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1 Introduction

The intersection exponents for planar Brownian motion give the exponential rate of decay of
probabilities of certain nonintersection events. The importance of the exponents can be seen
both in their relevance to fine properties of Brownian paths [6, 7, 8] and in their apparent relation
to critical exponents for self-avoiding walks and percolation [5, 11]. Most of the work (see [9]
and references therein) has focused on the exponents for Brownian motion in the whole plane.
However, recent work using conformal invariance [10] shows that the exponents for Brownian
motions restricted to a half plane are fundamental in understanding all exponents.

The purpose of this paper is to study the half plane exponents ξ = ξ(λ1, λ2). These exponents,
which we define below, are denoted by ξ̃(λ1, 1, λ2) in [10]; however, since we will only be con-
sidering these exponents in this paper we choose the simpler notation. The main result of this
paper is that ξ(λ1, λ2) is a strictly concave function. The corresponding result for the whole
space exponent was proved in [9]. While the basic framework of the argument in this paper is
similar to that in [9], there are two differences which make the arguments in this paper some-
what nicer. First, while [9] discussed both two and three dimensional Brownian motions, this
paper only considers planar Brownian motions. Hence, conformal invariance can be exploited
extensively. Second, a coupling argument is used which improves the rate of convergence to an
invariant measure; in particular, the stretched exponential rate, O(e−β

√
n), in [9] is improved

to an exponential rate, O(e−βn), here. The coupling argument is similar to the argument used
in [4] (see [4] for other references for coupling arguments). The main theorem in this paper is
used in [11] to show universality among conformal invariance exponents. This latter paper gives
the first rigorous result that indicates why self-avoiding walk and percolation exponents in two
dimensions should be related to Brownian exponents.

We will now give the definition of ξ(λ1, λ2). Rather than considering Brownian motions restricted
to the upper half plane

H = {x+ iy : y > 0},
we will study Brownian motions restricted to the infinite strip

J = {x+ iy : −π
2
< y <

π

2
}.

Note that the map z 7→ exp{z + i(π/2)} takes J conformally onto H, and hence, there is an
immediate relation between paths in J and paths in H. Let Bt be a complex valued Brownian
motion defined on the probability space (Ω,P), and for n ∈ R, let Tn be the stopping time

Tn = inf{t : <[Bt] = n}.

Assume for now that B0 has a uniform distribution on [−iπ/2, iπ/2]. Let Jn be the event

Jn = {B[0, Tn] ⊂ J}.

It is well known that
P(Jn) � e−n, n→ ∞, (1)

where we write � to denote that each side is bounded above by a positive constant times the
other side. (If we use the map z 7→ exp{z + i(π/2)} to take paths to the upper half plane,
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this estimate can be deduced from the “gambler’s ruin” estimate for one dimensional Brownian
motion.)

Let B1
t be another complex valued Brownian motion defined on a different probability space

(Ω1,P1) with stopping times
T 1

n = inf{t : <[B1
t ] = n}.

Assume for now that B1
0 has a uniform distribution on [−iπ/2, iπ/2]. If w, z ∈ C , we write

w � z if =(w) > =(z). Define the (Ω,P) random variables

Z+
n = P1{B1[0, T 1

n ] ⊂ J \B[0, Tn]; B1(T 1
n) � B(Tn)} 1Jn ,

Z−
n = P1{B1[0, T 1

n ] ⊂ J \B[0, Tn]; B(Tn) � B(T 1
n)} 1Jn .

If λ1, λ2 ≥ 0, the half plane exponent ξ = ξ(λ1, λ2) is defined by

E[(Z+
n )λ1(Z−

n )λ2 ] ≈ e−ξn, n→ ∞.

Here we write ≈ for logarithmic asymptotics, i.e., the logarithms of both sides are asymptotic.
If λ1 = 0 or λ2 = 0 we use the convention 00 = 0, i.e.,

(Z+
n )0 = (Z−

n )0 = 1Jn .

The existence of such a ξ was established in [10]; we will reprove this in this paper and show, in
fact, that

E[(Z+
n )λ1(Z−

n )λ2 ] � e−ξn, n→ ∞. (2)

Moreover, for each M <∞, the implicit multiplicative constants in (2) can be chosen uniformly
for 0 ≤ λ1, λ2 ≤M . The estimate (1) shows that

ξ(0, 0) = 1.

Also by considering Brownian motions restricted to rectangles of height π/3, we can see that
(1) implies

ξ(λ1, λ2) ≤ 3(1 + λ1 + λ2) ≤ 3(2M + 1), 0 ≤ λ1, λ2 ≤M.

The main result of this paper that is used in [11] is the following.

Theorem 1 Let λ2 ≥ 0 and let ξ(λ) = ξ(λ, λ2). Then ξ is C2 for λ > 0 with

ξ′′(λ) < 0, λ > 0.

It is conjectured [10], in fact, that

ξ(λ1, λ2) =
(
√

24λ1 + 1 +
√

24λ2 + 1 + 3)2 − 1
24

.

Of course, if this conjecture is true, Theorem 1 would follow immediately. However, this conjec-
ture is still open, and it is possible that Theorem 1 will be useful in proving the conjecture. In
[10] a whole family of half plane intersection exponents

ξ̃(a1, . . . , ap)
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were defined for any nonnegative a1, . . . , ap; however, it was shown that all of these values can
be determined from the values of ξ(λ1, λ2). This is why we restrict our attention to ξ(λ1, λ2) in
this paper.

Studying exponential decay rates (i.e., large deviation rates) generally leads to studying the
behavior of processes conditioned on this exceptional behavior, and this is the case here. Fix λ2

and let
Ψn = − logZ+

n ,

ξn(λ) = − 1
n

log E[(Z+
n )λ(Z−

n )λ2 ] = − 1
n

log E[e−λΨn(Z−
n )λ2 ].

Note that (2) implies as n→ ∞,

ξn(λ) = ξ(λ) +O(
1
n

).

Direct differentiation give

ξ′n(λ) =
1
n
Ẽn(Ψn),

ξ′′n(λ) = − 1
n
varn(Ψn),

where Ẽn and varn denote expectation and variance with respect to the measure

(Z+
n )λ(Z−

n )λ2

E[(Z+
n )λ(Z−

n )λ2 ]
dP. (3)

What we prove is that there is an a = a(λ, λ2) and a v = v(λ, λ2) such that

Ẽn(Ψn) = an+O(1),

varn(Ψn) = vn+O(1).

Moreover, we show that |ξ′′′(λ)| is bounded so that ξ is C2 with

ξ′(λ) = a, ξ′′(λ) = −v.

Part of the work is showing that the measures on paths (3) approach an invariant measure and
that the random variables

Ψ1 − Ψ0, . . . ,Ψn − Ψn−1

are approximately a stationary sequence with exponentially small correlations. A separate ar-
gument is given to show that v > 0 which then gives Theorem 1.

We now outline the paper. Section 2 derives a number of results using conformal invariance. We
start by reviewing facts about Brownian motion in a rectangle with the intent of using conformal
invariance to relate these results to regions that are conformally equivalent to a rectangle. We
assume that the reader is familiar with the conformal invariance of Brownian motion (see, e.g.,
[2, V]). An important conformal invariant is extremal distance. This quantity was first studied
in complex variables (see, e.g., [1]), but we give a self-contained treatment of the facts that we
need. Section 3 discusses the intersection exponent. The main goals of this section are to derive
the separation lemma, Lemma 9, and to use this to derive (2). Since the results in this section
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are very similar to results in corresponding sections of [6, 7, 8], we are somewhat brief. The last
section constructs the invariant measure on paths and uses this to justify the differentiation of
ξ(λ). The proof here is easier than that of the corresponding parts of [6, 7, 8]; we use a coupling
argument derived from that in [4] to show the exponential decay of correlations.
We make some assumptions about constants in this paper. We fix M <∞ and we consider only
0 ≤ λ1, λ2 ≤M . Constants c, c1, c2, . . . and β, β1, β2, . . . are positive constants that may depend
on M but do not depend on anything else. (In fact, the constants in Section 2 do not depend
on M .) In particular, constants do not depend on the particular λ1, λ2. Constants c, c1, c2 and
β may change from line to line, but c3, c4, . . . and β1, β2, . . . will not vary. If δn ↓ 0, we write

f(n) = g(n) +O(δn)

if there is a constant c such that
|f(n) − g(n)| ≤ cδn.

