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Section 1. Introduction.

Let h be a real valued function defined on ∪∞n=1 IRn and let 0 < p < q. We say that a
random variable X is {p, q} − h−hypercontractive if, for some positive σ,

(Ehq(σX1, σX2, . . . , σXn))1/q ≤ (Ehp(X1,X2, . . . ,Xn))1/p

for all n where X,X1,X2, . . . ,Xn are independent and identically distributed random
variables.

For linear functions h this notion (without the name we attached to it) appears in
many inequalities (see, e.g., Nelson (1966), Bonami (1970) Gross (1975), Beckner, W.
(1975), Krakowiak and Szulga (1988) and Borell (1979)). In a recent paper of de la Peña,
Montgomery-Smith and Szulga (1994), this notion appears for the function h(x1, . . . , xn) =
Mn(x1, . . . , xn) = maxi≤n xi. In this paper we study this notion for this max function as
well as for the min function h(x1, . . . , xn) = mn(x1, . . . , xn) = mini≤n xi and for iterated
min’s and max’s, Mn1mn2Mn3 . . .mnk where, for example,

Mnmk(x1, . . . , xk, . . . , xk(n−1)+1, . . . , xkn) = max
i≤n

( min
k(i−1)<j≤ki

xi).

We give necessary and sufficient conditions for a positive random variable X to be {p, q}−
h−hypercontractive for each of these functions. One surprising consequence (Theorem 5.5)
is that in order that X be {p, q} −Mn1mn2Mn3 . . . mnk−hypercontractive it is sufficient
(and, of course, necessary) that it is separately {p, q} − min and max hypercontractive.
Note that the name hypercontractivity is usually attached to inequalities of the form
(Ehq(X1, σX2))1/q ≤ (Ehp(X1,X2))1/p, which in turn are used to prove inequalities of the
form discussed here. The reason we permit ourselves to use this notion with a somewhat
different interpretation is that we prove below that, in our context the two notions are
equivalent (see, e.g., Theorem 5.1).

The main technical tool of the paper of de la Peña, Montgomery-Smith and Szulga
is a comparison result for tail distributions of two positive random variables X and Y of
the type: There exists a constant, c, such that P (X > ct) ≤ cP (Y > t) for all t > c.
There are two conditions under which they prove that such comparison holds. The first
is a hypercontractivity of the max for one of the two variables (and some p < q). The
second is an inequality of the type ‖maxi≤nXi‖p ≤ C‖maxi≤n Yi‖p, for some C and
every n. In such a case we’ll say that X and Y are p − max−comparable, and if one
replaces max with a general function h we’ll call them p − h−comparable. We consider
here this notion also for the function min and for iterated min’s and max’s. Among other
things we prove an analogous theorem to that of de la Peña, Montgomery-Smith and
Szulga (Theorem 3.3) giving a sufficient condition for P (X ≤ ct) ≤ δP (Y ≤ t) for all
t ≤ c‖X‖p for some 0 < c, δ < 1. We also combine our theorem with a version of that of
de la Peña, Montgomery-Smith and Szulga (Theorem 5.4) to give a sufficient condition for
the comparison of the tail distributions of X and Y to hold for all t ∈ IR+.

Another application of the technique we develop here is contained in Corollary 5.2,
where we give a sufficient condition for a random variable X to be hypercontractive with
respect to another interesting (family of) function(s) - the k-order statistic(s).
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Our initial motivation for attacking the problems addressed in this paper was an
approach we had to solve (a somewhat weaker version of) the so called Gaussian Correlation
Problem. Although we still can not solve this problem, we indicate (in and around Theorem
6.8) the motivation and the partial result we have in this direction. As a byproduct we
also obtain (in Theorem 6.4) an inequality, involving the Gaussian measure of symmetric
convex sets, stated by Szarek (1991) (who proved a somewhat weaker result) as well as a
similar inequality for symmetric stable measures.

The rest of the paper is organized as follows. Section 2 provides some basic lem-
mas and notations. Hypercontractivity for minima and some equivalent conditions are
given in section 3. Section 4 presents hypercontractivity for maxima in a way suitable
for our applications. In section 5, we combine the results in section 3 and 4 to obtain
hypercontractivity for iterated min’s and max’s, and comparison results for the small ball
probabilities of possibly different random vectors. We also give there the sufficient condi-
tion for the comparison of moments of order statistics. In section 6, we apply our results
to show that the α symmetric stable random variables with 0 < α ≤ 2 are minmax and
maxmin hypercontractive, which is strongly connected to the regularity of the α-stable
measure of small balls. In this section we also indicate our initial motivation, related to
the modified correlation inequality as well as a partial result in this direction. Finally, in
the last section, we mention some open problems and final remarks.

Section 2. Notations and Some Basic Lemmas.

For nonnegative i.i.d. r.v.’s {Zj}, let mn = mn(Z) = minj≤n Zj and Mn = Mn(Z) =
maxj≤n Zj . The r-norm of the random variable W is

‖W‖r = (E|W |r)1/r for r > 0

and
‖W‖0 = lim

r→0+

‖W‖r = exp(E(ln |W |)).

We will denote
x ∧ y = min{x, y}, x ∨ y = max{x, y}.

If s < t then s∨ (x∧ t) = (s∨ x) ∧ t and it is denoted by s∨ x∧ t. Here and in the rest of
the paper we always assume, unless otherwise specified, that 0 < p < q.

Lemma 2.1. Assume ‖W‖q ≤ C‖W‖p. Then
(a) for α = 21/(q−p)Cq/(q−p), EW p ≤ 2EW pI{W≤α‖W‖p}, and

(b) for 0 ≤ λ ≤ 1, P (W > λ‖W‖p) ≥
(
(1− λp)C−p

)q/(q−p)
.

Proof. (a). Note that

EW pI{W>α‖W‖p} ≤ E
W q

(α‖W‖p)q−p
≤
Cq‖W‖pp
αq−p

=
1

2
EW p.

Thus EW pI{W>α‖W‖p} ≤ EW pI{W≤α‖W‖p} and EW p ≤ 2EW pI{W≤α‖W‖p}.
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(b). The result follows from the Paley-Zygmund inequality

EW p ≤ ap + (EW q)p/qP 1−p/q(W > a)

with a = λ‖W‖p.

