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1 Introduction

The study of stochastic partial differential equations (s.p.d.e.’s) began in earnest following the
papers of Pardoux [14], [15], [16], and Krylov and Rozovskii [8], [9]. Much of the literature has
been concerned with the heat equation, most often driven by space-time white noise, and with
related parabolic equations. Such equations are first order in time, and generally second order in
the space variables. There has been much less work on s.p.d.e.’s that are second order in time, such
as the wave equation and related hyperbolic equations. Some early references are Walsh [22], and
Carmona and Nualart [2], [3]. More recent papers are Mueller [12], Dalang and Frangos [6], and
Millet and Sanz-Solé [11].

For linear equations, the noise process can be considered as a random Schwartz distribution, and
therefore the theory of deterministic p.d.e.’s can in principle be used. However, this yields solu-
tions in the space of Schwartz distributions, rather than in the space of function-valued stochastic
processes. For linear s.p.d.e.’s such as the heat and wave equation driven by space-time white
noise, this situation is satisfactory, since, in fact, there is no function-valued solution when the
spatial dimension is greater than 1. However, since non-linear functions of Schwartz distributions
are difficult to define (see however Oberguggenberger and Russo [13]), it is difficult to make sense
of non-linear s.p.d.e.’s driven by space-time white noise in dimensions greater than 1.

A reasonable alternative to space-time white noise is Gaussian noise with some spatial correlation,
that remains white in time. This approach has been taken by several authors, and the general
framework is given in Da Prato and Zabczyk [4]. However, there is again a difference between
parabolic and hyperbolic equations: while the Green’s function is smooth for the former, for the
latter it is less and less regular as the dimension increases. For instance, for the wave equation, the
Green’s function is a bounded function in dimension 1, is an unbounded function in dimension 2,
is a measure in dimension 3, and a Schwartz distribution in dimensions greater than 3.

There are at least two approaches to this issue. One is to extend the theory of stochastic integrals
with respect to martingale measures, as developed by Walsh [22], to a more general class of inte-
grands that includes distributions. This approach was taken by Dalang [5]. In the case of the wave
equation, this yields a solution to the non-linear equation in dimensions 1, 2 and 3. The solution
is a random field, that is, it is defined for every (t, x) ∈ R+ × Rd. Another approach is to consider
solutions with values in a function space, typically an L2-space: for each fixed t ∈ R+, the solution
is an L2-function, defined for almost all x ∈ Rd. This approach has been taken by Peszat and
Zabczyk in [18] and Peszat [17]. In the case of the non-linear wave equation, this approach yields
function-valued solutions in all dimensions. It should be noted that the notions of random field
solution and function-valued solution are not equivalent: see Lévèque [10].

In this paper, we develop a general approach to non-linear s.p.d.e’s, with a focus on equations that
are second order in time, such as the wave equation and the beam equation. This approach goes
in the direction of unifying the two described above, since we begin in Section 2 with an extension
of Walsh’s martingale measure stochastic integral [22], in such a way as to integrate processes that
take values in an L2-space, with an integral that takes values in the same space. This extension
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defines stochastic integrals of the form

∫ t

0

∫

Rd

G(s, · − y)Z(s, y)M(ds, dy),

where G (typically a Green’s function) takes values in the space of Schwartz distributions, Z is an
adapted process with values in L2(Rd), and M is a Gaussian martingale measure with spatially
homogeneous covariance.

With this extended stochastic integral, we can study non-linear forms of a wide class of s.p.d.e.’s,
that includes the wave and beam equations in all dimensions, namely equations for which the p.d.e.
operator is

∂2u

∂t2
+ (−1)k∆ku,

where k ≥ 1 (see Section 3). Indeed, in Section 4 we study the corresponding non-linear s.p.d.e.’s.
We only impose the minimal assumptions on the spatial covariance of the noise, that are needed even
for the linear form of the s.p.d.e. to have a function-valued solution. The non-linear coefficients
must be Lipschitz and vanish at the origin. This last property guarantees that with an initial
condition that is in L2(Rd), the solution remains in L2(Rd) for all time.

In Section 5, we specialize to the wave equation in a weighted L2-space, and remove the condition
that the non-linearity vanishes at the origin. Here, the compact support property of the Green’s
function of the wave equation is used explicitly. We note that Peszat [17] also uses weighted
L2-spaces, but with a weight that decays exponentially at infinity, whereas here, the weight has
polynomial decay.

2 Extensions of the stochastic integral

In this section, we define the class of Gaussian noises that drive the s.p.d.e.’s that we consider, and
give our extension of the martingale measure stochastic integral.

Let D(Rd+1) be the topological vector space of functions ϕ ∈ C∞0 (Rd+1), the space of infinitely
differentiable functions with compact support, with the standard notion of convergence on this
space (see Adams [1], page 19). Let Γ be a non-negative and non-negative definite (therefore
symmetric) tempered measure on Rd. That is,

∫

Rd

Γ(dx) (ϕ ∗ ϕ̃)(x) ≥ 0, for all ϕ ∈ D(Rd),

where ϕ̃(x) = ϕ(−x), “∗” denotes convolution, and there exists r > 0 such that

∫

Rd

Γ(dx)
1

(1 + |x|2)r
<∞. (2.1)
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We note that if Γ(dx) = f(x)dx, then
∫

Rd

Γ(dx)(ϕ ∗ ϕ̃)(x) =

∫

Rd

dx

∫

Rd

dy ϕ(x)f(x− y)ϕ(y)

(this was the framework considered in Dalang [5]). Let S(Rd) denote the Schwartz space of rapidly
decreasing C∞ test functions, and for ϕ ∈ S(Rd), let Fϕ denote the Fourier transform of ϕ:

Fϕ(η) =

∫

Rd

exp(−i η · x)ϕ(x) dx.