Similarly, if f, g are positive, we write

f(n) = g(n)[1 +O(δn)]

if
log f(n) = log g(n) +O(δn).

All implicit constants in the notations O(·) and � will depend only on M and not on λ1, λ2. We
will write Pz,Ez to denote probabilities and expectations assuming B0 = z. If the z is omitted
the assumption is that B0 has a uniform distribution on [−iπ/2, iπ/2]. The same assumptions
will be made about Pz

1,P1.
We will consider two norms on probability measures. The first is the standard variation measure

‖P1 − P2‖ = sup
E

|P1(E) − P2(E)|.

The second norm will be

‖P1 − P2‖1 = sup
E

| log P1(E) − logP2(E)|. (4)

Here the supremum is over all E for which P1(E) + P2(E) > 0. Equivalently, we could define

‖P1 − P2‖1 = ‖ log
dP1

dP2
‖∞,

where the norm on the right hand side is the standard L∞ norm. This norm could be infinite.
Note that

‖P1 − P2‖1 ≥ ‖P1 − P2‖.
If δn ↓ 0, then

‖Pn −Qn‖ = O(δn)

will also be written
Pn = Qn +O(δn),

and
‖Pn −Qn‖1 = O(δn)

will also be written
Pn = Qn[1 +O(δn)].

I would like to thank Wendelin Werner for many useful conversations on intersection exponents.
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2 Conformal Invariance

2.1 Rectangle estimates

Let J be the infinite strip as in the introduction, and

J+ = {z ∈ J : <(z) > 0},

JL = {z ∈ J+ : <(z) < L}.
Let ∂1, ∂2 be the vertical boundaries of JL,

∂1 = {iy : −π
2
≤ y ≤ π

2
},

∂2 = ∂2,L = {L+ iy : −π
2
≤ y ≤ π

2
}.

We will need some standard facts about Brownian motion in rectangles and half infinite strips.
What we need can be derived from the exact form of the solution of the Dirichlet problem in
a rectangle (see, e.g., [3, Section 11.3]); we will just state the results that we will need. If U is
any open region, let

τU = inf{t : Bt ∈ ∂U}.
For this subsection, let τ = τJ+, τL = τJL

. First, for real n > 0

Pn{B(τ) ∈ ∂1} � e−n.

Also,

Pn

{
B(τ) ∈ [− iπ

4
,
iπ

4
]; B[0, τ ] ∩ {<(z) ≥ n+ 1} = ∅

}
� e−n. (5)

Consider an “excursion” Wt from {<(z) = L} to {<(z) = 0}. There are a number of ways to
get such an excursion. One way is to let z ∈ C with <(z) ≥ L, setting

T0 = inf{t : <(Bt) = 0},

SL = sup{t ≤ T0 : <(Bt) = L},
and defining

Wt = B(t+ SL), 0 ≤ t ≤ T0 − SL. (6)

By vertical translation, we can allow the excursion to start at L + iy for any y ∈ R. An
excursion starts on {<(z) = L}, immediately enters {<(z) < L}, and then has the distribution
of a Brownian motion conditioned to leave {0 < <(z) < L} at {<(z) = 0}. Such a process can
also be given by (L−Xt) + iYt where Xt is a Bessel-3 process stopped when Xt = L, and Yt is
an independent Brownian motion. Suppose Wt is such an excursion with W0 ∈ J+ and let

T̂ = T̂0 = inf{t : <[Wt] = 0}.

Consider the event
GL = {W [0, T̂ ) ⊂ J+} = {W (0, T̂ ) ⊂ JL}.
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For each z ∈ J+ with <(z) = L, there is a probability measure Qz,L on ∂1 given by

Qz,L(E) = Pz{W (T̂ ) ∈ E | GL}.
The following lemma whose proof we omit can be proved either by direct examination of the
solution of the Dirichlet problem or by a coupling of h-processes.

Lemma 1 Let
g(L) = sup ‖QL+iy1,L −QL+iy2,L‖1,

where the supremum is over all −π/2 < y1, y2 < π/2, and ‖ · ‖1 is the norm as defined in (4).
Then g(L) <∞ for every L > 0. Moreover, there exist c3, β1 such that for all L ≥ 1,

g(L) ≤ c3e
−Lβ1 . (7)

Suppose U ⊂ J+ is open and connected with

J+ ∩ {<(z) ≤ L} ⊂ U.

Let z ∈ U with <(z) ≥ L. Let Q̃z,U be the measure on ∂1,

Q̃z,U(E) = Pz{B(τU ) ∈ E | B(τU ) ∈ ∂1}.
By splitting the path B[0, T0] as in (6), we see that

‖Q̃z,U −QL+iy,L‖1 ≤ g(L), −π
2
< y <

π

2
. (8)

If we let L→ ∞, we see that there is a density

H(y), −π
2
≤ y ≤ π

2
,

such that if Q denotes the measure H(y) dy, then

‖QL+iy,L −Q‖1 ≤ g(L). (9)

Similarly, (8) holds with Q replacing QL,L,

‖Q̃z,U −Q‖1 ≤ g(L). (10)

2.2 Extremal distance

Let U be a bounded simply connected domain in C whose boundary is a Jordan curve. Let
A1, A2 be disjoint closed connected subsets of ∂U , each larger than a single point. We denote
the other arcs by A3, A4 so that ∂U = A1 ∪A2 ∪A3 ∪A4; the arcs A1, A2, A3, A4 are closed and
the intersection of two arcs is empty or a single point; and going counterclockwise the order of
the arcs is A1, A3, A2, A4. There is a unique L = L(A1, A2;U) such that there is a conformal
transformation

F : U → JL
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which can be extended continuously to the boundary so that

F (A1) = ∂1,

F (A2) = ∂2,

F (A3) = ∂3 = ∂3,L
.= {x− iπ

2
: 0 ≤ x ≤ L},

F (A4) = ∂4 = ∂4,L
.= {x+

iπ

2
: 0 ≤ x ≤ L}.

We call L the extremal distance (this is actually π−1 times the standard extremal length or
extremal distance as in [1], but this definition will be more convenient for us). As defined,
extremal distance is clearly a conformal invariant.

Let us define a similar quantity which is sometimes easier to estimate. Let Bt be a complex
valued Brownian motion and for j = 1, 2, 3, 4, let

fj(z) = fj(z;A1, A2, U) = Pz{B(τU ) ∈ Aj}.

In other words, fj is the solution of the Dirichlet problem with boundary value 1 on Aj and 0
on ∂U \ Aj. Let f∗j,L(z) be the corresponding functions on JL,

f∗j,L(z) = fj(z; ∂1, ∂2,JL).

Let
φ(A1, A2;U) = sup

z∈U
min{f1(z), f2(z)},

and
φL = φ(∂1, ∂2;JL).

By conformal invariance,
φ(A1, A2;U) = φL(A1,A2;U).

It is easy to check that L 7→ φL is a continuous, strictly decreasing function with

φL → 1
2
, L→ 0 + .

Estimates for rectangles tell us that φL � e−L/2 as L → ∞, i.e., there is a c4 such that for all
L ≥ 1,

| log φ(L) +
L

2
| ≤ c4. (11)

Using conformal equivalence of rectangles and symmetry,

φ(∂3, ∂4;JL) = sup
z∈JL

min{f∗3,L(z), f∗4,L(z)} =
1
2
− φL,

and the supremum is obtained at the center. By conformal invariance, we then get for all such
domains,

φ(A1, A2;U) + φ(A3, A4;U) =
1
2
.
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Lemma 2 If z ∈ JL and <(z) = L/2,

f∗3,L(z) + f∗4,L(z) ≥ f∗3,L(
L

2
) + f∗4,L(

L

2
) = 1 − 2φL.

Proof. We only need to prove the first inequality. Let z = (L/2) + iy with |y| < π/2. Let

S′ = S′
L = inf{t : <[Bt] ∈ {0, L}},

S = inf{t : |=[Bt]| =
π

2
}.

