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and uniqueness of classical (Hölder class) solutions of stochastic Euler equation with random
forcing.

Keywords Stochastic partial differential equations , Euler equation

AMS subject classification 60H15, 35K15.

Submitted to EJP on November 23, 1999. Final version accepted on February 17, 2000.

DOI: 10.1214/EJP.v5-62

1

http://dx.doi.org/10.1214/EJP.v5-62


In [1], [3] and [2] the Euler coordinates were used to study the motion of an incompressible fluid
on compact manifolds. Following the ideas of [1], [2] and [3] we find in a small time interval the
classical solutions of Euler equation with random forcing in the whole space (We have the first
order SPDE in this case). Then we perturb randomly (using an independent Wiener process)
the position of individual particles and derive the corresponding second order SPDE. In this case
SPDE is completely degenerated in [7] sense. As random perturbation goes to zero we obtain
the deterministic velocity fields. In the case d = 2, classical solutions exist in an infinite time
interval. In [8] no random forcing was considered and the second order SPDE was derived by a
different method for d > 2.

1 Euler equation with random forcing

Let us consider the stochastic Euler equation in Rd (d ≥ 2)


∂tu + ul∂lu + ∇p = εẆt, in [0, ∞) × Rd,

u(0, x) = h(x), div u(t, ·) = 0,
(1)

where Wt =
(
W k
)
1≤k≤d

is a standard Wiener process. If u (t, x) and p (t, x) are solutions, then
u (t, x) represents the velocity of the fluid particle at position x, at time t, and p (t, x) is the
pressure of the fluid at the same time and place. The right hand side of (1) represents a random
force. Let η (t) = η (t, x) be a flow associated to u, i.e. η is a solution of differential equation{

∂tη
k (t) = uk (t, η (t)) , k = 1, . . . , d

η (0, x) = x,
(2)

If η (t, x) is the solution of (2), then η (t, x) is the position at time t of the fluid particle which
at time zero was at x. In the language of fluid mechanics, η (t, x) is the Euler coordinate of the
particle whose Lagrange coordinate is x. If for any t the map x 7−→ η (t, x) is a diffeomorphism,
then the equation (2) can be used to recover u (t, x) (see [3]). If ε = 0, we have

u (t, x) = ∂tη (t, σ (t, x)) ,

where σ (t) = σ (t, x) is the inverse of η (t) = η (t, x) . Following [3], we will find an equation for
η (t) which is equivalent to (1). In [3] the case of a compact manifold with ε = 0 was considered.

1.1 Function spaces and decomposition of vector fields

1.1.1 Function spaces

In order to state our result precisely, we shall introduce some function spaces and their decom-
positions. For l = 0, 1, . . . , α ∈ (0, 1), δ ∈ R we introduce the Banach spaces C l, α

δ (Rd) of l
times continuously differentiable functions u on Rd with finite norm

|u|
Cl, α

δ
= supx, y |x − y|−α∑l

k=0

∣∣(1 + |x|)δ−l+k∂ku(x) − (1 + |y|)δ−l+k∂ku(y)
∣∣+

+ supx

∑l
k=0(1 + |x|)δ−l+k−α

∣∣∂ku(x)
∣∣ .
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Remark 1 The norm |u|
Cl, α

δ
is equivalent to any of the following norms (cf. Proposition 2.3.16

in [5]):

|u|(1)l, α; δ = supx, y min{1 + |x| , 1 + |y|}δ |∂lu(x)−∂lu(y)|
|x−y|α +

+ supx

∑l
k=0(1 + |x|)δ−l+k−α

∣∣∂ku(x)
∣∣ ,

|u|(1,γ)
l, α; δ = supx(1 + |x|)δ supy∈E(x)

|∂lu(x)−∂lu(y)|
|x−y|α

+ supx(1 + |x|)δ−l−α |u(x)| ,
where γ ∈ (0, 1], and

E(x) = Eγ(x) = {y ∈ Rd : |x − y| < γ1 ∨ (|x| ∧ |y|)}.

By interpolation inequalities |u|(1)l, α; δ is equivalent to

|u|(2)l, α; δ = sup
x, y

min{1 + |x| , 1 + |y|}δ

∣∣∂lu(x) − ∂lu(y)
∣∣

|x − y|α

+ sup
x

(1 + |x|)δ−l−α |u(x)| .

Remark 2 Notice that |x − y| < γ1 ∨ (|x| ∧ |y|) implies that for each point a on the segment
connecting x and y

(1 + |y|)/4 ≤ 1 + |a| ≤ 2(1 + |y|),

(1 + |x|)/4 ≤ 1 + |a| ≤ 2(1 + |x|).

The inequality |x − y| ≥ γ1 ∨ (|x| ∧ |y|) implies that

|x − y| ≥ γ

8
(1 + |x| + |y|).

Remark 3 (Proposition 2.3.19 in [5]) For any function u ∈ C l,α
δ there exists a sequence un of

functions from C∞
0 (Rd) whose partial derivatives up to the order l converge to the corresponding

derivatives of u at every point of Rd, and

lim
n→∞ |un|Cl,α

δ
= |u|

Cl,α
δ

.

Let D =
{
φ ∈ C∞

0

(
R2
)

and φ = 1 in some neighborhood of 0
}

. Fix δ ∈ (2 + α, 3 + α), α ∈
(0, 1). For d = 2 and fixed φ ∈ D we introduce the space

C̃ l+2, α
l+δ = C̃ l+2, α

l+δ (R2) =
{
ũ = u + λ (1 − φ (x)) ln |x| , u ∈ C l+2, α

l+δ (R2), λ ∈ R2
}

.
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Notice that C̃ l+2, α
l+δ does not depend on a particular φ ∈ D. Also, given

ũ = u + λ (1 − φ (x)) ln |x| ∈ C̃ l+2, α
l+δ ,

necessarily

λ =
1
2π

∫
∆ũ(y) dy,

where ∆ is the Laplace operator. Indeed, applying the Laplace operator to the representation
of ũ and integrating by parts,∫

∆ũ(y) dy = −λ

∫
φxi(y)

yi

|y|2 dy = −λ

∫ 2π

0

∫
d

dr
φ(r cos τ, r sin τ) dr dτ = 2πλ.