According to the Bochner-Schwartz theorem (see Schwartz [20], Chapter VII, Théorème XVII),
there is a non-negative tempered measure µ on Rd such that Γ = Fµ, that is

∫

Rd

Γ(dx)ϕ(x) =

∫

Rd

µ(dη)Fϕ(η), for all ϕ ∈ S(Rd). (2.2)

Examples. (a) Let δ0 denote the Dirac functional. Then Γ(dx) = δ0(x) dx satisfies the conditions
above.

(b) Let 0 < α < d and set fα(x) = |x|−α, x ∈ Rd. Then fα = cαFfd−α (see Stein [21], Chapter V
§1, Lemma 2(a)), so Γ(dx) = fα(x) dx also satisfies the conditions above.

Let F = (F (ϕ), ϕ ∈ D(Rd+1)) be an L2(Ω,G, P )-valued mean zero Gaussian process with covari-
ance functional

(ϕ,ψ) 7→ E(F (ϕ)F (ψ)) =

∫

Rd

Γ(dx) (ϕ ∗ ψ̃)(x).

As in Dalang and Frangos [6] and Dalang [5], ϕ 7→ F (ϕ) extends to a worthy martingale measure
(t, A) 7→Mt(A) (in the sense of Walsh [22], pages 289-290) with covariance measure

Q([0, t]×A×B) = 〈M(A),M(B)〉t = t

∫

Rd

Γ(dx)

∫

Rd

dy 1A(y) 1B(x+ y)

and dominating measure K ≡ Q, such that

F (ϕ) =

∫

R+

∫

Rd

ϕ(t, x)M(dt, dx), for all ϕ ∈ D(Rd+1).

The underlying filtration is (F t = F
0
t ∨N , t ≥ 0), where

F0
t = σ(Ms(A), s ≤ t, A ∈ Bb(Rd)),

N is the σ-field generated by P -null sets and Bb(Rd) denotes the bounded Borel subsets of Rd.

Recall [22] that a function (s, x, ω) 7→ g(s, x;ω) is termed elementary if it is of the form

g(s, x;ω) = 1]a,b](s)1A(x)X(ω),
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where 0 ≤ a < b, A ∈ Bb(Rd) and X is a bounded and Fa-measurable random variable. The σ-field
on R+ × Rd × Ω generated by elementary functions is termed the predictable σ-field.

Fix T > 0. Let P+ denote the set of predictable functions (s, x;ω) 7→ g(s, x;ω) such that ‖g‖+ <∞,
where

‖g‖2+ = E

(∫ T

0
ds

∫

Rd

Γ(dx)

∫

IRd

dy |g(s, y)g(s, x+ y)|

)

.

Recall [22] that P+ is the completion of the set of elementary functions for the norm ‖ · ‖+.

For g ∈ P+, Walsh’s stochastic integral

Mg
t (A) =

∫ t

0
ds

∫

A
g(s, x)M(ds, dx)

is well-defined and is a worthy martingale measure with covariation measure

Qg([0, t]×A×B) =

∫ t

0
ds

∫

Rd

Γ(dx)

∫

Rd

dy 1A(y)1B(x+ y) g(s, y)g(s, x+ y)

and dominating measure

Kg([0, t]×A×B) =

∫ t

0
ds

∫

Rd

Γ(dx)

∫

Rd

dy 1A(y)1B(x+ y) |g(x, y)g(s, x+ y)|.

For a deterministic real-valued function (s, x) 7→ g(s, x) and a real-valued stochastic process
(Z(t, x), (t, x) ∈ R+ × Rd), consider the following hypotheses (T > 0 is fixed).

(G1) For 0 ≤ s ≤ T , g(s, ·) ∈ C∞(Rd), g(s, ·) is bounded uniformly in s, and Fg(s, ·) is a function.

(G2) For 0 ≤ s ≤ T , Z(s, ·) ∈ C∞0 (Rd) a.s., Z(s, ·) is Fs-measurable, and in addition, there is a
compact set K ⊂ Rd such that supp Z(s, ·) ⊂ K, for 0 ≤ s ≤ T . Further, s 7→ Z(s, ·) is
mean-square continuous from [0, T ] into L2(Rd), that is, for s ∈ [0, T ],

lim
t→s

E
(

‖Z(t, ·)− Z(s, ·)‖2L2(Rd)

)

= 0.

(G3) Ig,Z <∞, where

Ig,Z =

∫ T

0
ds

∫

Rd

dξ E(|FZ(s, ·)(ξ)|2)

∫

Rd

µ(dη) |Fg(s, ·)(ξ − η)|2.