Lemma 2.2. Let 0 < β < 1, then

(a) x ≥ βp/(q−p) and y1/q ≤ x1/p imply (1 − x) ≤ β−1pq−1(1 − y), for 0 < x, y < 1
(b) pq−1x ≥ y implies (1− x)1/q ≤ (1 − y)1/p, for 0 < x, y < 1
(c) pq−1x ≤ y implies (1 + x)1/q ≤ (1 + y)1/p, for x, y > 0

Proof. (a). We have

1− y ≥ 1− xq/p = (1− x)qp−1η(q−p)/p ≥ (1− x)qp−1x(q−p)/p ≥ (1− x)qp−1β

where the equality follows from the mean value theorem with x ≤ η ≤ 1.
(b). The conclusion follows from the well known fact (1 − y)α ≥ 1 − αy with α =

q/p > 1.
(c) is proved similarly.

Lemma 2.3. Fix 0 < p ≤ q < ∞. Let µ and ν be positive measures on S and T ,
respectively. If h: IRn → IR+ is a measurable function and ξ1, . . . , ξn and η1, . . . , ηn are two
sequences of independent r.v.’s such that for each i and each x1, x2, . . . , xi−1, xi+1, . . . , xn
we have

(Ehq(x1, . . . , xi−1, ηi, xi+1, . . . , xn))1/q ≤ (Ehp(x1, . . . , xi−1, ξi, xi+1, . . . , xn))1/p,

then

(Ehq(η1, η2, . . . , ηn))1/q ≤ (Ehp(ξ1, ξ2, . . . , ξn))1/p.

Proof. This follows easily by induction and Minkowski’s inequality

(∫
S

(∫
T

|f(s, t)|pµ(dt)

)q/p
ν(ds)

)1/q

≤
(∫

T

(∫
S

|f(s, t)|qν(ds)

)p/q
µ(dt)

)1/p

.
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Section 3. Hypercontractivity for minima.

Definition 3.1. We say that a nonnegative random variable W is {p, q}-min-
hypercontractive (with constant C), if there exists C such that for all n,

‖mn(W )‖q ≤ C‖mn(W )‖p.

In this case we write W ∈ minHp,q(C).

Lemma 3.2. If W ∈ minHp,q(C) then for each n

‖mn(W )‖p ≤ K‖m2n(W )‖p with K = 2(2q−p)/p(q−p)Cq/(q−p).

Proof. Let H(t) = Hp,n(t) = E(mn(W ) ∧ t)p and note that H(t)/tp is non-increasing.
Taking α as in the Lemma 2.1,

‖m2n‖pp ≥ Em
p
2nImn≤α‖mn‖p = EH(mn)Imn≤α‖mn‖p .

Since H(t)/tp is non-increasing,

EH(mn)Imn≤α‖mn‖p = E
H(mn)

mp
n

mp
nImm≤α‖mn‖p ≥

H(α‖mn‖p)
(α‖mn‖p)p

Emp
nImn≤α‖mn‖p .

Thus by Lemma 2.1,

‖m2n‖pp ≥
1

2

H(α‖mn‖p)
(α‖mn‖p)p

‖mn‖pp.

Furthermore,
H(α‖mn‖p) ≥ Emp

nImn≤α‖mn‖p ≥ 2−1‖mn‖pp,

which gives the conclusion.

The following theorem is a min-analog of a result of de la Peña, Montgomery-Smith
and Szulga (1994), proved for maxima, (cf. Theorem 4.4 below).

Theorem 3.3. Fix ρ > 0. Let 0 ≤ p < q, and letX,Y be r.v.’s such that X ∈ minHp,q(C)
and there exists a constant B such that ‖mn(Y )‖q ≤ B‖mn(X)‖q for all n. Then
P (X ≤ τ t) ≤ δP (Y ≤ t) for all t ≤ t0 = ρ‖X‖q for some constants 0 < δ < 1 and τ > 0
depending on p, q, ρ,B and C only.

Proof. We first prove the assertion of the theorem for p > 0 and some ρ > 0 depending
on p, q,B and C only. Then we’ll show how to use this to obtain the result for general ρ
and for p = 0. By Markov’s inequality

tP 1/q(mn(Y ) > t) ≤ ‖mn(Y )‖q ≤ B‖mn(X)‖p.

By Lemma 2.1 (b) for each λ, 0 < λ < 1,

(3.1) P 1/p(mn(X) > λ‖mn(X)‖p) ≥
(
(1− λp)C−p

)q/p(q−p)
= D.
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Hence, taking t = tn = BD−1‖mn(X)‖p we obtain P 1/q(mn(Y ) > tn) ≤ P 1/p(mn(X) >
λB−1Dtn) which gives P 1/q(Y > tn) ≤ P 1/p(X > λB−1Dtn) for all n. By Lemmas 2.1
and 3.2 for each tn+1 ≤ u ≤ tn, this yields

P 1/q(Y > u) ≤ P 1/q(Y > tn+1) ≤ P 1/p
(
X > λDB−1tn+1

)
≤ P 1/p

(
X > λD(BK)−1u

)
,

where K is as in Lemma 3.2. Hence, denoting λD(BK)−1 by τ , we have that
P 1/q(Y > u) ≤ P 1/p(X > τu) is satisfied for all u such that limn→∞ tn < u ≤ t1 =
BD−1‖X‖p. If u ≤ limn→∞ tn, then P (X > τu) = 1 and the above inequality holds true
for the obvious reasons. We thus get

P 1/q(Y > u) ≤ P 1/p(X > τu)

for all u ≤ BD−1‖X‖p. Let us observe that by (3.1) for each n

P (X > λ‖m2n(X)||p) ≥ Dp/2n

and hence by Lemma 3.2
P (X > λK−n‖X||p) ≥ Dp/2n .

