=0

NA(xq, q)]. (5.2)

The initial configuration is chosen in the same way as before, that is, all the NA(x, 0), x ∈ Zd, are independent
Poisson variables with mean µA, and the NB(y, 0), y ∈ Zd, are independent of the A-system, translation
invariant, and with mean µB . Finally, P,E,FA, PA, PB , EA and EB have the same meaning as before.

We shall prove the following result for this system:

Theorem 2-Discrete. For all β,DA, DB , µA, µB > 0 and for all dimensions d, there exists a δ0 <∞ such
that for δ ≥ δ0 and for almost all [PA] A-configurations, it holds

E{NB(0, t)|FA} ≤ µBe
−δt/2 for all large t, (5.3)

and for all x
NB(x, t) = 0 for all large t a.e. [PB ] (5.4)

(now with NA and NB referring to the discrete time system and t restricted to integer values).

We do need a fair amount of new notation. We fix γ0 > 0 such that

γ0

∞∏
j=1

[
1− 2−j/4] ≥ 2 and µA

{
γ0

∞∏
j=1

[
1− 2−j/4]− e+ 1

}
> 3d+ 6. (5.5)

We next fix a large integer C0 ≥ 2, so that for all r ≥ 1

−C−r/2
0 +

(
1 +

C3(r logC0)d

Cr
0

)
(eC

−r/2
0 − 1)

(
1− C

−r/4
0

)
≤ −1

2
C
−3r/4
0 , (5.6)

and
3d+1C

6(d+1)(r+1)
0 exp

[
− µAC

(d− 3
4 )r

0

]
≤ 1, (5.7)

where C3 is the constant of Lemma 6 below (this C3 depends only on the distribution qA and the dimension
d, but not on C0). We shall use that (5.5) and C0 ≥ 2 imply that

γ0

∞∏
j=1

[
1− 1

C
j/4
0

]
≥ 2 (5.8)
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and

µA

{
γ0

∞∏
j=1

[
1− 1

C
j/4
0

]
− e+ 1

}
> 3d+ 6. (5.9)

We next take γ1 = γ0 and for r > 0

γr+1 = γ0

r∏
j=1

[
1− 1

C
j/4
0

]
. (5.10)

We set
∆r = C6r

0 .

For i = (i(1), i(2), . . . , i(d)) ∈ Zd and k ∈ Z, we take

Br(i, k) =
( d∏

s=1

[i(s)∆r, (i(s) + 1)∆r)
)
× [k∆r, (k + 1)∆r).

Figure 1. Relative location of the sets Br, B̃+
r , B̃r and Vr for d = 1 (B̃+

r

is defined just before Lemma 7). These sets are “left closed, right open”,
that is, the solid segments are in the sets, but the dashed segements are
not. The space and time directions are along the horizontal and vertical
axes, respectively. Vr is the line segment which constitutes the bottom
of B̃r.

The last coordinate is interpreted as the time coordinate here, so that Br is a block in space-time. We
call these blocks r-blocks. We also need somewhat larger space-time blocks, which contain the r-blocks (see
Figure 1). We define these as

B̃r(i, k) =
( d∏

s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r)
)
× [(k − 1)∆r, (k + 1)∆r).

The pedestal of Br(i) is defined as

Vr(i, k) =
( d∏

s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r)
)
× {(k − 1)∆r}.

This is again a set in space-time, but with the time taking only the value (k− 1)∆r. It is the face of B̃r(i, k)
with the lowest time coordinate.
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For x = (x(1), . . . , x(d)) ∈ Zd we introduce the notation

Qr(x) =
d∏

s=1

[x(s), x(s) + Cr
0).

Note that the edge size of the cube Qr is only Cr
0 and not ∆r. We also introduce the random variables

Ur(x, v) =
∑

y∈Qr(x)

NA(y, v) =
∑

y:x(s)≤y(s)<x(s)+Cr
0

1≤s≤d

NA(y, v).

An r-block Br(i, k) is called good if

Ur(x, v) ≤ γrµAC
dr
0 for all (x, v) for which Qr(x)× {v} ⊂ B̃r(i, k). (5.11)

A bad r-block is one that is not good. Similarly, the pedestal Vr(i, k) is called good if

Ur(x, v) ≤ γrµAC
dr
0 for all (x, v) for which Qr(x)× {v} ⊂ Vr(i, k). (5.12)

If π = (x0, x1, . . . , xt) is a path on Zd of (t+ 1) vertices contained in [−t, t]d, then we define

φr(π) = number of bad r-blocks which intersect

the space-time path
(
(x0, 0), (x1, 1), . . . , (xt, t)

)
, (5.13)

and finally
Φr = sup

π
φr(π). (5.14)

Here and in the rest of this proof π runs through all paths (x0, . . . , xt) on Zd of (t+1) vertices and contained
in [−t, t]d. Many of these quantities depend on t, but we will suppress the t in the notation. The space-time
path corresponding to π = (x0, . . . , xt) is π̂ := ((x0, 0), (x1, 1), . . . , (xt, t)). As before we extend the A-system
so that it is defined for all times in Z and is stationary in time.

The reason for introducing φ and Φ is the following lemma, which gives a simple bound for EBNB(0, t).

Lemma 5. Let R = R(t) be such that

CR
0 ≥ [log t]1/d > CR−1

0 . (5.15)

Then, for all large t,

PA{Φr > 0 for any r ≥ R}
≤ PA{some r-block which intersects [−t, t]d × [0, t] is bad and has r ≥ R}

≤ 1
t2
. (5.16)

Moreover, for any A-configuration with Φr = 0 for all r ≥ R(t), it holds for any path π = (x0, . . . , xt) ⊂
[−t, t]d

EB{number of B-particles alive at time t with associated path π|FA}

≤ µB

[ t∏
i=1

qB(xi − xi−1)
]
exp

{
− tδ + βtγ1µAC

d
0 + β

R−1∑
r=1

γr+1µAC
r(d+6)+d
0 Φr

}
. (5.17)
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Proof. The first statement follows from a straighforward estimate for the Poisson distribution. Indeed, for
any r-block Br(i, k) we have

PA{Br(i, k) is bad} ≤
∑
(i,k)

PA{Ur(x, `) > γrµAC
dr
0 }, (5.18)

where
∑

(i,k) denotes the sum over all (x, `) for which Qr(x) × {`} is contained in B̃r(i, k). The number of

such summands is at most K1∆d+1
r = K1C

6r(d+1)
0 , for some constant K1 = K1(d). On the other hand, for

fixed (x, `), Ur(x, `) has a Poisson distribution with mean µAC
dr
0 , so that every summand in (5.18) is, by

standard large deviation estimates (compare (2.45), (2.46)), at most

exp
[
− θ0γrµAC

dr
0 + µAC

dr
0 (eθ0 − 1)

]
≤ exp[−(d+ 6)Cdr

0 ], (5.19)
where we took θ0 > 0 so that

µA[θ0γr − (eθ0 − 1)] > d+ 6
(e.g. θ0 = 1 is possible, by our choice of the γ; see (5.9)). In particular for large t and r ≥ R(t), the right
hand side of (5.18) is at most

K1C
6r(d+1)
0 exp[−(d+ 6)Cdr

0 ] ≤ exp[−(d+ 5)Cdr
0 ] ≤ 1

t(d+4)
exp[−Cdr

0 ].

Thus, for r ≥ R, the probability that any particular r-block is bad is at most t−(d+4) exp[−Cdr
0 ]. Any r-block

which intersects π̂ must intersect [−t, t]d × [−t, t], and there are at most (2t+ 1)d+1 such blocks. Thus the
left hand side of (5.16) is bounded by

∑
r≥R(2t+ 1)d+1t−(d+4) exp[−Cdr

0 ], and (5.16) follows.
Now fix an A-configuration with Φr = 0 for all r ≥ R. In addition let π = (x0, . . . , xt) be a path in

[−t, t]d. Then the left hand side of (5.17) is given by µB times (5.2), so we must estimate
t−1∑
q=0

NA(xq, q). (5.20)

We decompose this sum according to the size of the NA(xq, q). The NA(xq, q) which are ≤ γ1µAC
d
0 contribute

at most tγ1µAC
d
0 . If r ≥ 1 and

γrµAC
dr
0 < NA(xq, q) ≤ γr+1µAC

d(r+1)
0 , (5.21)

then
Ur(xq − z, q) =

∑
y∈Qr(xq−z)

NA(y, q) ≥ NA(xq, q) > γrµAC
dr
0 ,

for any choice of z ∈ [0, Cr
0)d. For some such z, Qr(x− z)× {q} is contained in some r-block B(i,m). Then

Br(i,m) is bad and contains the point (xq, q). Moreover, this r-block intersects the space-time path π̂ at
least in (xq, q). Consequently, the contribution to (5.20) of all its summands which satisfy (5.21) is at most

γr+1µAC
d(r+1)
0 (number of vertices on any space-time path in any r-block)φr(π)

≤ γr+1µAC
d(r+1)
0 C6r

0 Φr.

In addition, there are no summands in (5.20) which satisfy (5.21) with r ≥ R. Thus, (5.20) is bounded by

tγ1µAC
d
0 +

R−1∑
r=1

γr+1µAC
r(d+6)+d
0 Φr.

(5.17) now follows from (5.2). �

The estimate (5.17) makes it clear that we should find bounds for the Φr. This is the aim of the next
few lemmas, which derive a recursive inequality for the Φr. We begin with a technical lemma. This is the
first step in showing that if the pedestal of some (r + 1)-block Br+1(i, k) is good, then there is only a small
probability that Br+1(i, k) contains a bad r-block. Because a discrete time random walk which starts outside
the pedestal of Br+1(i, k) at time (k − 1)∆r+1 cannot enter Br+1(i, k) at any later time, the estimate will
remain valid (as Lemma 7 will show), even if we condition on the (r + 1)-blocks Br+1(j, `) with ` < k, or
` = k but j not too close to i. This will allow us to treat the good (r + 1)-blocks as being independent.
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Lemma 6. There exist a constant C3 = C3(d,DA), which is independent of C0, such that if Vr+1(i, k) is
good, and ∆r+1 −∆r ≤ u ≤ 2∆r+1, then for r ≥ 1, y ∈ Zd,∑

z:(z,(k−1)∆r+1)∈Vr+1(i,k)

NA(z, (k − 1)∆r+1)P
{
z + S̃u ∈ Qr(y)

}
≤ γr+1µAC

dr
0

[
1 +

C3(r logC0)d

C2r
0

]
. (5.22)

Proof. Note that the set {z ∈ Zd : (z, (k − 1)∆r+1) ∈ Vr+1(i, k)} is a disjoint union of 7dC
5d(r+1)
0 blocks of

the form

M(j) := Qr+1(Cr+1
0 j) =

d∏
s=1

[j(s)Cr+1
0 , (j(s) + 1)Cr+1

0 ).