Lemma 1. Under hypotheses (G1), (G2) and (G3), for all x ∈ Rd, the function defined by
(s, y;ω) 7→ g(s, x− y)Z(s, y;ω) belongs to P+, and so

vg,Z(x) =

∫ T

0

∫

Rd

g(s, x− y)Z(s, y)M(ds, dy)

is well-defined as a (Walsh-) stochastic integral. Further, a.s., x 7→ vg,Z(x) belongs to L
2(Rd), and

E
(

‖vg,Z‖
2
L2(Rd)

)

= Ig,Z . (2.3)
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Proof. Observe that ‖g(·, x− ·)Z(·, ·)‖2
+ is equal to

E

(∫ T

0
ds

∫

Rd

Γ(dz)

∫

Rd

dy |g(s, x− y)Z(s, y)g(s, x− y − z)Z(s, y + z)|

)

.

Because g(s, ·) is bounded uniformly in s by (G1), this expression is bounded by a constant times

E

(∫ T

0
ds

∫

Rd

Γ(dz)

∫

Rd

dy |Z(s, y)Z(s, y + z)|

)

= E

(∫ T

0
ds

∫

Rd

Γ(dz) (|Z(s, ·)| ∗ |Z̃(s, ·)|)(−z)

)

.

By (G2), the inner integral can be taken over K −K = {z − y : z ∈ K, y ∈ K}, and the sup-norm
of the convolution is bounded by ‖Z(s, ·)‖2

L2(Rd)
, so this is

≤ E

(∫ T

0
ds ‖Z(s, ·)‖2L2(Rd)Γ(K −K)

)

=

∫ T

0
ds ‖Z(s, ·)‖2L2(Rd) Γ(K −K) <∞,

by (2.1) and the fact that s 7→ E(‖Z(s, ·)‖2
L2(Rd)

) is continuous by (G2). Therefore, vg,Z(x) will be

well-defined provided we show that (s, y, ω) 7→ g(s, x − y)Z(s, y;ω) is predictable, or equivalently,
that (s, y, ω) 7→ Z(s, y;ω) is predictable.

For this, set tnj = jT2−n and

Zn(s, y) =
2n−1
∑

j=0

Z(tnj , x) 1]tnj ,t
n
j+1](s).

Observe that

‖Zn‖
2
+ = E





2n−1
∑

j=0

∫ tnj+1

tnj

ds

∫

Rd

Γ(dx) (|Z(tnj , ·)| ∗ |Z̃(t
n
j , ·)|)(−x)





≤ T2−n
2n−1
∑

j=0

E(‖Z(tnj , ·)‖
2
L2(Rd)) Γ(K −K)

< ∞.

Therefore, Zn ∈ P+, since this process, which is adapted, continuous in x and left-continuous in s,
is clearly predictable. Further,

E

(∫ T

0
ds

∫

Rd

Γ(dx) (|Z(s, ·)− Zn(s, ·)|) ∗ (|Z̃(s, ·)− Z̃n(s, ·)|)(−x)

)

≤

∫ T

0
dsE(‖Z(s, ·)− Zn(s, ·)‖

2
L2(Rd)) Γ(K −K).
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The integrand converges to 0 and is uniformly bounded over [0, T ] by (G2), so this expression
converges to 0 as n→∞. Therefore, Z is predictable.

Finally, we prove (2.3). Clearly, E(‖vg,Z‖
2
L2(Rd)

) is equal to

E

(

∫

Rd

dx

(∫ T

0

∫

Rd

g(s, x− y)Z(s, y)M(ds, dy)

)2
)

.

Since the covariation measure of M is Q, this equals

E

(∫

Rd

dx

∫ T

0
ds

∫

Rd

Γ(dz)

∫

Rd

dy g(s, x− y)Z(s, y)g(s, x− z − y)Z(s, z + y)

)

. (2.4)

The inner integral is equal to (g(s, x − ·)Z(s, ·)) ∗ (g̃(s, x − ·)Z̃(s, ·))(−z), and since this function
belongs to S(Rd) by (G1) and (G2), (2.4) equals

E

(∫

Rd

dx

∫ T

0
ds

∫

Rd

µ(dη) |F(g(s, x− ·)Z(s, ·))(η)|2
)

,

by (2.2). Because the Fourier transform takes products to convolutions,

F(g(s, x− ·)Z(s, ·))(η) =

∫

Rd

dξ′eiξ
′·xFg(s, ·)(−ξ′)FZ(s, ·)(η − ξ′),

so, by Plancherel’s theorem,
∫

Rd

dx |F(g(s, x− ·)Z(s, ·))(η)|2 =

∫

Rd

dξ′ |Fg(s, ·)(−ξ′)FZ(s, ·)(η − ξ′)|2. (2.5)

The minus can be changed to plus, and using the change of variables ξ = η + ξ ′ (η fixed), we find
that (2.3) holds.

Remark 2. An alternative expression for Ig,Z is

Ig,Z = E

(∫ T

0
ds

∫

IRd

µ(dη) ‖g(s, ·) ∗ (χη(·)Z(s, ·))‖
2
L2(Rd)

)

,

where χη(x) = eiη·x. Indeed, notice that (2.5) is equal to

∫

dξ′ |Fg(s, ·)(ξ′)F(χη(·)Z(s, ·))(ξ
′)|2,

which, by Plancherel’s theorem, is equal to

‖g(s, ·) ∗ (χη(·)Z(s, ·))‖
2
L2(Rd).

