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Abstract Two different problems are studied: (1) For an infinite locally finite connected graph
G, let pc(G) be the critical value for the existence of an infinite cluster in iid bond percolation
on G and let Pc = sup{pc(G) : G transitive, pc(G) < 1}. Is Pc < 1?

(2) Let G be transitive with pc(G) < 1, let p ∈ [0, 1] and let X and Y be iid bond percolations
on G with retention parameters (1 + p)/2 and (1− p)/2 respectively. Is there a q < 1 such that
p > q implies that for any monotone coupling (X̂, Ŷ ) of X and Y the edges for which X̂ and
Ŷ disagree form infinite connected component(s) with positive probability? Let pd(G) be the
infimum of such q’s (including q = 1) and let Pd = sup{pd(G) : G transitive, pc(G) < 1}. Is the
stronger statement Pd < 1 true? On the other hand: Is it always true that pd(G) > pc(G)?

It is shown that if one restricts attention to biregular planar graphs G then these two problems
can be treated in a similar way and all the above questions are positively answered. We also
give examples to show that if one drops the assumption of transitivity, then the answer to the
above two questions is no. Furthermore it is shown that for any bounded-degree bipartite graph
G with pc(G) < 1 one has pc(G) < pd(G).

Problem (2) arises naturally from [6] where an example is given of a coupling of the distinct
plus- and minus measures for the Ising model on a quasi-transitive graph at super-critical inverse
temperature. We give an example of such a coupling on the r-regular tree, Tr , for r ≥ 2.
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1 Introduction

Let G = (V,E) be an infinite locally finite connected graph. (For the rest of this paper all
graphs are assumed to have these properties if nothing else is explicitly stated.) Let pc(G) be
the critical value for the existence of an infinite cluster for iid bond percolation on G. Then for
any p ∈ [0, 1] one can design G (e.g. by considering a properly chosen spherically symmetric tree,
see e.g. [9]) in such a way that pc(G) = p. In particular one can have pc(G) < 1 but arbitrarily
close to 1. An example of a sequence {Gn} of graphs such that pc(Gn) < 1 and pc(Gn) ↑ 1
is constructed by letting Gn be a binary tree with each edge replaced by an path of length n.
However, if G is required to be transitive, i.e. if the automorphism group of G acts transitively
on V , then this does not seem to be the case. We have

Conjecture 1.1 Let Pc = sup{pc(G) : G transitive, pc(G) < 1}. Then Pc < 1.

This was first stated by Olle Häggström (private communication). (One should note that there
are of course transitive graphs G with pc(G) = 1 even with arbitrarily high degree.)

We shall prove Conjecture 1.1 for a large class of planar graphs, i.e. graphs which can be
embedded in the plane in such a way that no two edges cross. From now on we assume that
a planar graph is embedded in such a way. For a planar graph G its planar dual is the planar
(multi)graph G† = (V †, E†) where V † is the set of faces of G and two faces are joined by an
edge in E† precisely when they share an edge in E. Note that when the minimal degree in G is
at least 3 then G† is a graph. A graph G is said to be regular if all its vertices have the same
degree and in this case we denote the common degree by dG. If G is planar and regular and
such that G† is also regular then we say that G is biregular. In this case G is also transitive, see
[8]. We will prove:

Theorem 1.2 Let P plb
c = sup{pc(G) : G planar and biregular, pc(G) < 1}. Then P plb

c ≤√
5/(1 +

√
5).

The proof is given in Section 3.