For fixed φ, we introduce the norm in C̃ l+2, α
l+δ by

|ũ|
C̃l+2, α

l+δ
= |λ| + |u|

Cl+2, α
l+δ

, if ũ = u + λ (1 − φ (x)) ln |x| .

Notice that the norms corresponding to different φ are equivalent.

In the Appendix, we prove the following statement, regarding the solutions of the Laplace
equation in Rd.

Proposition 1 Let δ ∈ (2 + α, 3 + α), α ∈ (0, 1). Then for each l = 0, 1, . . .

a) the Laplace operator ∆ is a continuous bijection from C2+l, α
l+δ onto C l, α

δ+l, if d > 2;

b) the Laplace operator ∆ is a continuous bijection from C̃2+l, α
l+δ onto C l, α

δ+l, if d = 2.

Corollary 1 In the case d = 2, the Laplace operator is a continuous bijection from

C2+l, α
l+δ = {u ∈ C̃2+l, α

l+δ :
∫

∆u dx = 0} onto {f ∈ C l,α
l+δ :

∫
f dx = 0}.

Remark 4 Given f ∈ C l,α
l+δ,

∆−1f = u(x) =
∫

Γ(x − y)f(y) dy,

where Γ is the Laplace operator Green’s function (see Appendix 1).

1.1.2 Decomposition of vector fields

Using Proposition 1 we can decompose a vector field into its divergence free (or solenoidal) and
gradient parts.

Proposition 2 For each δ ∈ (2 + α, 3 + α), α ∈ (0, 1)

C l+1,α
δ+l = ∇C l+2,α

δ+l ⊕
{

h ∈ C l+1,α
δ+l : div h = 0

}
, d > 2,

C l+1,α
δ+l = ∇{u ∈ C̃ l+2,α

δ+l :
∫

∆u dx = 0} ⊕
{
h ∈ C l+1,α

δ+l : div h = 0
}

, d = 2.
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Proof 1 Indeed, for each f =
(
f j
)
1≤j≤d

∈ C l+1,α
δ+l there is a sequence fn = (fn,j)1≤i≤d ∈ C l+1,α

l+1+δ

whose partial derivatives up to the order l + 1 converge to the corresponding derivatives of f at
every point of Rd, and

lim
n→∞ |fn|

Cl+1,α
l+δ

= |f |
Cl+1,α

l+δ
,

(see Remark 3). According to Proposition 1, for each fn there is a unique vn =
(
vn,j

)
1≤j≤d

∈
C l+3,α

δ+l+1 (vn ∈ C̃ l+3,α
δ+l+1 in the case d = 2) such that ∆vn,j = fn,j. Let

Pfn =
(∑

i
∂

∂xi

(
vn,j
xi − vn,i

xj

))
1≤j≤d

,

Gfn = ∇(div vn).

Obviously,
fn = ∆vn = Pfn + Gfn,

and
div Pfn = 0.

By Remark 4,

Pfn = (
∑

i

∂

∂xi

∫
Γ(x − y)(fn,j

xi
(y) − fn,i

xj
(y)) dy)1≤j≤d (3)

= (
∑

i

∫
Γxi(x − y)(fn,j

xi
(y) − fn,i

xj
(y)) dy)1≤j≤d.

Since vn
xi

(x) =
∫

Γ(x − y)fn
xi

(y) dy, we have

∆(∇vn) = ∇fn, lim
n→∞ |∇fn|

Cl,α
l+δ

= |∇f |
Cl,α

l+δ
,

and corresponding derivatives of fn are converging (Notice that
∫ ∇f(y) dy = 0, if d = 2).

Therefore by Proposition 1, ∇vn ∈ C l+2
l+δ , supn|∇vn|Cl+2

l+δ
< ∞. Also the corresponding deriva-

tives of ∇vn are converging at each point of Rd. So,

Pfn → Pf = (
∑

i

∂

∂xi

∫
Γ(x − y)(f j

xi
(y) − f i

xj
(y)) dy)1≤j≤d ∈ C l+1,α

l+δ ,

Gfn = ∇(div vn) = ∇
∫

Γ(x − y)div fn(y) dy → Gf,

where
Gf = ∇

∫
Γ(x − y)div f(y) dy ∈ C l+1,α

l+δ

Let d = 2, gn(x) =div vn =
∫

Γ(x − y)div fn(y) dy. Then, obviously,∫
gn(x) dx = 0 and gn(x) → g(x) =

∫
Γ(x − y) div f(y) dy ∈ C l+2,α

l+δ .

Since δ ∈ (2 + α, 3 + α) and supn |gn|
Cl+2,α

l+δ
< ∞, we have

∫
g(x) dx = 0. So, the statement is

true.
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Remark 5 It follows from the proof that

Pf (x) =

(∑
i

∂

∂xi

∫
Γ (x − y)

(
f j

xi
(y) − f i

xj
(y)
)

dy

)
1≤j≤d

, (4)

Gf(x) = ∇
∫

Γ(x − y) div f(y) dy,

where

Γ (x − y) = Γd(x − y) = Γd(|x − y|) =
{ |x − y|2−d /d(2 − d)ωd, d > 2

1
2π ln |x − y| , d = 2,

and ωd is the volume of a unit ball in Rd.

1.1.3 Spaces of diffeomorphisms

Fix l ≥ 0. Let Bl+1,α
l+α = {η ∈ C l+1, α

l+α : η is a diffeomorphism and infx |det∇η(x)| > 0}.