Fix (s, x) 7→ g(s, x) such that (G1) holds. Consider the further hypotheses:

7



(G4)
∫ T
0 ds supξ

∫

Rd µ(dη) |Fg(s, ·)(ξ − η)|2 <∞,

(G5) For 0 ≤ s ≤ T , Z(s, ·) ∈ L2(Rd) a.s., Z(s, ·) is Fs-measurable, and s 7→ Z(s, ·) is mean-square
continuous from [0, T ] into L2(Rd).

Fix g such that (G1) and (G4) hold. Set

P = {Z : (G5) holds}.

Define a norm ‖ · ‖g on P by

‖Z‖2g = Ig,Z .

We observe that by (G4) and (G5) (and Plancherel’s theorem), Ig,Z ≤ Ĩg,Z <∞, where

Ĩg,Z =

∫ T

0
dsE(‖Z(s, ·)‖2L2(Rd))

(

sup
ξ

∫

Rd

µ(dη) |Fg(s, ·)(ξ − η)|2

)

.

Let

E = {Z ∈ P : (G2) holds}.

By Lemma 1, Z 7→ vg,Z defines an isometry from (E , ‖ · ‖g) into L2(Ω × Rd, dP × dx). Therefore,
this isometry extends to the closure of (E , ‖ · ‖g) in P, which we now identify.

Lemma 3. P is contained in the closure of (E , ‖ · ‖g).

Proof. Fix ψ ∈ C∞0 (Rd) such that ψ ≥ 0, the support of ψ is contained in the unit ball of Rd and
∫

Rd ψ(x) dx = 1. For n ≥ 1, set

ψn(x) = ndψ(nx).

Then ψn → δ0 in S(Rd) and Fψn(ξ) = Fψ(ξ/n), therefore |Fψn(·)| is bounded by 1.

Fix Z ∈ P, and show that Z belongs to the completion of E in ‖ · ‖g. Set

Zn(s, x) = Z(s, x)1[−n,n]d(x) and Zn,m(s, ·) = Zn(s, ·) ∗ ψm.

We first show that Zn,m ∈ E , that is, (G2) holds for Zn,m. Clearly, Zn,m(s, ·) ∈ C∞0 (Rd), Zn,m(s, ·)
is Fs-measurable by (G5), and there is a compact set Kn,m ⊂ Rd such that supp Zn,m(s, ·) ⊂ K,
for 0 ≤ s ≤ T . Further,

‖Zn,m(t, ·)− Zn,m(s, ·)‖2L2(Rd) ≤ ‖Zn(t, ·)− Zn(s, ·)‖
2
L2(Rd) ≤ ‖Z(t, ·)− Z(s, ·)‖

2
L2(Rd),

so s 7→ Zn,m(s, ·) is mean-square continuous by (G5). Therefore, Zn,m ∈ E .
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We now show that for n fixed, ‖Zn − Zn,m‖g → 0 as m→∞. Clearly,

Ig,Zn−Zn,m =

∫ T

0
ds

∫

Rd

dξ E(|FZn(s, ·)|
2) |1−Fψm(ξ)|2

∫

Rd

µ(dη) |Fg(s, ·)(ξ − η)|2.

Because |1−Fψm(ξ)|2 ≤ 4 and

Ig,Zn ≤

∫ T

0
dsE

(∫

Rd

dξ |FZn(s, ·)|
2

)

(

sup
ξ

∫

Rd

µ(dη) |Fg(s, ξ − n)|2

)

= Ĩg,Zn ≤ Ĩg,Z <∞,

we can apply the Dominated Convergence Theorem to see that for n fixed,

lim
m→∞

‖Zn − Zn,m‖g = lim
m→∞

√

Ig,Zn−Zn,m = 0.

Therefore, Zn belongs to the completion of E in ‖·‖g. We now show that ‖Z−Zn‖g → 0 as n→∞.
Clearly,

‖Z − Zn‖
2
g = Ig,Z−Zn ≤ Ĩg,Z−Zn

=

∫ T

0
dsE

(

‖(Z − Zn)(s, ·)‖
2
L2(Rd)

)

(

sup
ξ

∫

Rd

µ(dη) |Fg(s, ξ − n)|2

)

.

Because

‖Z − Zn‖
2
L2(Rd) ≤ (‖Z‖L2(Rd) + ‖Zn‖L2(Rd))

2 ≤ 4‖Z‖2L2(Rd),

and Ĩg,Z <∞, the Dominated Convergence Theorem implies that

lim
n→∞

‖Z − Zn‖g = 0,

and therefore Z belongs to the completion of E in ‖ · ‖g. Lemma 3 is proved.

Remark 4. Lemma 3 allows us to define the stochastic integral vg,Z = g ·MZ provided g satisfies
(G1) and (G4), and Z satisfies (G5). The key property of this stochastic integral is that

E
(

‖vg,Z‖
2
L2(Rd)

)

= Ig,Z .

We now proceed with a further extension of this stochastic integral, by extending the map g 7→ vg,Z
to a more general class of g.

Fix Z ∈ P. Given a function s 7→ G(s) ∈ S ′(Rd), consider the two properties:
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(G6) For all s ≥ 0, FG(s) is a function and

∫ T

0
ds sup

ξ

∫

Rd

µ(dη) |FG(s, ξ − η)|2 <∞.

(G7) For all ψ ∈ C∞0 (Rd), sup0≤s≤T G(s) ∗ ψ is bounded on Rd.