Note that S′ and S are independent, the distribution of S′ does not depend on y, and

f∗3,L(z) + f∗4,L(z) = Py{S < S′}.
Hence it suffices to show for all |y| < π/2 and all t > 0,

P0{S < t} < Py{S < t}.
Let

Sy = inf{t : |=[Bt]| = y}.
Then, if |=[B0]| ≤ y,

S = Sy + (S − Sy).

But S − Sy has the distribution of S given =[B0] = y. �

Lemma 3 Suppose U is a domain as above such that for some n > 0,

A1 ⊂ {<(z) ≤ 0},
A2 ⊂ {<(z) ≥ n},

and
U ∩ {0 < <(z) < n} ⊂ J .

Then
L(A1, A2;U) ≥ n.

Proof. By comparison with Jn, if z ∈ U with <(z) = n/2,

f3(z) + f4(z) ≥ f∗3,n(z) + f∗4,n(z) ≥ 1 − 2φn.

By continuity, we can find a z0 with <(z0) = n/2 and f3(z0) = f4(z0). Hence,

1
2
− φ(A1, A2;U) ≥ min{f3(z0), f4(z0)} ≥ 1

2
− φn.

Hence φn ≥ φ(A1, A2;U) and L(A1, A2;U) ≥ n. �

Suppose η : [0, 1] → C is a simple, continuous path with

=[η(0)] = −π
2
, =[η(1)] =

π

2
,
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η(0, 1) ⊂ J .
We will call such a path a crossing path. If η1, η2 are two crossing paths we write η1 ≺ η2 if
η1[0, 1] ∩ η2[0, 1] = ∅ and η1 is to the “left” of η2. If η1 ≺ η2, we write U = U(η1, η2) for the
bounded domain with A1 = η1[0, 1], A2 = η2[0, 1],

A3 = {x− iπ

2
: <[η1(0)] ≤ x ≤ <[η2(0)]},

A4 = {x+
iπ

2
: <[η1(1)] ≤ x ≤ <[η2(1)]}.

We call U (more precisely, U , A1, A2) the generalized rectangle generated by η1, η2. Note that
the rectangles JL are generalized rectangles.

Lemma 4 There exists a c5 such that the following holds. Suppose η1 ≺ η2 are crossing paths
with

sup{<[η1(t)] : 0 ≤ t ≤ 1} = 0,

and
inf{<[η2(t)] : 0 ≤ t ≤ 1} = n > 0.

Let U = U(η1, η2) be the generalized rectangle generated by η1, η2. Then

n ≤ L(A1, A2;U) ≤ n+ c5.

Proof. The first inequality follows immediately from Lemma 3. For the other direction let
z = n/2. Then by (5),

Pz{B(τJn) ∈ [− iπ
4
,
iπ

4
]} ≥ ce−n/2.

But geometric considerations give

Pz{B(τU ) ∈ A1 | B(τJn) ∈ [− iπ
4
,
iπ

4
]} ≥ c.

Hence
Pz{B(τU ) ∈ A1} ≥ ce−n/2.

A similar argument holds for A2 giving

φ(A1, A2;U) ≥ min{f1(z), f2(z)} ≥ ce−n/2.

The lemma then follows from (11). �

Lemma 5 Let ψ(d) be the maximum of

L(η1[0, 1], η2[0, 1];U(η1, η2)).

over all crossing paths η1 ≺ η2 with

dist(η1[0, 1], η2[0, 1]) ≤ d.

Then
lim

d→0+
ψ(d) = 0.
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Proof. Let
d = dist(η1[0, 1], η2[0, 1]),

and choose s, t with
|η1(s) − η2(t)| = d.

Without loss of generality assume d < 1/10 and =[η1(s)] ≤ 0. Let

w =
1
2
[η1(s) + η2(t)] +

d

4
i,

and consider the curve consisting of the straight line from η1(s) to w followed by the line from
w to η2(t). It is easy to see that there is a c such that for all z in this line

f1(z) + f2(z) ≥ c.

By continuity we can find a z0 on this line so that

f1(z0), f2(z0) ≥ c/2. (12)

But the Beurling projection theorem (see, e.g., [2, V.4]) gives

f4(z0) ≤ c2d
1/2. (13)

Consideration of (12) and (13) on the rectangle JL shows that L→ 0 as d→ 0+. �

2.3 Path domains

Let X denote the set of continuous functions

γ : [0,∞) −→ J

with
<[γ(0)] = 0,

<[γ(t)] > 0, t > 0,

<[γ(t)] → ∞, t→ ∞.

Given γ ∈ X , let D = D(γ) be the connected component of J+ \ γ(0,∞) whose boundary
includes

{x+
iπ

2
: 0 ≤ x <∞}

and
∂γ

.= {iy : =[γ(0)] ≤ y ≤ π

2
}.

We will call such domains path domains; in particular, D(γ) is the path domain associated to
γ. We also consider J+ as the path domain associated to the function

γ∗(t) = t− iπ

2
, 0 ≤ t <∞,

even though this function is not actually in X .
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Let ∆ denote the open unit disk and let A be the arc [eiπ/2, e3iπ/2] on ∂∆. There is a unique
conformal transformation f = fγ ,

f : D(γ) → ∆,

with
f(∂γ) = A,

f(
iπ

2
) = i, f(γ(0)) = −i, f(∞) = 1.

We let Fγ = f−1
γ∗ ◦ fγ , which is a conformal transformation taking D(γ) to J+ and ∂γ to ∂1.

There is a well-defined probability measure on Brownian excursions in the disk ∆ starting at 1
and conditioned to leave ∆ at A. (One way to obtain the measure is to define the measure for
Brownian paths starting at z ∈ ∆ conditioned to leave the disk at A and then taking a limit
as the initial point z approaches 1.) By reversing time, we can consider these paths as starting
at A and leaving the disk at 1. The lifetimes of these paths are random and finite. However, if
these paths are conformally mapped to D(γ) by f−1

γ we get paths with infinite lifetime. This
measure could also be defined by taking appropriate limits of paths in J+, and clearly the limit
is conformally invariant. We denote this measure by ν(γ).

Let γ ∈ X , and let D = D(γ). If n > 0, let yn = yn(γ) be the largest y such that

n+ iy ∈ γ(0,∞),

and let
Vn = Vn(γ) = {n+ iy : yn ≤ y ≤ π

2
},

V o
n = V o

n (γ) = {n + iy : yn < y <
π

2
}.

Note that D \ V o
n consists of two connected components, a bounded component that we denote

by V −
n and an unbounded component that we denote by V +

n . While we think of V −
n as being to

the left of {<(z) = n} and V +
n as being to the right, note that both

V −
n ∩ {<(z) > n}

and
V +

n ∩ {<(z) < n}
can be nonempty. Let

σn = σn(γ) = sup{t : <[γ(t)] = n},
κn = κn(γ) = inf{t : <[γ(t)] = n}.

Note that if 0 < m < n, and σm < κn, then

V −
m ∩ {<(z) ≥ n} = ∅.

If 0 < m < n, let
Vm,n = V +

m ∩ V −
n .

Note that by Lemma 3,
L(Vm, Vn;Vm,n) ≥ n−m. (14)
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2.4 Truncated paths

Fix γ ∈ X and let F = Fγ be the conformal transformation taking D = D(γ) to J+ as above.
For z ∈ D, let

K(z) = Kγ(z) = <[F (z)],

and for n > 0, let
Kn = sup{K(z) : z ∈ D,<(z) = n}.

We let ν = ν(γ) be the measure on paths as in Section 2.3, and let ν∗ be the corresponding
measure on paths in J+. Note that ν and ν∗ are related by the conformal map F . We write
informally ν∗ = F (ν) although this notation ignores the time change involved in the conformal
transformation.

If η ∈ X , we define σn(η), κn(η) as in Section 2.3. If n > 0, we use Φnη to represent the bounded
path obtained from η by truncating the domain at σn(η),

Φnη(t) = η(t), 0 ≤ t ≤ σn(η).

Let νn, ν
∗
n denote the measures on truncated paths obtained from ν, ν∗ by performing this trun-

cation.

There is another way to get νn (or similarly ν∗n) that we will describe now. For any z ∈ D with
<(z) ≥ n, start a Brownian motion Bt at z. As before, let

Tn = inf{t : <(Bt) = n}.

On the event
{B(τD) ∈ ∂γ},

consider the time reversal of the path B[Tn, τD]. More precisely, we let

η(t) = B(τD − t), 0 ≤ t ≤ τD − Tn.