Remark 6 a) Let η ∈ C l+1, α
l+α and infx |det∇η(x)| > 0. Then there exist some constants C, c > 0

such that for all x, y ∈ Rd

C |x − y| ≥ |η(x) − η(y)| ≥ c |x − y| .
So, η, σ = η−1 ∈ Bl+1,α

l+α and Bl+1,α
l+α = {η ∈ C l+1, α

l+α : infx |det∇η(x)| > 0}.
b) Obviously, Bl+1,α

l+α is an open subset of C l+1, α
l+α ;

Lemma 1 Let D = {η ∈ Bl+1,α
l+α : supx |η(x)| (1 + |x|)−1 ≤ c0, supx |∇η(x)| ≤

c1, infx |det∇η(x)| ≥ c2 > 0}. Then
a) there exists a constant c = c(c1, c2) such that for all η ∈ D

c1 |x − y| ≥ |η(x) − η(y)| ≥ c |x − y| . (5)

b) there exist some constants c̄ = c̄(c0, c1, c2), C̄ = C̄(c0, c1) such that for all η ∈ D

c̄(1 + |x|) ≤ 1 + |η(x)| ≤ C̄(1 + |x|). (6)

Proof 2 Obviously there exists a constant c = c(c1, c2) such that for all η ∈ D
supx

∣∣(∇η)−1(x)
∣∣ ≤ c. So the first part of the statement follows.

Denote |η|0 = supx(1 + |x|)−1 |η(x)| . It follows from (5) applied for y = 0

c |x| − |η(0)| ≤ |η(x)| ≤ c1 |x| + |η (0)|
for all η ∈ D. Since |η|0 ≥ |η(0)| we have for all η ∈ D

|η|0 ≥ (1/2)c, 1 + |η(x)| ≤ C̄(1 + |x|), and

c |x| + |η|0 ≤ |η(x)| + 2 |η|0 .
(7)

where C̄ = max{c1, 1 + c0}. Thus for all η ∈ D

c̄(1 + |x|) ≤ 1 + |η(x)| ,
where c̄ = (1/2)cmax{1, 2c0}−1.
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Using this Lemma and Remark 1 we derive easily the following two statements.

Corollary 2 Let D = {η ∈ Bl+1,α
l+α : supx |η(x)| (1 + |x|)−1 ≤ c0, supx |∇η(x)| ≤

c1, infx |det∇η(x)| ≥ c2 > 0}, D−1 = {σ = η−1 : η ∈ D}. Then there exist some constants
ki = ki(c0, c1, c2) > 0, i = 0, 1, 2 such that for all σ ∈ D−1

sup
x

|σ(x)| (1 + |x|)−1 ≤ k0, sup
x

|∇σ(x)| ≤ k1, inf
x
|det∇σ(x)| ≥ k2.

Corollary 3 Let Br1 = {v ∈ C l+1, α
δ+l : |v|

Cl+1, α
δ+l

≤ r1}, Dr2, r = {η ∈ C l+1, α
l+α : |η|

Cl+1, α
l+α

≤
r2, infx |det∇η(x)| ≥ r > 0}. Then there exists R = R(r1, r2, r) such that Br1 ◦Dr2, r = {v ◦η :
v ∈ Br1, η ∈ Dr2, r} ⊂ BR.

1.2 Derivation of a new equation

Assume u (t, x) satisfies (1) and η (t, x) is its flow, i.e. (2) holds. Then

{
∂tη

k
xl

(t) = uk
xm

(t, η (t)) ηm
xl

(t) , k, l = 1, . . . , d
ηk

xl
(0, x) = δkl..

(8)

We now derive an equation for η (t) = η (t, x) equivalent to (1). We have by chain rule and (8)

d
dt

(
(uk (t, η (t)) − εW k

t )ηk
xl

(t)
)

= (∂tu
k (t, η (t)) + uk

xm
(t, η (t)) ∂tη

m (t)−

−εẆ k
t ηk

xl
(t)) +

(
uk (t, η (t)) − εW k

t

)
∂tη

k
xl

(t) = −pxk
(t, η (t)) ηk

xl
(t)+

+(uk (t, η (t)) − εW k
t )uk

xm
(t, η (t)) ηm

xl
(t) = ∂

∂xl
(−p (t, η (t)) + 1

2 |u (t, η (t)) − εWt|2).

Taking solenoidal projection of both sides of this equality we have

d

dt
P
(
(uk (t, η (t)) − εW k

t )ηk
xl

(t)
)

= 0.

Since P (uk (0, η (0)) ηk
xl

(0)
)

= Ph = h, it follows that for some scalar field G (t, x)

(uk (t, η (t, x)) − εW k
t )ηk

xl
(t, x) = hl (x) + Gxl

(t, x) .

Denote σ (t) = σ (t, x) = η−1(t) = η−1 (t, x) . Then

(uk (t, x) − εW k
t )ηk

xl
(t, σ (t)) = hl (σ (t)) + Gxl

(t, σ (t)) ,

and therefore
ul (t, x) = hk (σ (t))σk

xl
(t) + Gxk

(t, σ (t)) σk
xl

(t) + εWt =

= hk (σ (t)) σk
xl

(t) + (G (t, σ (t)))xl
+ εWt.

Since divu = 0, we have

u (t, x) = P
((

hk (σ (t))σk
xl

(t)
)

l

)
+ εWt. (9)
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Given h ∈ C l+1,α
l+δ , consider the following function ω : Bl+1,α

l+α −→ C l,α
l+δ defined by

η 7−→ ω (η) = (∇η (y)−1)∗∇h (y)∇η (y)−1 Jη (y) ,

where Jη (y) is the Jacobian determinant of η (y) . So, according to (2), (9) and (4) (see Remark
5), the following equation for η (t) holds:

∂tη (t) = F (η (t)) + εWt,

η (0, x) = x,
(10)

where F =
(
F l
)
1≤l≤d

,

F l (η) =
∑

i

∫
Γxi (η (x) − η (y)) [ω (η) (y)li − ω (η) (y)il] dy. (11)

Indeed, by (4) (see Remark 5),

P
((

hk (σ (t))σk
xl

(t)
)

l

)

= (
∑
i6=l

∫
Γxi (x − y)

(
(hk (σ (t, y))σk

xl
(t, y))xi − (hk (σ (t, y))σk

xi
(t, y))xl

)
dy)

= (
∑
i6=l

∫
Γxi (x − y) (hk

xm
(σ (t, y)) σm

xi
(t, y)σk

xl
(t, y)

−hk
xm

(σ (t, y))σm
xl

(t, y)σk
xi

(t, y)) dy)

= (
∫

{[(∇σ (t))∗∇h (σ (t))∇σ (t)]li

−[(∇σ (t))∗∇h (σ (t))∇σ (t)]il}Γxi (x − y) dy)

= (
∫

{[(∇σ (t, η (t, y)))∗∇h (y)∇σ (t.η (t, y))]li

−[(∇σ (t, η (t, y)))∗∇h (y)∇σ (t.η (t, y))]il}Γxi (x − η (t, y)) Jη (t, y) dy.