Since Dp/2n → 1, we may choose an n such that Dp/2n ≥ βp/(q−p), where β > p/q.
Therefore P (X > τs) ≥ βp/(q−p) if s ≤ τ−1K−nλ‖X‖p and n is such that Dp/2n ≥
βp/(q−p).

Also, since τ−1λK−n ≤ BD−1, we get, by Lemma 2.2 (a), for any s ≤ τ−1λK−n‖X‖p,

P (X ≤ τs) ≤ β−1pq−1P (Y ≤ s).

Taking δ to be any number from the interval (pq−1β−1, 1), τ = λD(KB)−1 and
ρ = τ−1λK−nC−1, where n is any positive integer such that D ≥ β2n/(q−p), we get

P (X ≤ τs) ≤ δP (Y ≤ s)

for all s ≤ ρ‖X‖q ≤ τ−1λK−n‖X‖p. This proves the result for all 0 < p < q and some ρ.
By adjusting τ we can get the inequality for every preassigned ρ. Indeed, given any

ρ0 > ρ, P (X ≤ τρρ−1
0 t) ≤ δP (Y ≤ t), as long as ρρ−1

0 t ≤ ρ‖X‖q or, equivalently, as long
as t ≤ ρ0‖X‖q.

To prove the case p = 0, choose 0 < r < q, say, r = q/2. Since we are assuming that
X ∈ H0,q(C),X ∈ Hr,q(C). Now apply the theorem for the pair (p, q) = (q/2, q).

To avoid awkward statements in the following theorem, we do not state the exact
dependence of each of the constants on the other ones. It is important to note that the
constants appearing in conditions (i) − (iv) of that theorem (chosen from {ε, τ, ρ, C, σ})
depend only on p, q and the constants from the other equivalent conditions. In particular
each of these constants depends on the distribution of X only through the constants in
the other conditions. This will be useful when considering hypercontractivity of maxima
of minima in section 5.
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Theorem 3.4. Fix ρ > 0. Let X be a nonnegative r.v. such that ‖X‖q < ∞ and let
0 ≤ p < q. The following conditions are equivalent
(i) X ∈ minHp,q(C) for some C ,

(ii) there exist ε < 1, τ > 0 such that

P (X ≤ τ t) ≤ εP (X ≤ t) for all t ≤ t0 = ρ‖X‖q,

(iii) for each ε > 0, there exists τ > 0 such that

P (X ≤ τ t) ≤ εP (X ≤ t) for all t ≤ t0 = ρ‖X‖q,

(iv) there exists σ > 0 such that

(3.2) (E(t ∧ σX)q)1/q ≤ (E(t ∧X)p)1/p for all t ≥ 0.

Proof. (i)⇒ (ii). This implication follows immediately by Theorem 3.3 applied to Y = X.
(ii) ⇒ (iii). If τ, ε, t0 are as in (ii) then by induction we obtain for each n,

P
(
X ≤ τnt

)
≤ εnP

(
X ≤ t

)
for all t ≤ t0.
(iii) ⇒ (iv). For each t, σ and r, 0 < r < 1 we have

(E(t ∧ σX)q)1/q ≤
(
tqP

(
X > rσ−1t

)
+ rqtqP

(
X ≤ rtσ−1

))1/q
= t
(
1− (1− rq)P

(
X ≤ rtσ−1

))1/q
.

On the other hand

(E(t ∧X)p)1/p ≥ tP 1/p(X > t) = t(1 − P (X ≤ t))1/p.

Therefore, by Lemma 2.2 (b) the inequality (3.2) is satisfied if

P (X ≤ t) ≤ pq−1(1− rq)P
(
X ≤ rtσ−1

)
.

Thus if ε = pq−1(1− rq), τ , t0 are as in (iii), then the above inequality and hence (3.2) is
fulfilled for t ≤ τ t0 and σ ≤ rτ .

If t > τt0 then (E(t ∧ σX)q)1/q ≤ σ‖X‖q and (E(t ∧ X)p)1/p ≥ (E(τ t0 ∧ X)p)1/p. For
p > 0 we note that

E(τ t0 ∧X)p ≥ (τ t0)pP (X > τt0)

= (τ t0)p[1− P (X ≤ τ t0)]

≥ (τ t0)p[1− εP (X ≤ t0))]

≥ (τ t0)p(1 − ε).

Therefore it is enough to choose σ = min
{
τρ(1 − ε)1/p, τ r

}
to have the inequality

(3.2) be satisfied for all t ≥ 0.
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For p = 0 we proceed along similar lines using

expE ln(τ t0 ∧X) = ‖X‖q expE ln(‖X‖−1
q (τ t0 ∧X))

≥ ‖X‖q exp[ln(τ t0/‖X‖q)P (X > τt0)]

≥ ‖X‖q exp[(ln τρ)(1 − εP (X ≤ t0))]

≥ ‖X‖q exp[(ln τρ)(1 − ε)].

(iv) ⇒ (i). If p > 0, applying Lemma 2.3 to h(x1, · · · , xn) = x1 ∧ · · · ∧ xn, ξi = Xi and
ηi = σXi, we get (iv) ⇒ (i) with C = σ−1. The case p = 0 follows by a simple limit
argument.

Remark 3.5. It follows by Theorem 3.4 that {p, q}-min-hypercontractivity depends only
on the existence of the q-moment and a regularity property of the distribution function at
0, i.e. the following property, which we will call sub-regularity of X (or, more precisely, of
the distribution of X) at 0,

lim
τ→0

lim sup
t→0

P (X ≤ τ t)
P (X ≤ t) = 0.

Theorem 3.6. Fix q > 1. Let {Xi}i≤n be an i.i.d sequence of nonnegative r.v.’s satisfying
condition (ii) of Theorem 3.4 and such that EXq

1 < ∞. Then there exists a constant σ
such that for each n, and each function h: IRn+ → IR+ which is concave in each variable
separately, we have

(Ehq(σX1, σX2, . . . , σXn))1/q ≤ Eh(X1,X2, . . . ,Xn).

Moreover, σ depends only on the constants appearing in the statement of Theorem 3.4 (ii).