The conditional measure of these paths given B(0) = z and B(τD) ∈ ∂γ gives a measure that
we denote νn,z. Let Qn,z be the measure on {w : <(w) = n} obtained from the distribution of
B(Tn) given B(0) = z and Tn ≤ τD. Then we can also describe νn,z by starting a Brownian
motion on {w : <(w) = n} using the initial distribution Qn,z; conditioning on the event

{B(τD) ∈ ∂γ};

and considering the paths
η(t) = B(τD − t), 0 ≤ t ≤ τD.

(Note that we do not fix a w and then do the conditioning, but rather we condition just once.
In particular, the measure on {<(w) = n} given by terminal points under νn,z is not the same
as Qn,z.) We can do the same construction on paths in J+ giving the measures ν∗n,z, Q

∗
n,z.

By (7), if s ≥ 1, <(z),<(w) ≥ n+ s, then

‖Q∗
n,z −Q∗

n,w‖1 ≤ c3e
−β1s.
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By conformal transformation, we see that a similar result holds for Qn,z. More precisely, if s ≥ 1,
K(z),K(w) ≥ Kn + s, then

‖Qn,z −Qn,w‖1 ≤ c3e
−β1s.

Letting z tend to infinity, we therefore get measures Qn, Q
∗
n such that if s ≥ 1 andK(z) ≥ Kn+s,

‖Qn,z −Qn‖1 ≤ c3e
−β1s.

The measure νn as above can be obtained in the same was as the νn,z, using Qn as the initial
measure. Note that Q0 is the same as the Q of Section 2.1, and Qn is just a translation of this
measure.

Estimates for the rectangle tell us that if n, s > 0,

ν∗{η : σn(η) > κn+s(η)} ≤
ν∗{η : η[κn+s(η),∞) ∩ {<(z) ≤ n} = ∅} ≤ ce−2s.

By conformal invariance, we get a similar result for ν,

ν{η : ∃ z ∈ η[0, σn(η)] with K(z) ≥ Kn + s} ≤ ce−2s. (15)

Let
kn = inf{K(z) : z ∈ D,<(z) = n}.

If νn(m) denotes the conditional measure derived from νn by conditioning on the event

{κm(η) > σn(η)},
then (15) implies

‖νn(s) − νn‖ ≤ ce−2(km−Kn),

where ‖ · ‖ denotes variation measure as in the introduction. Similarly, if Qn,z(m) denotes the
measure on {<(w) = n},

Qn,z(m)[E] = Pz{B(Tn) ∈ E | Tn ≤ min{τD, Tm}},
and if z satisfies

K(z) ≤ km − s,

then
‖Qn,z(m) −Qn,z‖ ≤ ce−2s.

Let νn,z(m) be the measure defined similarly to νn,z except that the conditioning is on the event

{B(τD) ∈ ∂′; τD < Tm}.
We have derived the following lemma.

Lemma 6 There exists a c such that the following holds. Suppose 0 < n < m < ∞ and z ∈ D
with

Kn + s ≤ K(z) ≤ km − s.

Then
‖νn,z(m) − νn‖ ≤ ce−2s.
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Let n ≥ 1 and
Sn−1 = inf{t : Bt ∈ V o

n−1}.
Let U = V −

n−(1/4). Then by (14) and comparison to the rectangle, we can see that if z ∈
U \ V −

n−(1/2),

Pz{B(τU ) ∈ ∂γ | Sn−1 < τU} � Pz{B(τD) ∈ ∂γ | Sn−1 < τD}. (16)

Let X̃n be the set of γ ∈ X such that

σjn(γ) < κ(j+1)n(γ), j = 1, 2, 3, 4,

or, equivalently,
γ[κ(j+1)n(γ),∞) ∩ {<(z) ≤ jn} = ∅, j = 1, 2, 3, 4.

Note that if γ ∈ X̃n, then

V −
jn(γ) ∩ {<(z) ≥ (j + 1)n} = ∅, j = 1, 2, 3, 4,

V +
(j+1)n(γ) ∩ {<(z) ≤ jn} = ∅, j = 1, 2, 3, 4.

It follows from Lemmas 3 and 4 that there is a c such that if j = 1, 2 and z,w ∈ D(γ) with

<(z) ≥ (j + 2)n, <(w) ≤ jn,

then
K(z) −K(w) ≥ n− c.

In particular, if 2n ≤ <(z) ≤ 3n,

‖νn,z(5n) − νn‖ ≤ ce−2n. (17)

Note that the measure νn,z(5n) depends only on

D ∩ {<(z) ≤ 5n},

and not on all of D.

2.5 An important lemma

In this subsection we will consider two paths γ1, γ2 ∈ X . We use the notation of the previous
subsection except that we use superscripts to indicate which path we are considering. For
example, the measure ν in the previous section corresponding to γ1 and γ2 will be denoted ν1

and ν2 respectively. We will write
γ1 =n γ

2

if
Φnγ

1 = Φnγ
2.

Note that if
γ1 =n γ

2,
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then
D(γ1) ∩ {<(z) < n} = D(γ2) ∩ {<(z) < n}.

Also, if
γ1 =5n γ

2,

then γ1 ∈ X̃n if and only if γ2 ∈ X̃n. The following lemma is then a corollary of (17).

Lemma 7 There is a constant c8 such that the following holds. Suppose γ1, γ2 ∈ X̃n and

γ1 =5n γ
2.

Then
‖ν1

n − ν2
n‖ ≤ ce−2n.

3 Intersection exponent

In this section we define the intersection exponent and derive some important properties. We
use the notation in the introduction. On the event Jn, the random variables Z+

n , Z
−
n can be

defined by

Z+
n = P1{B1[0, T 1

n ] ∩B[0, Tn] = ∅;B1[0, T 1
n ] ⊂ J ;B1(T 1

n) � B(Tn)},

Z−
n = P1{B1[0, T 1

n ] ∩B[0, Tn] = ∅;B1[0, T 1
n ] ⊂ J ;B(Tn) � B1(T 1

n)}.
On the event Jc

n, we have Z+
n = Z−

n = 0. Let

Θn = Θn(λ1, λ2) = (Z+
n )λ1(Z−

n )λ2 .

Recall that we use the convention that 00 = 0, i.e., (Z+
n )0 is the indicator function of the event

{Z+
n > 0}. Let

qn = qn(λ1, λ2) = E[Θn].

The Harnack inequality applied separately to B and B1 can be used to show that there is c7
such that

qn+m ≤ c7qnqm−1.

In particular, log(c7qn−1) is a subadditive function, and hence by standard arguments there is
a ξ = ξ(λ1, λ2), which we call the intersection exponent, such that

qn ≈ e−ξn, n→ ∞.

Moreover, there is a c8 such that
qn ≥ c8e

−ξn.
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3.1 Separation lemma

Let Fn denote the σ-algebra generated by

Bt, 0 ≤ t ≤ Tn.

Note that the random variables Z+
n , Z

−
n ,Θn are functions of B[0, Tn] and hence are Fn-

measurable. Let δn be the Fn-measurable random variable

δn = dist
{

{n+
iπ

2
, n − iπ

2
} , B[0, Tn]

}
,

and let Un be the Fn-measurable event

Un =
{
B[0, Tn] ∩ {<(z) ≥ n− 1} ⊂ {|=(z)| ≤ π

6
}
}
.

The following lemma can be proved easily using conformal invariance and estimates for Brownian
motion in a wedge. We omit the proof.

Lemma 8 There exist c, β such that the following is true. Suppose n ≥ 0, 3/2 ≤ r ≤ 3, and
ε > 0. Then,

E[Θn+r Jn+r Un+r 1{δn≥ε} | Fn] ≥ cΘnJn1{δn≥ε}εβ.

The next lemma is a key lemma to show quick convergence to equilibrium. We call it the
separation lemma because it states roughly that paths conditioned not to intersect actually get
a reasonable distance apart with positive probability.

Lemma 9 There exists a c such that the following is true. If n ≥ 0,

E[Θn+2 Jn+2 Un+2 | Fn] ≥ cE[Θn+2 Jn+2 | Fn].

Proof. Let N be the smallest positive integer so that

∞∑
j=N

j22−j ≤ 1
4
.

