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Introduction

This note concerns a recent work of T. Shiga ([Shi]). The following model was considered: We
are given a system of independent rate one Poisson processes on [0,∞), N = {Nx(t)}x∈Zd. We
are also given an independent simple random walk on Zd,X(t), moving at rate k and with, say,
X(0) = 0.

Of course simply by integrating out over N,X we have (taking δNX(s)(s) = NX(s)(s) −
NX(s)(s−))

∀t ≥ 0 P [∀ 0 ≤ s ≤ t δNX(s)(s) = 0] = e−t.

The problem becomes non-trivial when considering

p(t,N) = P [∀ 0 ≤ s ≤ t δNX(s)(s) = 0
∣∣N ] =

P [∀ 0 ≤ s ≤ t δNX(s)(s) = 0
∣∣N(s) s ≤ t].

It is non-trivial, but was shown in [Shi], that the random quantity p(t,N) satisfies

lim
t→∞

log p(t,N)
t

= −λ(d, k)

It was shown that as k becomes large λ tends to one in all dimensions and that in dimensions
three and higher λ is equal to one for k sufficiently large. The focus of this note is on the other
behaviour of λ(d, k): the behaviour as k → 0. It was shown in [Shi] that there existed two
constants c1, c2 ∈ (0,∞) so that

c1 < lim inf
k→0

λ(d, k)
log( 1

k )
≤ lim sup

k→0

λ(d, k)
log( 1

k )
< c2.

We wish to show

Theorem 1.0 There exists a constant α so that lim λ(d,k)

log( 1
k
)

= α.

The paper is organized as follows: in Section One we consider a ”shortest path” problem which
is easily and naturally dealt with by Liggett’s subadditive ergodic theorem (see [L]). This yield
a constant α. In Section Two we show (Corollary 2.4) that lim infk→0

λ(d,k)

log( 1
k
)
≥ α and in Section

Three we show (Corollary 3.1) lim supk→0
λ(d,k)

log( 1
k
)

≤ α, thus completing the proof of Theorem
1.0.

Both of the last two sections rely heavily on block arguments as popularized in [D], [D1].
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the area and for his generosity as host.
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paper.
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Section One

In this section we consider only the Poisson processes N . The random walk will not be directly
considered at all, though sometimes it will be implicit, as in the definition of a path below:

A path γ is a piecewise constant right continuous function with left limits

[0,∞) → Zd so that for all t ||γ(t) − γ(t−)||1 ≤ 1.

The collection of paths beginning at x ∈ Zd which avoid points in N up to time t will be denoted
by Γx,t. More formally

Γx,t =
{
γ : ∀ 0 ≤ s ≤ t δNγ(s)(s) = 0, γ(0) = x

}
.

(Again, consistent with previous notation, δNγ(s) = Nγ(s)(s) − Nγ(s)(s−).) For γ ∈
Γx,t, Sx(γ, t) =

∑
0≤s≤t Iγ(s)6=γ(s−) where I is the usual indicator function. In words S counts

the number of jumps that γ makes in time interval [0, t]. If x = 0 we suppress the suffix x.

Finally we define
α(t,N) = min{S(γ, t) : γ ∈ Γt = Γ0,t}.

Proposition 1.1 α = limt→∞ 1
tα(t,N) exists.

Proof Define random variables Xs,t for 0 ≤ s < t <∞ by

X0,t = α(t,N)

and for 0 < s < t
Xs,t = inf{S(γ, t) − S(γ, s) : γ ∈ Γt, γ(s) = xs}

where xs = min{x ∈ Zd : ∃γ ∈ Γs so that S(γ, s) = α(s,N), γ(s) = x} under any well ordering
of the points x ∈ Zd.

Then the random variables satisfy the conditions for Liggett’s subadditive ergodic theorem.
Given the ergodicity of our Poisson processes we conclude that the a.s. limit of 1

tα(t,N) is non
random.

�

We now show that the constant α of Proposition 1.1 is strcitly positive. This fact will follow
from Theorem 1.0 and the results of [Shi], however we include it for completeness and because
the argument given is a precursor to the block argument of Proposition 2.2.

Proposition 1.2 The constant α is strictly positive.

Fix ε > 0 small we shall give conditions on the smallness of ε as the proof progresses. Choose
integer L so that Lde−L < ε.

We divide up space time into cubes

V (n, r) = [n1L, (n1 + 1)L) × [n2L, (n2 + 1)L) × · · · [ndL, (nd + 1)L) × [rL, (r + 1)L).