Let Λ = Λ(i, r) be the set of j ∈ Zd with

M(j) ⊂ {z ∈ Zd : (z, (k − 1)∆r+1) ∈ Vr+1(i, k)}.

Also, for each j ∈ Λ let zj ∈M(j) be such that

P
{
zj + S̃u ∈ Qr(y)} = max

z∈M(j)
P

{
z + S̃u ∈ Qr(y)

}
.

Then the left hand side of (5.22) equals∑
j∈Λ

∑
z∈M(j)

NA(z, (k − 1)∆r+1)P
{
z + S̃u ∈ Qr(y)

}
≤

∑
j∈Λ

∑
z∈M(j)

NA(z, (k − 1)∆r+1)P
{
zj + S̃u ∈ Qr(y)

}
.

Since Vr+1(i, k) is assumed to be good, we have∑
z∈M(j)

NA(z, (k − 1)∆r+1) = Ur+1(Cr+1
0 j, (k − 1)∆r+1)

≤ γr+1µAC
d(r+1)
0 =

∑
z∈M(j)

γr+1µA.

We can therefore continue to obtain that the left hand side of (5.22) is at most∑
j∈Λ

∑
z∈M(j)

γr+1µAP
{
zj + S̃u ∈ Qr(y)

}
≤

∑
j∈Λ

∑
z∈M(j)

γr+1µAP
{
z + S̃u ∈ Qr(y)

}
+

∑
j∈Λ

∑
z∈M(j)

γr+1µA

∣∣P{
zj + S̃u ∈ Qr(y)

}
− P

{
z + S̃u ∈ Qr(y)

}∣∣. (5.23)

The first multiple sum in the right hand side of (5.23) is at most∑
z∈Zd

γr+1µA

∑
w∈Qr(y−z)

P{S̃u = w} =
∑

w∈Zd

P{S̃u = w}
∑

z∈Qr(y−w)

γr+1µA

≤
∑

w∈Zd

P{S̃u = w}γr+1µAC
dr
0 = γr+1µAC

dr
0 . (5.24)
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On the other hand, we have for any z ∈M(j) that ‖z − zj‖ ≤ Cr+1
0 and∣∣P{

zj + S̃u ∈ Qr(y)− P
{
z + S̃u ∈ Qr(y)

}∣∣
≤

∑
w∈Qr(y)

∣∣P{zj + S̃u = w} − P{z + S̃u = w}‖

≤
∑

v∈Qr(y−z)

sup
w:‖w−v‖≤Cr+1

0

∣∣P{S̃u = v} − P{S̃u = w}
∣∣.

It follows that the second multiple sum in the right hand side of (5.23) is bounded in absolute value by∑
z∈Zd

γr+1µA

∑
v∈Qr(y−z)

sup
w:‖w−v‖≤Cr+1

0

∣∣P{S̃u = v} − P{S̃u = w}
∣∣

= γr+1µA

∑
v∈Zd

∑
z∈Qr(y−v)

sup
w:‖w−v‖≤Cr+1

0

∣∣P{S̃u = v} − P{S̃u = w}
∣∣

= γr+1µAC
dr
0

∑
v∈Zd

sup
w:‖w−v‖≤Cr+1

0

∣∣P{S̃u = v} − P{S̃u = w}
∣∣. (5.25)

Even though one can do better, we shall be content with proving the crude estimate

∑
v∈Zd

sup
w:‖w−v‖≤Cr+1

0

∣∣P{S̃u = v} − P{S̃u = w}
∣∣ ≤ K2C

r+1
0

(log u)d

√
u

(5.26)

for some constant K2 which depends only on qA(·) and d, but not on C0, and u ≥ 2. To prove this bound
we define for θ = (θ(1), . . . , θ(d)) ∈ Rd

ψ̃(θ) =
∑
v∈Zd

qA(v)eiθ·v,

where θ · v :=
∑d

s=1 θ(s)v(s). Then Eeiθ·S̃u = [ψ̃(θ)]u and∣∣P{S̃u = v} − P{S̃u = w}
∣∣

=
∣∣∣ 1
(2π)d

∫
θ∈[−π,π]d

[
e−iθ·v − e−iθ·w]

[ψ̃(θ)]udθ
∣∣∣

≤ d

(2π)d

∫
θ∈[−π,π]d

‖v − w‖‖θ‖|ψ̃(θ)|udθ

≤ K3
‖v − w‖
u(d+1)/2

, (5.27)

where again K3 (and K4−K7 below) depend only on qA(·) and d, but not on C0 (see Spitzer (1976), Proofs
of Propositions 7.9 and 12.1 for similar estimates). We use this estimate for v ∈ [−2

√
u log u, 2

√
u log u]d.

This leads to a contribution to (5.26) of

[2
√
u log u+ 1]dK4C

r+1
0 u−(d+1)/2 ≤ K5C

r+1
0

(log u)d

√
u

. (5.28)

The remaining terms in (5.26) contribute at most

2P{S̃u /∈ [−2
√
u log u+ Cr+1

0 , 2
√
u log u− Cr+1

0 ]d} ≤ K6 exp[−K7(log u)2], (5.29)
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by the fact that

u ≥ ∆r+1 −∆r ≥
1
2
C6r+6

0 , (5.30)

and hence
√
u ≥ (1/2)C3r+3

0 ≥ 2Cr+1
0 , and by Bernstein’s inequality (Chow and Teicher (1988), Exercise

4.3.14). (5.26) follows from (5.28) and (5.29).
Finally we see from (5.23) - (5.26) that the left hand side of (5.22) is at most

γr+1µAC
dr
0

[
1 +K2C

r+1
0

(log u)d

√
u

]
≤ γr+1µAC

dr
0

[
1 + C3

(r logC0)d

C2r+2
0

]
.

(5.22) follows. �

We need the following σ-fields:

Hr+1(i, k) := σ-field generated by{
NA(x, `) : {x ∈

d∏
s=1

[(i(s)− 3)∆r+1, (i(s) + 4)∆r+1) and − t ≤ ` ≤ (k − 1)∆r+1}

or {x ∈ [−t− 4Cr
0 , t+ 4Cr

0 ]d \
d∏

s=1

[(i(s)− 5)∆r+1, (i(s) + 6)∆r+1)

and − t ≤ ` ≤ (k + 1)∆r+1}
}

(5.31)

Figure 2. Hr+1(i, k) is generated by the NA(x, `) with (x, `) located
in the gray region. Kr+1 is generated by the NA(x, `) with (x, `) on the
fat line segment at the bottom of B̃r+1. (The illustration is for d = 1.)

(see Figure 2),

Kr+1(i, k) := σ-field generated by{
NA(x, (k − 1)∆r+1) : x ∈

d∏
s=1

[(i(s)− 3)∆r+1, (i(s) + 4)∆r+1)}

= σ-field generated by {NA(x, (k − 1)∆r+1) : (x, (k − 1)∆r+1) ∈ Vr+1(i, k)}. (5.32)
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Note that Kr+1 ⊂ Hr+1. For the purpose of the next two lemmas only we also want to consider the “central
part in the space direction × the upper part in the time direction” of B̃r+1(i, k). This is defined as

B̃+
r+1(i, k) :=

d∏
s=1

[(i(s)− 1)∆r+1, (i(s) + 2)∆r+1)× [k∆r+1 −∆r, (k + 1)∆r+1)

(see Figure 1; note that r + 1 is replaced by r in the figure). Note that Br+1(i, k) ⊂ B̃+
r+1(i, k) ⊂ B̃r+1(i, k).

With the exception of the tildes over the B, we will use a tilde over a symbol to indicate that it is related to
the discrete time process of this section. For instance ρ̃, introduced in the next lemma, is the analogue for
the discrete time system of a quantity ρ to be used for the continuous time system in the next section.

Lemma 7. Let
ρ̃r+1 = 3d+1C

6(d+1)(r+1)
0 exp

[
− 1

2
γrµAC

(d− 3
4 )r

0

]
, r ≥ 1. (5.33)

Then for r ≥ 1, on the event {Vr+1(i, k) is good},

PA{Br+1(i, k) contains some bad Br(j, q)|Hr+1(i, k)}
= PA{Br+1(i, k) contains some bad Br(j, q)|Kr+1(i, k)}
≤ ρ̃r+1. (5.34)

Proof. The event
A(i, k) := {Br+1(i, k) contains some bad Br(j, q)}

is defined in terms of the NA(y,m) with

(y,m) ∈
( d∏

s=1

[i(s)∆r+1 − 3∆r, (i(s) + 1)∆r+1 + 3∆r)
)

× [k∆r+1 −∆r, (k + 1)∆r+1)

⊂
( d∏

s=1

[(i(s)− 1)∆r+1, (i(s) + 2)∆r+1)
)
× [k∆r+1 −∆r, (k + 1)∆r+1)

= B̃+
r+1(i, k). (5.35)

An A-particle present at time (k − 1)∆r+1 cannot move over a distance greater than 2∆r+1 during [(k −
1)∆r+1, (k+1)∆r+1). Such a particle cannot reach B̃+

r+1(i, k) unless it is located in
∏d

s=1[(i(s)−3)∆r+1, (i(s)+
4)∆r+1) at time (k − 1)∆r+1. In other words, only particles from the pedestal of Br+1(i, k) can reach
B̃+

r+1(i, k). For the same reason particles in the pedestal Vr+1(i, k) cannot reach any (x, `) with x ∈
[−t − 3Cr

0 , t + 3Cr
0 ]d \

∏d
s=1[(i(s) − 5)∆r+1, (i(s) + 6)∆r+1) and − t ≤ ` < (k + 1)∆r+1. It follows that

the event A(i, k) is determined entirely by the particles in the pedestal Vr+1(i, k) and their paths during
[(k−1)∆r+1, (k+1)∆r+1). When the NA(y,m) with (y,m) ∈ Vr+1(i, k) are given, then none of the NA(x, `)
with (x, `) outside this pedestal but occuring in the right hand side of (5.31) have any influence on the
NA(y,m) with (y,m) ∈ B̃+

r+1(i, k) (nor do they contain information about these NA(y,m)). Therefore,
the conditional probability of any event defined in terms of the NA(y,m), with (y,m) ∈ B̃+

r+1(i, k), given
Hr+1(i, k) or given only Kr+1(i, k), are the same. This proves the equality in (5.34).