Set

G = {s 7→ G(s) : (G6) and (G7) hold},

and

H = {s 7→ G(s) : G(s) ∈ C∞(Rd) and (G1)and (G4) hold}.

Clearly, H ⊂ G. For G ∈ G, set

‖G‖Z =
√

IG,Z .

Notice that IG,Z ≤ ĨG,Z <∞ by (G5) and (G6). By Remark 4, the map G 7→ vG,Z is an isometry
from (H, ‖·‖Z) into L

2(Ω×Rd, dP×dx). Therefore, this isometry extends to the closure of (H, ‖·‖Z)
in G.

Lemma 5. G is contained in the closure of (H, ‖ · ‖Z).

Proof. Fix s 7→ G(s) in G. Let ψn be as in the proof of Lemma 3. Set

Gn(s, ·) = G(s) ∗ ψn(·).

Then Gn(s, ·) ∈ C∞(Rd) by [20], Chap.VI, Thm.11 p.166. By (G6), FGn(s, ·) = FG(s) · Fψn is
a function, and so by (G7), (G1) holds for Gn. Because |Fψn| ≤ 1, (G4) holds for Gn because it
holds for G by (G6). Therefore, Gn ∈ H.

Observe that

‖G−Gn‖
2
Z = IG−Gn,Z

=

∫ T

0
ds

∫

Rd

dξ E(|FZ(s, ·)(ξ)|2
∫

Rd

µ(dη) |FG(s, ·)(ξ − η)|2|1−Fψn(ξ − η)|
2

The last factor is bounded by 4, has limit 0 as n→∞, and IG,Z <∞, so the Dominated Conver-
gence Theorem implies that

lim
n→∞

‖G−Gn‖Z = 0.

This proves the lemma.
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Theorem 6. Fix Z such that (G5) holds, and s 7→ G(s) such that (G6) and (G7) hold. Then the
stochastic integral vG,Z = G ·MZ is well-defined, with the isometry property

E
(

‖vG,Z‖
2
L2(Rd)

)

= IG,Z .

It is natural to use the notation

vG,Z =

∫ T

0
ds

∫

Rd

G(s, · − y)Z(s, y)M(ds, dy),

and we shall do this in the sequel.

Proof of Theorem 6. The statement is an immediate consequence of Lemma 5.

Remark 7. Fix a deterministic function ψ ∈ L2(Rd) and set

Xt =

〈

ψ,

∫ t

0

∫

Rd

G(s, · − y)Z(s, y)M(ds, dy)

〉

L2(Rd)

.

It is not difficult to check that (Xt, 0 ≤ t ≤ T ) is a (real-valued) martingale.

3 Examples

In this section, we give a class of examples to which Theorem 6 applies. Fix an integer k ≥ 1 and
let G be the Green’s function of the p.d.e.

∂2u

∂t2
+ (−1)k∆(k)u = 0. (3.1)

As in [5], Section 3, FG(t)(ξ) is easily computed, and one finds

FG(t)(ξ) =
sin(t|ξ|k)

|ξ|k
.

According to [5], Theorem 11 (see also Remark 12 in that paper), the linear s.p.d.e

∂2u

∂t2
+ (−1)k∆(k)u = Ḟ (t, x) (3.2)

with vanishing initial conditions has a process solution if and only if

∫ T

0
ds

∫

IRd

µ(dξ) |FG(s)|2 <∞,

11



or equivalently,

∫

Rd

µ(dξ)
1

(1 + |ξ|2)k
<∞. (3.3)

It is therefore natural to assume this condition in order to study non-linear forms of (3.2).

In order to be able to use Theorem 6, we need the following fact.

Lemma 8. Suppose (3.3) holds. Then the Green’s function G of equation (3.1) satisfies conditions
(G6) and (G7).

Proof. We begin with (G7). For ψ ∈ C∞0 (Rd),

‖G(s) ∗ ψ‖L∞(Rd) ≤ ‖F(G(s) ∗ ψ)‖L1(Rd) =

∫

Rd

| sin(s|ξ|k)|

|ξ|k
|Fψ(ξ)| dξ

≤ s

∫

Rd

|Fψ(ξ)| dξ <∞,

so (G7) holds.

Turning to (G6), we first show that

〈χξGd,k,Γ〉 =

〈

1

(1 + |ξ − ·|2)k
, µ

〉

, (3.4)

where

0 ≤ Gd,k(x) =
1

γ(k)

∫ ∞

0
e−uuk−1p(u, x) du,

γ(·) is Euler’s Gamma function and p(u, x) is the density of a N(0, uI)− random vector (see [19],
Section 5). In particular,

FGd,k(ξ) =
1

(1 + |ξ|2)k
,

and it is shown in [7] and [19] that

〈Gd,k,Γ〉 = 〈(1 + | · |
2)−k, µ〉, (3.5)

and the right-hand side is finite by (3.3). However, the proofs in [19] and [7] use monotone conver-
gence, which is not applicable in presence of the oscillating function χξ. As in [7], because e−t|·|2

has rapid decrease,

〈

e−t|·|2

(1 + |ξ − ·|2)k
, µ

〉

=

〈

F

(

e−t|·|2

(1 + |ξ − ·|2)k

)

,Fµ

〉

= 〈p(t, ·) ∗ (χξGd,k),Γ〉.