Let mk = 3/2 for k ≤ N , and for k > N ,

mk =
3
2

+
k−1∑
j=N

j22−j < 2.

For k ≥ N , let hk = hk(λ1, λ2) be the infimum of

E[Θn+r Jn+r Un+r | Fn]
E[Θn+r Jn+r | Fn]

,

where the infimum is over all n ≥ 0, mk ≤ r ≤ 2, and on the event

δn ≥ 2−k.
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It follows from Lemma 8 that hk ≥ c2−βk > 0. We need to show that

inf
k
hk > 0,

and to show this it suffices to show that

hk+1 ≥ hk(1 − o(k−2)).

Assume that k ≥ N , n ≥ 0, mk+1 ≤ r ≤ 2, and that

2−(k+1) ≤ δn < 2−k.

Let ρ = ρ(n, k) be the smallest positive integer l such that

δn+l2−k+1 ≥ 2−k.

If B(n+(l−1)2−k+1) ∈ J then there is a positive probability (independent of the exact position
of B(n+ (l − 1)2−k+1)) that δn+l2−k+1 ≥ 2−k. Hence, for some β2

P{ρ > k2

4
;Jn+k22−k−1} ≤ 2−β2k2

. (18)

If j ≤ k2/4, the strong Markov property and the definition of hk imply that

E[Θn+r; ρ = j;Un+r | Fn+j2−k+1] ≥

hkE[Θn+r; ρ = j | Fn+j2−k+1].

This implies
E[Θn+r; ρ = j; Un+r | Fn] ≥ hkE[Θn+r; ρ = j | Fn].

Summing over j, this gives

E[Θn+r; ρ ≤ k2

4
Un+r | Fn] ≥ hkE[Θn+r; ρ ≤ k2

4
| Fn].

But Lemma 8 implies if 2−(k+1) ≤ δn,

E[Θn+r; ρ ≤ k2

4
| Fn] ≥ ce−βk

Combining this with (18) we get

E[Θn+r; ρ ≤ k2

4
| Fn] ≥ E[Θn+r | Fn](1 + o(k−2)),

which finishes the lemma. �

It follows from the lemma that for every n ≥ 2,

E[Θn;Un] = E[E[Θn;Un | Fn−2]] ≥ cE[E[Θn | Fn−2]] = cE[Θn].
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It is easy to check that
E[Θn+1 | Fn] ≥ cΘn1Un .

From this we conclude that there is a c9 > 0 such that for all n ≥ 0,

qn+1 ≥ c9qn (19)

Let
Z̄+

n = supPz
1{B1[0, T 1

n ] ∩B[0, Tn] = ∅;B1[0, T 1
n ] ⊂ J ;B1(T 1

n) � B(Tn)},
where the supremum is over all z with <(z) = 0, and define Z̄−

n similarly. Let

Θ̄n = (Z̄+
n )λ1(Z̄−

n )λ2 .

Define Z̃+
n to be the same as Z+

n−1 for the path

B̃t = Bt+T1 − 1, 0 ≤ t ≤ Tn − T1.

Let Z̃−
n be defined similarly and

Θ̃n = (Z̃+
n )λ1(Z̃−

n )λ2 .

By the Harnack inequality applied to B1, there is a constant c such that

Θ̄n ≤ cΘ̃n.

But the Harnack inequality applied to B shows that for any z,

Ez[Θ̃n;Jn] ≤ cE[Θ̃n] ≤ qn−1.

The following then follows from (19).

Lemma 10 There exists a c10 such that for all y ∈ R and all n ≥ 0,

Eiy[Θ̄n;Jn] ≤ c10qn.

3.2 Other lemmas

In this section we derive a number of lemmas. The main goal is to get the estimate qn ≤ ce−ξn

which can be derived from the estimate qn+m ≥ cqnqm. The separation lemma tells us that a
good proportion of the paths under the measure given by Θn are separated. To such separated
paths we can attach other Brownian paths.

Lemma 11 There exists a c11 such that the following is true. Let Λn = Λn(c11) be the event

Λn =
{
B[0, Tn] ∩ {<(z) ≤ 1} ⊂ {|=(z)| ≤ π

2
− c11}

}
.

Then
E[Θn; Λn] ≥ 1

2
qn.
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Proof. For any ε > 0, let κ = κ(ε) be the first time t such that

Bt ∈ {z : <(z) ≤ 1, |=(z)| ≥ π

2
− ε},

and let
ρ = ρ(ε) = inf{t ≥ κ : <[Bt] = 2}.

By the standard “gambler’s ruin” estimate,

P{B[κ, ρ] ⊂ J} ≤ cε.

Hence by the strong Markov property, the Harnack inequality, and (19),

E[Θn;κ < Tn] ≤ cεqn−2 ≤ cεqn.

In particular, by taking ε sufficiently small we can make the right hand side smaller than qn/2.
�

We let B(z, ε) denote the closed disk of radius ε about z. We also fix a c11 so that the previous
lemma holds and let Λn = Λn(c11).

Lemma 12 There is a c12 such that the following is true. Let Γn be the event

Γn =
{
B[0, Tn] ∩ {<(z) < 0} ⊂ B(B0,

c11
10

)
}
.

Then,
sup

y
Eiy[Θn; Λn ∩ Γn] ≥ c12qn.

Proof. Let rn be the supremum over y of

Eiy[Θn; Λn],

and let y = yn be a number that obtains the supremum. By the previous lemma, rn ≥ qn/2.
Let

κ = inf
{
t : Bt ∈ {<(z) < 0} \ B(B0,

c11
10

)
}
,

ρ = inf{t ≥ κ : <[Bt] = 0}.
Note that

P{B[κ, ρ] ⊂ J | κ < Tn} < 1 − δ,

for some δ > 0, independent of n. Hence by the strong Markov property,

Eiy[Θn; Λn ∩ {κ < Tn}] ≤ (1 − δ)rn,

and hence
Eiy[Θn; Λn ∩ Γn] ≥ δrn.

�
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We now let
z+ = (

π

2
− c11

8
)i, z− = −z+,

and let

Z̃+
n = Pz+

1 {B1[0, T 1
n ] ∩B[0, Tn] = ∅;B1[0, T 1

n ] ⊂ J ;

B1[0, T 1
n ] ∩ {<(z) < 0} ⊂ B(z+,

c11
16

)},

Z̃−
n = Pz−

1 {B1[0, T 1
n ] ∩B[0, Tn] = ∅;B1[0, T 1

n ] ⊂ J ;

B1[0, T 1
n ] ∩ {<(z) < 0} ⊂ B(z−,

c11
16

)},

Θ̃n = (Z̃+
n )λ1(Z̃−

n )λ2 .

Using (16), we can see that there is a c13 such that on the event Λn ∩ Γn,

Θ̃n ≥ c13Θn,

and hence
supEiy[Θ̃n; Λn ∩ Γn] ≥ c13c12qn.

Another simple use of the Harnack inequality shows that there is a c such that for all y ∈
[−π/4, π/4],

Eiy[Θ̃n; Λn ∩ Γn] ≥ cqn.

From this and the work of the previous section, we can conclude

qn+m ≥ cqnqm.

Hence from standard subadditivity arguments we get the following.

Lemma 13 There exist c8, c14 such that for all n,

c8e
−nξ ≤ qn ≤ c14e

−nξ.

4 Invariant measures and strict concavity

4.1 Coupling

Let Y be the set of continuous γ : (−∞, 0] → J with

<[γ(0)] = 0,

<[γ(t)] < 0, −∞ < t < 0,

<[γ(t)] → −∞, t→ −∞.

In other words γ ∈ Y if and only if Gγ ∈ X where

<[Gγ(t)] = −<[γ(−t)], 0 ≤ t <∞,
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=[Gγ(t)] = =[γ(−t)], 0 ≤ t <∞.

We will apply results about X from Section 2 to Y using the natural identification γ ↔ Gγ.

Let Bt be a complex valued Brownian motion as before with

Tn = inf{t : <[Bt] = n}.

We will start the Brownian motion with “initial condition” γ ∈ Y. More precisely, set B0 = γ(0)
and if n ≥ 0 let

γn(t) =
{
Bt+Tn − n, −Tn ≤ t ≤ 0
γ(t+ Tn) − n, −∞ < t ≤ −Tn.