So, (10) follows from (9) and (2).

The above derivation shows that if u (t, x) satisfies (1) with u (0, x) = h (x), and if η is the flow
of u, then η satisfies (10) with η (0) , the identity. Reading the same derivation backwards, we
find that η satisfies (10) implies that in order for u to verify (1) it must be defined by

u (t, x) = H (t, x) + εWt, (12)

where
H l (t, x) =

∑
i

∫
Γxi (x − η (t, y)) [ω (η (t)) (y)li − ω (η (t)) (y)il] dy. (13)

Thus solving (1) is equivalent to solving (10).
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Remark 7 According to Proposition 7 F (η) is C l+1,α
l+δ -valued function on Bl+1,α

l+α . Obviously it
is continuous and locally bounded.

Remark 8 If ε = 0, then the equations are deterministic. Denote u0, η0 the corresponding
solutions of (1) and (10). The formulas (10) and (11) show that

η (t) = η0 (t) + ε

∫ t

0
Ws ds. (14)

Notice the trajectories of particles in this case are nice functions (η (t) is differentiable in t),
∇η (t) = ∇η0 (t) is deterministic, σ (t, x) = σ0

(
t, x − ε

∫ t
0 Ws ds

)
. Also,

u (t, x) = u0

(
t, x − ε

∫ t

0
Ws ds

)
+ εWt. (15)

So, it is not true that u (t, x) = u0 (t, x) + εWt.

Indeed, F (η + a) = F (η) for each a ∈ Rd. So, η(t) − ε
∫ t
0 Ws ds is a solution of (10) with ε = 0,

and (14) holds. Let H0 (t, x) be a function defined by (13) with ε = 0. By (14)

H (t, x) = H0

(
t, x − ε

∫ t

0
Ws ds

)
, u (t, x) = u0

(
t, x − ε

∫ t

0
Ws ds

)
+ εWt.

1.3 Local result: solving (10)

The last Remark and trivial formulas (14), (15) determine that we start with deterministic
equation (10), i.e. ε = 0.

Proposition 3 Let l ≥ 0, δ ∈ (2 + α, 3 + α) , h ∈ C l+1,α
l+δ ,divh = 0. Then there exists a time

interval (−λ, κ) such that (10), ε = 0, has a unique solution η0 (t) ∈ Bl+1,α
l+α , t ∈ (−λ, κ) such

that η0 (0) is the identity. Moreover, it depends smoothly on h.

Proof 3 We consider (10), ε = 0, as deterministic ODE in Banach space C l+1,α
l+α . We mentioned

already (see Remark 7) that F (η) is continuous C l+1,α
l+δ -valued function on C l+1,α

l+α (notice C l+1,α
l+δ ⊆

C l+1,α
l+α . The local existence and uniqueness follow from the smoothness of F (η) . Indeed, given

h ∈ C l+1,α
l+δ the following function ω : Bl+1,α

l+α −→ C l,α
l+δ defined by

η 7−→ ω (η) = (∇η (y)−1)∗∇h (y)∇η (y)−1 Jη (y) ,

is smooth. It is smooth (linear) in h as well. The function G(η,w) = (Gl(η,w))1≤l≤d defined by

w 7−→ Gl(η,w) =
∫

Γxi (η (x) − η (y))wli (y) dy

is linear in w = (wli)1≤l,i≤d and bounded from C l,α
l+δ to C l+1,α

l+δ (by Proposition 7, Appendix
1). Now we show that G(η,w) depends smoothly on η ∈ Bl+1,α

l+α . Differentiating G(η,w) with

9



respect to η in direction v ∈ C l+1,α
l+α we get:

∂ηG(η,w) · v =

=
∫

Γxixj (η (x) − η (y)) (vj(y) − vj(x))wli (y) dy

=
∫

Γxixj (η (x) − y) (vj(σ(y)) − vj(x))wli (σ(y)) Jη(y) dy = H l(η(x)),

where
H l(x) =

∫
Γxixj (x − y) (vj(σ(y)) − vj(σ(x))wli (σ(y)) Jη(y) dy.

By Appendix 2 Proposition 8 |H|
Cl+1,α

l+δ
≤ C|v ◦ σ|

Cl+1,α
l+α

|w ◦ σJη|
Cl,α

l+δ
, if d > 2, and

|H|
Cl+1,α

l+α
≤ C|v ◦ σ|

Cl+1,α
l+α

|w ◦ σJη|
Cl,α

l+δ
, if d = 2.

Since
F l (η) =

∑
i

∫
Γxi (η (x) − η (y)) [ω (η) (y)li − ω (η) (y)il] dy,

the function F (η) from Bl+1,α
l+α into C l,α

l+δ (or C l,α
l+α, if d = 2) is smooth, and the statement follows.

Remark 9 Notice that the function

K : Bl+1,α
l+α → Bl+1,α

l+α ; η 7−→ σ = η−1

is smooth as well.

Indeed, (η + v)−1 (η) − η−1 (η) = (η + v)−1 (η) − (η + v)−1 (η + v) = −D(η + v)−1 (η) v ≈
− (∇η (η))−1 v. So,

(η + v)−1 − η−1 ≈ −(∇η)−1v
(
η−1

)
,

and the first derivative DK (η) · v = −(∇η)−1v
(
η−1

)
. Similarly the higher derivatives formulas

can be obtained.

Having in mind Remark 8 and formula (14), we derive easily the following obvious statement.

Corollary 4 Let l ≥ 0, δ ∈ (2 + α, 3 + α) , h ∈ C l+1,α
l+δ ,divh = 0. Let (−λ, κ) be a time interval

specified in Proposition 3.

Then for each ε (10) has a unique solution η (t) ∈ Bl+1,α
l+α , t ∈ (−λ, κ) such that η (0) is the

identity. Moreover, it depends smoothly on h, and (14) holds.