We turn to the inequality in (5.34). For A(i, k) to occur, some Br contained in Br+1(i, k) has to be bad,
that is,

Ur(y,m) > γrµAC
dr
0 for some (y,m) for which Qr(y)× {m} ⊂ B̃r(j, q)

for some (j, q) with Br(j, q) ⊂ Br+1(i, k).
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This means that we must have

Ur(y,m) > γrµAC
dr
0 for some (y,m) ∈ B̃+

r+1(i, k). (5.36)

There are at most [3∆r+1]d+1 such choices for (y,m). For each such (y,m) we have

∆r+1 −∆r ≤ m− (k − 1)∆r+1 ≤ 2∆r+1. (5.37)

Moreover, as observed in the beginning of this proof, all the particles counted in one of the above Ur(y,m)
have to come from particles in the pedestal Vr+1(i, k). Fix a (y,m) ∈ B̃+

r+1(i, k) and set

u = m− (k − 1)∆r+1.

Then Ur(y,m) counts the number of particles from the pedestal Vr+1(i, k) which are in Qr(y) at time m. A
particle at (z, (k − 1)∆r+1) in this pedestal has probability

p̃(y − z, u) := P{z + S̃u ∈ Qr(y)}

of being counted in Ur(y,m). Moreover, all particles in the pedestal Vr+1(i, k) move independently. Thus
given all the NA(z, (k − 1)∆r+1) with (z, (k − 1)∆r+1) in the pedestal, the conditional moment generating
function of Ur(y,m) is

E{exp[θUr(y,m)]|Kr+1(i, k)}

=
∏

(z,(k−1)∆r+1)∈Vr+1(i,k)

[
1− p̃(y − z, u) + p̃(y − z, u)eθ

]NA(z,(k−1)∆r+1)

≤ exp
[ ∑

(z,(k−1)∆r+1)∈Vr+1(i,k)

NA(z, (k − 1)∆r+1)p̃(y − z, u)(eθ − 1)
]
. (5.38)

We take
θ = C

−r/2
0 .

We then obtain from Lemma 6 and the choices (5.6) for C0 and (5.10) for the γ that on {Vr+1(i, k) is good}

PA{Ur(y,m) > γrµAC
dr
0 |Kr+1(i, k)}

≤ exp
[
− θγrµAC

dr
0 +

∑
(z,(k−1)∆r+1)∈Vr+1(i,k)

NA(z, (k − 1)∆r+1)p̃(y − z, u)(eθ − 1)
]

≤ exp
[
− θγrµAC

dr
0 + γr+1µAC

dr
0

[
1 +

C3(r logC0)d

C2r
0

]
(eθ − 1)

]
≤ exp

[
− 1

2
γrµAC

(d− 3
4 )r

0

]
. (5.39)

As we already pointed out, A(i, k) can occur only if (5.36) occurs for one of at most [3∆r+1]d+1 possible
choices for (y,m). Thus the inequality in (5.34) holds. �

We finally can prove our recurrence relation for the Φr. For a path π = (x0, x1, . . . , xt) we define

ψr+1(π) = number of (r + 1)-blocks Br+1(i, k) which intersect the space-time path π̂

and which have a good pedestal but contain a bad r-block. (5.40)

Also
Ψr = sup

π
ψr(π).

We remind the reader that φr and Φr were defined in (5.13) and (5.14).
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Lemma 8. For any path π ⊂ [−t, t]d and r ≥ 1 it holds

φr(π) ≤ C
6(d+1)
0 Φr+1 + C

6(d+1)
0 ψr+1(π) (5.41)

and
Φr ≤ C

6(d+1)
0 Φr+1 + C

6(d+1)
0 Ψr+1. (5.42)

Moreover, there exist some constants C4 = C4(d) and κ0 = κ(d), such that for κ ≥ κ0, t sufficiently large,
and 1 ≤ r ≤ R− 1,

PA

{
Ψr+1 ≥ κ

t

∆r+1
[ρ̃r+1]1/(d+1)

}
≤ exp

[
− tC4κ exp

[
− 1

2(d+ 1)
γrµAC

(d− 3
4 )r

0

]]
. (5.43)

Proof. The inequality (5.41) is immediate from the definitions of φ,Φ and ψ. Indeed, if π = (x0, . . . , xt), then
any bad r-block Br(j, q) which intersects π̂ = ((x0, 0), (x1, 1), . . . , (xt, t)) belongs to a unique (r + 1)-block,
Br+1(i, k) say. The latter must intersect π̂, and it may either be bad, or good. There are no more than Φr+1

bad (r + 1)-blocks intersecting π̂ and each one contains exactly C6d+6
0 r-blocks. Thus the first term in the

right hand side of (5.41) is an upper bound for the number of r-blocks which intersect π̂ and are contained
in a bad (r + 1)-block. The number of bad r-blocks which intersect π̂ and which are contained in a good
(r + 1)-block is bounded by the second term in the right hand side of (5.41), because the pedestal of any
good block is itself good, by definition.

(5.42) follows from (5.41) by taking the sup over π.
The important estimate is therefore (5.43). Roughly speaking we shall obtain this by proving that the

collection of pairs (i, k) for which the (r + 1)-block Br+1(i, k) has a good pedestal but also contains a bad
r-block, lies stochastically below an independent percolation system in which each site (i, k) is open with
probability ρ̃r+1. As stated this is not correct. We need to restrict ourselves to certain subclasses of pairs
(i, k). To state our claim precisely we define

Y (i, k) = I[Br+1(i, k) intersects [−t, t]d × [0, t],

has a good pedestal and contains a bad r-block],

and let Z(i, k) be a a system of independent random variables with

P{Z(i, k) = 1} = 1− P{Z(i, k) = 0} = ρ̃r+1.

Let a = (a(1), . . . , a(d), b) be a (d+ 1)-vector with each a(s) ∈ {0, 1, . . . , 11}, 1 ≤ s ≤ d, and b ∈ {0, 1}. Our
claim is that for fixed a, b, the system of Y (i, k) with i(s) ≡ a(s) mod 12 for 1 ≤ s ≤ d, k ≡ b mod 2, lies
stochastically below the system of Z(i, k), for the same pairs (i, k). Here (i, k) is further restricted to pairs
(i, k) for which Br+1(i, k) intersects [−t, t]d× [0, t]. We prove this claim by means of Lemma 7. Indeed, let us
write (i, k) ≡ (a, b) (i ≡ a) if i(s) ≡ a(s) mod 12 for 1 ≤ s ≤ d and k ≡ b mod 2 (respectively, i(s) ≡ a(s)
mod 12 for 1 ≤ s ≤ d). For fixed a ∈ {0, 1, . . . , 11}d and b ∈ {0, 1}, and for (i, k) ≡ (a, b), let us define

L′(i, k) = σ-field generated by Y (j, `) with 0 ≤ ` ≤ k − 2 and

(j, `) ≡ (i, k) ≡ (a, b), or ` = k, j ≡ i ≡ a and j

precedes i in the lexicographical ordering of Zd, (5.44)

and
L(i, k) = L′(i, k) ∨ Kr+1(i, k).

Thus Y (j, k) appears in the right hand side of (5.44) only if j(s) ≤ i(s)− 12 for some 1 ≤ s ≤ d. Moreover,
Y (j, `) depends only on the NA(y,m) with (y,m) ∈ B̃+

r+1(j, `) ∪ Vr+1(j, `). Then

Kr+1(i, k) ⊂ L(i, k) ⊂ Hr+1(i, k),
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so that Lemma 7 shows

P{Y (i, k) = 1|L(i, k)} = P{Y (i, k) = 1|Kr+1(i, k)} ≤ ρ̃r+1. (5.45)

Note that Lemma 7 only states the last inequality on the event {Vr+1(i, k) is good}. But on the complemen-
tary event {Vr+1(i, k) is bad}, Y (i, k) = 0 by definition, so that the inequality in (5.45) always holds. Now
successively determine the Y (i, k) with (i, k) ≡ (a, b) in the ordering in which (i′, k′) precedes (i′′, k′′) when
k′ ≤ k′′ − 1 or k′ = k′′ and i′ precedes i′′ in the lexicographical ordering of Zd. Then (5.45) says that at
each stage the conditional probability that Y (i, k) = 1 given the Y ’s which have been determined already, is
at most ρ̃r+1. Thus the Y (i, k) with (i, k) ≡ (a, b) can be successively coupled with the Z(i, k) for the same
indices, such that Y (i, k) ≤ Z(i, k). This proves our claim.

Now the left hand side of (5.43) equals the probability that for some path π = (x0, . . . , xt) ⊂ [−t, t]d
there are at least κt[ρ̃r+1]1/(d+1)/∆r+1 (r + 1)-blocks Br+1(i, k) which intersect π̂ and with Y (i, k) = 1. By
partitioning the possible pairs (i, k) into 2 · (12)d equivalence classes, we see that this last probability is at
most ∑

a,b

PA{∃ π = (x0, . . . , xt) such that there are at least

2−1(12)−dκ
t

∆r+1
[ρ̃r+1]1/(d+1) (r + 1)-blocks Br+1(i, k) which

intersect π̂ and with Y (i, k) = 1, and (i, k) ≡ (a, b)}

≤
∑
a,b

P{∃ π = (x0, . . . , xt) such that there are at least

2−1(12)−dκ
t

∆r+1
[ρ̃r+1]1/(d+1) (r + 1)-blocks Br+1(i, k)which

intersect π̂ and with Z(i, k) = 1, and (i, k) ≡ (a, b)}. (5.46)

Thus, we merely have to estimate each of the summands in the right hand side here for the independent
system of Z(i, k).

To this end, choose an integer ν̃ such that

[ρ̃r+1]−1/(d+1) ≤ ν̃ ≤ 2[ρ̃r+1]−1/(d+1) (5.47)

and form the blocks

D(j, q) :=
( d∏

s=1

[ν̃j(s)∆r+1, ν̃(j(s) + 1)∆r+1)
)
× [qν̃∆r+1, (q + 1)ν̃∆r+1).

(Note that (5.7)and (5.8) guarantee that ρ̃r+1 ≤ 1, so that ν̃ is well defined.) Each of these block is a disjoint
union of ν̃d+1 (r + 1)-blocks. We claim that a space-time path π̂ = ((x0, 0), . . . , (xt, t)) intersects at most

λ̃ := 2d
( t

ν̃∆r+1
+ 1

)
(5.48)

such blocks. To see this, note that during the time interval [`ν̃∆r+1, (` + 1)ν̃∆r+1) the space-time path
intersects at most 2d blocks D(j, q) (which must have q = `). Indeed, if π̂ intersects D(j, q), at some time,
then it takes more than ν̃∆r+1 steps to get to any block D(j′, q) with |j(s)− j′(s)| > 1 and this cannot be
done during [`ν̃∆r+1, (` + 1)ν̃∆r+1). Thus, π̂ can only intersect pairs D(j, q),D(j′, q) with |j(s) − j(s′)| ≤
1, 1 ≤ s ≤ d. This establishes our claim.