Let us now for a while turn to the second question of this paper. van den Berg [3] introduced the
concept of disagreement percolation as a tool to prove Gibbsian uniqueness for Markov random
fields: If X1 and X2 are picked independently according to two Gibbs measures µ1 and µ2 for
the same specifications of a Markov random field on SV , where S is some finite set, and P (G
contains an infinite connected component of vertices where X1 and X2 disagree) = 0, then
µ1 = µ2. Later van den Berg and Maes [4] extended this to certain dependent couplings. One
may perhaps be tempted to believe that the result in fact holds for any coupling of X1 and X2.
However as is shown by Häggström [6], thereby confirming a conjecture of Steif, this is not true:
One can find a G and a temperature such that the Ising model on G at that temperature has
multiple Gibbs measures and a coupling (X̂1, X̂2) of X1 and X2, where these are distributed
according to the minus- and plus Gibbs states respectively, such that there is a.s. no infinite
cluster of disagreements between X̂1 and X̂2. The graph G on which this example is constructed
is not transitive, however; it is quasi-transitive, i.e. the action of the automorphism group on V
partitions V into finitely many orbits. (In fact two orbits in this case.) Thus one may still ask if
Steif’s conjecture is false for transitive graphs. The answer to this also turns out to be no. We
show:
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Theorem 1.3 Let r ≥ 2, let G = Tr, the r + 1-regular tree and let βc be the critical inverse
temperature for the existence of multiple Gibbs mesures for the Ising model on G. Then there
exists βd > βc such that for all β ∈ (βc, βd) there is a coupling (X̂1, X̂2) of X1 and X2 (defined
on a probability space with underlying probabilty measure P ), where X1 and X2 are distributed
according to the minus- and plus Gibbs measures respectively, such that P (there exists an infinite
connected component of disagreements between X̂1 and X̂2) = 0.

An example that proves Theorem 1.3 is given in Section 5.

In light of Theorem 1.3 many questions arise naturally. For example: Could Tr be replaced
by any transitive graph G with pc(G) < 1? Could β be arbitrarily large or must it be close
to βc? Is the set of β’s for which such a coupling exists an interval? What if one considers
Potts models with more than two different spins? Could one replace Tr by the integer lattice
Z

d? However, when considering questions of this sort there is no particular reason to restrict
oneself to Ising/Potts models. Indeed one could ask these or similar questions about virtually
any percolation process. However in order to make the problems precise one has to choose a
model to work with. We shall instead of working with the Ising/Potts model make what seems
the most natural choice and use the “cleanest” percolation process as our testing ground, namely
iid (bond) percolation. We shall ask:

• Is there a graph G for which for any p ∈ [0, 1], iid (bond) percolation with retention
parameter (1 + p)/2 can be coupled to iid percolation with retention parameter (1 − p)/2
with a.s. no infinite cluster of disagreement?

and the natural reverse question:

• If (1 + p)/2 − (1 − p)/2 = p < pc(G) then by coupling the two processes via independent
edge-wise maximal couplings, there will a.s. be no disagreement percolation. Is there any
G for which this is indeed the best one can do?

In the second case it is not hard to see that for many G one can do better than just edge-wise
maximal couplings. For example when G = T2, the binary tree, one can by dividing the edges
into properly chosen “families” construct a coupling without disagreement percolation even when
p is slightly larger than 3/4 (indeed, as it turns out the coupling in Section 5 is more or less a
coupling of this kind, but for site percolation) and as we shall see below that this idea works in
much larger generality.

We believe that the answers to the two questions are no in general, as long as we stick to “nice
enough” graphs:

Conjecture 1.4 If G is transitive and pc(G) < 1 then there exists a q < 1 such that if
p > q then any coupling of iid-percolation(p) with iid-percolation(1-p) produces with positive
probability an infinite cluster of disagreements. Moreover, with pd(G) being the infimum of such
q′s (including q = 1) and Pd = sup{pd(G) : G transitive, pc(G) < 1}, we have Pd < 1.

On the other hand, if G is any bounded-degree graph with pc(G) < 1, then pd(G) > pc(G).
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If we drop the assumption of transitivity, then the first part of the conjecture is false. Indeed
in Section 4 we give a counterexample where G has pc(G) = 0 and pd(G) = 1. For the second
part with the assumption of bounded degree dropped we do not know the answer. In Section
4 we also prove the following partial confirmation of Conjecture 1.4. Before stating it we need
the definition of a bipartite graph: The graph G = (V,E) is said to be bipartite if V can
be partitioned into Vo ∪ Ve, the sets of odd vertices and even vertices respectively, such that
u ∈ Vo, (u, v) ∈ E ⇒ v ∈ Ve and u ∈ Ve, (u, v) ∈ E ⇒ v ∈ Vo. Note that a graph is bipartite iff
all its cycles are of even length. This applies to many of the commonly studied graphs, e.g. Zd,
the hexagonal lattice and all trees (but not to the triangular lattice though).

Theorem 1.5 (a) Let G be planar and biregular with pc(G) < 1. Then pd(G) < 1. Moreover,
with P plb

d = sup{pd(G) : G planar and biregular, pc(G) < 1}, we have P plb
d < 1.