Proof. We first simplify by noting that condition (ii) of Theorem 3.4 is satisfied (uniformly
in M) by X ∧M for every M . By Lemma 2.3 it is enough to prove that there exists σ > 0,
such that for each concave g: IR+ → IR+, (Eg

q(σX))1/q ≤ Eg(X), where we may assume
that g is constant on (M,∞). To prove this inequality for such a g we first note that
by Theorem 3.4, X is {q, 1}-min-hypercontractive, therefore there exists σ > 0 such that
(Ehqt (σX))1/q ≤ Eht(X) for each t ≥ 0, where ht is given by ht(x) = x ∧ t.

Since for each bounded concave g: IR+ → IR+ there exists a measure µ on IR+ (the
measure µ is given by the condition µ((x, y]) = g′+(x) − g′+(y) where g′+(x) is the right
derivative of g at x) such that g =

∫
IR+

htµ(dt) + g(0) the theorem follows by Minkowski’s

inequality.

Corollary 3.7. If {Xi}, h, q are as in Theorem 3.6 and, additionally, h is α-homogeneous
for some α > 0 (i.e. h(tx) = tαh(x)), then the random variable, W = h(X1,X2, . . . ,Xn),
is sub-regular at 0.

Proof. Theorem 3.6 implies that W is {q, 1}-min-hypercontractive and the result follows
by Theorem 3.4.
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Section 4. Hypercontractivity of maxima

In this section we treat the case of maxima in a way similar to that of minima in Section 3.
However there are some essential differences which do not allow us to treat these two cases
together.

Definition 4.1. We say that a nonnegative r.v. W is {p, q}-max-hypercontractive if there
exists a constant C such that for all n

‖Mn(W )‖q ≤ C‖Mn(W )‖p.

We will write, W ∈ maxHp,q(C) in this case.

Lemma 4.2. Let {Xi} be i.i.d. nonnegative r.v.’s. Then

nP (X > t)

1 + nP (X > t)
≤ P (Mn > t) ≤ nP (X > t).

Proof. The right side is obvious and the left follows by taking complements and using the
inequality, nu/(1 + nu) ≤ 1− (1 − u)n.

Proposition 4.3. Let {Xi} be i.i.d nonnegative r.v.’s. Then for a > 0 and n a positive
integer,

(a) nP (Mn ≤ a)EXrIX>a ≤
(

1− Pn(X ≤ a)

P (X > a)

)
EXrIX>a ≤ EMr

n.

If bn satisfies P (X > bn) ≤ n−1 ≤ P (X ≥ bn), then

(b)

1

2

(
brn + n

∫ ∞
bn

rur−1P (X > u)du
)
≤ EMr

n

≤ brn + n

∫ ∞
bn

rur−1P (X > u)du

Proof. (a) Let τ = inf{j ≤ n : Xj > a}. Then

Emax
j≤n

Xr
j ≥ E(XτIτ≤n) =

n∑
j=1

E(Xr
j IXj>aImaxi<j Xi≤a)

=
n∑
j=1

P j−1(X ≤ a)EXrIX>a = (
1− Pn(X ≤ a)

P (X > a)
)EXrIX>a

≥ nP (Mn−1 ≤ a)EXrIX>a

(b) To see the right hand inequality, just note that, for every a > 0,

EMr
n = (

∫ a

0

+

∫ ∞
a

)rur−1P (Mn ≥ u)du ≤ ar +

∫ ∞
a

rur−1P (Mn ≥ u)du.
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For the left hand inequality, we again break up the integral as above and using the defining
properties of bn as well as the monotonicity of x/(1 + x) in Lemma 4.2:

EMr
n = (

∫ bn

0

+

∫ ∞
bn

)rur−1P (Mn ≥ u)du

≥ 1

2

∫ bn

0

rur−1 dr +
n

2

∫ ∞
bn

rur−1P (X ≥ u)du.

The next Theorem is an extension of Theorem 3.5 of de la Peña, Montgomery-Smith
and Szulga (cf. Asmar, Montgomery-Smith (1993)).

Theorem 4.4. Let 0 ≤ p < q, ρ > 0 and let X ∈ maxHp,q(C). Let Y be a nonnegative
r.v. If there exists a constant D such that if ‖Mn(Y )‖q ≤ D‖Mn(X)‖q for all n, then there
are constants A,B such that

EY qIY >At ≤ BqtqP (X > t) for all t ≥ t0 = ρ‖X‖p.
For p > 0, the constants A,B can be chosen in the following way: put A = 21/q+1/pCDλ−1,

B = A
(
Cp(1− λp)−1

)1/(q−p)
, where λ = (1/2) ∧ ρ.

Proof. First we note that it is enough to prove the Theorem for p > 0. The case p = 0
follows easily from this case for the couple (q/2, q) and ρ replaced with Cρ. By the Paley-
Zygmund inequality (Lemma 2.1 (b)),

(4.1) ((1− λp)C−p)q/(q−p) ≤ P (Mn(X) > λ‖Mn(X)‖p) ≤ nP (X > λ‖Mn(X)‖p).

We next note that by Markov’s inequality and the assumptions: for τ = 21/qCD,

P (Mn(Y ) ≤ τ‖Mn(X)‖p) ≥ P (Mn(Y ) ≤ τ (CD)−1‖Mn(Y )‖q) ≥ 1/2.

Now, by Proposition 4.3, (a), the assumptions above and (4.1),

EY qIY >τ‖Mn(X)‖p ≤ 2(CD)q‖Mn(X)‖qp
(
Cp(1− λp)−1

)q/(q−p)
P (X > λ‖Mn(X)‖p).

Since ‖M2n(X)‖p ≤ 21/p‖Mn(X)‖p, we get by interpolation that

EY qIY >21/pτt/λ ≤ BqtqP (X > t)

for
Bq = 2q/p+1

(
CDλ−1

)q (
Cp(1 − λp)−1

)q/(q−p)

as long as λ‖X‖p ≤ t < λ limn→∞ ‖Mn(X)‖p = λ‖X‖∞. If t ≥ λ‖X‖∞, then since

‖Y ‖∞ = lim
n→∞

‖Mn(Y )‖q ≤ D lim inf
n→∞

‖Mn(X)‖q = D‖X‖∞,

‖Y ‖∞ ≤ tD/λ and, since 21/pτ > D, EY qIY>21/pτt/λ = 0. The conclusion follows trivially.