We should now replace λ̃ by bλ̃c, but for brevity we continue to write λ̃ instead of bλ̃c in the remainder of
this proof. If the blocks intersecting π̂ are D(j0, 0), . . . ,D(jλ̃−1, λ̃−1), then we must have |j`+1(s)−j`(s)| ≤ 1
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for 0 ≤ ` ≤ λ̃ − 2, 1 ≤ s ≤ d. In addition we must have |j0(s)| ≤ t/(ν̃∆r+1) + 1 for 1 ≤ s ≤ d. Therefore,
there are at most

λ̃d exp
[
K8λ̃] (5.49)

possibilities for the choice of D(j0, 0), . . . ,D(jλ̃−1, λ̃− 1) as π varies over all paths in [−t, t]d (K8 = K8(d)).
Now let us fix such a choice for D(j0, 0), . . . ,D(jλ̃−1, λ̃− 1) and let π̂ be any space-time path contained in

λ̃−1⋃
q=0

D(jq, q). (5.50)

Note that if Br+1(i, k) intersects π̂, then Br+1(i, k) is contained in the union in (5.50). Therefore, the
probability in the right hand side of (5.46) is at most∑

D(j0,0),...,D(j
λ̃−1

,λ̃−1)

P{the union (5.50) contains at least

2−1(12)−dκ
t

∆r+1
[ρ̃r+1]1/(d+1) (r + 1)-blocks Br+1(i, k)

with Z(i, k) = 1}. (5.51)

The next, and almost last, step is to estimate the probability which appears as summand in (5.51).
This, however, is easy. Indeed, the union in (5.50) contains exactly λ̃ν̃d+1 (r + 1)-blocks Br+1(i, k) with
λ̃ν̃d+1 corresponding variables Z(i, k) which can take on the values 0 or 1, and which are independent
with P{Z(i, k) = 1} = ρ̃r+1. Thus the number of these Z’s which equal 1 has a binomial distribution
with parameters λ̃ν̃d+1 (for the number of trials) and ρ̃r+1 (for the success probability). Therefore, if
T = T (λ̃ν̃d+1, ρ̃r+1) is a random variable with this binomial distribution, then each of the summands in
(5.51) is bounded by

P{T ≥ 2−1(12)−dκ
t

∆r+1
[ρ̃r+1]1/(d+1)}. (5.52)

But
E{T} = λ̃ν̃d+1ρ̃r+1 ∈ [λ̃, 2d+1λ̃] (by (5.47)).

Also,

λ̃ = 2d
( t

ν̃C
6(r+1)
0

+ 1
)
≥ 2dt

[ρ̃r+1]1/(d+1)

2C6(r+1)
0

(by (5.47))

= t
3 · 2d

2
exp

[
− 1

2(d+ 1)
γrµAC

(d− 3
4 )r

0

]
(by (5.33)).

Since C(d−3/4)r
0 ≤ [log t]1−3/(4d) for r ≤ R− 1 (see (5.15) for R), we see that

λ̃ and E{T} → ∞ as t→∞, uniformly in r ≤ R− 1. (5.53)

Similarly

E{T} ≤ 4d+1t

ν̃∆r+1
≤ 2−12−1(12)−dκ

t

∆r+1
[ρ̃r+1]1/(d+1),

provided κ ≥ some κ0 which depends on d only (see (5.47)) and t ≥ some t0. By standard exponential
bounds (e.g. Bernstein’s inequality, Chow and Teicher (1988), Exercise 4.3.14) the probability in (5.52) is,
for κ ≥ κ0 and t ≥ t0, at most

K9 exp
[
−K10κ

t

∆r+1
[ρ̃r+1]1/(d+1)

]
.
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This bounds each summand in (5.51), and the number of summands is no more than the expression (5.49).
Therefore, the right hand side of (5.46) is bounded by

2(12λ̃)d exp
[
K8λ̃]K9 exp[−K10κ

t

∆r+1
[ρ̃r+1]1/(d+1)]

≤ 2K9(12λ̃)d exp
[
K8λ̃−K10κ2−d−1λ̃

]
(see (5.48))

≤ exp
[
− tC4κ exp

[
− 1

2(d+ 1)
γrµAC

(d− 3
4 )r

0

]]
,

provided κ0 is raised, if necessary, to 2d+2K8/K10, and κ ≥ κ0 and t ≥ some t0. �

Proof of Theorem 2-Discrete. We want to apply (5.42) successively for r = R− 1, R− 2, . . . , 1. (5.43) shows
that if we take κ = κ0, then

PA{Ψr+1 ≥ κ0
t

∆r+1
[ρ̃r+1]1/(d+1) for some 1 ≤ r ≤ R− 1}

≤
R−1∑
r=1

exp
[
− tC4κ0 exp

[
− 1

2(d+ 1)
γrµAC

(d− 3
4 )r

0

]]
. (5.54)

Now note that γr ≤ γ0 for all r, and that

C
(d− 3

4 )r
0 ≤ [log t]1−

3
4d

for r ≤ R − 1. Therefore, there exists some t1 such that the right hand side of (5.54) is for t ≥ t1 at most
exp[−

√
t]. Since this is summable over t, the Borel-Cantelli lemma shows that almost surely for all large t

Ψr ≤ κ0
t

∆r+1
[ρ̃r+1]1/(d+1) for all 1 ≤ r ≤ R− 1, (5.55)

and we may restrict ourselves to sample points and values of t for which (5.55) is valid. By (5.16) we may
further assume that

Φr = 0 for all r ≥ R. (5.56)

For such a sample point and t we have from (5.42) that for any 1 ≤ r ≤ R− 1,

Φr ≤ C
6(d+1)
0 Φr+1 + C

6(d+1)
0 Ψr+1

≤ C
6(d+1)
0 κ0

t

∆r+1
[ρ̃r+1]1/(d+1) + C

6(d+1)
0 Φr+1

≤ C
6(d+1)
0 κ0

t

∆r+1
[ρ̃r+1]1/(d+1) + C

12(d+1)
0 κ0

t

∆r+2
[ρ̃r+2]1/(d+1) + C

12(d+1)
0 Φr+2

≤ · · · ≤
R−r∑
j=1

C
6j(d+1)
0 κ0

t

∆r+j
[ρ̃r+j ]1/(d+1) + C

6(R−r)(d+1)
0 ΦR

= tκ0

R−r∑
j=1

C
6j(d+1)−6(r+j)
0 3C6(r+j)

0 exp
[
− 1

2(d+ 1)
γr+j−1µAC

(d− 3
4 )(r+j−1)

0

]
≤ K11tκ0C

6(d+1)
0 exp

[
−K12C

r/4
0

]
. (5.57)
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Finally we use Lemma 5. By (5.17) and (5.57) we have for any sample point for which (5.55) and (5.56)
are valid, that

EB{number of B-particles alive at time t with associated path π|FA}

≤ µB

[ t∏
i=1

qB(xi − xi−1)
]
exp

{
− tδ + βtγ1µAC

d
0

+ β

R−1∑
r=1

C
r(d+6)+d
0 γr+1µAK11tκ0C

6(d+1)
0 exp

[
−K12C

r/4
0

]}
.

Now note that γr+1 ≤ γ0, so that

R−1∑
r=1

C
r(d+6)+d
0 γr+1µAK11tκ0C

6(d+1)
0 exp

[
−K12C

r/4
0 ] ≤ tK13

for some constant K13. Thus

EB{number of B-particles alive at time t with associated path π|FA}

≤ µB

[ t∏
i=1

qB(xi − xi−1)
]
exp

[
− tδ + tβγ1µAC

d
0 + tβK13

]
(5.58)

for large t.
To conclude the proof we observe that the last estimate holds as long as the path π is contained in [−t, t]d.

We can therefore sum over all such paths which end at 0 at time t to obtain for any A-configuration which
satisfies (5.55) and (5.56) that

EB{number of B-particles alive at 0 time t whose associated

path lies in [−t, t]d|FA}
≤ µB exp

[
− tδ + tβγ1µAC

d
0 + tβK13

]
. (5.59)

for large t. However, the associated path of any particle which is at 0 at time t cannot have left [−t, t]d
during [0, t], for then the path would not be able to come back to 0 by time t. Thus (5.59) actually says that

EB{number of B-particles alive at 0 at time t|FA}
≤ µB exp

[
− tδ + tβγ1µAC

d
0 + tβK13

]
.

If we take δ0 = 2βγ1µAC
d
0 + 2βK13 then (5.3) holds for all δ ≥ δ0. (5.4) follows from (5.3) as in the proof

of (1.7) at the end of Section 4. �

6. Proof of Theorem 2 in continuous time.
In this section we shall prove Theorem 2 as stated in the Introduction. We shall do this by imitating the

steps for Theorem 2-Discrete. There is now an added complication, due to the fact that the A-particles can
move over a large distance in a fixed time interval, instead of having bounded displacements as in Section
5. This will be dealt with in Lemma 10 by a new estimate on the number of blocks which contain particles
which had a large displacement. (Roughly speaking we show that there are few (r+ 1) blocks which contain
particles which moved over a distance of order ∆r+1 in ∆r+1 time units.) We shall use most of the quantities
of Section 5, but decorate them with a superscript c to indicate that they refer to the continuous time model.

As in the previous sections NA(x, v) and NB(x, v) denote the number of A-particles and B-particles at
(x, v) (v does not have to be an integer now).
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A path π = (x0, x1, . . . , xm) is now a sequence of vertices of Zd with xj+1 − xj = ±ei, 1 ≤ i ≤ d. It
no longer corresponds to a unique space-time path π̂. A space-time path π̂ is now specified by giving the
successive positions xi and jumptimes si. For s1 < s2 . . . we shall sometimes denote this path by π̂({si, xi}).
We make the convention that s0 = 0. In addition we are here only discussing space-time paths over the time
interval [0, t], so we tacitly take sm ≤ t. π̂({si, xi}) is then the path which is at postion xi during [si, si+1)
for i < m and at position xm during [sm, t]. If it is important that the path has exactly m jumptimes,
then we shall write π̂({si, xi}i≤m). Throughout, we shall also assume that the positions of our paths are
contained in

C(C1t log t) = [−C1t log t, C1t log t]d

with C1 the constant of Lemma 4. We shall be particularly interested in the following class of paths with
exactly ` jumps:

Ξ(`, t) = {π̂({si, xi}0≤i≤`) with 0 < s1 < · · · < s` < t and xi ∈ C(C1t log t)}. (6.1)

For a particle ρ alive at time t we abbreviate “the piece till t of the path associated to ρ” to “the associated
path of ρ” (see the definition just after (2.5)). This path is a space-time path.