(b) Let G be a bounded-degree bipartite graph with pc(G) < 1. Then pd(G) > pc(G).

2 Preliminaries

The (egde-)isoperimetric constant of a graph G = (V,E) is defined as

κ(G) = inf{|∂EW |
|W | : W ⊂ V, |W | < ∞}

where ∂EW is the outer edge boundary of W , i.e. the set of edges with one endpoint in W and
one endpoint in V \ W . If κ(G) = 0 then G is said to be amenable and if κ(G) > 0 then G is
said to be nonamenable.

When G is transitive we have from [1] that κ(G) coincides with

κ′(G) = lim inf
N→∞

{|∂EW |
|W | : W connected, N < |W | < ∞}.

In general we have κ(G) ≤ κ′(G). If G is nonamenable then pc(G) < 1. Indeed, Benjamini and
Schramm [2] show that:

Lemma 2.1 pc(G) ≤ 1/(1 + κ′(G)).

We will use this along with the following formula from [8] (Theorem 4.1):

Lemma 2.2 Let G be planar and biregular with dual G† and assume that dG† < ∞. Then

κ(G) = (dG − 2)

√
1 − 4

(dG − 2)(dG† − 2)
.

In case G† is not regular the formula of Lemma 2.2 has no meaning. We believe that if dG† is
replaced with the harmonic average of the numbers of edges of the dG different faces of G that
any vertex of G is incident to, then the formula still holds or at least is not far from the truth.
Unfortunately we do not know how to prove such a result and this is the reason for restricting
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ourselves to planar biregular graphs instead of all planar transitive graphs in Theorems 1.2 and
1.5(a). If our belief holds then these theorems would extend in a straightforward way to the
class of all planar transitive graphs.

We will also need the following result of Kesten [11]:

Lemma 2.3 Let G be a regular graph and for n = 1, 2, . . . and v ∈ V , let Cn(v) be the number
of connected subsets of n vertices that contain v. Then

Cn(v) ≤ (edG)n.

Finally before moving on to the main sections we need to introduce the concept of stochastic
domination. Let (S,S) be some measurable partially ordered space. An event A ∈ S is said to
be increasing if x ∈ A,x ≤ y ⇒ y ∈ A. If µ and ν are two probability measures on S then we
say that µ is stochastically dominated by ν if µ(A) ≤ ν(A) for every increasing event A and
in this case we write µ ≤d ν. If X and Y are S-valued random variables distributed to µ and
ν respectively, then we say that X is stochastically dominated by Y and write X ≤d Y . By
Strassen’s Theorem µ ≤d ν is equivalent to the existence of a coupling (X̂, Ŷ ) of X and Y such
that X ≤ Y a.s.

3 Maximality of pc(G)

Proof of Theorem 1.2. In order to prove Theorem 1.2 we first take care of the cases when
dG† = ∞, i.e. when G is a regular tree. Then if dG = 2 we have pc(G) = 1 and if dG ≥ 3 then
κ(G) = dG − 2 and pc(G) = 1/(dG − 1) as is well known.

Assume second that 7 ≤ dG† < ∞. Then by Lemma 2.2 we have

κ(G) = (dG − 2)

√
1 − 4

(dG − 2)(dG† − 2)
≥ 1/

√
5

and so by Lemma 2.1, pc(G) ≤ √
5/(1 +

√
5).

If dG† ∈ {5, 6} and dG ≥ 4 then again by Lemma 2.2, κ(G) ≥ 2/
√

3 so that pc(G) ≤ √
3/(2+

√
3).

For dG† = 4 and dG ≥ 5 we get similarly that κ(G) ≥ √
3 and pc(G) ≤ 1/(1 +

√
3) and for

dG† = 3 and dG ≥ 7 we get κ(G) ≥ √
5 and pc(G) ≤ 1/(1 +

√
5).

The only remaining cases are now the square, triangular and hexagonal lattices for which pc(G)
is 1/2, 2 sin(π/18) and 1 − 2 sin(π/18) respectively. (Note that if dG = 3 and dG† ≤ 5 or vice
versa then G is finite.)