Now, form the equivalence of (1) and (10) we have obviously

Proposition 4 Let l ≥ 0, δ ∈ (2 + α, 3 + α) , h ∈ C l+1,α
l+δ ,divh = 0. Then there exists a time

interval (−λ, κ) such that (10), ε = 0, has a unique solution C l+1,α
l+δ -solution u0 (t, x) , t ∈ (−λ, κ) .

Corollary 5 Let l ≥ 0, δ ∈ (2 + α, 3 + α) , h ∈ C l+1,α
l+δ ,divh = 0. Let (−λ, κ) be the time

interval specified in Proposition 4.

Then for each ε (1) has a unique solution C l+1,α
l+δ -solution u (t, x) , t ∈ (−λ, κ) .
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1.3.1 The case d = 2. Global result

Now we prove that for d = 2, λ = κ = ∞.

Proposition 5 Let d = 2, l ≥ 0, δ ∈ (2 + α, 3 + α) , h ∈ C l+1,α
l+δ ,divh = 0. Then (10), ε = 0,

has a unique solution η0 (t) ∈ Bl+1,α
l+α defined for all t ∈ (−∞,∞) .

Proof 4 Since (10) is a deterministic ODE on Bl+1,α
l+α , to show that a solution exists for all t,

it is enough to show that the solution η (t) remains bounded in C l+1,α
l+α -norm on any finite time

interval. To do this we will need again some estimates of F (η) . First of all we notice that the
Jacobian determinant Jη (t) = 1 for all t. It simply satisfies a linear ODE

d

dt
Jη (t) = divu (t, η (t)) Jη (t)

with the initial condition Jη (0) = 1. Then Jσ (t) = 1 as well. So,

F 1 (η) =
∫

Γx2 (η − y) h1
x2

(σ (t, y)) − h2
x1

(σ (t, y)) dy

=
∫

Γx2 (η (t, x) − η (t, y)) (h1
x2

(y) − h2
x1

(y)) dy,
(16)

and similarly

F 2 (η) =
∫

Γx1 (η (t, x) − η (t, y)) (h2
x1

(y) − h1
x2

(y))) dy. (17)

Basic estimates:

1) Denoting H ij (y) = hi
xj

(y) − hj
xi (y) , we find that

∣∣F 2 (η)
∣∣ ≤ | ∫ Γx1 (η (x) − η (y)) H21 (y) dy| ≤

≤ C
∫ |η (x) − η (y)|−1 (1 + |y|)α−δ dy ≤

≤ ∫|η(x)−η(y)|≤1 |η (x) − η (y)|−1 dy +
∫
|η(x)−η(y)|>1 (1 + |y|)α−δ dy ≤

≤ C
∫
|z|≤1 |z|−1 dz +

∫
(1 + |y|)α−δ dy < ∞.

Thus for each T there is C such that for all t ≤ T

|η (t)|0 = supx |η (t, x)| (1 + |x|)−1 ≤ C,

supx |η (t, x) − x| ≤ C.

(18)

Then for the same constant C

|η (t)|0 = supx |x| (1 + |σ (t, x)|)−1 ≤ C,

supx |σ (t, x) − x| ≤ C.

(19)

2) Estimate of ∇F (η).

11



Since by chain rule ∇ (F (η)) = ∇F (η)∇η and F is defined by (16), (17), we need a ”good”
estimate of the second derivative of w (x) =

∫
Γ (x − y) g (σ (y)) dy, where g ∈ C l,α

l+δ. By Lemma
4.2 in [6] we have

∂2
ijw (x) =

∫
E(x)

∂2
ijΓ (x − y)

[
(1 + |σ(y)|)δ (g (σ (y)) − g (σ (x)))

]
(1 +

+ |σ (y)|)−δ dy +
∫

E(x)c

∂2
ijΓ (x − y) (1 +

+ |σ (y)|δ−α)g (σ (y)) (1 + |σ (y) |)−δ+α dy

−g(σ(x))
∫

∂E(x)
Γxj(x − y)ni(y)S(dy),

where E(x) = {y : |x − y| ≤ max {1,min {|x| , |y|}}.
Notice, |x − y| ≤ max {1,min {|x| , |y|}} implies that

(1 + |y|) /2 ≤ 1 + |x| ≤ 2 (1 + |y|) . (20)

¿From the opposite inequality |x − y| > max {1,min {|x| , |y|}} it follows

|x − y| ≥ (|x| + |y|) /8 + 1/2. (21)

By (18), (19), (20), (21)∣∣∣∂2
ijw
∣∣∣ ≤ C

∫
|x−y|≤max{1,min{|x|,|y|}} |x − y|−2 |σ (y) − σ (x)|α (1 + |y|)−δ dy + C1,

∫
|x−y|≤max{1,min{|x|,|y|}} |x − y|−2 |σ (y) − σ (x)|α (1 + |y|)−δ dy ≤

≤ |∇η|∞
∫
|x−y|≤|∇η|−1

∞
|x − y|−2+α dy+

+
∫
|∇η|−1

∞ ≤|x−y|≤max{1,min{|x|,|y|}} |x − y|−2 (C + |x − y|α) (1 + |y|)−δ dy ≤

≤ ∫|∇η|−1
∞ ≤|x−y|≤1 |x − y|−2 dy +

∫
1≤|x−y|≤min{|x|,|y|} .... ≤ C(1 + ln(1 + |∇η|∞)),

(22)

where |∇η (t)|∞ = supx |∇η (t, x)| . This estimate is ”good” enough (see [3]) in order to obtain
that for each T there is C such that for all t |∇η (t)|∞ ≤ C. Since Jη (t) = 1, |∇σ (t)|∞ ≤ C as
well. So,

|η (t, x) − η (t, y)| ≤ C |x − y| ,

|σ (t, x) − σ (t, y)| ≤ C |x − y| ,
and

C−1 |x − y| ≤ |η (t, x) − η (t, y)| ≤ C |x − y| ,

C−1 |x − y| ≤ |σ (t, x) − σ (t, y)| ≤ C |x − y| .
(23)

3) Using (18), (19), (23), the estimate of |η (t)|
Cl+1, α

l+α
is now straightforward (by induction).
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2 Stochastic Euler equation

Let u, p be a solution of (1) and η be a solution of (10) in some deterministic interval [0, κ).
Define

η̄(t, x) = η(t, x) + µBt, (1)

where B is a standard Wiener process independent of W. It means that besides the random forces
acting by the second Newton law there are some other reasons deflecting individual trajectories
away. Instead of u (t, x) = H(t, η (t, σ (t, x)) + εWt = u (t, η (t, σ (t, x))) , we go with ū (t, x) =
u (t, η (t, σ̄ (t, x))) ,where σ̄ (t, x) = η̄−1 (t, x) .