Analogously to Section 5 we fix γ0 such that

γ0

∞∏
j=1

[
1− 2−j/4] ≥ 2 and µA

{1
2
e−DAγ0

∞∏
j=1

[
1− 2−j/4]− e+ 1

}
> 3d+ 6. (6.2)

Then we fix an integer C0 ≥ 2, so large that for all r ≥ 1,

−C−r/2
0 +

(
1 +

C8(r logC0)d

Cr
0

)
(eC

−r/2
0 − 1)

(
1− C

−r/4
0

)
≤ −1

2
C
−3r/4
0 , (6.3)

and
χr+1(C5, C6) ≤ 1, (6.4)

where C8 is the constant of Lemma 12 below, and χr+1 is given in Lemma 10 below. Note that C8 does not
depend on C0. Also C5, C6, which are fixed as in the last statement of Lemma 10, do depend on γ0 (which
is fixed now), but not on C0, so that we can indeed fulfill (6.3) and (6.4) by taking C0 large. γr is defined
as in (5.10). As in Section 5, (6.2) together with C0 ≥ 2, implies (5.8) and

µA

{1
2
e−DAγ0

∞∏
j=1

[
1− 1

C
j/4
0

]
− e+ 1

}
> 3d+ 6. (6.5)

As before we take
∆r = C6r

0 ,

Br(i, k) :=
d∏

s=1

[i(s)∆r, (i(s) + 1)∆r)× [k∆r, (k + 1)∆r),

B̃r(i, k) :=
d∏

s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r)× [(k − 1)∆r, (k + 1)∆r),

B̃+
r (i, k) :=

d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r)× [k∆r −∆r−1, (k + 1)∆r),
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and finally the pedestal of Br(i, k) is defined as

Vr(i, k) =
d∏

s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r)× {(k − 1)∆r}.

Next we define as before

Qr(x) =
d∏

s=1

[x(s), x(s) + Cr
0)

and for any time v, even one that is not an integer,

U c
r (x, v) =

∑
y∈Qr(x)

NA(y, v).

The definitions (5.11) and (5.12) of a good block and a good pedestal are as before, but now v is not restricted
to the integers: The r-block Br(i, k) is called good if

U c
r (x, v) ≤ γrµAC

dr
0 for all (x, v) for which Qr(x)× {v} ⊂ B̃r(i, k). (6.6)

A bad r-block is one that is not good. The pedestal Vr(i, k) is called good if

U c
r (x, v) ≤ γrµAC

dr
0 for all (x, v) for which Qr(x)× {v} ⊂ Vr(i, k). (6.7)

For a space-time path π̂({si, xi}) we define

φc
r(π̂) = number of bad r-blocks which intersect the space-time path π̂. (6.8)

Further
Φc

r(`) = sup
π̂∈Ξ(`,t)

φc
r(π̂). (6.9)

We call an r-block Br(i, k) contaminated if there are A-particles at some space-time point (x, v) in B̃+
r (i, k)

which have also visited some point (y, v′) with y /∈
∏d

s=1[(i(s)− 3)∆r, (i(s) + 4)∆r) and (k− 1)∆r ≤ v′ < v.
This last definition can also be phrased in terms of the following quanities: if (x, v) ∈ Br(i, k), then define

wc
r(x, v, i, k) := (number of A-particles at (x, v) which were in

d∏
s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r) during the whole

interval [(k − 1)∆r, v).

Then Br(i, k) is contaminated if and only if wc
r(x, v, i, k) < NA(x, v) for some (x, v) ∈ B̃+

r (i, k).
In analogy with U c

r (x, k) we define

W c
r (x, v, i, k) =

∑
y∈Qr(x)

wc
r+1(y, v, i, k).

Note the subscript r+ 1 on the wc
r+1 here. This is not a typographical error. We want the sum over a cube

of edgelength Cr
0 of the number of particles which have stayed inside a cube of edgelength 7∆r+1 for a while.

A partial analogue of a bad r-block is an r-block Br(j, q) which has W c
r (x, v, i, k) > γrµAC

dr
0 for some (x, v)

for which Qr(x) × {v} ⊂ B̃r(j, q), and where Br+1(i, k) is the unique (r + 1)-block containing Br(j, q). We
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shall call such an r-block inferior. Note that W c
r (x, v) ≤ U c

r (x, v) and hence an inferior block is also a bad
block.

We can now define two new quantities, which together take the place of Ψ in the last section:

Ωc
r+1(`) = sup

π̂∈Ξ(`,t)

(number of good (r + 1)-blocks Br+1(i, k)

which are also contaminated and intersect π̂)

and

Θc
r+1(`) = sup

π̂∈Ξ(`,t)

(number of good (r + 1)-blocks Br+1(i, k) which

contain some inferior r-block and which intersect π̂).

We can now imitate many of the steps from the last section. Lemma 5 is replaced by the following lemma.

Lemma 9. Let R = R(t) be such that

CR
0 ≥ [log t]1/d > CR−1

0 . (6.10)

Then, for all large t,

PA{Φc
r(`) > 0 for any r ≥ R and any ` ≥ 0} ≤ 1

t2
. (6.11)

Moreover, for any A-configuration with Φc
r(`) = 0 for all r ≥ R(t), it holds for any path π̂({si, xi}) ∈ Ξ(`, t)

EB{number of particles alive at t whose associated path has jumptimes

in ds1, ds2, . . . , ds` and positions x1, x2, . . . , x` after the jumps|FA}

≤ µB

∏̀
i=1

[DBq(xi − xi−1)]

× exp
{
− (δ +DB)t+ βtγ1µAC

d
0 + β

R−1∑
r=1

γr+1µAC
r(d+6)+d
0 Φc

r(`)
}
ds1 . . . ds`. (6.12)

Proof. Φc
r(`) > 0 for some ` can occur only if there is some bad r-block Br(i, k) which intersects C(C1t log t)×

[0, t]. In turn, this requires that U c
r (x, v) > γrµAC

dr
0 for some (x, v) for which Qr(x) × {v} ⊂ B̃r(i, k). In

particular, (x, v) must have x within distance 4C6r
0 of C(C1t log t) and v ∈ [−∆r, t+ ∆r). Thus

PA{Φc
r(`) > 0 for some r ≥ R and ` ≥ 0}

≤
∑
r≥R

PA{U c
r (x, v) > γrµAC

dr
0 for some (x, v) with x within

distance 4C6r
0 from C(C1t log t) and −∆r ≤ v < t+ ∆r}. (6.13)

Now let k ≤ v ≤ (k + 1) for some integer k. The probability that an A-particle at a site y at time v is
still at y at time (k + 1) is at least e−DA . Therefore, if

U c
r (x, v) =

∑
y∈Qr(x)

NA(y, v) > γrµAC
dr
0 ,

then there is a conditional probability of at least some K1 > 0, that there are at least

1
2
e−DAγrµAC

dr
0
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particles in Qr(x) at time (k + 1) (compare (2.30) and the lines following it). We conclude that the r-th
summand in the right hand side of (6.13) is for θ0 = 1, t large, and r ≥ R at most∑

−∆r≤k≤t+∆r

∑
x within distance

4C6r
0 from C(C1t log t)

1
K1

× PA

{ ∑
y∈Qr(x)

NA(y, (k + 1)) >
1
2
e−DAγrµAC

dr
0

}
≤ K2(t+ ∆r)[t log t+ C6r

0 ]d exp[−θ0
1
2
e−DAγrµAC

dr
0 + µAC

dr
0 (eθ0 − 1)]

≤ K3[t log t+ C6r
0 ]d+1 exp[−(3d+ 6)Cdr

0 ] (see (6.5))

≤ K4

t3
exp[−Cdr

0 ]

(compare (5.19)). Summing over r ≥ R now yields the desired (6.11).
With regard to (6.12), let π̂ ∈ Ξ(`, t) have jumptimes si, and positions xi after the jumps for 1 ≤ i ≤ `.

Observe that as in (2.16)

EB{number of particles alive at t whose associated path has jumptimes

in ds1, ds2, . . . , ds` and positions x1, x2, . . . , x` after the jumps|FA}

= µB exp[−(δ +DB)t+ βJ({si, xi}i≤`)]
∏̀
i=1

[DBq(xi − xi−1)]ds1 . . . ds`. (6.14)

Here, as in (2.15),

J({si, xi}i≤`) =
∑̀
i=1

∫ si

si−1

NA(xi−1, u)du+
∫ t

s`

NA(x`, u)du. (6.15)

To estimate this we define the set of times when the appropriateNA lies in the interval (γrµAC
dr
0 , γr+1µAC

d(r+1)
0 ]:

Λr = Λr(π̂) =
⋃̀
i=1

{u ∈ [si−1, si) : γrµAC
dr
0 < NA(xi−1, u) ≤ γr+1µAC

d(r+1)
0 }

∪ {u ∈ [s`, t] : γrµAC
dr
0 < NA(x`, u) ≤ γr+1µAC

d(r+1)
0 }.

Then, analogously to the estimates for (5.20),

J({si, xi}i≤`) ≤ tγ1µAC
d
0 +

∞∑
r=1

γr+1µAC
d(r+1)
0 |Λr|, (6.16)

where |Λr| denotes the Lebesgue measure of Λr. (The first term in the right hand side comes from the
contributions of times u when the appropriate NA is ≤ γ1µAC

d
0 .) Now if γrµAC

dr
0 < NA(xi−1, u) ≤

γr+1µAC
d(r+1)
0 , then there is some z ∈ [0, Cr

0)d such that Qr(xi−1 − z)× {u} is contained in some Br(i,m),
which contains (xi−1, u) and which is bad (compare the lines following (5.21)). Therefore, (xi−1, u) belongs
to one of the bad r-cubes which intersect π̂. There are at most Φc

r(`) such cubes and any space-time path
spends at most ∆r units of time in a given bad r-block. This shows that

|Λr| ≤ ∆rΦr(`) = C6r
0 Φc

r(`).

(6.12) now follows from (6.14)-(6.16) and the assumption Φc
r(`) = 0 for r ≥ R. �



42 HARRY KESTEN AND VLADAS SIDORAVICIUS

Our next task is to estimate the distribution of Ωc
r+1(`). This estimate is new and has no analogue in

the discrete model of Section 5. Indeed, in that model it is not possible for a particle which is outside∏d
s=1[(i(s)−3)∆r+1, (i(s)+4)∆r+1) at some time v′ ∈ [(k−1)∆r+1, (k+1)∆r+1) to reach Br+1(i, k) during

[v′, (k + 1)∆r+1). Thus there are no (r + 1)-boxes in the discrete model which can be called contaminated.
Here we shall not immediately estimate the distribution of the full Ωc

r+1(`) but only of Ωc
r+1(`,a, b), which is

defined just as Ωc
r+1(`), except that it only counts good blocks Bc

r+1(i, k) which intersect π̂, are contaminated
and have (i, k) ≡ (a, b), as defined in the lines before (5.45). Since Ωc

r+1(`) is bounded by the finite sum∑
(a,b) Ωc

r+1(`,a, b), it will be easy to obtain a bound for the distribution of Ωc
r+1(`) from the bounds for

Ωc
r+1(`,a, b). For the time being let (a, b) be fixed.
To produce an estimate for Ωc

r+1(`,a, b) we use a time discretization for the paths of the A-particles.
Instead of letting each A-particle perform a translated copy of the random walk {Su}, we let each A-particle
perform a random walk which can only jump at the times k/n, k ∈ Z, and at each such time it moves an
amount y which has the distribution

qn
A(y) :=

{
1− DA

n if y = 0
DA

2dn if y = ±ei, 1 ≤ i ≤ d.