Summarizing we have seen that P plb
c ≤ √

5/(1 +
√

5) < 0.7, proving Theorem 1.2. 2

Remark. By considering all “standard” examples of nonamenable transitive graphs it is easy
to believe that if one puts K = inf{κ(G) : G transitive and nonamenable}, then K > 0. In
light of Lemma 2.1 this would then have implied an analog to Theorem 1.2 for the class of all
nonamenable transitive graphs. However it turns out that K = 0. This was recently established
by Grigorchuk and de la Harpe [5] who construct a sequence {Gn} of nonamenable Cayley
graphs such that κ(Gn) ↓ 0. The sequence {Gn} is of course a candidate for a counterexample
to Conjecture 1.1. However we believe, but do not know how to prove, that infn pc(Gn) > 0.
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4 Disagreement percolation

4.1 Proof of Theorem 1.5(a)

Let G = (V,E) be a graph and let X and Y be bond percolations on G with retention parameters
(1 + p)/2 and (1 − p)/2 respectively. We saw in the proof of Theorem 1.2 above that if G is
any planar biregular graph other than the square, triangular or hexagonal lattice, then G is
nonamenable with κ(G) ≥ 1/

√
5. Indeed Lemma 2.2 tells us that for all these graphs we have

κ(G) ≥ κ0dG where κ0 = (3
√

5)−1. Now let (X̂, Ŷ ) be an arbitrary coupling of X and Y with
underlying probability measure P . Fix a positive integer m and a connected set K ⊂ V with
|K| = m. In order for no vertex v ∈ K to be in an infinite cluster of disagreements between X̂
and Ŷ there must be some positive integer n and some connected W ⊂ V such that |W | = n,
W ⊇ K and such that X̂ and Ŷ agree on every edge of ∂EW . However

P (X̂(∂EW ) ≡ Ŷ (∂EW )) ≤ P (|X̂(∂EW )| ≤ n/2) + P (|Ŷ (∂EW )| ≥ n/2)

= 2P (|X̂(∂EW )| ≤ n/2).

Since |X̂(∂EW )| has a binomial distribution with parameters |∂EW | and p, a standard tail
estimate in the binomial distribution yields for some constant C (depending on p)

P (X̂(∂EW ) ≡ Ŷ (∂EW )) ≤ 2C
(

n

bn/2c
)

2−n(1 + p)dn/2e(1 − p)bn/2c

≤ 2C(1 − p2)n/2.

Summing over n and all W ’s with |W | = n, using Lemma 2.3 applied with v being any vertex
of K, we get

P (No v ∈ K is in an infinite cluster of disagreements between X̂ and Ŷ )

≤ 2C
∞∑

n=m

(edG)n((1 − p2)κ0dG/2)n

which is less than 1 for large enough m as soon as

edG(1 − p2)κ0dG/2 < 1

i.e. as soon as
p2 ≥ 1 − 1

(edG)2/(κ0dG)
= 1 − 1

(edG)6
√

5/dG
.

The “worst case” is when dG = 3 in which case we get that pd(G) is bounded above by√
1 − 1

(3e)2
√

5

which is less than 0.9999581.

(Note also that as dG → ∞ we get that pd(G) = O(
√

log dG/dG) which can be compared to the
bound given on pc(G) by Lemma 2.1 and Lemma 2.2: pc(G) = O(1/dG).)
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Now assume that G is one of the square lattice, the triangular lattice and the hexagonal lattice.
In each of these case we have dG† ≤ 6, so for each integer n the number of cutsets (i.e. edge
boundaries of finite connected subsets of V containing K) of size n is bounded by n5n. By using
the same arguments as above we get that

P (No v ∈ K is in an infinite cluster of disagreements between X̂ and Ŷ )

≤ 2
∞∑

n=m

n5n((1 − p2)1/2)n

which is less than 1 for large enough m as soon as

p ≥
√

24
5

.

Thus pd(G) ≤ √
24/5 < 0.9798. Theorem 1.5(a) follows with P plb

d < 0.9999581. 2

4.2 A non-transitive counterexample

Now we shall drop the assumption of transitivity and see that we can construct a G with pc(G) =
0 such that X and Y can for any p be coupled without an infinite cluster of disagreements.