Note that γn ∈ Y if and only if the event Jn = {B[0, Tn] ⊂ J } holds.

For any γ ∈ Y, n ≥ 0, let

σ−n = σ−n(γ) = −σn(Gγ) = inf{t : <[γ(t)] = −n},

κ−n = κ−n(γ) = −κn(Gγ) = sup{t : <[γ(t)] = −n}.
If γ ∈ Y, −∞ < r < s ≤ 0, define the functionals Y +

r,s, Y
−
r,s formally by

Y +
r,s = P1{B1(−∞, T 1

s ] ∩ γ(−∞, σs] = ∅ |

B1(−∞, T 1
r ] ∩ γ(−∞, σr] = ∅, B1(−∞, T 1

r ] ⊂ J , B1(T 1
r ) � γ(σr)},

Y −
r,s = P1{B1(−∞, T 1

s ] ∩ γ(−∞, σs] = ∅ |
B1(−∞, T 1

r ] ∩ γ(−∞, σr] = ∅, B1(−∞, T 1
r ] ⊂ J , γ(σr) � B1(T 1

r )}.
The conditioning is with respect to the measure discussed in Section 2.3 (where it is done for
X ), and we recall that w � z means =(w) > =(z). Note that if −∞ < r < s < u ≤ 0, then

Y +
r,u(γ) = Y +

r,s(γ)Y
+
s,u(γ),

Y −
r,u(γ) = Y −

r,s(γ)Y
−
s,u(γ).

In other words, − log Y +
r,s and − log Y −

r,s are positive additive functionals.

For 0 ≤ m < n <∞, we define the random variables

Z+
m,n = Y +

m−n,0(γn)1{γn∈Y},

Z−
m,n = Y −

m−n,0(γn)1{γn∈Y}.

Then
Ψ+

m,n
.= − logZ+

m,n, Ψ−
m,n

.= − logZ−
m,n

are positive additive functionals (that can take on the value +∞). We let

Θm,n = Θm,n(λ1, λ2) = (Z+
m,n)λ1(Z−

m,n)λ2 ,

where we again use the convention 00 = 0 if either λ1 or λ2 is 0. We also write

Θn = Θn(λ1, λ2) = Θ0,n.
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We write Pγ ,Eγ to denote probabilities and expectations with initial condition γ. For n ≥ 0,
we let Fn be the σ-algebra generated by γ (in case γ is chosen randomly) and

Bt, 0 ≤ t ≤ Tn.

In other words, Fn is the σ-algebra generated by the random function γn. If n ≥ 0, γ ∈ Y, let

Rn(γ) = Rn(γ;λ1, λ2) = eξnEγ [Θn].

We collect some of the results of the previous sections using the notation of this section.

Lemma 14 There exists a c such that for all γ ∈ Y, n ≥ 0,

Rn(γ) ≤ c.

Moreover, if n ≥ 2,
| logRn(γ) − logR2(γ)| ≤ c.

Proof. The first inequality is an immediate corollary of Lemma 13. The second follows from
Lemma 9 and Lemma 12. �

Lemma 15 There exists a δ : (0,∞) → (0,∞) such that if γ ∈ Y and

B(
iπ

2
, ε) ∩ γ(−∞, 0] = ∅,

B(− iπ
2
, ε) ∩ γ(−∞, 0] = ∅,

then
R3(γ) ≥ δ(ε).

Moreover, δ may be chosen so that there exist c15, c16, β2 with

δ(c16e−β2n) ≥ min{c15, e−n/8}.

Proof. See Lemma 8. �

If n ≥ 0, let Ŷn be the collection of γ ∈ Y such that

dist[γ(−∞, 0], {− iπ
2
,
iπ

2
}] ≥ min{ 1

100
, c16e

−β2n}, (20)

and if −n ≤ s ≤ r − (n/5) ≤ −n/5,
κs(γ) ≤ σr(γ). (21)

The c16, β2 are the constants from Lemma 15 (which we have now fixed) and 1/100 is an
arbitrarily chosen small number. The condition (21) can also be written

γ[σr(γ), 0] ∩ {<(z) ≤ s} = ∅.
Note that if γ ∈ Ŷn,

Eγ [Θ3] = e−3ξR3(γ) ≥ ce−n/8.
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Lemma 16 There exist c17, β3 such that if γ ∈ Ŷn,

Eγ [Θ3; γ3 6∈ Ŷn+3] ≤ c17e
−β3nEγ [Θ3].

Proof. It suffices to prove the lemma for n sufficiently large so we may assume that c16e−β2n ≤
1/100. Note that if γ ∈ Ŷn and γ3 6∈ Ŷn+3, then either

B[0, T3] ∩ {<(z) ≤ −n
5

+ 3} 6= ∅, (22)

or
dist[B[0, T3], {3 +

iπ

2
, 3 − iπ

2
}] ≤ c16e

−β2n. (23)

For (22), note that for any γ,

Eγ [Θ3;B[0, T3] ∩ {<(z) ≤ −n
5

+ 3} 6= ∅] ≤

Pγ [B[0, T3] ∩ {<(z) ≤ −n
5

+ 3 6= ∅};B[0, T3] ⊂ J ] ≤ ce−2n/5.

The last inequality follows from rectangle estimates since the Brownian motion has to start at
{<(z) = 0}, reach {<(z) ≤ (−n/5) + 3}, and return to {<(z) = 0} staying in J for the entire
time. But, Eγ [Θ3] ≥ ce−n/8 for γ ∈ Ŷn. Hence,

Eγ [Θ3;B[0, T3] ∩ {<(z) ≤ −n
5

+ 3} 6= ∅] ≤ ce−11n/40Eγ [Θ3].

For (23), let

p(ε) = supPiy[dist[B[0, T1], {1 +
iπ

2
, 1 − iπ

2
}] ≤ ε],

where the supremum is over all y ∈ R. Standard estimates give p(ε) ≤ cε. But the strong
Markov property implies

Eγ

[
Θ3; dist[B[0, T3], {3 +

iπ

2
, 3 − iπ

2
}] ≤ c16e

−nβ2

]
≤ Eγ [Θ2]p(c16e−β2n),

and Lemma 14 implies Eγ [Θ2] ≤ cEγ [Θ3]. �

If γ1, γ2 ∈ Y and n ≥ 0, we write
γ1 =n γ

2

if Gγ1 =n Gγ2 as in Section 2.5, i.e., if σ−n(γ1) = σ−n(γ2) and

γ1(t) = γ2(t), σ−n(γ1) ≤ t ≤ 0.

Note that if n ≥ 1 and γ1 =n γ
2, then γ1 ∈ Ŷn if and only if γ2 ∈ Ŷn.

Lemma 17 There exist c18, β4 such that the following is true. Suppose n ≥ 1 and γ1, γ2 ∈ Ŷn

with
γ1 =n γ

2.

Then for all m ≥ 0,
| logRm(γ1) − logRm(γ2)| ≤ c18e

−β4n,

i.e.,
Rm(γ2) = Rm(γ1)[1 +O(e−β4n)].
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Proof. As in the proof of Lemma 16 we have for any γ ∈ Y,

Eγ [Θm;B[0, Tm] ∩ {<(z) ≤ −n
5
} 6= ∅] ≤ ce−2n/5qm

≤ ce−2n/5e−ξm.

But if γ ∈ Ŷn,
Eγ [Θm] ≥ ce−ξmEγ [Θ3] ≥ ce−ξme−n/8.

Hence, for j = 1, 2,

Eγj
[Θm;B[0, Tm] ∩ {<(z) ≤ −n

5
} = ∅] = Eγj

[Θm][1 +O(e−βn)].

But on the event
{ B[0, Tm] ∩ {<(z) ≤ −n

5
} = ∅ },

it follows from Lemma 6 that
Θ1

m = Θ2
m[1 +O(e−βn)].

Hence
Eγ1

[Θm] = Eγ2
[Θm][1 +O(e−βn)].