Here n is a positive integer, which we shall later let go to infinity. Let {Sn
u}u≥0 be a random walk with

this transition probability. It is clear that {Sn
u}0≤u≤t converges weakly (as n → ∞) in the Skorokhod

space D(Zd, [0, t]) to {Su}0≤u≤t. Consequently, the path of any given A-particle with the discretized motion
converges weakly to the path under the true continuous time random walk. We have similar convergence for
the paths of any finite number of independent A-particles.

We now use a special construction for the paths of the A-particles in the present discretized model with
transition probabilities qn

A. For the sake of definiteness we take b = 0; as we point out below, only a trivial
modification is needed for the case b = 1. For each (x, s) in space-time, with x ∈ Zd, s ∈ (1/n)Z, and for
each integer q ≥ 0 we let {Sn

u (x, s, q)}u≥0 be an independent copy of the random walk {Sn
u}u≥0. All these

random walks are independent of each other. In addition we attach to each A-particle σ in the system a
uniform [0, 1] random variable U(σ). All these uniform random variables will be independent of each other
and of the random walks. Their only use will be to order some particles in some definite order (but the order
itself has no significance; any order would do). Finally, let

Wr+1(i) = ∂
d∏

s=1

[(i(s)− 3)∆r+1, (i(s) + 4)∆r+1 − 1],

where ∂ denotes the topological boundary. Notice that the path of any particle which is outside
∏d

s=1[(i(s)−
3)∆r+1, (i(s)+4)∆r+1) at some time v′ ∈ [(k−1)∆r+1, (k+1)∆r+1) which also visits B̃+

r+1(i, k) at some time
v > v′, must contain a piece (xξ, xξ+1, . . . , xζ) which crosses from Wr+1(i) to ∂

∏d
s=1[(i(s)− 1)∆r+1, (i(s) +

2)∆r+1 − 1]. More specifically, there must be a piece (xξ, xξ+1, . . . , xζ) which satisfies

xξ ∈ Wr+1(i), xζ ∈ ∂
d∏

s=1

[(i(s)− 1)∆r+1, (i(s) + 2)∆r+1 − 1]

and xκ ∈
d∏

s=1

[(i(s)− 3)∆r+1 + 1, (i(s) + 4)∆r+1 − 2] for ξ < κ < ζ, (6.17)

and which is traversed during [v′, v] ⊂ [(k−1)∆r+1, (k+1)∆r+1). Moreover, v′ and v can be taken as integer
multiples of 1/n, because particles in the discretized sytem only move at such times. (This is a path from
Wr+1(i) to ∂

∏d
s=1[(i(s)− 1)∆r+1, (i(s)+2)∆r+1− 1] in the “interior” of Wr+1(i). Note that Wr+1(i) is the

surface of a cube in space which contains ∂
∏d

s=1[(i(s)− 1)∆r+1, (i(s) + 2)∆r+1 − 1] in its interior. In turn,
the latter is the surface of a cube which contains

∏d
s=1[i(s)∆r+1, (i(s) + 1)∆r+1) in its interior.)
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The last observation is the motivation for the following construction. Assume that the paths of all A-
particles till time (k − 1)∆r+1 with k even have already been constructed in some way. In the case k = 0
this simply means that we begin with a mean µA Poisson system of A-particles at time −∆r+1. (The only
change which is needed for the case b = 1 is that we work with odd k’s and start with a Poisson system
at time −2∆r+1 in that case.) At each point (x, (k − 1)∆r+1) (in space-time) order all particles σ present
so that their associated uniform variables U(σ) are increasing. To the q-th particle in this order associate
the path {x + Sn

u (x, (k − 1)∆r+1, q)}u≥0. This particle then moves to x + Sn
1 (x, (k − 1)∆r+1, q) at time

(k − 1)∆r+1 + 1/n. The index associated with this particle is then taken to be (x, (k − 1)∆r+1, q, 1). The
last coordinate 1 here indicates that one step was taken since the last choice of an associated random walk.
Assume we have constructed the paths of all particles up to and including time v ∈ [(k−1)∆r+1, (k+1)∆r+1)
(with v a multiple of 1/n) and that each particle has an index. To construct the paths 1/n time units further,
we look for each y ∈ Zd at all particles at (y, v). If y does not belong to⋃

j≡a

Wr+1(j), (6.18)

and a particle at (y, v) has index (z, v′, q, g), then this particle moves to y + Sn
g+1(z, v

′, q) and its new index
is (z, v′, q, g + 1). In other words it moves one step further in the random walk it is presently asociated
with, and the last component of its index increases by 1, to indicate the number of steps the particle has
taken according to its present associated random walk. (The first two components z, v′ indicate at which
space-time point the particle started using this random walk and the third component specifies which of the
random walks from the point (z, v′) the particle is using.) If on the other hand, y lies in the union (6.18),
then all particles at this point are again ranked according to increasing values of their uniform random
variables and the particle with rank q′ will move to y + Sn

1 (y, v, q′) at time v + 1/n. Its index will then be
(y, v, q′, 1). We continue this procedure till all positions at time (k+1)∆r+1 have been determined. We then
start anew with k replaced by k+1. That is, we order all particles at one site (x, (k+1)∆r+1) and move the
q-th particle at that site to x+Sn

1 (x, (k+ 1)∆r+1), q) and give it the index (x, (k+ 1)∆r+1, q, 1), and so on.
Basically, the above procedure switches each particle to a new random walk every time the particle visits

the set (6.18). It is clear that in the above construction all the A-particles perform independent random
walks with transition probability qn

A. Thus this gives us a construction of the discretized A-system.

Lemma 10. For 0 < C5, C6 <∞ let

χr+1(C5, C6) = C5 exp[−C6C
6(r+1)
0 ].

Also define

Y (i, k) =I[Br+1(i, k) is good, but also contaminated,

and intersects [−C1t log t, C1t log t]d × [0, t],

and let Z(i, k) be a system of independent random variables with

P{Z(i, k) = 1} = 1− P{Z(i, k) = 0} = χr+1(C5, C6). (6.19)

Then one can fix 0 < C5, C6 < ∞, with C5, C6 depending on d, γ0, µA and DA only (but not on C0 or r),
such that for fixed (a, b), the collection

{Y (i, k) :(i, k) such that (i, k) ≡ (a, b) and Br+1(i, k)

intersects [−C1t log t, C1t log t]d × [0, t]} (6.20)

lies stochastically below the collection

{Z(i, k) :(i, k) such that (i, k) ≡ (a, b) and Br+1(i, k)

intersects [−C1t log t, C1t log t]d × [0, t]}. (6.21)
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Proof. We shall prove the analogue of the claim of the lemma for the discretized system with bounds which
are uniform in n. More precisely, let the A-particles move according to copies of (translates of) {Sn

u}, and
let Nn

A(x, u) be the number of A-particles at (x, u) in this system. We then say that Br+1(i, k) is good (at
level n) if ∑

y∈Qr(x)

Nn
A(y, v) ≤ γrµAC

dr
0 for all (x, v) for which Qr(x)× {v} ⊂ B̃r+1(i, k). (6.22)

This is of course simply the previous definition (6.6) with NA replaced by Nn
A. Similarly, the definition of

a contaminated block needs no change, except that the A-particles are now assumed to move according to
{Sn

u}. Finally,

Y n(i, k) =I
[
Br+1(i, k) is good, but also contaminated at level n,

and intersects [−C1t log t, C1t log t]d × [0, t]
]
,

One can now check that Y n(i, k) converges weakly to Y (i, k) as n → ∞. This would be a simple conse-
quence of the continuous mapping theorem (see Billingsley (1968), Theorem 5.2) if there were only finitely
many A-particles in the system, because Y (i, k) would be an almost surely continuous function of the paths
of these A-particles. But we have already seen that only finitely many A-particles enter a bounded region
in space-time (either as a special case of (2.26) or by the proof of (2.35)). This same proof can be used to
show that

P{in the discretized system in which particles move according to {Sn
u}

there is some particle which visits [−C1t log t− 4C6(r+1)
0 , C1t log t+ 4C6(r+1)

0 ]

and the complement of [−M,M ]d during [−t, t]}
tends to 0, uniformly in n, as M → ∞. From this one sees that one can remove all particles outside
[−M,M ]d from the system with only a small probability that Y (i, k) or Y n(i, k) are changed if M is large.
Thus Y (i, k) and Y n(i, k) can be approximated in probability by functions of only finitely many A-particles,
so that indeed Y n(i, k) converges weakly to Y (i, k). The same argument shows that the joint distribution
of the family of Y (i, k) in (6.20) is the limit of the joint distribution of the corresponding family of Y n(i, k).
We leave the tedious details to the reader. The result of this weak convergence is that it suffices to prove
the lemma for the Y n instead of Y , as long as the estimates are uniform in n.

We now prove the lemma with Y n in the place of Y . For the sake of definiteness let b = 0. We construct
the discretized A-system as described before the lemma by means of the random walks {Sn

u (x, s, q)}. Assume
that some Br+1(i, k) with (i, k) ≡ (a, b) is contaminated. As pointed out for (6.17) this implies that the path
of some A-particle must contain a piece which satisfies (6.17). If this piece starts at xξ ∈ Wr+1(i) at time
v, then our construction is such that the piece (xξ, . . . , xζ) has to consist of the first ζ − ξ − 1 positions of
xξ + Sn

u (xξ, v, q) for some q, because the x’s in this piece do not lie in the union (6.18). That implies that
there is some x ∈ Wr+1(i), some q, and some v ∈ [(k − 1)∆r+1, (k + 1)∆r+1) for which

Sn
1 (x, v, q) 6= 0 and max

u≤2∆r+1
‖Sn

u (x, v, q)‖ ≥ 2∆r+1. (6.23)

As pointed out for (6.17) we can restrict v to the integer multiples of 1/n here. Now (x, v) ∈ Wr+1(i)× {v}
is contained in B̃r+1(i, k). If Br+1(i, k) is good at level n, then Nn

A(x, v) ≤ γr+1µAC
d(r+1)
0 ≤ K5C

d(r+1)
0

(K5 = γ0µA will do). In this case (6.23) must occur with a q ≤ K5C
d(r+1)
0 , because there are at most

K5C
d(r+1)
0 particles at (x, v). It follows that{

Br+1(i, k) is good, but also contaminated, at level n
}

⊂ En
r+1(i, k)