Proposition 6 Let l ≥ 1, δ ∈ (2 + α, 3 + α), h ∈ C l+1, α
l+δ , div h = 0. Then in the interval [0, κ)

ū(t, x) is a solution of the following SPDE:


∂tū(t, x) =
= −ūk(t, x)∂kū(t, x) − µ∂kū(t, x)Ḃk

t −∇p̄(t, x) + (1/2)µ2∆ū(t, x) + εẆt,

ū(0, x) = h(x), div ū = 0.

(2)

Proof 5 For the inverse σ̄(t, x) of η̄(t, ·) we have

x = η(t, σ̄(t, x)) + µBt,

i.e. η(t, σ̄(t, x)) = x − µBt. Thus ū(t, x) = u(t, x − µBt), and by Ito formula we have

∂tū(t, x) + ūk(t, x)∂kū(t, x) + µ∂kū(t, x)Ḃk
t − (1/2)µ2∆ū(t, x) + ∇p̄(t, x) = εWt,

where p̄(t, x) = p(t, x − εWt). Also, obviously div ū = 0, ū(0, ·) = h(x).

Corollary 6 Let l ≥ 1, δ ∈ (2 + α, 3 + α), h ∈ C l+1, α
l+δ , div h = 0, and ū = ūε,µ be a solution of

(2) constructed in Proposition 6. Then P-a.s. for each t ∈ [0, κ)

lim
µ→0

sup
s≤t, x

|ūε,µ(s, x) − u(s, x)| = 0,

where u is a solution in [0, κ) of (1).

Proof 6 Indeed, as we noticed ūε(t, x) = u(t, x− εWt), and the statement follows immediately.

Remark 10 Denote u0, η0 the corresponding solutions of (1) and (10) with ε = 0. By Remark
8 and definition of η̄ we have

η̄ (t) = η0 (t) + ε

∫ t

0
Ws ds + µBt. (3)

Note that the trajectories of particles in this case are not as regular as in (14) (η̄ (t) is not
differentiable in t), ∇η̄ (t) = ∇η0 (t) is deterministic. Also,

ū (t, x) = u0

(
t, x − ε

∫ t

0
Ws ds − µBt

)
+ εWt. (4)
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3 Appendix 1: Laplace equation in Rd

Consider the following equation in the whole space Rd, d ≥ 2,

∆u(x) = f(x), x ∈ Rd, (1)

where f ∈ C∞
0 (Rd). It is well known that

w(x) = wd (x) =
∫

Γd(x − y)f(y) dy

is a solution of (1), where

Γ (x − y) = Γd(x − y) = Γd(|x − y|) =
{ |x − y|2−d /d(2 − d)ωd, d > 2

1
2π ln |x − y| , d = 2.

.

It is rather straightforward to show that

∂iw(x) =
∫

∂iΓ(x − y)f(y) dy.

We notice here also that

(1 + |x|)β−1 |∂iΓ(x − y)| (1 + |y|)−β ≤

≤ C(1 + |x|)β−1 |x − y|1−d (1 + |y|)−β , d ≥ 2;

(1 + |x|)β−2 |Γ(x − y)| (1 + |y|)−β ≤

≤ C(1 + |x|)β−2 |x − y|2−d (1 + |y|)−β , d > 2.

(2)

Introduce the space C l, α
δ (Rd) (see [5]), l = 0, 1, . . . , α ∈ (0, 1), δ ∈ R, of l times continuously

differentiable functions u on Rd with finite norm

|u|
Cl, α

δ
= supx, y |x − y|−α∑l

k=0

∣∣(1 + |x|)δ−l+k∂ku(x) − (1 + |y|)δ−l+k∂ku(y)
∣∣+

+ supx

∑l
k=0(1 + |x|)δ−l+k−α

∣∣∂ku(x)
∣∣ .

Remark 11 It is easy to see (cf. Proposition 2.3.16 in [5]) that the norm |u|
Cl, α

δ
is equivalent

to the norm
|u|l, α; δ = supx, y min{1 + |x| , 1 + |y|}δ |∂lu(x)−∂lu(y)|

|x−y|α +

+ supx

∑l
k=0(1 + |x|)δ−l+k−α

∣∣∂ku(x)
∣∣ .

Notice that obviously

|u|l,α;δ = supR>0 sup|x|≤R

∑l
k=0(1 + |x|)δ−l+k−α

∣∣∂ku(x)
∣∣+

+ supR>0 sup|x|≤R,|y|≤R min{1 + |x| , 1 + |y|}δ |∂lu(x)−∂lu(y)|
|x−y|α .

(3)
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Let D =
{
φ ∈ C∞

0

(
R2
)

and φ = 1 in some neighbourhood of 0
}

. Fix δ ∈ (2 + α, 3 + α), α ∈
(0, 1). For d = 2 and φ ∈ D we introduce the space

C̃ l, α
δ (R2) =

{
ũ = u + λ (1 − φ (x)) ln |x| , u ∈ C l, α

δ (R2), λ ∈ R
}

,

with a norm
|ũ|

C̃l,α
δ

= |u|
Cl,α

δ
+ |λ|.

Notice that C̃ l, α
δ (R2) does not depend on a particular φ ∈ D and all norms are equivalent.

Proposition 7 Let δ ∈ (2 + α, 3 + α), α ∈ (0, 1). Then for each l = 0, 1, . . .

a) the Laplace operator ∆ is a continuous bijection from C2+l, α
l+δ onto C l, α

δ+l, if d > 2;

b) the Laplace operator ∆ is a continuous bijection from C̃2+l, α
l+δ onto C l, α

δ+l, if d = 2.