12



Notice that Gd,k ≥ 0, and so

|p(t, ·) ∗ (χξGd,k)| ≤ p(t, ·) ∗Gd,k ≤ eTGd,k

by formula (5.5) in [19], so we can use monotone convergence in the first equality below and the
Dominated Convergence Theorem in the third equality below to conclude that

〈

1
(1+|ξ−·|2)k

, µ
〉

= limt↓0

〈

e−t|·|2

(1+|ξ−·|2)k
, µ
〉

= limt↓0〈p(t, ·) ∗ (χξGd,k)),Γ〉

= 〈limt↓0(p(t, ·) ∗ (χξGd,k)),Γ〉 = 〈χξGd,k,Γ〉,

which proves (3.4). Because Gd,k ≥ 0,

sup
ξ
〈χξGd,k,Γ〉 ≤ 〈Gd,k,Γ〉 <∞ (3.6)

by (3.5) and (3.3). The lemma is proved.

4 A non-linear s.p.d.e

Let α : R → R be a Lipschitz function such that α(0) = 0, so that there is a constant K > 0 such
that for u, u1, u2 ∈ R,

|α(u)| ≤ K|u| and |α(u1)− α(u2)| ≤ K|u1 − u2|. (4.1)

Examples of such functions are α(u) = u, α(u) = sin(u), or α(u) = 1− e−u.

Consider the non-linear s.p.d.e.

∂2

∂t2
u(t, x) + (−1)k∆(k)u(t, x) = α(u(t, x))Ḟ (t, x), (4.2)

u(0, x) = v0(x),
∂

∂t
u(0, x) = ṽ0(x)

where v0 ∈ L
2(Rd) and ṽ0 ∈ H

−k(Rd), the Sobolev space of distributions such that

‖ṽ0‖
2
H−k(Rd)

def
=

∫

Rd

dξ
1

(1 + |ξ|2)k
|F ṽ0(ξ)|

2 <∞.

We say that a process (u(t, ·), 0 ≤ t ≤ T ) with values in L2(Rd) is a solution of (4.2) if, for all
t ≥ 0, a.s.,

u(t, ·) =
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0 +

∫ t

0

∫

Rd

G(t− s, · − y)α(u(s, y))M(ds, dy), (4.3)

where G is the Green’s function of (3.1). The third term is interpreted as the stochastic integral
from Theorem 6, so (u(s, ·)) must be adapted and mean-square continuous from [0, T ] into L2(Rd).

13



Theorem 9. Suppose that (3.3) holds. Then equation (4.2) has a unique solution (u(t, ·), 0 ≤ t ≤
T ). This solution is adapted and mean-square continuous.

Proof. We will follow a standard Picard iteration scheme. Set

u0(t, ·) =
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0.

Notice that v0(t, ·) ∈ L
2(Rd). Indeed,

∥

∥

∥

∥

d

dt
G(t) ∗ v0

∥

∥

∥

∥

L2(Rd)

=

∥

∥

∥

∥

F
d

dt
G(t) · Fv0

∥

∥

∥

∥

L2(Rd)

=

∫

Rd

sin2(t|ξ|k)|Fv0(ξ)|
2dξ (4.4)

≤ ‖v0‖L2(Rd),

and one checks similarly that ‖G(t) ∗ ṽ0‖L2(Rd) ≤ ‖ṽ‖H−k . Further, t 7→ u0(t, ·) from [0, T ] into

L2(Rd) is continuous. Indeed,

lim
t→s

∥

∥

∥

∥

d

dt
G(t) ∗ v0 −

d

dt
G(s) ∗ v0

∥

∥

∥

∥

L2(Rd

= 0,

as is easily seen by proceeding as in (4.4) and using dominated convergence. Similarly,

lim
t→s

‖G(t) ∗ ṽ0 −G(s) ∗ ṽ0‖ = 0.

For n ≥ 0, assume now by induction that we have defined an adapted and mean-square continuous
process (un(s, ·), 0 ≤ s ≤ T ) with values in L2(Rd), and define

un+1(t, ·) = u0(t, ·) + vn+1(t, ·), (4.5)

where

vn+1(t, ·) =

∫ t

0

∫

Rd

G(t− s, · − y)α(vn(s, g))M(ds, dy). (4.6)

We note that (α(un(s, ·)), 0 ≤ s ≤ T ) is adapted and mean-square continuous, because by (4.1),

‖α(un(s, ·))− α(un(t, ·))‖L2(Rd) ≤ K‖un(s, ·)− un(t, ·)‖L2(Rd),

so the stochastic integral in (4.6) is well-defined by Lemma 8 and Theorem 6.

Set

J(s) = sup
ξ

∫

Rd

µ(dη) |FG(s, ·)(ξ − η)|2. (4.7)

14



By (3.3), (3.5) and (3.6), sup0≤s≤T J(s) is bounded by some C < ∞, so by Theorem 6 and using
(4.1),

E(‖un+1(t, ·)‖
2
L2(Rd)) ≤ 2‖u0(t, ·)‖

2
L2(Rd) + 2

∫ t

0
dsE(‖α(un(s, ·))‖

2
L2(Rd))J(t− s)

≤ 2‖u0(t, ·)‖
2
L2(Rd) + 2KC

∫ t

0
dsE(‖un(s, ·)‖

2
L2(Rd)). (4.8)

Therefore, un+1(t, ·) takes its values in L2(Rd). By Lemma 10 below, (un+1(t, ·), 0 ≤ t ≤ T ) is
mean-square continuous and this process is adapted, so the sequence (un, n ∈ N) is well-defined.
By Gronwall’s lemma, we have in fact

sup
0≤t≤T

sup
n∈N

E(‖un(t, ·)‖
2
L2(Rd)) <∞.