A graph G is said to be a spherically symmetric tree if it is a tree and if for some vertex v ∈ V
it is the case that for every positive integer n all vertices at graphical distance n from v have
the same degree. The vertex v is called a root of G. Now let G be a spherically symmetric tree
specified in the following way: Let a vertex o, which is to be the root, have degree 3. Let dn be
the degree of vertices at distance n from o and let

{d1, d2, d3, . . .}
= {3, 2, 4, 4, 2, 2, 5, 5, 5, 2, 2, 2, 6, 6, 6, 6, 2, 2, 2, 2, 7, 7, 7, 7, 7, 2, 2, 2, 2, 2, . . .}.

Then a simple branching process argument shows that pc(G) = 0. However, all infinite connected
paths in G contain arbitrarily long induced paths, i.e. paths containing only vertices of degree
2. For a given p let N be the smallest integer such that ((1 + p)/2)N ≤ 1/2 and assume for
simplicity that ((1 + p)/2)N = 1/2. Now for an edge e not in an induced path containing
at least N edges, let (X̂(e), Ŷ (e)) be independent of (X̂(E \ {e}), Ŷ (E \ {e})) and such that
X̂(e) ≥ Ŷ (e). For an induced path W containing at least N edges, let E(W ) be its set of
edges and let E(W ) = E1 ∪ E2 where E1 consists of the N edges that are nearest to o and
E2 = E(W )\E1. For e ∈ E2, couple X̂(e) and Ŷ (e) independently of all other edges like for the
edges not in long induced paths above. For E1, let X̂(E1) ≡ 1 iff Ŷ (E1) 6≡ 0. This is possible
since ((1 + p)/2)N = 1/2. Couple all induced paths containing at least N edges independently
of each other in this way. Now since each such induced path contains at least one edge for which
X̂(e) = Ŷ (e) it follows that no infinite cluster of disagreements can exist.

Finally if ((1 + p)/2)N < 1/2, then minor modifications which are left to the reader yields a
monotone coupling where X̂(E1) ≡ 1 ⇒ Ŷ (E1) 6≡ 0.

Remark. The above example was constructed so that pc(G) = 0 in order to be as spectacular
as possible. This of course requires unbounded degree. If one instead wants a bounded-degree
example then an obvious modification of the above will do fine, but with 0 < pc(G) < 1.
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4.3 Proof of Theorem 1.5(b)

Let Q be the probability measure that underlies the coupling (X ′, Y ′) of X and Y via independent
edge-wise maximal couplings, i.e. for which Q(X ′(e) = Y ′(e) = 1) = Q(X ′(e) = Y ′(e) = 0) =
(1 − p)/2 and Q(X ′(e) = 1, Y ′(e) = 0) = p, independently for different edges. By letting
Z ′(e) = I{X′(e)6=Y ′(e)}, the indicator of disagreement at e, {Z ′(e)}e∈E gets exactly the distribution
of iid bond percolation(p).

Since G is assumed to be bipartite one can partition E into stars, i.e. write V = Vo∪Ve, the sets
of odd vertices and even vertices respectively, and let for each v ∈ Vo the star Sv be the subset
of E consisting of the dv edges that are incident to v. Then since G is bipartite the Sv’s are
disjoint and

⋃
v∈Vo

Sv = E. The crucial observation is now that for determining whether or not
there exists an infinite cluster for a bond percolation process on G it is not interesting to know
the states of the individual edges of a star as long as one knows which of their even end-vertices
that are connected to each other through the star. (This is not an original observation of this
paper. It was originally used by Wierman as one ingredient for determining the exact critical
value for bond percolation on the triangular and hexagonal lattices, see [12].)

Now fix some star, i.e. some v ∈ Vo, and label the edges incident to v in some order e1, e2, . . . , edv

and label their even end-vertices v1, v2, . . . , vdv accordingly. For any x,y ∈ {0, 1}Sv such that
x ≥ y we have

Q(X ′(Sv) = x, Y ′(Sv) = y)

=
dv∏

k=1

(
1 + p

2
)xk(

1 − p

2
)1−xk(

1 − p

1 + p
)yk(2p)1−yk > 0.