Remark 4.5. Since A > 1, Theorem 4.4 yields immediately that

P (Y > At) ≤ BqP (X > t) for t ≥ t0.
In the next theorem we make the same convention concerning the constants as we

made before the statement of Theorem 3.4.
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Theorem 4.6. Let X be a nonnegative r.v., 0 ≤ p < q, ρ > 0. The following conditions
are equivalent

(i) X ∈ maxHp,q(C) for some C > 0;
(ii) there exists a constant B such that

EXqIX>t ≤ BqtqP (X > t) for all t ≥ t0 = ρ‖X‖p;

(iii) for ε > 0 there exists a constant D > 1 such that

DqP (X > Dt) ≤ εP (X > t) for all t ≥ t0 = ρ‖X‖p;

(iv) there exists a constant σ > 0 such that

E(t ∨ σX)q)1/q ≤ (E(t ∨X)p)1/p for all t ≥ 0.

Proof. (i) ⇒ (ii). By Theorem 4.4 applied to Y = X we derive an existence of constants
A,B such that

EXqIX>At ≤ B
q
tqP (X > t) for all t ≥ t0 = ρ‖X‖p.

Hence for any t ≥ t0,

EXqIX>t ≤ EXqIX>At + EXqIt<X≤At

≤ BqtqP (X > t) +AqtqP (X > t)

≤ (B
q

+Aq)tqP (X > t).

(ii) ⇒ (iii). If t0, B are as in (ii) then for t ≥ t0

EXq ln+(X/t) =

∫ ∞
t

E
XqIX>s

s
ds ≤ Bq

∫ ∞
t

sq−1P (X > s)ds ≤ q−1B2qEXqIX>t

≤ q−1BqtqP (X > t).

Hence, for any D > 1, we have

(lnD)DqtqP (X > Dt) ≤ EXq ln+X/t ≤ q−1B2qtqP (X > t)

and it is enough to choose D > 1 such that B2q/(q lnD) < ε.
(iii) ⇒ (ii). If (iii) holds with 0 < ε < 1, D > 1, then by induction
P (X > Dnt) ≤ εnD−nqP (X > t) for t ≥ t0. Hence

EXqIX>t =
∞∑
k=0

EXqIDkt<X≤Dk+1t ≤
∞∑
k=0

D(k+1)qtqP (X > Dkt)

≤
∞∑
k=0

D(k+1)qtq · εkD−kqP (X > t) = Dq(1− ε)−1tqP (X > t).

11



(ii) and (iii) ⇒ (iv). Assume that (ii) and (iii) are fulfilled with constants B,D, ε.
By (ii) we obtain for t ≥ t0σ, where for the moment σ is any number < 1,

(E(t ∨ σX)q)1/q ≤ t
(
P
(
X ≤ tσ−1

)
+ σqt−qE

(
XqI

(
X > tσ−1

)))1/q

≤ t
(
1 + (Bq − 1)P

(
X > tσ−1

))1/q .

On the other hand for any R > 1

(E(t ∨X)p)1/p ≥ t(1 + (Rp − 1)P (X > Rt))1/p.

Hence, by Lemma 2.2 (c), the inequality in (iv) holds if

pq−1(Bq − 1)(Rp − 1)−1P
(
X > tσ−1

)
≤ P (X > Rt).

Therefore if we choose R so that

pq−1(Bq − 1)(Rp − 1)−1 < Dq/ε and R ≥ ρ21+1/q

and further choose σ so that σ < (RD)−1, then the inequality in (iv) is satisfied for all
t ≥ ‖X‖p/21+1/q.

If t < ‖X‖p/21+1/q, then (E(t ∨ σX)q)1/q ≤ 21/q(t + σ‖X‖q) and (E(t ∨ X)p)1/p ≥
‖X‖p and therefore, using (ii) with t = t0, if additionally σ < (21+1/qρ(1 + Bq)1/q)−1

(< ‖X‖p(21+1/q‖X‖q)−1), then the inequality in (iv) is satisfied for all t ≥ 0.
(iv) ⇒ (i). This implication is proved in the same way as the one in Theorem 3.4. It is
enough to replace ∧ by ∨ everywhere.

Remark 4.7.
(i) Theorems 4.4 and 4.5 have appeared in a similar form in unpublished notes from a

seminar held by the second author and prepared by Rychlik (1992).
(ii) The equivalence of (ii) and (iii) in Theorem 4.6 can be deduced from more general

results (cf. Bingham, Goldie and Teugels, page 100).
(iii) It follows from Theorem 4.4 that if X is {p, q} max-hypercontractive then for some

ε > 0 and all r < q + ε, X is also {r, q + ε}-max-hypercontractive.
(iv) The property of {p, q}-max-hypercontractivity is equivalent to

lim sup
D→∞

lim sup
t→∞

DqP (X > Dt)

P (X > t)
= 0

which we will call q-sub-regularity at +∞.

Theorem 4.8. Fix q > 1. If {Xi}i≤n is i.i.d sequence of nonnegative r.v.’s satisfying
EX1 <∞ and condition (ii) of Theorem 4.6, then there exists a constant σ such that for
each n and each Xi, i = 1, . . . , n independent copies of X,

(Ehq(σX1, σX2, . . . , σXn))1/q ≤ Eh(X1,X2, . . . ,Xn)
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for each function h: IRn+ → IR+ which is in each variable separately nondecreasing and

convex, and lim
xi→+∞

(
xi

∂h
∂xi

(x) − h(x)
)
≤ 0. Moreover, σ depends only on the constants

appearing in the statement of Theorem 4.6 (ii).

Proof. The proof is the same as in the case of Theorem 3.6, except that we have to replace
everywhere ∧ by ∨ and that the measure µ is given by µ((x, y]) = g′+(y)− g′+(x) and then

g(x) =

∫
IR+

ht(x)µ(dt) + lim
t→∞

(g(t)− tg′(t)).