We now show that the sequence (un(t, ·), n ≥ 0) converges. Let

Mn(t) = E(‖un+1(t, ·)− un(t, ·)‖
2
L2(Rd)).

Using the Lipschitz property of α(·), (4.5) and (4.6), we see that

Mn(t) ≤ KC

∫ t

0
dsMn−1(s).

Because sup0≤s≤T M0(s) <∞, Gronwall’s lemma implies that

∞
∑

n=0

Mn(t)
1/2 <∞.

In particular, (un(t, ·), n ∈ N) converges in L2(Ω × Rd, dP × dx), uniformly in t ∈ [0, T ], to a
limit u(t, ·). Because each un is mean-square continuous and the convergence is uniform in t,
(u(t, ·), 0 ≤ t ≤ T ) is also mean-square continuous, and is clearly adapted. This process is easily
seen to satisfy (4.3), and uniqueness is checked by a standard argument.

The following lemma was used in the proof of Theorem 9.

Lemma 10. Each of the processes (un(t, ·), 0 ≤ t ≤ T ) defined in (4.5) is mean-square continuous.

Proof. Fix n ≥ 0. It was shown in the proof of Theorem 9 that t 7→ u0(t, ·) is mean-square
continuous, so we establish this property for t 7→ vn+1(t, ·), defined in (4.6). Observe that for
h > 0,

E(‖vn+1(t+ h, ·)− vn+1(t, ·)‖
2
L2(Rd)) ≤ 2(I1 + I2),
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where

I1 = E

(

∥

∥

∥

∥

∫ t+h

t

∫

Rd

G(t+ h− s, · − y)α(un(s, y))M(ds, dy)

∥

∥

∥

∥

2

L2(Rd)

)

,

I2 = E

(

∥

∥

∥

∥

∫ t

0

∫

Rd

(G(t+ h− s, · − y)−G(t− s, · − y))α(un(s, y))M(dsdy)

∥

∥

∥

∥

2

L2(Rd)

)

.

Clearly,

I1 ≤ K2

∫ t+h

t
dsE(‖un(s, ·)‖

2
L2(Rd))J(t+ h− s),

while

I2 =

∫ t

0
ds

∫

Rd

dξ |F(α(un(s, ·)))(ξ)|
2

∫

Rd

µ(dη)

(

sin(t+ h− s)|ξ − η|k)− sin((t− s)|ξ − η|k)

|ξ − η|k

)2

.

The squared ratio is no greater than

4

(

sin(h|ξ − η|k)

|ξ − η|k

)2

≤
C

(1 + |ξ − η|2)k
.

It follows that I2 converges to 0 as h→ 0, by the dominated convergence theorem, and I1 converges
to 0 because the integrand is bounded. This proves that t 7→ vn+1(t, ·) is mean-square right-
continuous, and left-continuity is proved in the same way.

5 The wave equation in weighted L2-spaces

In the case of the wave equation (set k = 1 in (4.2)), we can consider a more general class of
non-linearities α(·) than in the previous section. This is because of the compact support property
of the Green’s function of the wave equation.

More generally, in this section, we fix T > 0 and consider a function s 7→ G(s) ∈ S ′(Rd) that
satisfies (G6), (G7) and, in addition,

(G8) There is R > 0 such that for 0 ≤ s ≤ T , supp G(s) ⊂ B(0, R).

Fix K > d and let θ : Rd → R be a smooth function for which there are constants 0 < c < C such
that

c(1 ∧ |x|−K) ≤ θ(x) ≤ C(1 ∧ |x|−K).

The weighted L2-space L2
θ is the set of measurable f : Rd → R such that ‖f‖L2

θ
<∞, where

‖f‖2L2
θ
=

∫

Rd

f2(x)θ(x) dx.
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Let Hn = {x ∈ Rd : nR ≤ |x| < (n+ 1)R}, set

‖f‖L2(Hn) =

(∫

Hn

f2(x) dx

)1/2

,

and observe that there are positive constants, which we again denote c and C, such that

c

∞
∑

n=0

n−K‖f‖2L2(Hn) ≤ ‖f‖
2
L2
θ
≤ C

∞
∑

n=0

n−K‖f‖2L2(Hn). (5.1)

For a process (Z(s, ·), 0 ≤ s ≤ T ), consider the following hypothesis:

(G9) For 0 ≤ s ≤ T , Z(s, ·) ∈ L2
θ a.s., Z(s, ·) is Fs-measurable, and s 7→ Z(s, ·) is mean-square

continuous from [0, T ] into L2
θ.

Set

Eθ = {Z : (G9) holds, and there is K ⊂ Rd compact such
that for 0 ≤ s ≤ T, suppZ(s, ·) ⊂ K}.

Notice that for Z ∈ Eθ, Z(s, ·) ∈ L
2(Rd) because θ(·) is bounded below on K by a positive constant,

and for the same reason, s 7→ Z(s, ·) is mean-square continuous from [0, T ] into L2(Rd). Therefore,

vG,Z =

∫ T

0

∫

Rd

G(s, · − y)Z(s, y)M(ds, dy)

is well-defined by Theorem 6.