Let δv = minx,y∈{0,1}Sv :x≥y Q(X ′(Sv) = x, Y ′(Sv) = y). Now we make the following coupling
(X̂, Ŷ ) of X and Y (with underlying probability measure P ) by making a “cyclic adjustment”
of (X ′, Y ′): Let

P (X̂(Sv) = (1, 1, . . . , 1), Ŷ (Sv) = (0, . . . , 0)) =
Q(X ′(Sv) = (1, 1, . . . , 1), Y ′(Sv) = (0, . . . , 0)) − δv,

P (X̂(Sv) = (1, 1, . . . , 1), Ŷ (Sv) = (0, 1, . . . , 1)) =
Q(X ′(Sv) = (1, 1, . . . , 1), Y ′(Sv) = (0, 1, . . . , 1)) + δv,

P (X̂(Sv) = (0, 1, . . . , 1), Ŷ (Sv) = (0, 1, . . . , 1)) =
Q(X ′(Sv) = (0, 1, . . . , 1), Y ′(Sv) = (0, 1, . . . , 1)) − δv,

P (X̂(Sv) = (0, 1, . . . , 1), Ŷ (Sv) = (0, 0, 1, . . . , 1)) =
Q(X ′(Sv) = (0, 1, . . . , 1), Y ′(Sv) = (0, 0, 1, . . . , 1)) + δv,

P (X̂(Sv) = (0, 0, 1, . . . , 1, Ŷ (Sv) = (0, 0, 1, . . . , 1)) =
Q(X ′(Sv) = (0, 0, 1, . . . , 1, Y ′(Sv) = (0, 0, 1, . . . , 1)) − δv,

P (X̂(Sv) = (0, 0, 1, . . . , 1), Ŷ (Sv) = (0, 0, 0, 1, . . . , 1)) =
Q(X ′(Sv) = (0, 0, 1, . . . , 1), Y ′(Sv) = (0, 0, 0, 1, . . . , 1)) + δv,
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...

P (X̂(Sv) = (0, . . . , 0, 1), Ŷ (Sv) = (0, . . . , 0, 1)) =
Q(X ′(Sv) = (0, . . . , 0, 1), Y ′(Sv) = (0, . . . , 0, 1)) − δ,

P (X̂(Sv) = (0, . . . , 0, 1), Ŷ (Sv) = (0, . . . , 0)) =
Q(X ′(Sv) = (0, . . . , 0, 1), Y ′(Sv) = (0, . . . , 0)) + δ.

Do this independently for all stars Sv, v ∈ Vo.

In analogy with how Z ′ was defined, set Ẑ(e) = I{X̂(e)6=Ŷ (e)}. Again fix v ∈ Vo. For all pairs
{vi, vj} of vertices of {v1, . . . , vdv}, set U ′(vi, vj) to be the indicator of the event that vi and vj are
connected by edges e ∈ Sv for which Z ′(e) = 1 and define Û(vi, vj) correspondingly. Then by the
nature of the couplings we have that the Q-probability and the P -probability for any particular
possible outcome of the U ′(vi, vj)’s and the corresponding outcome of the Û(vi, vj)’s respectively
are the same with the exceptions that Q(U ′(vi, vj) = 1 for every i and j) = P (Û (vi, vj) = 1 for
every i and j) + δv and Q(U ′(vi, vj) = 0 for every i and j) = P (Û (vi, vj) = 0 for every i and
j) − δv . Therefore Û is stochastically dominated by U ′ in such a way that for any increasing
event A ∈ {0, 1}S

(2)
v , (where S

(2)
v is the set of subsets of order 2 of {v1, . . . , vdv}) which is not

the whole set {0, 1}S
(2)
v , we have P (Û ∈ A) ≤ Q(U ′ ∈ A) − δv .

Now observe that the probabilities for any of the outcomes discussed above are continuous as
functions of p and that the δv’s only depend on v through the degree of v so that minv∈Vo δv > 0.
It thus follows that the Û corresponding to (X̂, Ŷ ) for p′ larger than but close enough to p is
also stochastically dominated by the U ′ corresonding to (X ′, Y ′) for p and so Theorem 1.5(b)
follows from Strassen’s Theorem. 2

5 A coupling for the Ising model

5.1 Definitions and basic facts on the Ising and random-cluster models

Definition 5.1 Let G = (V,E) be a graph and let β ≥ 0. If µβ
G is a probability measure on