In analogy to Corollary 3.7 we obtain

Corollary 4.9. If {Xi}, h are as in Theorem 4.8, q > 1 and in an addition h is α-
homogeneous for some α > 0, then the random variable W = h(X1,X2, . . . ,Xn) is q-sub-
regular at +∞.

Section 5. Hypercontractivity of minmax and maxmin.

In this section we will impose on X both the condition of sub-regularity at 0 and that of
q-sub-regularity at +∞.

Theorem 5.1. If 0 ≤ p < q and X is a nonnegative random variable in minHp,q(C1) ∩
maxHp,q(C2), then there exists a constant σ > 0 such that for each 0 < s < t <∞

(5.1) (E(s ∨ σX ∧ t)q)1/q ≤ (E(s ∨X ∧ t)p)1/p.

Furthermore, σ depends only on C1, C2, p and q.

Proof. Let R > 1 be any fixed number, and let r = R−1. Let ρ be any positive number,
and let τ be such that the inequality in Theorem 3.4 (iii) holds for ε = pq−1(1 − rq) for
all t ≤ t0 = ρ‖X‖q. Then, let α = 2−1/q−1(1 − ε)1/p. The constant B is such that the
inequality in Theorem 4.6 (ii) is true for all t ≥ t0 and let D be such that the inequality
in Theorem 4.6 (iii) is satisfied for

ε = qp−1(Rp − 1)
(
(Bq − 1)−1 ∧ (Rq − 1)−1

)
for t ≥ t0.

We will show that for σ = min
{
αρ, α/D, r/D, rτ

}
the inequality (5.1) holds true for each

0 < s < t <∞. Consider the following five cases.

Case 1. s ≤ αt0, t ≥ τ t0. We have

(E(s ∨ σX ∧ t)q)1/q ≤ 21/q(αt0 + σ‖X‖q)

and

(E(s ∨X ∧ t)p)1/p ≥ (E(τ t0 ∧X)p)1/p ≥ τ t0P 1/p(X > τt0) ≥ τ t0(1− ε)1/p.
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Since σ < αρ the inequality holds by the choice of α.

Case 2. t ≤ τ t0, rt > s. We have

(E(s ∨ σX ∧ t)q)1/q ≤
(
tqP

(
X > rσ−1t

)
+ rqtqP

(
X ≤ rtσ−1

))1/q
≤ t
(
1 + (rq − 1)P

(
X ≤ rtσ−1

))1/q
and

(E(s ∨X ∧ t)p)1/p ≥ t(1− P (X ≤ t))1/p.

Therefore by Lemma 2.2 (b) the inequality (5.1) holds if

pq−1(1 − rq)P
(
X ≤ rtσ−1

)
≥ P (X ≤ t)

which is true by the choice of τ since σ < rτ , t ≤ τ t0.

Case 3. t ≤ τ t0, rt ≤ s. We have

(E(s ∨ σX ∧ t)q)1/q ≤
(
sqP

(
X ≤ sσ−1

)
+ tqP (

(
X > sσ−1

))1/q
= t
(
1 + ((s/t)q − 1)P

(
X ≤ sσ−1

))1/q
and

(E(s ∨X ∧ t)p)1/p ≥ (spP (X ≤ t) + tpP (X > t))1/p

= t (1 + ((s/t)p − 1)P (X ≤ t))1/p
.

Therefore by Lemma 2.2 (c) to have (5.1) it is enough to show

pq−1(1− (s/t)q)(1 − (s/t)p)−1P
(
X ≤ sσ−1

)
≥ P (X ≤ t).

Since the function (1− xq)/(1 − xp) is increasing on IR+ and s/t ≥ r it is enough to prove
that pq−1(1− rq)(1− rp)−1P

(
X ≤ rtσ−1

)
≥ P (X ≤ t) which was proved in the preceding

case, because 1− rp < 1.

Case 4. s > αt0, t > Rs. We have

(E(s ∨ σX ∧ t)q)1/q ≤
(
sqP

(
X ≤ sσ−1

)
+ σqEXqI

(
X > sσ−1

))1/q
≤ s

(
1 + (Bq − 1)P

(
X > sσ−1

))1/q
,

which follows by the choice of B, since sσ−1 > αt0σ
−1 ≥ t0, and

(E(s ∨X ∧ t)p)1/p ≥ (spP (X ≤ Rs) + (Rs)pP (X > Rs))1/p

= s(1 + (Rp − 1)P (X > Rs))1/p.

By Lemma 2.2 (c) it is enough that

pq−1(Bq − 1)(Rp − 1)−1P
(
X > sσ−1

)
≤ P (X > Rs).
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Since σ ≤ (α ∧ r)/D it is enough to show

P
(
X > D

(
α−1 ∨R

)
s
)

P (X > Rs)
≤ qp−1(Rp − 1)(Bq − 1)−1 = ε.

But, then by the choice of D we have

P
(
X > D

(
α−1 ∨R

)
s
)

P (X > Rs)
≤
P
(
X > D

(
α−1 ∨R

)
s
)

P
(
X >

(
α−1 ∨R

)
s
) P

(
X >

(
α−1 ∨ R

)
s
)

P (X > Rs)
≤ ε

Dq
< ε,

because
(
α−1 ∨R

)
s ≥ t0.

Case 5. s > αt0, t ≤ Rs. We have

(E(s ∨ σX ∧ t)q)1/q ≤
(
sqP

(
X ≤ sσ−1

)
+ tqP

(
X > sσ−1

))1/q
= s

(
1 + ((t/s)q− 1)P

(
X > sσ−1

))1/q
and

(E(s ∨X ∧ t)p)1/p ≥ (spP (X ≤ t) + tpP (X > t))1/p

= s (1 + ((t/s)p − 1)P (X > t))
1/p

.

By Lemma 2.2 (c) it is enough to prove

pq−1((t/s)q − 1)((t/s)p − 1)−1P
(
X > sσ−1

)
≤ P (X ≥ Rs).