We associate 0-1 random variables ψ(n, r) to these cubes by taking ψ(n, r) to be 1 if and only if

∀x ∈ [n1L, (n1 + 1)L) × [n2L, (n2 + 1)L) × · · · [ndL, (nd + 1)L)
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Nx((r + 1)L−) −Nx(rL) ≥ 1.

We note that the ψ random variables are i.i.d. and that, by the choice of L, the probability that
ψ(n, r) 6= 1 is < ε.

To show our result it is sufficient to show that as m tends to infinity α(mL,N) ≥ m
2 with

probability tending to one.

The trace of a path γ ∈ ΓmL is the sequence of points in Zd, ni 0 ≤ i ≤ m so that for 0 ≤ i ≤ m,

(γ(iL), iL) ∈ V (ni, iL).

The crucial observation is that for such γ, ni,

S0(γ,mL) ≥
m−1∑
i=0

ψ(ni, i)| + L

m−1∑
i=0

(||ni+1 − ni||∞ − 1
)
+

since if ψ(ni, i) = 1 then γ must make at least one jump in the time interval [iR, (i+ 1)R) and
if, furthermore

(||ni+1 − ni||∞ − 1
)
+

= f , then in this time interval γ must make more than
fL jumps.

Thus to show that α(mL,N) ≥ m
2 it suffices to show that for all {ni} with

m−1∑
i=0

(||ni+1 − ni||∞ − 1
)
+
≤ m

2L
(1)

it is the case that

{
m−1∑
i=0

ψ(ni, i)| ≥
m

2
}.

By simple large deviations arguments the probability that for any given {ni}, {
∑m−1

i=0 ψ(ni, i)| ≥
m
2 } is less than 2m(ε)

m
2 . Thus it remains only to count the number of {n} satisfying (1).

We write (for positive integer gi) A(g1, g2, · · · , gm) for the set of (n1, n2, · · ·nm) so that for
1 ≤ i ≤ m,

(||ni − ni−1||∞ − 1
)
+

= gi. We first give a crude bound on the cardinality of
A(g1, g2, · · · gn): n0 is required to be 0, after having ”chosen” n0, n1 · · ·ni−1 we have 3d choices
for ni if gi = 0, otherwise we have at most 2d(2gi + 3)d−1 choices for ni. Thus (using 2d ≤ 3d)

|A(g1, g2, · · · gm)| ≤ 3md
∏

(2gi + 3)d−1.

We may find K so that for all g, (2g + 3)d−1 ≤ K2g; we conclude that

|A(g1, g2, · · · gm)| ≤ 3mdKm2
∑m

i=1 gi ≤ Cm

for some universal C not depending on d, ε, if
∑
gi ≤ m

2L .

By elementary combinatorics the number of (g1, g2, · · · gm) so that
∑m

i=1 gi = r is
(
m+r−1

r

)
,

thus the number of (g1, g2, · · · , gm) so that
∑m

i=1 gi ≤ m
2L is less than 22m. We conclude that

the number of {ni} satisfying (1) is bounded by (4C)m. Thus the probability that α(mL,N)
exceeds m

2 is at least 1− (4C)m2m(ε)
m
2 . This tends to one as m tends to infinity provided that

ε was fixed sufficiently small.

�
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Section Two

Fix ε > 0, arbitrarily small. Given c > 0 fixed, we say that a cube [−cR, cR]d is good if
∀x ∈ [−cR, cR]d

inf
γ∈Γx,R

Sx(γ,R) ≥ R(α− ε).

Lemma 2.1 Given δ, c > 0, there exists R0 = R0(c, δ) so that for all R ≥ R0,

P
[
[−cR, cR]d is good

]
≥ 1 − δ

Proof Given ε, c, there exists k so that for any R, we can pick points

xR
1 , x

R
2 · · · xR

k/εd ∈ [−cR, cR]d so that every point of [−cR, cR]d is within Rε/10 of xR
j for at least

one j. Given this property it is clear that event

{ inf
x∈[−cR,cR]d

inf
γ∈Γx,R

S(γ,R) < R(α− ε)}

is contained in
{inf

xR
j

inf
γ∈Γ

xR
j

,R

S(γ,R) < R(α− ε/2)}

Thus we have

P
[
[−cR, cR]d is good

]
≥ 1 − k

εd
P [α(R,N) < R(α− ε/2)].

This last term is greater than 1 − δ if R is sufficiently large. �.

We have not fully specified how small we require δ to be but, conditional on this we will fix R
at a level so large that the conclusions of Lemma 2.1 hold for δ and also so that � 1

ε .