{−1, 1}V such that if X is a random variable with distribution µβ
G then for every finite W ⊂ V ,

every ω ∈ {−1, 1}W and a.e. ω′ ∈ {−1, 1}V \W

P (X(W ) = ω|X(V \ W ) = ω′) =
1
Z

e−2βD(ω,ω′) (5.1)

where
D(ω, ω′) =

∑
u,v∈W :(u,v)∈E

I{ω(u)6=ω(v)} +
∑

u∈W,v∈V \W :(u,v)∈E

I{ω(u)6=ω′(v)}

and Z is a normalizing constant, then µβ
G is called a Gibbs measure for the Ising model on G at

inverse temperature β.
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Gibbs measures satisfying (5.1) can be constructed by letting Wn, n = 1, 2, . . ., be finite subsets
of V such that Wn ↑ V and defining measures µβ

+,n and µβ
−,n according to (5.1) with W = Wn and

ω′ ≡ 1 and ω′ ≡ −1 respectively. It is well known that there exist weak limits µβ
+ = limn→∞ µβ

+,n

and µβ
− = limn→∞ µβ

−,n, that these limit measures satisfy (5.1) and that for every other Gibbs
measure µ satisfying (5.1) on gets µβ

− ≤d µ ≤d µβ
+. Hence there are multiple Gibbs measures

iff µβ
+ 6= µβ

−. It is also known that there exists a critical inverse temperature βc ∈ [0,∞] such
that for smaller inverse temperatures there is a unique Gibbs measure and for larger inverse
temperatures there are multiple Gibbs measures.

There is a close connection between the Ising model and the random-cluster model that we will
need.

Definition 5.2 Let p ∈ [0, 1] and q > 0 and let γp,q be a probability measure on {0, 1}E such
that if Y is a random variable with distribution γp,q then for every finite S ⊂ E, every η ∈ {0, 1}S

and a.e. η′ ∈ {0, 1}E\S

P (Y (S) = η|Y (E \ S) = η′) =
1
Z

(
∏
e∈S

pη(e)(1 − p)1−η(e))qk(η,η′) (5.2)

where k(η, η′) is the number of finite clusters in the open subgraph given by η and η′ that
intersect the set of vertices incident to at least one edge in S, and Z is a normalizing constant.
Then γp,q is called a (DLR-wired) random-cluster measure on G with parameters p and q.

Just as for the Ising model, there may be multiple random-cluster measures, see [10]. Here
however we will only be concerned with one random-cluster measure, namely γp,q

w which is the
weak limit of the sequence {γp,q

n } where these are defined by letting Sn ⊂ E be finite and such
that Sn ↑ E and defining γp,q

n according to (5.2) with S = Sn and η′ ≡ 1. (The subscript w
stands for “wired”.) Then γp,q

w satisfies (5.2), see [10] again.

The following connection between the random-cluster model and the Ising model is well known:

Lemma 5.3 For β ≥ 0, let p = 1 − e−2β . Let i ∈ {−1, 1}. Pick X ∈ {−1, 1}V by first picking
Y ∈ {0, 1}E according to γp,2

w and then for each finite cluster in the open subgraph of Y picking
a spin in {−1, 1} uniformly at random and assigning this spin to every vertex of that cluster.
Do this independently for all finite clusters. Finally assign the spin i to all vertices of infinite
clusters. Then X has distribution µβ

i . (We identify {−1, 1} with {−,+}.)

An immediate consequence of Lemma 5.3 is that µβ
+ 6= µβ

− iff µp,2
w gives rise to infinite cluster(s).

In the special case when G = Tr , it is known (see [7]) that when p/(2 − p) ≤ 1/r, i.e. when
p ≤ 2/(1 + r), then γp,2

w is just iid bond percolation with retention parameter p/(2 − p). One
consequence is that p = 2/(1+ r) is the critical value for percolation for γp,2

w and another is that
as p ↓ 2/(1 + r) the probability for a given edge to be open in a γp,2

w -configuration approaches
1/r and the probability for a given vertex to be in an infinite open cluster approaches 0. In
other words the phase transition in the corresponding Ising model is second order.
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o

Figure 1: Partitioning the vertices of T2 into families.