Proof 7 Let

w̃ (x) = w̃d (x) =
{

wd (x) , if d > 2,
w2 (x) − Γ2 (x) (1 − φ (x))

∫
f (y) dy, if d = 2.

,

and

f̃ (x) = f̃d (x) =
{

f (x) , if d > 2,
f (x) − ∆(Γ2 (x) (1 − φ (x))

∫
f (y) dy, if d = 2.

Notice (for large x)

|w̃2 (x) | ≤ ∫ |ln |x − y| − (1 − φ (x) ln |x|)| |f (y) | dy =

= |x|2 ∫ | ln |x|φ (x) + ln |z − y| | |f (|x| y)| dy ≤

≤
[
|x|2 ln |x|φ (x)

∫
1

(1+|x||y|)δ−α dy +
∫ |ln|z−y|−ln|z||

(1+|x||y|)δ−α dy
]
|f |C0,α

δ+l
,

(4)

where z = x/ |x| . So,

sup
x

(1 + |x|)δ−2−α
∣∣w̃2 (x)

∣∣ ≤ C sup
x

(1 + |x|)δ−α
∣∣∣f̃ (x)

∣∣∣ . (5)

Let

U0 = {x : |x| < 2}, V0 = {x : |x| < 4},

U = {x : 1/2 < |x| < 2}, V = {x : 1/4 < |x| < 4}.

By inner Hölder estimates for each l = 0, 1, . . . there exist some constants C such that

|w̃|2+l, α; U ≤ C(
∣∣∣f̃ ∣∣∣

l+α, V
+ |w̃|0, V ),

|w̃|2+l, α; U0
≤ C(

∣∣∣f̃ ∣∣∣
l+α, V0

+ |w̃|0, V0
)

(6)
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where
|g|k,α; B = |g|0; B +

〈
∂kg
〉
α; B

,

|g|0; B = supx∈B |g(x)| , 〈g〉α; B = supx, y∈B
|g(x)−g(y)|

|x−y|α .

Let Uj = 2jU, Vj = 2jV, j = 1, . . . , w̃j(x) = w̃(2jx), f̃j(x) = f̃(2jx), x ∈ V. Then

∆w̃j(x) = 22j f̃j(x) in V.

Also ∂kw̃j(x) = 2kjw̃(2jx), x ∈ V, k = 0, 1, . . . , and
〈
∂kw̃j

〉
α, U

= 2(k+α)j
〈
∂kw̃

〉
α; Uj

. By (6)
we obtain

2(2+l+α)j
〈
∂2+lw̃

〉
0, α; Uj

+ |w̃|0, Uj
≤ C(2(2+l+α)j

〈
∂lf̃
〉

α, Vj

+ 22j
∣∣∣f̃ ∣∣∣

0, Vj

+ |w̃|0, Vj
)

Multiplying both sides by 2(δ−2−α)j we have

2(δ+l)j
〈
∂2+lw̃

〉
0, α; Uj

+ 2(δ−2−α)j |w̃|0, Uj
≤ C(2(δ+l)j

〈
∂lf̃
〉

0, α; Vj

+

+2(δ−α)j
∣∣∣f̃ ∣∣∣

0, Vj

+ 2(δ−2−α)j |w̃|0, Vj
).

(7)

According to Remark 2.3.17 in [5] it follows from (7) that

|w̃|
Cl+2, α

δ+l
≤ C(

∣∣∣f̃ ∣∣∣
Cl,α

δ+l

+ sup
x

(1 + |x|)δ−2−α |w̃(x)|). (8)

According to (5) and Theorem 1.3.5 (generalization of Hardy-Littlewood inequality) in [5] (for
β = δ − α, δ ∈ (2 + α, 3 + α) and d > 2)

sup(1 + |x|)δ−2−α |w̃(x)| ≤ C supx(1 + |x|)δ−α
∣∣∣f̃(x)

∣∣∣ ,
supx(1 + |x|)δ−1−α|∂iw̃(x)| ≤ C supx(1 + |x|)δ−α

∣∣∣f̃(x)
∣∣∣ .

(9)

Thus by (8) and (9) for each l = 0, 1, . . . there exists a constant C independent of f ∈ C∞
0 (Rd)

such that
|w̃|

Cl+2, α
δ+l

≤ C
∣∣∣f̃ ∣∣∣

Cl,α
δ+l

≤ C |f |
Cl,α

δ+l
.

By Theorem 2.3.19 in [5] we can extend this inequality to the whole C l, α
δ+l.

4 Appendix 2: Hölder norm estimate

The Hölder norm estimate of the following function H = (Hk(x))1≤k≤d is important. Let
v = (vj)1≤j≤d ∈ C l+1,α

l+α , w = (wki)1≤i,k≤d ∈ C l,α
l+δ, δ ∈ (2 + α, 3 + α). We consider the function

H = (Hk(x))1≤k≤d defined by

Hk(x) =
∫

Γxixj(x − y)(vj(x) − vj(y))wki(y) dy

=
∫

Γxixj(z)(vj(x − z) − vj(x))wki(x − z) dz.

16



We assume
∫

wki dx = 0 for all k, i, if d = 2.

Proposition 8 There is a constant C independent of v, w such that

|H|
Cl+1,α

l+δ
≤ C|v|

Cl+1,α
l+α

|w|
Cl,α

l+δ
, if d > 2;

|H|
Cl+1,α

l+α
≤ C|v|

Cl+1,α
l+α

|w|
Cl,α

l+δ
, if d = 2.

Proof 8 For each multiindex β of length l

∂βHk(x) =
∑

γ+µ=β

∫
Γxixj (z)(∂γvj(x) − ∂γvj(x − z))∂µwki(x − z) dz

=
∑

γ+µ=β

∫
Γxixj (x − y)(∂γvj(x) − ∂γvj(y))∂µwki(y) dz

=
∑

γ+µ=β

[
∫

∂

∂yi
(Γxj(x − y)(∂γvj(y) − ∂γvj(x)))∂µwki(y) dz

−
∫

Γxj(x − y)∂γvj
xi

(y)∂µwki(y) dz]

= I1(x) + I2(x).