Lemma 2.2 Given c and R ≥ R0 fixed, there exists k0 > 0 so that if 0 < k ≤ k0 and cube
[−cR, cR]d is good then for any random walk X(t) starting in the cube, the chance of survival to
time R is bounded above by kR(α−2ε). More generally given c, R ≥ R0 we have for k ≤ k0 that
the chance that the random walk makes ≥ fαR jumps in time R is bounded above by kfR(α−ε).

Proof Let the starting point of X be x. By definition of α(R,N) and a cube being good we
have

P [X(·) ∈ Γx,R] ≤ P [S(X(.), R) ≥ R(α− ε)] ≤ (Rk)R(α−ε).

This latter term is less than kR(α−2ε) if k is sufficiently small. �

We choose c to equal 10(α+ 1) and divide up the lattice into cubes C(n) = 2cRn+ [−cR, cR]d.
We divide up space time into cubes D(n, i) = C(n) × [iR, (i + 1)R]. We say that D(n, i) is
good if [−cR, cR]d is good (in the old sense) after translating Poisson system (N) spatially by
2cRn and temporally by iR.
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We define random variables ψ(n, i) taking values 0 or 1 by

ψ(n, i) = 1 if D(n, i) is good.

The random variables ψ(n, i) are not independent, but it should be noted that random variables
ψ(n1, i1), ψ(n2, i2) · · ·ψ(nj , ij) are independent if the ih s are all distinct.

A v-chain β is a sequence (βj , j) j = 0, 1, · · · v − 1. We do not require that |βj+1 − βj |1 be less
than or equal to 1.

An (r − v)-chain is a sequence (βj , j) j = r, r + 1, · · · v − 1.

Given ψ we associate a score to a (r − v)-chain β by

Jv(β) =
j=v−1∑

j=r

ψ(βj , j) + 9
j=v−2∑

j=r

(|βj+1 − βj |∞ − 1)+.

Proposition 2.1 For a random walk starting at time rR in cube C(n), the chance that it
survives until time vR is bounded above by

2v−r−1 exp
(
R(α− 2ε) ln(k)min

β
Jv(β)

)

where the minimum is taken over all (r-v)-chains β with βr = n.

Proof In the proof we regard v as fixed and use induction on k = v − r. The proof follows
from induction on k. It is clearly true for k = 1 (or r = v − 1) and all n by Lemma 2.2.
Suppose that it is true for k − 1 (and all possible n) and suppose further that Xk is a random
walk starting at time R(v − k) in cube C(n). We consider the random walk over time interval
[(v − k)R, (v − k + 1)R].

P [Xk survives up to vR] =∑
m

P [Xk survives up to (v − k + 1)R,

Xk(v − k + 1)R ∈ C(m),Xk survives up to vR].

By the Markov property for Xk and induction this summation is bounded by
∑
m

P [Xk survives up to (v − k + 1)R,

Xk(v − k + 1)R ∈ C(m)](2k−2) exp(R(α− 2ε) ln(k)Jm,k−1,v
v )

where Jm,k−1,v
v is the minimum of Jv(β) over (v − k + 1) − v-chains β with βv−k+1 = m. This

in turn is majorized by
∑
f=2

P
[
Xk survives up to (v − k + 1)R,Xk((v − k + 1)R) ∈ C(m)
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with ||n −m||∞ = f
]
(2k−2) exp(R(α− 2ε) ln(k)Jf,k−1,v

v )

+
∑

||n−n′||∞≤1

P [Xr survives up to (v − k + 1)R,Xk((v − k + 1)R) ∈ C(n′)]

(2k−2) exp(R(α− 2ε) ln(k)Jn′,k−1,v
v )

for Jf,k−1,v
v the minimum of Jm,k−1,v

v over ||n−m||∞ = f . By Lemma 2.2 these two summations
are bounded by

(2k−2) exp
(
(α− 2ε)R ln(k)(ψ(n, r) + J1,k−1,v

v )
)

+

(2k−2)
∞∑

f=2

exp
(
(f − 1)10αR ln(k) + R(α− 2ε) ln(k)Jf,k−1,v

v

)

where J1,k−1,v
v is the minimum of Jm,k−1,v

v over ||n −m||∞ ≤ 1 (a slightly different definition
from that of Jf,k−1,v

v for higher f).