:=
⋃

x∈Wr+1(i), nv∈Z
v∈[(k−1)∆r+1,(k+1)∆r+1)

q≤K5C
d(r+1)
0

{Sn
1 (x, v, q) 6= 0, max

u≤2∆r+1
‖Sn

u (x, v, q)‖ ≥ 2∆r+1}. (6.24)
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In other words,
{Y n(i, k) = 1} ⊂ En

r+1(i, k). (6.25)

Now the sets Wr+1(i)× [(k− 1)∆r+1, (k+ 1)∆r+1) for different (i, k) ≡ (a, b) are disjoint, and therefore the
corresponding events En

r+1(i, k) are independent. Moreover, En
r+1(i, k) is defined in (6.24) as a union over at

most
|Wr+1(i)|K5C

d(r+1)
0 2∆r+1n ≤ K6∆d

r+1C
d(r+1)
0 n = K6C

7d(r+1)
0 n

events of the form (6.23). Thus, once again by Bernstein’s inequality,

P{En
r+1(i, k)} ≤ K6nC

7d(r+1)
0 P{Sn

1 6= 0, max
u≤2∆r+1

‖Sn
u‖ ≥ 2∆r+1}

≤ K7nC
7d(r+1)
0

1
n

exp [−K8∆r+1] ≤ C5 exp [−C6C
6(r+1)
0 ]

for suitable C5, C6 We can therefore extend our probability space such that on it are defined random variables
Zn(i, k) which satisfy (6.19) and such that the collection (6.21) is independent when Z is replaced by Zn

in (6.19) and (6.21), and in addition are such that Y n(i, k) ≤ Zn(i, k) (we take Zn(i, k) as the indicator
function of a suitable set containing En

r+1(i, k)). It follows that for every positive increasing function f of all
its arguments,

Ef(Y n(i, k)) ≤ Ef(Zn(i, k)) (6.26)

where (i, k) ranges over the pairs appearing in (6.19), (6.21). Actually the right hand side does not depend
on n. If Z(i, k) is an independent collection of random variables as in (6.21) and satisfying (6.19) then the
right hand side of (6.26) equals Ef(Z(i, k)). By letting n→∞ we obtain that

Ef(Y (i, k)) ≤ Ef(Z(i, k)). (6.27)

In fact Theorem 11 of Strassen (1965) gives that (6.27) implies the existence of a coupling of the families in
(6.20) and (6.21) such that Y (i, k) ≤ Z(i, k). Since we shall only need (6.27) we skip the details. �

For the remainder we fix C5, C6 such that the properties stated in Lemma 10 hold. The discretized system
will not be used anymore in the sequel.

Lemma 11. There exist a constant C7 = C7(d) and constants κ0, t0 (independent of r, `) such that for
1 ≤ r ≤ R(t), κ ≥ κ0, t ≥ t0 and any ` ≥ 0

PA

{
Ωc

r+1(`) ≥ κ(t+ `) exp[−Cr/2
0 ]} ≤ exp

[
− C7κ(t+ `) exp[−Cr/2

0 ]
]
. (6.28)

Proof. As we already mentioned, we merely prove that (6.28) holds with Ωc
r+1(`,a, b) instead of Ωc

r+1(`).
The estimate (6.28) as stated then follows by combining these estimates for all possible choices of (a, b) and
adjusting the constants.

The present proof is an imitation of the proof of (5.43). Analogously to (5.47), we fix ν such that

[χr+1]−1/(d+1) ≤ ν ≤ 2[χr+1]−1/(d+1)

(note that χr+1 ≤ 1, by (6.4)). We now define

Dc(j, q) =
d∏

s=1

[νj(s)∆r+1, ν(j(s) + 1)∆r+1)× [qν∆r+1, (q + 1)ν∆r+1). (6.29)

It is still true that each Dc(j, q) is the disjoint union of νd+1 (r+1)-blocks. However, the argument following
(5.48) to show that at most λ̃ such blocks intersect a space-time path π̂ breaks down. Instead of this estimate,
we now show that for ` ≥ 0 at most

λ(`) := 3d
( t+ `

ν∆r+1
+ 2

)
(6.30)
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blocks Dc(j, q) can intersect a space-time path π̂ ∈ Ξ(`, t) with jumptimes s1 < · · · < s` < t and positions
x1, . . . , x` (see (6.1) for Ξ). To derive this bound, fix π̂ ∈ Ξ(`, t), and let σq be the number of boxes Dc(j, q)
which intersect π̂. Such a box can intersect π̂ only if 0 ≤ q ≤ t/(ν∆r+1). If there are σ such boxes with
a given q which intersect π̂, then the piece of π from time qν∆r+1 through time (q + 1)ν∆r+1 − 1 must
connect σ disjoint cubes of edgelength ν∆r+1. This requires at least (b3−dσc − 1)ν∆r+1 jumps of π̂ during
[qν∆r+1, (q + 1)nν∆r+1). Since π̂ ∈ Ξ(`, t) this requires∑

0≤q≤t/(ν∆r+1)

[3−dσq − 2] ≤ `/(ν∆r+1).

Consequently, the total number of boxes Dc(j, q) which intersect π̂ is at most∑
0≤q≤t/(ν∆r+1)

σq = 3d
∑

0≤q≤t/(ν∆r+1)

[3−dσq − 2 + 2]

≤ 3d`/(ν∆r+1) + 3d
∑

0≤q≤t/(ν∆r+1)

2

≤ 3d(`+ t)/(ν∆r+1) + 3d2.

This proves the bound (6.30).
From here on the proof of (6.28) is essentially the same as that of (5.43) from (5.48) on, so we shall be

brief. As in (5.46) and (5.51) we have

PA{Ωc
r+1(`,a, b) ≥ 2−1(12)−dκ(t+ `) exp[−Cr/2

0 ]}

≤
∑

D(j0,0),...,D(jλ−1,λ−1)

P
{ λ−1⋃

q=0

Dc(jq, q) contains at least

2−1(12)−dκ(t+ `) exp[−Cr/2
0 ] (r + 1)-blocks Br+1(i, k) with Z(i, k) = 1

}
. (6.31)

Here (Dc(j0, 0), . . . ,Dc(jλ−1, λ− 1)) runs over the possible collections of blocks Dc which intersect a space-
time path π̂ ∈ Ξ(`, t). For some constant K9 which depends on d only, there are at most

[2C1t log t+ 1]d exp[K9λ]

collections of this form. If we fix such a collection Dc(j0, 0), . . . ,Dc(jλ−1, λ− 1), then the probability that

λ−1⋃
q=0

D(jq, q)

contains at least 2−1(12)−dκ(t+`) exp[−Cr/2
0 ] (r+1)-blocks Br+1(i, k) with (i, k) ≡ (a, b) and with Z(i, k) =

1, is bounded by
P{T ≥ 2−1(12)−dκ(t+ `) exp[−Cr/2

0 ], (6.32)

where T has a binomial distribution corresponding to λνd+1 trials with success probability χr+1. By Bern-
stein’s inequality there exists some constant C7 = C7(d) such that for any λ ≥ 2ET it holds

P{T ≥ λ} ≤ exp[−C74(12)dλ]. (6.33)

We now fix κ0 ≥ 1 such that for all r ≥ 1

κ0 exp[−Cr/2
0 ] ≥

[
16 · (36)d +

4K93d

C7

]
[χr+1]1/(d+1)

=
[
16 · (36)d +

4K93d

C7

]
C

1/(d+1)
5 exp

[
− C6

d+ 1
C

6(r+1)
0

]
, (6.34)
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Then, for κ ≥ κ0, and 1 ≤ r ≤ R(t)− 1,

2−1(12)−dκ(t+ `) exp[−Cr/2
0 ] ≥ 4λ ≥ 2λνd+1χr+1 = 2E{T}

for all ` ≥ 0, provided t ≥ some t1 (independent of r ≥ 1, ` ≥ 0). Thus, by (6.33), the probability in (6.32)
is, at most

exp
[
− 2C7κ(t+ `) exp[−Cr/2

0 ]
]
. (6.35)

This is also a bound for each of the summands in the right hand side of (6.31). It follows that the left hand
side of (6.28) is for t ≥ some t2 (independent of r ≥ 1, ` ≥ 0) bounded by

2 · 12d(2C1t log t+ 1)d exp
[
K9λ− 2C7κ(t+ `) exp[−Cr/2

0 ]
]

≤ exp
[
− C7κ(t+ `) exp[−Cr/2

0 ]
]
. �

We must next estimate the tail of the distribution of Θc
r+1(`). This will replace the estimate for Ψr+1 in

(5.43). First we note the following analogue of Lemma 6.

Lemma 12. There exists a constant C8, which is independent of C0, such that if Vr+1(i, k) is good, and
(∆r+1 −∆r) ≤ u ≤ 2∆r+1, then for r ≥ 1∑

z:(z,(k−1)∆r+1)∈Vr+1(i,k)

NA(z, (k − 1)∆r+1)P{z + Su ∈ Qr(y)}

≤ γr+1µAC
dr
0

[
1 +

C8(r logC0)d

C2r
0

]
(6.36)

for r ≥ 1, y ∈ Zd.

Proof. The proof proceeds exactly as in Lemma 6 with {S̃u} replaced by {Su} till we come to (5.26), which
needs to be proven for nonintegral u as well now. To prove this inequality in this generality, note that just
as in (5.27)

∣∣P{Su = v} − P{Su = w}
∣∣ ≤ d

(2π)d

∫
θ∈[−π,π]d

‖v − w‖‖θ‖|Eeiθ·Su |dθ

≤ d

(2π)d

∫
θ∈[−π,π]d

‖v − w‖‖θ‖|ψ(θ)|bucdθ (6.37)

with
ψ(θ) = Eeiθ·S1 ≤ exp[−K10‖θ‖2] for θ(i) ∈ [−π, π], 1 ≤ i ≤ d.

In the last inequality in (6.37) we used that Su is the sum of the independent variables S1 − S0, S2 −
S1, . . . , Sbuc − Sbuc−1, Su − Sbuc. The rest is as in Lemma 6.

�

We need a replacement for the σ-field Hr+1(i, k). We define this as follows:

Hc
r+1(i, k) :=σ-field generated by the paths of all particles through

time (k − 1)∆r+1 plus the paths till time (k + 1)∆r+1

of all particles which are not in Vr+1(i, k) at time (k − 1)∆r+1.

Kr+1(i, k) is defined exactly as in (5.32). Note that all the NA(x, (k − 1)∆r+1) with (x, (k − 1)∆r+1) ∈
Vr+1(i, k) are Kr+1(i, k)-measurable, and that Kr+1(i, k) ⊂ Hc

r+1(i, k). Lemma 7 needs essentially no change;
we only need to replace “bad” by “inferior” and to replace the σ-fields.
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Lemma 13. Let
ρr+1 = C

6(d+1)(r+1)+dr
0 exp

[
− 1

2
γrµAC

(d− 3
4 )r

0

]
.