Notice

I2 = −
∫

Γxj(x − y)∂β(vj
xi

(y)wki(y) dy =

= ∂βgxj (x),

where ∆g = −vj
xi(y)wki(y) ∈ C l,α

l+δ. If d > 2, by Proposition 7

|I2|C1,α
l+δ

≤ |g|
Cl+2,α

l+δ
≤ C|vjwki|Cl.α

l+δ
≤ C|vj

xi
|
Cl,α

l+α
|wki|Cl.α

l+δ
. (1)

If d = 2, we have a decomposition g = g̃ + F, where g̃ ∈ C l+2,α
l+δ , F (x) = λ ln |x|(1 − φ(x)), and

|I2|C1,α
l+α

≤ |g̃|
Cl+2,α

l+δ
+ |F |

Cl+2,α
l+α

≤ C|vj |
Cl+1,α

l+α
|wki|Cl.α

l+δ
. (2)

Choose x̄ and x so that ε = |x − x̄| ≤ 1
32 [1 ∨ (|x| ∧ |x̄|)]. Let ξ = 1

2 (x + x̄),

E(ξ) = {y ∈ Rd : |ξ − y| ≤ 1 ∨ (|ξ| ∧ |y|)}.
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In a standard way (see Lemma 4.2 in [6]), we have the following representation

I1
xp

(x) =
∑

γ+µ=β

∫
E(ξ)

∂2

∂yi∂xp
(Γxj (x − y)(∂γvj(y) − ∂γvj(x)))(∂µwki(y)

−∂µwki(x)) dy

+
∑

γ+µ=β

∫
E(ξ)c

∂2

∂yi∂xp
(Γxj (x − y)(∂γvj(y) − ∂γvj(x)))∂µwki(y) dy

+
∑

γ+µ=β

∂µwki(x)
∫

∂E(ξ)

∂

∂xp
(Γxj (y − x)(∂γvj(y) − ∂γvj(x)))ni(y)S(dy)

= A1(x) + A2(x) + A3(x),

where ∂E(ξ) = {y : |ξ − y| = 1∨ (|ξ| ∧ |y|) and n = (ni(y)) is exterior unit normal at y ∈ ∂E(ξ).
Similar formula holds for Ixp(x̄) as well. Now,

A2(x) = −
∫

E(ξ)c

Γxixpxj(x − y)∂β(vj(y)wki(y)) dy (3)

+
∫

E(ξ)c

Γxpxj(x − y)∂β(vj
yi(y)wki(y)) dy

+∂γvj(x)
∫

E(ξ)c

Γxixpxj (x − y)∂µwki(y) dy

+∂γvj
xp

(x)
∫

E(ξ)c

Γxixj(x − y)∂µwki(y) dy.

We have the estimate

(1 + |x|)l+δ |A2(x) − A2(x̄)| ≤ C|x − x̄|α|v|
Cl+1,α

l+α
|w|

Cl,α
l+δ

, if d > 2; (4)

(1 + |x|)l+α|A2(x) − A2(x̄)| ≤ C|x − x̄|α|v|
Cl+1,α

l+α
|w|

Cl,α
l+δ

, if d = 2

For example, integrating by parts (applying divergence theorem) the first term of RHS of (3)∫
E(ξ)c

Γxixpxj(x − y)∂β(vj(y)wki(y)) dy

=
∫

E(ξ)c

∂β
x Γxixpxj (x − y)vj(y)wki(y) dy

+
∑

m̂+τ+µ=β

∫
∂E(ξ)

∂µ
y Γxixpxj (x − y)∂τ (vj(y)wki(y))nm(y)S(dy)

= B1(x) + B2(x),

18



where m̂ is a unit vector whose m-th component is 1. By Remark 2

(1 + |x|)l+δ|B1(x) − B1(x̄)|

≤ C(1 + |ξ|)l+δ |A2(x) − A2(x̄)|

≤ C(1 + |ξ|)l+δ |x − x̄|α
∫

E(ξ)c

dy

|ξ − y|l+d+1+α(1 + |y|)δ−1−α

≤ C|x − x̄|α(1 +
∫

G(ξ)

dy

|ξ̃ − y|l+d+1+α(|ξ|−1 + |y|)δ−1−α
),

where ξ̃ = ξ/|ξ|, G(ξ) = {y : |ξ̃ − y| > |ξ|−1 ∨ (1 ∧ |y|), |y| ≤ 1} and the integral is uniformly
bounded in ξ. Similarly we estimate B2 and the remaining terms of A2. Let B(ξ) = Bε(ξ) =
{y : |y − ξ| < ε}, ε = |x − x̄|. Then

A1(x) =
∑

γ+µ=β

∫
E(ξ)∩B(ξ)

∂2

∂yi∂xp
(Γxj (x − y)(∂γvj(y)

−∂γvj(x)))(∂µwki(y) − ∂µwki(x)) dy

+
∑

γ+µ=β

∫
E(ξ)∩B(ξ)c

∂2

∂yi∂xp
(Γxj (x − y)(∂γvj(y)

−∂γvj(x)))(∂µwki(y) − ∂µwki(x)) dy

= C1(x) + C2(x).

Since on E(ξ) the distances (1 + |x|), (1 + |x̄|), (1 + |ξ|) are equivalent (see Remark 2), we can
simply follow the proof in [6]. It is straightforward that

(1 + |x|)l+δ|C1(x) − C1(x̄)| ≤ (1 + |x|)l+δ(|C1(x)| + |C1(x̄)|)

≤ Cεα|v|
Cl+1,α

l+α
|w|

Cl,α
l+δ .

Now,

C2(x̄) − C2(x) =
∑

γ+µ=β

[(∂µw(x) − ∂µw(x̄))
∫

∂2

∂yi∂xp
Kγ(x, y) dy

+
∫

(
∂2

∂yi∂xp
Kγ(x̄, y) −

− ∂2

∂yi∂xp
Kγ(x, y))(∂µwki(y) − ∂µwki(x̄)) dy],

where Kγ(x, y) = Γxj(x − y)(∂γvj(y) − ∂γvj(x)). Then we have the estimate by repeating the
proof of Lemma 4.4 in [6].
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