Lemma 11. For G as above and Z ∈ Eθ, vG,Z ∈ L
2
θ a.s. and

E(‖vG,Z‖
2
L2
θ
) ≤

∫ T

0
ds ‖Z(s, ·)‖2L2

θ
J(s),

where J(s) is defined in (4.7).

Proof. We assume for simplicity that R = 1 and K is the unit ball in Rd. Set D0 = H0 ∪H1 and,
for n ≥ 1, set Dn = Hn−1 ∪Hn ∪Hn+1 and Zn(s, ·) = Z(s, ·)1Dn(·). By (5.1), then (G8),

‖vG,Z‖
2
L2
θ
≤

∞
∑

n=0

n−K‖vG,Z‖
2
L2(Hn) =

∞
∑

n=0

n−K‖vG,Zn‖
2
L2(Hn)

≤
∞
∑

n=0

n−K‖vG,Zn‖
2
L2(Rd).
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Therefore, by Theorem 6,

E(‖vG,Z‖
2
L2
θ
≤

∞
∑

n=0

n−K

∫ T

0
dsE(‖Zn(s, ·)‖

2
L2(IRd))J(s)

=

∞
∑

n=0

n−K

∫ T

0
dsE(‖Z(s, ·)‖2L2(Dn))J(s)

≤ C

∫ T

0
ds

∞
∑

n=0

n−K E(‖Z(s, ·)‖2L2(Hn))J(s)

≤ C

∫ T

0
dsE(‖Z(s, ·)‖2L2

θ
)J(s).

This proves the lemma.

For a process (Z(s, ·)) satisfying (G9), let ‖Z‖θ = (IθG,Z)
1
2 , where

IθG,Z =

∫ T

0
ds ‖Z(s, ·)‖2L2

θ
J(s).

Because s 7→ ‖Z(s, ·)‖2
L2
θ

is bounded, IθG,Z < ∞ provided (G6) holds. Therefore, ‖Z‖θ defines a

norm, and by Lemma 11, Z 7→ vG,Z from Eθ into L2(Ω×Rd, dP × θ(x)dx) is continuous. Therefore
this map extends to the closure of Eθ for ‖ · ‖θ, which we now identify.

Theorem 12. Consider a function s 7→ G(s) ∈ S ′(Rd) such that (G6), (G7) and (G8) hold. Let
(Z(s, ·), 0 ≤ s ≤ T ) be an adapted process with values in L2

θ that is mean-square continuous from
[0, T ] into L2

θ. Then Z is in the closure of Eθ for ‖ · ‖θ, and so the stochastic integral vG,Z is
well-defined, and

E(‖vG,Z‖
2
L2
θ
) ≤ IθG,Z . (5.2)

Proof. Set Zn(s, ·) = Z(s, ·)1[−n,n]d(·). Then (Zn) satisfies (G9) and belongs to Eθ. Because

‖Zn(s, ·)‖L2
θ
≤ ‖Z(s, ·)‖L2

θ
and IθG,Z < ∞, the dominated convergence theorem implies that

limn→∞ ‖Z − Zn‖θ = 0, so Z is in the closure of Eθ for ‖ · ‖θ, and (5.2) holds by Lemma 11.

We now use this result to obtain a solution to the following stochastic wave equation:

∂2

∂t2
u(t, x)−∆u(t, x) = α(u(t, x))Ḟ (t, y), (5.3)

u(0, x) = v0(x),
∂u

∂t
(0, x) = ṽ0(x).
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We say that a process (u(t, ·), 0 ≤ t ≤ T ) with values in L2
θ is a solution of (5.3) if (u(t, ·)) is

adapted, t 7→ u(t, ·) is mean-square continuous from [0, T ] into L2
θ and

u(t, ·) =
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0 +

∫ t

0

∫

Rd

G(t− s, · − y)α(u(s, y))M(ds, dy), (5.4)

where G is the Green’s function of the wave equation. In particular, FG(s)(ξ) = |ξ|−1 sin(t|ξ|) and
(G6), (G7) and (G8) hold provided (3.3) holds with k = 1. Therefore, the stochastic integral in
(5.4) is well-defined by Theorem 12.

Theorem 13. Suppose

∫

Rd

µ(dξ)
1

1 + |ξ|2
<∞,

v0 ∈ L2(Rd), ṽ0 ∈ H−1(Rd), and α(·) is a globally Lipschitz function. Then (5.3) has a unique
solution in L2

θ.

Proof. The proof follows that of Theorem 9, so we only point out the changes relative to the proof
of that theorem. Because α(·) is globally Lipschitz, there is K > 0 such that for u, u1, u2 ∈ R,

|α(u)| ≤ K(1 + |u|) and |α(u1)− α(u2)| ≤ K|u1 − u2|.

Using the first of these inequalities, (4.8) is replaced by

E(‖un+1(t, ·)‖
2
L2
θ
) ≤ 2‖u0(t, ·)‖L2(Rd) + 2KC

∫ t

0
ds (1 + E(‖un(s, ·)‖

2
L2
θ
)).

Therefore un+1(t, ·) takes its values in L2
θ. The remainder of the proof is unchanged, except that

‖ · ‖L2(Rd) must be replaced by ‖ · ‖L2
θ
. This proves Theorem 13.
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