Then there exists a constant C9 = C9(DA, γ0µA) such that for 1 ≤ r ≤ R(t)− 1, on the event {Vr+1(i, k) is
good},

PA{Br+1(i, k) contains some inferior Br(j, q)|Hc
r+1(i, k)}

= PA{Br+1(i, k) contains some inferior Br(j, q)|Kr+1(i, k)}
≤ C9ρr+1. (6.38)

Proof. Whether an r-block Br(j, q) which is contained in Br+1(i, k) is inferior or not, depends only on the
wc

r+1(x, v, i, k) with (x, v) ∈ B̃r(j, q). All such (x, v) lie in B̃+
r+1(i, k). Once all paths up to and including

time (k − 1)∆r+1 are given, any such wc
r+1(x, v, i, k) depends only on the paths of particles which stay in∏d

s=1[(i(s) − 3)∆r+1, (i(s) + 4)∆r+1) during the whole interval [(k − 1)∆r+1, v). Clearly this excludes the
particles which are outside Vr+1(i, k) at time (k − 1)∆r+1. Therefore, the paths of the latter particles after
time (k−1)∆r+1 do not influence the wc

r+1(x, v, i, k) with (x, v) in B̃+
r+1(i, k). Also the paths of any particles

through time (k− 1)∆r+1 do not influence the distribution of the wc
r+1(x, v, i, k) with (x, v) in B̃+

r+1(i, k) (as
long as the Nn

A(x, (k − 1)∆r+1) with (x, (k − 1)∆r+1) ∈ Vr+1(i, k) are fixed). Therefore the two conditional
probabilities in (6.38) are the same.

The fact that the two conditional probabilities in (6.38) are bounded by C9ρr+1 is proven almost exactly
as in Lemma 7. Very much as in (5.36) the conditional probabilities in (6.38) are bounded by the probability
that

W c
r (x, v, i, k) > γrµAC

dr
0 for some (x, v) for which Qr(y)× {v} ⊂ B̃+

r+1(i, k). (6.39)
Here v necessarily satisfies

1
2
∆r+1 ≤ ∆r+1 −∆r ≤ u := v − (k − 1)∆r+1 ≤ 2∆r+1. (6.40)

We claim that we may restrict ourselves to v’s which are an integer multiple of K11C
−dr
0 for some small

constant K11 > 0, at a cost of a factor 2 in the probability. By this we mean that the probability of the
event in (6.39) is at most twice the probability of this event with the added requirement that v is a multiple
of K11C

−dr
0 . This follows from an argument like the one following (6.13). In fact, if W c

r (y, τ, i, k) > γrµAC
dr
0

at some stopping time τ ∈ [mK11C
−dr
0 , (m+ 1)K11C

−dr
0 ], then the conditional probability that also

W c
r (y, (m+ 1)K11C

−dr
0 , i, k) > γrµAC

dr
0

is at least [
PA{a given particle stands still for K11C

−dr
0 time units}

]γrµACdr
0 +1

= exp[−DAK11C
−dr
0 (γrµAC

dr
0 + 1)] ≥ 1

2
,

provided K11 = K11(DA, γ0µA) > 0 is taken small enough. This proves our claim.
It follows that the conditional probabilities in (6.38) are bounded by twice the sum over at most[ 2∆r+1

K11C
−dr
0

+ 1
]
[3∆r+1]d ≤ K12C

6(r+1)(d+1)+dr
0

terms of the form
PA{W c

r (y, v, i, k) > γrµAC
dr
0 |Kr+1(i, k)}. (6.41)

This last probability is estimated as in (5.38) and the following lines. We merely have to replace p̃(y − z, u)
there by

p(y − z, u) := P
{
z + Su ∈ Qr(y)

}
,

to use Lemma 12 in place of Lemma 6, and to take into account that the requirement (5.37) is replaced by
(6.40). �

Finally we come to the version of Lemma 8 which we need for the continuous model.
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Lemma 14. For ` ≥ 0, r ≥ 1 and any path π̂ ∈ Ξ(`, t) it holds

φc
r(π̂) ≤ C

6(d+1)
0 Φc

r+1(`) + C
6(d+1)
0 Ωc

r+1(`) + C
6(d+1)
0 Θc

r+1(`) (6.42)

and
Φc

r(`) ≤ C
6(d+1)
0 Φc

r+1(`) + C
6(d+1)
0 Ωc

r+1(`) + C
6(d+1)
0 Θc

r+1(`). (6.43)

Moreover, there exist some constants C10, κ0, such that for κ ≥ κ0, t sufficiently large, and ` ≥ 0, 1 ≤ r ≤
R(t)− 1,

PA{Θc
r+1(`) ≥ κ

t+ `

∆r+1
[ρr+1]1/(d+1)}

≤ exp
[
− (t+ `)C10κ exp

[
− 1

2(d+ 1)
γrµAC

(d− 3
4 )r

0

]]
. (6.44)

Proof. The proof of (6.42) is again easy. Let π̂ be a path in Ξ(`, t). Let Br(j, q) be a bad r-block which
intersects π̂, and let Br(j, q) ⊂ Br+1(i, k). Then are several possibilities. First it may be that Br+1(i, k) is
bad. There are at most Φc

r+1(`) such Br+1(i, k) (note that they have to intersect π̂), and such (r+ 1)-blocks
contain at most C6(d+1)

0 r-blocks. These are counted by the first term in the right hand side of (6.42).
The next possibility is that Br+1(i, k) is good, but that Br+1(i, k) is contaminated. There are at most
Ωc

r+1(`) good (r + 1)-blocks which are also contaminated and intersect π̂. Each contains at most C6(d+1)
0 r-

blocks. These are counted by the second term in the right hand side of (6.42). The last possibility is that
Br+1(i, k) is good, and that Br+1(i, k) is not contaminated. In particular, wc

r+1(x, v, i, k) = NA(x, v) for
all (x, v) ∈ B̃+

r+1(i, k). A fortiori, this must hold for all (x, v) for which Qr(x) × {v} ⊂ B̃r(j, q). But then
W c

r (x, v, i, k) = Ur(x, v) for such (x, v). Since we assumed that Br(j, q) is bad, there exists such an (x, v)
with W c

r (x, v, i, k) = Ur(x, v) > γrµAC
dr
0 . Thus Br(j, q) is in fact inferior, and hence Br+1(i, k) is taken into

account in Θc
r+1(`). Therefore Br(j, q) is counted in the last term on the right of (6.42). This proves (6.42)

and (6.43) follows by taking the sup over π̂ ∈ Ξ(`, t).
The proof of (6.44) is essentially the same as that of (5.43) or (6.28). We merely have to take into account

that the number of distinct boxes D(j, q) (defined as in (6.29)) which can intersect π̂ is bounded only by
(6.30). We leave the details to the reader. �

We next combine our estimates in the same way as we did in the proof of Theorem2-Discrete.

Lemma 15. There exist some t0 and constants K13,K14 such that for all t ≥ t0,

PA{Φc
r(`) ≥ K14κ0(t+ `) exp[−K13C

r/4
0 ] for some r ≥ 1, ` ≥ 0} ≤ 2

t2
. (6.45)

In addition, there exists a constant C11 such that for t ≥ t0

PA

{
tγ1µAC

d
0 +

R−1∑
r=1

γr+1µAC
r(d+6)+d
0 Φc

r(`) ≥ C11(t+ `) for some ` ≥ 0
}
≤ 2
t2
. (6.46)

Proof. Let γ = limr→∞ γr. Then by (6.28) and (6.44), for 1 ≤ r < R and t ≥ t0

P{Ωc
r+1(`) ≥ κ0(t+ `) exp[−Cr/2

0 ] or

Θc
r+1(`) ≥ κ0(t+ `)Cdr/(d+1)

0 exp[− 1
2(d+ 1)

γµAC
(d− 3

4 )r
0 for some ` ≥ 0}

≤
∑
`≥0

exp
[
− C7κ0(t+ `) exp[−Cr/2

0 ]
]

+
∑
`≥0

exp
[
− (t+ `)C10κ0 exp

[
− 1

2(d+ 1)
γ0µAC

(d− 3
4 )r

0

]]
≤ 1
t3
, (6.47)
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provided we choose t0 large enough (t0 can be taken independent of r ∈ [1, R − 1], but depends on C0).
Summing this over r ≤ R− 1 ≤ [d logC0]−1 log log t, we see that outside a set of probability O(t−3 log log t),
none of the events in (6.47) with 1 ≤ r < R occur. In view of (6.11) this shows that outside a set of
probability ≤ 2t−2 none of the events in (6.47) occur, and in addition Φc

r(`) = 0 for all r ≥ R and all ` ≥ 0.
Now consider a sample point for which none of the events in (6.47) occur and for which Φc

r(`) = 0 for
r ≥ R, ` ≥ 0. It suffices for (6.45) to show that for such a sample point the event in the left hand side of
(6.45) does not occur. But this follows as in (5.57). Indeed at such a sample point we have, by virtue of
(6.43),

Φc
r(`) ≤ C

6(d+1)
0 Φc

r+1(`) + C
6(d+1)
0 κ0(t+ `)

[
exp[−Cr/2

0 ]

+ C
dr/(d+1)
0 exp[− 1

2(d+ 1)
γµAC

(d− 3
4 )r

0 ]
]

≤ C
6(d+1)
0 Φc

r+1(`) + κ0(t+ `) exp[−K13C
r/4
0 ]

≤ · · · ≤ κ0(t+ `)
R−r−1∑

j=0

C
6j(d+1)
0 exp[−K13C

(r+j)/4
0 ]

≤ K14κ0(t+ `) exp[−K13C
r/4
0 ].

Thus (6.45) holds for suitable Ki.
Finally, (6.46) now obvious. �

Proof of Theorem 2. It is now easy to complete the proof of Theorem 2. By the Borel-Cantelli lemma the
event in the left hand side of (6.46) almost surely occurs for only finitely many integers t. Moreover, Φc

r(`)
is nondecreasing in t. By (6.46) and (6.12) we therefore have almost surely [PA] for all large t that

EB{number of B-particles at 0 alive at time t

whose associated path lies in C(C1t log t)× [0, t]}

≤
∑
`≥0

µB
[DBt]`

`!
exp[−(δ +DB)t+ 2βC11(t+ `)]

= µB exp[(−δ −DB + 2βC11 +DBe
2βC11)t].

Now take δ0 = 3[2βC11 + DBe
2βC11 ]. Then this last inequality and (2.38) show that for δ ≥ δ0, we have

almost surely [PA] for all large t

EB{number of B-particles at 0 alive at time t} ≤ e−δt/2.

As at the end of Section 4, this implies that almost surely for all large t, there are no B-particles alive at 0
at time t. �
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