�

We now fix N ≥ 3 and consider the following discrete time, time inhomogeneous, Markov chain,
X

(N)
0 ,X

(N)
1 , . . ., indexed by j = 0, 3, 6, . . . , bN/3c with state space Y. To describe the chain,

suppose X(N)
0 = γ. Start a Brownian motion with initial condition γ, and let it run until T3

giving γ3 as described above. The weighting on γ3 is given by the following density with respect
to the Wiener measure of the Brownian motion:

g(γ, γ3) =
Θ3(γ3)RN−3(γ3)e3ξ

RN (γ)
. (24)

For fixed γ this gives a probability density since

Eγ [ΘN ] = Eγ [E[ΘN | F3]]
= Eγ [Θ3E[ΘNΘ−1

3 | F3]]

= Eγ [Θ3e
−(N−3)ξRN−3(γ3)]

and hence
RN (γ) = eNξEγ [ΘN ] = Eγ [Θ3e

3ξRN−3(γ3)].

The distribution of X(N)
3(j+1) given X

(N)
3j = γ is the same as the distribution of X(N−3j)

3 given

X
(N−3j)
0 = γ.

Keeping N fixed and assuming 3k ≤ N , let us write just γ0, γ3, . . . , γ3k for X(N)
0 , . . . ,X

(N)
3k . We

will call
(γ1

t , γ
2
t ), t = 0, 3, . . . , 3k,

a (k,N)-coupling if for j = 1, 2,
γj

0, . . . , γ
j
3k ,
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has the distribution of this Markov chain with initial condition γj
0. Let us describe one coupling.

Suppose γ1, γ2 ∈ X . Let B3, B4 be independent Brownian motions (with stopping times T 3
r , T

4
r )

started with initial conditions γ1, γ2, respectively. Use these Brownian motions to produce
(γ1

3/2, γ
2
3/2). Let U j

3/2, j = 1, 2, be the event

U j
3/2 =

{
γj
3/2(−∞, 0] ∩ {<(z) ≥ −1

2
} ⊂ {|=(z)| ≤ π

6
}
}
.

By the separation lemma, Lemma 9, we can see that

Eγj
[Θ3/2;U

j
3/2] ≥ cEγj

[Θ3/2], j = 1, 2.

Consider the event

U j
2 =

{
γj
2(−∞, 0] ∩ {<(z) ≥ −1

2
} ⊂ {|=(z)| ≤ π

6
}
}
.

Then, the measure on
{<(z) = 0; |=(z)| ≤ π

12
},

given by
Θ21Uj

2
Eγj

[Θ2]−1,

can be seen to be greater than a constant times Lebesgue measure. Hence we can couple the
paths B3, B4 to produce a coupling (γ1

2 , γ
2
2) with

P
{
γ1
2(0) = γ2

2(0); γj(−∞, 0] ∩ {<(z) ≥ −1} ⊂ {|=(z)| ≤ π

4
}
}

≥ c.

We now use the same Brownian motion, say B3, to extend the paths beyond γj
2. It is not difficult

to see we can extend these rather arbitrarily and still get sets of positive probability. From this
we get the following. The function δm in the lemma might go to zero very quickly, but this will
not be a problem.

Lemma 18 There is a c19 such that for any γ1, γ2 ∈ Y and any N ≥ 3, there is a (1, N)
coupling (γ1

3 , γ
2
3) with

P{ γ1
3 =1 γ

2
3 ; γ1

3 , γ
2
3 ∈ Ŷ1 } ≥ c19.

Moreover, for every m, there is a δm > 0 such that if m ≤ N/3, there is an (m,N) coupling
with

P{ γ1
3m =3m−2 γ

2
3m; γ1

3m, γ
2
3m ∈ Ŷ3m−2 } ≥ δm.

Now suppose that n ≥ 1 and γ1 =n γ2. There is a natural coupling that can be defined by
taking the same Brownian motion starting at γ1(0) = γ2(0). Suppose that γ1

3 ∈ Ŷn+3. Then
γ2
3 ∈ Ŷn+3. Note that Lemma 17 implies

RN−3(γ1
3) = RN−3(γ2

3)[1 +O(e−nβ)].

Also, Lemma 7 gives
Θ3(γ1

3) = Θ3(γ2
3)[1 +O(e−nβ)].

Combining this with Lemma 16 we get the following lemma.
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Lemma 19 There exist c20, c21, β5 such that if γ1, γ2 ∈ Ŷn with γ1 =n γ
2 and N ≥ 3, there is

a (1, N) coupling (γ1
3 , γ

2
3) with

P{ γ1
3 =n+3 γ

2
3 ; γ1

3 , γ
2
3 ∈ Ŷn+3 } ≥ max{c20, 1 − c21e

−nβ5}.

Lemma 20 There exist c22, β6 such that if γ1, γ2 ∈ Y, and n is a positive integer, there is a
(n, 3n) coupling with

P{ γ1
3n =n γ

2
3n} ≥ 1 − c22e

−β5n.

Proof. This uses the ideas in [4]. Define a coupling using the couplings above. More precisely,
suppose γ1, γ2 are given. Produce (γ1

3 , γ
2
3) using the coupling from Lemma 18. Suppose (γ1

3j , γ
2
3j)

have been constructed. Let Kj = Kj,n be the largest positive multiple of 3, k, such that

γ1
3j =k−2 γ

2
3j ,

γ1
3j , γ

2
3j ∈ Ŷk−2.

If no such positive k exists, then Kj = 0. If Kj = 0, construct (γ1
3(j+1), γ

2
3(j+1)) using the

coupling in Lemma 18. If Kj > 0, construct (γ1
3(j+1), γ

2
3(j+1)) using the coupling from Lemma

19. Let ε0 = c19 ∧ c20 and for l > 0,

εl = max{c20, 1 − c21e
−(3l−2)β5}.

Then if Hj denotes the σ-algebra in this coupling generated by (γ1
3j , γ

2
3j),

P{Kj+1 ≥ 3 | Hj} ≥ ε0.

P{Kj+1 = l + 3 | Hj} ≥ εlI{Kj = l}.
By comparison with an appropriate Markov chain on the nonnegative integers (see [4, 6.3 and
A]), we see that

P{Kn ≤ n

2
} ≤ ce−βn,

for some c, β. This proves the lemma. �

In particular, we get that there exist c, β such that for all n ≥ 3 and all γ1, γ2 ∈ Y,∣∣∣∣Rn+3(γ1)
Rn(γ1)

− Rn+3(γ2)
Rn(γ2)

∣∣∣∣ ≤ ce−βn.

From this we can easily deduce the following.

Lemma 21 For every γ ∈ Y, the limit

R(γ) = lim
n→∞Rn(γ)

exists. Moreover, there exist c23, β7 such that for all n ≥ 2,

| logRn(γ) − logR(γ)| ≤ c23e
−β7n.

In other words,
Rn(γ) = R(γ)[1 +O(e−β7n)].

27



4.2 Invariant measure on Y
If n > 0, we let Yn be the set of continuous

γ : [−b, 0] −→ J ,
with

<[γ(−b)] = −n, <[γ(0)] = 0,

<[γ(t)] < 0, −b ≤ t < 0.

Here, b = bγ can be any positive real number. We let ρ be the Skorohod metric on Yn such that
ρ(γ1, γ2) < ε if there exist an increasing homeomorphism φ : [−bγ1 , 0] → [−bγ2 , 0] with

|φ(t) − t| < ε, |γ1(t) − γ2(φ(t))| < ε, −bγ1 ≤ t ≤ 0.

Measures on Yn will be with respect to the corresponding Borel σ-algebra. Let

Φn : Y → Yn,

be the projection
bΦnγ = −σ−n(γ),

Φnγ(t) = γ(t), σ−n(γ) ≤ t ≤ 0.

Similarly, if m < n we define
Φm : Yn → Ym.

(It might be more precise to write Φm,n rather than Φm, but there should be no confusion.)

If m < n and νn is a measure on Yn, then we write Φmνn for the measure on Ym induced by
Φm. A collection of measures {νn : n > 0} is called consistent if each νn is a measure on Yn and

Φmνn = νm, 0 < m < n <∞.

A measure ν on Y is a consistent collection of measures {νn} (where νn = Φnν).

If ν is any probability measure on Y and n ≥ 3, let Gnν be the probability measure on Y
obtained by the distribution of the Markov chain X(n)

n , as defined in Section 4.1, given that X(n)
0

has distribution ν. (This definition only works if n = 3k for integer k, but slight modifications
work for any n.) It follows from Lemma 20 that there exist c, β such that if ν1, ν2 are two
probability measures on Y and s ≥ 3n,

‖Φn(Gsν
1) − Φn(Gsν

2)‖ ≤ ce−βs.