Since t/s ≤ R it suffices to show that

pq−1(Rq − 1)(Rp − 1)−1P
(
X > sσ−1

)
≤ P (X ≥ Rs)

which is shown in the same way as in the preceding.
Taking into account the remarks before Theorems 3.4 and 4.6 we check easily that

given p, q the constant σ depends only on the min and max hypercontractivity constants
of X.

Corollary 5.2. If X, p, q are as in Theorem 5.1, then there exists a constant C such that
if (Xi), i = 1, . . . , n is a sequence of independent copies of X and Xk,n denotes the k-th
order statistics of the sequence (Xi), i = 1, . . . , n then ‖Xk,n‖q ≤ C‖Xk,n‖p and Xk,n is
q-sub-regular at +∞ and sub-regular at 0.

Proof. The statistic Xk,n can be written as h(X1,X2, . . . ,Xn) where for each i and each
fixed xi, . . . , xi−1, xi+1, . . . , xn the function f(xi) = h(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) =
(s∨xi∧t) for some 0 < s < t, and all xi ∈ IR+. And therefore the first part of the corollary
follows by the observation. The second part is obtained easily because we have that Xk,n

is {q, p}-max and min hypercontractive.
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The preceding corollary can be considerably generalized. At first let us define a class
F of functions g: IR+ → IR+ which can by written as g(x) =

∫
∆ hs,t(x)µ(ds, dt) for some

positive measure µ on ∆ = {(s, t) ∈ IR+× IR+: s ≤ t} and where hs,t are functions defined
by hs,t(x) = s ∨ x ∧ t. It is possible to give an intrinsic description of functions in F .
Instead let us observe that if f is twice continuously differentiable on IR+, then f ∈ F if
and only if for each x ∈ IR+, 0 ≤ xf ′(x) ≤ f(x) and f(0) ≥

∫
IR+

x(f ′′(x) ∨ 0)dx. In this

case the measure µ is given by the following condition: for measurable h: ∆→ IR+

∫
∆

h(s, t)µ(ds, dt) =

∫
IR+

 ∑
(s,t)∈I(y)

h(s, t)

 dy

where I(y) is the countable family of open, disjoint intervals with the union equal
{s ∈ IR+: f ′(s) > y}. It is not difficult to prove that we have the representation
f(x) =

∫
∆
hs,t(x)µ(ds, dt) + c where c = f(0)−

∫
IR+

x(f ′′(x) ∨ 0)dx.

Theorem 5.3. Let X be in minHp,q(C1) ∩maxHp,q(C2). Then there exists a constant
σ > 0 such that for each n and each h: IRn+ → IR+, which in each variable separately is in
class F , it follows that

(Ehq(σX1, σX2, . . . , σXn))1/q ≤ Eh(X1,X2, . . . ,Xn).

Moreover if h is α-homogeneous for some α > 0 then h(X1, . . . ,Xn) is q-sub-regular at
+∞ and sub-regular at 0.

Proof. The proof follows the same pattern as proofs of Theorems 3.6, 4.8 and Corollaries
3.7, 4.9, and is based on Theorem 5.1

Applying comparison results of Theorems 3.3 and 4.4 we obtain easily

Theorem 5.4. Let X,Y be nonnegative r.v.’s such that X ∈ minHp,q(C1)∩maxHp,q(C2)
and there exist constants B1 andB2 such that ‖mn(Y )‖q ≤ B1‖mn(X)‖q and ‖Mn(Y )‖q ≤
B2‖Mn(X)‖q for all n, then there exists a constant D, depending only on p, q, C1, C2, B1

and B2, such that P (Y ≤ t) ≥ P (DX ≤ t) for all t ∈ IR+.

Finally we have

Theorem 5.5. If X ∈ minHp,q(C1) ∩ maxHp,q(C2), then there exists a constant D,
depending only on p, q, C1 and C2, such that for all l and all n1, k1, n2, k2, . . . nl, kl,

‖Mn1mk1Mn2mk2 . . .Mnlmkl(X)‖q ≤ D‖Mn1mk1Mn2mk2 . . .Mnlmkl(X)‖p.

Proof. If X is both min-hypercontractive and max-hypercontractive, by Theorem 5.1 we
have a 0 < σ < ∞ for which inequality (5.1) is satisfied. One now applies Lemma 2.3
applied to the functional, h: IRn1k1·...·nlkl → IR+, which is the composition of the min’s
and max’s in the statement of this Theorem.
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Section 6. Minmax hypercontractivity of norms of stable random vectors.

In this section we apply the results in earlier sections to certain questions concerning
Gaussian and symmetric stable measures. In particular, in the second half of this section,
we give our initial motivation for initiating this research as well as some partial result
concerning a version of the Gaussian Correlation Conjecture.

The following lemma is a consequence of Kanter’s inequality, (cf. Ledoux and Ta-
lagrand (1991), p. 153) which can be viewed as a concentration result similar to Levy’s
inequalities. The formulation of the lemma below for Gaussian measures was suggested by
X. Fernique.

Lemma 6.1 (Corollary of Kanter’s inequality). Let ν be a symmetric α stable mea-
sure with 0 < α ≤ 2 on a separable Banach space F . Then, for any κ ≥ 0, any symmetric,
convex set B and any y ∈ F , we have

ν(κB + y) ≤ 3

2

κα/2√
1− ν(B)

.

Proof. Let {X,Xi}i be i.i.d. symmetric α stable random variables with 0 < α ≤ 2. Take
N = [κ−α]. Then using Nκα ≤ 1 and (N + 1)κα > 1, we have by Kanter’s inequality

P (X − y ∈ κB) = P (
N∑
i=1

Xi −N1/αy ∈ N1/ακB)

≤3

2

( 1

1 +NP (X /∈ N1/ακB)

)1/2

≤ 3

2

κα/2

P (X /∈ B)1/2

since P (X /∈ N1/ακB) ≥ P (X /∈ B) and (1 + NP (X /∈ B))−1 ≤ καP−1(X /∈ B). This
finishes the proof.