If R was chosen sufficiently large this is bounded by

2k−1 exp
(
R(α− 2ε) ln(k)min

β
Jv(β)

)

where the minimum is taken over all (r-v)-chains β with βr = n. �

It remains to show that as v tends to infinity Jv(β) is roughly v. It is time to properly define δ
First fix K � 3d and so that for each integer f at least 1, the number of m with ||m||∞ = f is
less than K2f−1/100.

Lemma 2.3 Given ε > 0 there exists δ so that 0 < δ < ε/100K so that if X1,X2, · · ·XN are
i.i.d. Bernoulli δ) random variables for any integer N then

P [
N∑

j=1

Xj ≥ Nε+ r) ≤ (
1

100K
)N+r.

Proposition 2.2 With probability one for all v sufficiently large

inf
β∈Jv

J(β) ≥ v(1 − 2ε)

Proof We simply count. Given our definition of J(β) we need only consider those β ∈ Jv with∑v−2
j=0(||βj+1 − βj ||∞ − 1)+ ≤ v/9. For β ∈ Jv we say the code of β is the sequence

{(||β1 − β0||∞ − 1)+ · · · (||βj+1 − βj ||∞ − 1)+ · · · (||βv−1 − βv−2||∞ − 1)+}.

For fixed code m0,m1 · · ·mv−2 with
∑
mj ≤ v/9 there are (by our choice of K) less than or

equal to Kv−1
∏j=v−2

j=0 2mi−1 possible v-chains. For any such β, Jv(β) = 9
∑
mj +

∑
ψ(βj , j)

and so
P [Jv(β) ≤ v(1 − 2ε)] ≤ P [

∑
ψ(βj , j) ≤ v(1 − 2ε) − 9

∑
mj]
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= P [
∑

(1 − ψ(βj , j)) ≥ v2ε + 9
∑

mj] ≤ (
1

100K
)v(

1
100K

)9
∑

mj .

So the probability that for some β with code m0,m1, · · ·mv−2 Jv(β) is less than or equal to
(1 − 2ε)v is bounded by

Kv
j=v−2∏

j=0

2mi−1(
1

100K
)v(

1
100K

)
∑

mj ≤ (
1

100
)v.

But the number of codes which sum to less than v/9 is (assuming w.l.o.g that v/9 is an integer)
exactly

∑j=v/9
j=0

(v+j−1
v−1

) ≤ v/9
(v+v/9−1

v−1

) ≤ 2v for v large. We conclude that P [min Jv(β) ≤
v(1 − 2ε)] ≤ ( 1

50 )v for large v. The proposition now follows from the Borel Cantelli Lemma.

�

Corollary 2.4 lim infk→0
λ(d,k)

ln( 1
k
)

≥ α(d).

Proof By Proposition 2.1 we have that for k ≤ k0 that

p(vR,N) ≤ 2v−1 exp (R(α− 2ε) ln(k)min Jv(β))

By Proposition 2.2 we have therefore that for large enough v

p(vR,N) ≤ 2v−1 exp (R(α− 2ε) ln(k)v(1 − 2ε))

≤ 2vRε exp (R(α− 2ε) ln(k)v(1 − 2ε))

≤ exp (Rv((α− 2ε) ln(k)(1 − 2ε) + ε))

Thus we have that λ(k, d) ≥ ln( 1
k )(α−2ε)(1−2ε) − ε. Since ε is arbitrarily small the Corollary

follows.

�

Section Three

In this section we will use block/percolation arguments that since [BG] may be regarded as
standard. Simply to avoid notational encumbrance we will write out the proof for the case d = 1
but the argument easily extends to all dimensions.

Fix ε > 0. By Proposition 1.1 we have that for R sufficiently large

P [α(R,N) ≤ R(α+ ε)] > 1 − ε6.

Now note that, by our definition of α, the event {α(R,N) ≤ R(α+ ε)} is the same as the event
{∃γ ∈ ΓR with S(γ,R) ≤ R(α+ ε) and |γ(R)| ≤ R(α+ ε)}. Thus for R sufficiently large

{@γ ∈ ΓR with S(γ,R) ≤ R(α+ ε) and γ(R) ∈ [0, R(α + ε)]}∩

{@γ ∈ ΓR with S(γ,R) ≤ R(α+ ε) and γ(R) ∈ [−R(α+ ε), 0]}
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has probability less than ε6. These two events are increasing functions of the Poisson processes
and, by symmetry, have equal probabilities, so by the FKG inequalities (as in [BG]) we have

P [@γ ∈ ΓR with S(γ,R) ≤ R(α+ ε) and γ(R) ∈ [0, R(α + ε)]] < ε3

, that is,

P [∃γ ∈ ΓR with S(γ,R) ≤ R(α+ ε) and γ(R) ∈ [0, R(α + ε)]] > 1 − ε3

and, by symmetry,

P [∃γ ∈ ΓR with S(γ,R) ≤ R(α+ ε) and γ(R) ∈ [−R(α+ ε), 0]] > 1 − ε3

We remark that such paths must be contained in space time rectangle [−R(α+ ε), R(α + ε)] ×
[0, R].