5.2 Proof of Theorem 1.3

For simplicity we will do the promised coupling on G = T2; the general case is analogous. Thus
1/r and 2/(1 + r) are now 1/2 and 2/3 respectively. Fix p “slightly” larger than 2/3, (where
the “slightly” will be specified below) and let β = − log(1 − p)/2 be the corresponding inverse
temperature for the Ising model and note that by Lemma 5.3 we have that µβ

+ 6= µβ
−. Fix a vertex

o ∈ V . Couple X1,X2 ∈ {−1, 1}V , where Xi is distributed according to µβ
i , in the following

way: First pick (X̂1(o), X̂2(o)) with the correct marginals in such a way that X̂1(o) ≤ X̂2(o) and
independently of all other vertices. Next partition V \ {o} into families, where each family is
formed by one vertex at odd distance from o (called the mother) together with the two neighbors
of that vertex that are one step further away from o (called the daughters). See Figure 1 for an
illustration.

Note how this in a natural way gives rise to a “super-tree” where every “vertex” (i.e. family)
but o has degree 5. Now order the families and define the coupling recursively: At each step
pick the first family in the ordering for which the coupling has not yet been specified and which
is connected to a family for which the coupling has been specified. Denote the vertices in this
family m, d1 and d2; mother, daughter 1 and daughter 2 respectively. Let m0 be the “grand-
mother”, i.e. the neighbor of m which is not d1 or d2. If X̂1(m0) = X̂2(m0) then no disagreement
percolation is possible through this family, so define the coupling in any way you like only so
that X̂1(m,d1, d2) ≤ X̂2(m,d1, d2) and independently of all other families. Assume now that
X̂1(m0) = −1 and X̂2(m0) = 1. Now if p had been exactly 2/3 then since the random-cluster
would have been iid bond percolation with retention parameter 1/2, the conditional distributions
for X̂1(m,d1, d2) and X̂2(m,d1, d2) would then by Lemma 5.3 have been:
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Outcome X̂1(m,d1, d2) X̂2(m,d1, d2)
(−1,−1,−1) 27/64 9/64
(−1,+1,−1) 9/64 3/64
(−1,−1,+1) 9/64 3/64
(−1,+1,+1) 3/64 1/64
(+1,+1,+1) 9/64 27/64
(+1,−1,+1) 3/64 9/64
(+1,+1,−1) 3/64 9/64
(+1,−1,−1) 1/64 3/64

We would then have been able to couple X̂1(m,d1, d2) and X̂2(m,d1, d2) by letting:

P ((X̂1, X̂2)(m,d1, d2) = (x,y)) =




9/64, x = y = (1, 1, 1)
3/64, x = (1,−1, 1),y = (1, 1, 1)
3/64, x = (1, 1,−1),y = (1, 1, 1)
3/64, x = (1,−1,−1),y = (1, 1, 1)
1/64, x = ((−1, 1, 1),y = (1, 1, 1)
8/64, x = (−1,−1,−1),y = (1, 1, 1)
9/64, x = (−1, 1,−1),y = (1, 1,−1)
9/64, x = (−1,−1, 1),y = (1,−1, 1)
3/64, x = (−1,−1,−1),y = (−1, 1,−1)
3/64, x = (−1,−1,−1),y = (−1,−1, 1)
3/64, x = (−1,−1,−1),y = (1,−1,−1)
1/64, x = (−1,−1,−1),y = (−1, 1, 1)
9/64, x = y = (−1,−1,−1)

The only case for which there is a path of disagreements through the family is when y = −x =
(1, 1, 1) and this case gives rise to four new families in the “super-tree” through which disagree-
ment percolation can continue. Thus the expected number of such families is 4 · 8/64 = 1/2 < 1
so that basic branching process theory tells us that the process of disagreement percolation will
a.s. die out.

However, this is what would have been had p been exactly 2/3. On the other hand, by facts
noted above, we can by letting p be larger than but close enough to 2/3 arrange things so
that none of the conditional probabilities above changes by more than, say, 1/48 no matter
what earlier couplings of other families have revealed so far. Then the above coupling does
not have to be changed by more than so that the outcome (X̂1(m,d1, d2), X̂2(m,d1, d2)) =
((−1,−1,−1), (1, 1, 1)) gets an extra probability mass of 6/48. Thus the expected number of new
families through which disagreement percolation can continue is bounded by 4(8/64 + 6/48) =
3/4 < 1 and we are still safe. This completes the desired coupling. 2

Acknowledgment. I am grateful to Olle Häggström for inspiration and valuable discussions.
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