By letting s → ∞, we see that there is a limiting measure µn such that if ν is any probability
measure on Y and s ≥ 3n,

‖Φn(Gsν) − µn‖ ≤ ce−βs.

It is easy to check that the {µn} form a consistent collection of measures and hence give a
measure µ on Y. Also, if n ≥ 0.

Eµ[Θn] = e−ξn,

Gnµ = µ.

We summarize this in a proposition.
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Proposition 22 There exists a probability measure µ = µ(λ1, λ2) on Y and c, β such that if ν
is any probability measure on Y and 0 ≤ n ≤ s/3 <∞,

‖Φn(Gsν) − Φnµ‖ ≤ ce−βs.

A particular application of the proposition is the following. Suppose n ≥ 1, k ∈ {1, 2, 3}, and
Φ+

n−1,n is as defined in Section 4.1. Then

Eγ [(Ψ+
n−1,n)kΘnR(γn)] = e−nξR(γ)Eµ[(Ψ+

0,1)
keξΘ1R(γ1)][1 +O(e−βn)]. (25)

(This is actually true for all k = 1, 2, 3, . . ., if we allow the implicit constant to depend on k.
Since we will only need the result for k = 1, 2, 3, it is easier just to state it for these k and have
no k dependence in the constant.)

Let µ̄ be the measure on Y with
dµ̄ = R dµ.

Then µ̄ is the invariant measure for the time homogeneous Markov chain Xn = X∞
n with state

space Y defined for n > 0 by saying that the density of Xn with respect to Wiener measure is

g(γ, γn) =
eξnΘnR(γn)

R(γ)
.

For integer k > 0, we define a = a(λ1, λ2) and bk = bk(λ1, λ2) by

a = Eµ[Ψ+
0,1e

ξΘ1R(γ1)]

= Eµ̄[Ψ+
0,1e

ξΘ1R(γ1)R(γ0)−1],

bk = Eµ[Ψ+
0,1Ψ

+
k−1,ke

ξkΘkR(γk)]

= Eµ[Ψ0,1 + Ψ+
k−1,ke

ξkΘkR(γk)R(γ0)−1]

4.3 Derivatives

In this subsection we fix λ2 ∈ [0,M ] and let

ξ(λ1) = ξ(λ1, λ2), 0 < λ1 ≤M.

We also fix a particular element γ ∈ Y; for ease we shall take the half line,

γ(t) = t, −∞ < t ≤ 0.

Let
ξn(λ1) = − 1

n
log Eγ [Θn],

where Θn = Θn(λ1, λ2). Note that Lemmas 12 and 13 imply

ξn(λ1) = ξ(λ1) +O(
1
n

).
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Direct differentiation gives

ξ′n(λ1) =
1
n
Ẽn[Ψ+

0,n],

ξ′′n(λ1) = − 1
n
varn[Ψ+

0,n],

where Ẽn and varn denote expectation and variance with respect to the measure with density
Θn

Eγ [Θn]

with respect to P. By Lemma 17,

Eγ [Θn] = e−ξnR(γ)[1 +O(e−βn)].

Recalling that
Ψ+

0,n = Ψ+
0,1 + · · · + Ψ+

n−1,n,

we get

Eγ [Ψ+
0,nΘn] =

n∑
j=1

Eγ [Ψ+
j−1,jΘn].

Note that

Eγ [Ψ+
j−1,jΘn] = Eγ [Ψ+

j−1,jΘjE[Θj,n | Fj ]]

= Eγ [Ψ+
j−1,jΘje

−ξ(n−j)R(γj)][1 +O(e−β(n−j))].

Also, (25) and the definition of a give

Eγ [Ψ+
j−1,jΘjR(γj)] = e−ξjaR(γ)[1 +O(e−βj)].

Hence,
Eγ [Ψ+

j−1,jΘn] = e−ξnaR(γ)[1 +O(e−βj) +O(e−β(n−j))].

Therefore,
Ẽn[Ψ+

0,n] = an+O(1).

Once we have the asymptotic independence with an exponential rate of convergence, it is
straightforward and standard to show that

varn[Ψ+
0,n] = vn+O(1),

where v = v(λ1, λ2) is defined by

v = (b1 − a2) + 2
∞∑

j=2

(bj − a2).

(It is not difficult to show that
bj = a2[1 +O(e−βj)]

so the sum converges.) By considering third moments, we can show similarly that |ξ′′′n (λ1)| ≤ c.
This allows us take the limits in the first and second derivatives and conclude that ξ(λ) is C2

with
ξ′(λ) = a, ξ′′(λ) = −v.

The formula for v is not very useful for determining that v > 0. We establish this in the
remaining subsection.

30



4.4 Strict concavity

Let Y∞ be the set of continuous
γ : (−∞,∞) → J ,

with
<[γ(t)] → −∞, t→ −∞,

<[γ(t)] → ∞, t→ ∞.

As before, if r ∈ R, we set
σr = σr(γ) = inf{t : <[γ(t)] = r},

and we let γr be the element of Y,

γr(t) = γ(t+ σr) − r, −∞ < t ≤ 0.

The measure µ̄ gives a probability measure P on Y∞ in a natural way. To be more precise, let
E denote expectations with respect to P. Then if f is a function on Y, n ≥ 0,

E [f(γn)] = Eµ̄[f(γn)eξnΘnR(γn)R(γ0)−1]
= Eµ[f(γn)eξnΘnR(γn)].

We write V for variance with respect to this measure. Let Y +
r,s, Y

−
r,s be the functionals as in

Section 4.1 which are now defined for −∞ < r < s <∞. For integer n, let

ψ+
n = − log Y +

n−1,n.

Note that
· · · , ψ+

−1, ψ
+
0 , ψ

+
1 , · · · ,

is a stationary sequence of random variables in (Y∞,P). If n is a positive integer, let

Ψ+
n = − log Y +

0,n,

so that
Ψ+

n = ψ+
1 + · · · + ψ+

n .

If n ≥ 0, let Gn be the σ-algebra of Y∞ generated by γn. (Note that Gn is really the same as the
Fn of the previous section, but we use the new notation to emphasize that we are considering
the measure P on Y∞.). Note that

E [Ψ+
0,n] = nE [ψ+

1 ] = an.

Computations similar to those in the previous section give

V[Ψ+
0,n] = E [(Ψ+

0,n − an)2] = vn+O(1).

Also, it is straightforward to show that there is a c such that

E [ψ+
2 + · · · + ψ+

n | G1] ≥ an− c.

In particular, there is a c24 such that if m < n are positive integers,

E [Ψ+
n | Gm] ≥ Ψ+

m + a(n−m) − c24. (26)

We end by proving the strict concavity result, i.e., that v > 0.
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Lemma 23 For every λ1 > 0, λ2 ≥ 0,

v = v(λ1, λ2) > 0.

Proof. Since
V[Ψ+

n ] = vn+O(1),

it suffices to show that
lim sup

n→∞
V[Ψ+

n ] = ∞.

Assume on the contrary that for some C <∞ and all n ≥ 0.

V[Ψ+
n ] ≤ C.

Let M <∞. By Chebyshev’s inequality, if M is sufficiently large,

P{|Ψ+
n − an| ≥M} ≤ 1

8
. (27)

Let
ρ = ρM = inf{m ∈ Z+ : Ψ+

m − am ≥M}.
It is not difficult to see directly that there is a q = q(M) > 0 such that if Ψ+

m−1 ≥ a(m− 1)−M
then with probability at least q

Ψ+
m ≥ am+M.

Combining this with (27), we can find a n = n(M) such that

P{ρ ≤ n} ≥ 1
2
.

For k = 1, 2, . . . , n, it follows from (26) that

E[Ψ+
n | ρ = k] ≥ an+M − c17.

Hence
E[Ψ+

n − an | ρ ≤ n] ≥M − c24.

By Schwartz inequality,
E [(Ψ+

n − an)2 | ρ ≤ n] ≥ [M − c24]2.

and hence
E [(Ψ+

n − an)2] ≥ 1
2
[M − c24]2.

But we know that the left hand side is bounded by C. By choosing M sufficiently large we get
a contradiction. This completes the proof.
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