Thus outside probability strictly less than 1
εε

3 = ε2, we can ”navigate” a path γ ∈ Γ
R
ε with

S(γ, R
ε ) ≤ 1

εR(α+ ε), which lies entirely in spacetime rectangle [−2R(α+ ε), 2R(α+ ε)]× [0, R
ε ]

and which has γ(R
ε ) ∈ [−R(α+ ε), R(α+ ε)]. Therefore we have with probability at least 1− ε2

there is a path γ ∈ Γ
R
ε so that (i) S(γ, R

ε ) ≤ R(α+ ε)(1 + 2ε)/ε

(ii) γ lies entirely within [−2R(α+ ε), 2R(α + ε)] × [0, R
ε ].

Now provided that δ is chosen sufficiently small we have also that with probability > 1 − ε2 we
have γ satisfying in addition to(i) and (ii) above

(iii) No two jump times of γ are within 2δ of each other or of time 0 or time R
ε . Also the path

γ is at all times at least 2δ away from points of N (considered now as a random subset of space
time).

We define a 2-dependent oriented percolation scheme on {(m,n) : n ≥ 0, m+ n ≡ 0(mod(2))}
as follows: We say that the bond from (m,n) to (m± 1, n+ 1) is open if there is a path γ from
(mR(α+ ε), nR

ε ) to ((m± 1)R(α+ ε), (n + 1)R
ε ) that satisfies (i) and

(ii’) γ lies entirely within [(m− 2)R(α + ε), (m+ 2)R(α + ε)] × [nR
ε , (n + 1)R

ε ].

(iii’) No two jump times of γ are within 2δ of each other or of time nR
ε or time (n + 1)R

ε . Also
the path γ is at all times at least 2δ away from points of N

Then we have that (provided ε was chosen sufficiently small) the percolation system is super-
critical (see the appendix of [D2], which while formally treating oriented bond percolation,
is valid for our bond percolation). That is with probability one there is a point (0, n) with
infinitely many ”descendents”.

Lemma 3.1 If k is sufficiently small then for all (m,n) if the percolation bond
(m,n) → (m ± 1, n + 1) is open then with probability at least k

R
ε

(α+ε)(1+3ε) a random
walk started at mR(α + ε) at time nR

ε will survive until time (n + 1)R
ε and will be in position

(m± 1)R(α + ε) at this time.

Proof Let a path satisfying (i),(ii’) and (iii’) be γ. Let its jumps be at times 0 < t1, t2, · · · tr r ≤
R(α+ ε)(1+2ε)/ε. We consider the event that our random walk makes precisely r jumps in the
time interval , these jumps occurring within the intervals (ti − δ/3, ti + δ/3) (one jump in each

9



interval) and the jumps are equal to the corresponding jumps of γ. This event is contained in
the event of interest and has probability at least

e−
R
ε

k
r∏

j=1

(
2δ
3
k

2
).

This is easily seen to exceed k
R
ε

(α+ε)(1+3ε) for k small. �

Corollary 3.1 λ(k,d)

ln( 1
k
)
≤ α(d).

Proof Given our percolation scheme we have (provided ε was chosen sufficiently small) that there
exists n0 so that (0, n0) is a point of percolation. That is to say there exists 0 = m0,m1, · · ·mj · · ·
so that ∀j ≥ 1, the bond between (mj−1, n0 + j − 1) and (mj, n0 + j) is open.

It follows from induction and Lemma 3.1 that a random walk starting at site 0 at time n0 has
chance at least k

R
ε
(α+ε)(1+3ε)j of surviving until time (n0 + j)R

ε and being at mj at this time.
The chance that a random walk starting at site 0 at time 0 reaches site 0 at time n0

R
ε is strictly

positive (N a.s.). So we have for some ck(ω) > 0 that

p((n0 + j)
R

ε
,N) ≥ ck(ω)k

R
ε
(α+ε)(1+3ε)j

for k ≤ k0. Thus λ(k, d) ≤ ln( 1
k )(α + ε)(1 + 3ε). The corollary follows from the arbitrariness of

ε. �
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