Lemma 6.2. Let ν be a symmetric α stable measure with 0 < α ≤ 2 on a separable,
Banach space F . Then for any closed, symmetric, convex set B ⊆ F , y ∈ F and κ ≤ 1,

ν(κB + y) ≤ Rκα/2ν(2B + y),

where R = (3/2)(ν(B))−1(1 − ν(B))−1/2.

Proof. First consider y ∈ B. Then ν(B) ≤ ν(2B+y) since B ⊆ 2B+y. Thus, to conclude
this case, one applies Lemma 6.1.

If y /∈ B, then let r = [κ−1 − 2−1]. For k = 0, 1, · · · , r the balls {yk + κB} are disjoint
and contained in y+ 2B, where yk = (1− 2κ‖y‖−1k)y. By Anderson’s Theorem, it follows
that

ν(yk + κB) ≥ ν(y + κB)

for k = 0, · · · , r. Therefore, ν(κB + y) ≤ (r + 1)−1ν(2B + y) ≤ κν(2B + y). This proves
the lemma, since 2 ≤ R.

Proposition 6.3. Under the set up of Lemma 6.2, we have for each κ, t ≤ 1,

ν(κtB) ≤ R′κα/2ν(tB),
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where R′ = 3(ν(B/2))−1(1 − ν(B/2))−1/2.

Proof. Now for any 0 ≤ t ≤ 1, define the probability measure νt by νt(C) = ν(tC) =
P (X/t ∈ C) where X is the symmetric α stable random variable with law ν. Then

ν ∗ νs(C) = P (X +X ′/s ∈ C) = P ((1 + s−α)1/αX ∈ C) = νt(C),

where t−α = 1 + s−α and X ′ is an independent copy of X. Hence, by Lemma 6.2

ν(κtB) = ν ∗ νs(κB) =

∫
F

ν(2κB/2 + y)νs(dy) ≤ (2κ)α/2R

∫
F

ν(B + y)νs(dy)

≤ R′κα/2ν(tB).

Theorem 6.4. Under the set up of Lemma 6.2, for each b < 1, there exists R(b) such
that for all 0 ≤ t ≤ 1,

(6.1) ν(tB) ≤ R(b)tα/2ν(B), whenever ν(B) ≤ b.

Proof. Fix B with ν(B) ≤ b. Choose s ≥ 1 so that ν(sB) = b. Now, apply the Proposition
6.3 with κ = t, to get

ν(tB) = ν(t · 1

2s
(2sB)) ≤ R(b)tα/2ν(

1

2s
(2sB)) = R(b)tα/2ν(B),

where R(b) = 3b−1(1− b)−1/2.

Remark 6.5. In the case of α = 2 Theorem 6.4 was formulated in Szarek (1991), Lemma
2.6, where a weaker result, which was sufficient for the main results of the paper, was
actually proved. Recently, Lata la proved that in the case of α = 2, the conclusion of
Theorem 6.4 holds whenever the measure ν is log concave.

Related results on α-stable measures can be found in Lewandowski, Ryznar and Żak (1992).
The key difference is that we need the right hand side of (6.1) to involve µ(B) for all B
such that µ(B) ≤ b and the constant R depending only on the number b.

If X satisfies the conclusion of Theorem 5.5 we write X ∈ min maxHp,q(D)

Corollary 6.6. Let 0 < α ≤ 2, 0 ≤ p < q. If α 6= 2 we assume that q < α. If W is a
α-stable, symmetric vector in a separable Banach space then ‖W‖ ∈ min maxHp,q(C) for
some constant C which depends only on α, p and q.

Proof. Fix 0 < α < 2 and let {ξ, ξi}i be iid with characteristic function:

Eeitξ = e−|t|
α

.

By Szulga (1990), there exists 0 < c(α) such that for p < q, p, q ∈ (α − c(α), α) there
exists σ = σ(p, q, α) such that for all Banach spaces B and for all x, y ∈ B

‖x+ σξy‖q ≤ ‖x+ ξy‖p.
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This implies that for every n and {yi}i≤n,

‖
n∑
i=1

ξiyi‖q ≤ σ−1‖
n∑
i=1

ξiyi‖p.

Now, if B is a separable Banach space and W is a symmetric stable random variable of
index α with values in B, there exists a probability measure Γ on the sphere, S, of the
dual space B∗ and a constant, c, such that

E exp(i < x∗,W >) = exp(−c
∫
S

| < x∗, θ > |αΓ(dθ), for all x∗ ∈ B∗

Now take measures Γn =
∑n
i=1 cn,iδθi on S which converge weak∗ to Γ. Let Wn =∑n

i=1(ccn,i)1/αξiθi. Then

E exp(i < x∗,Wn >) = exp(−c
∫
S

| < x∗, θ > |αΓn(dθ)).

So, Wn converges in distribution to W . Hence, for any countable weak∗-dense set {v∗j }j
in the unit ball of B∗, we have (since p < α and m is finite):

E sup
j≤m
| < v∗j ,Wn > |p → E sup

j≤m
| < v∗j ,W > |p ≤ E‖W‖p.

But, then we have

lim
n→∞

(E sup
j≤m
| < v∗j ,Wn > |q)1/q ≤ σ−1‖W‖p.

Hence, ‖W‖q ≤ σ−1‖W‖p. Note that we can interpolate (by Hölder’s inequality) to obtain
for every 0 < p < q < 2 a σ for which the last inequality holds. And again, this σ depends
only on p, q and α. If W is Gaussian (α = 2), then the comparison of the p and q norms
is well known and not restricted to q < 2 (see, e.g., Ledoux and Talagrand (1990), p.
60). Now, for any q < α (in the Gaussian case any q) and any q < r < α we have
P (‖W‖ ≤ 1

2‖W‖q) bounded below by a positive constant, say, b, depending only on the
σ = σ(q, r) obtained above. This means that, putting K = {x : ‖x‖ ≤ 1

2‖W‖q}, we have
for any 0 ≤ u ≤ 1, P (W ∈ uK) ≤ b. Hence, by Theorem 6.4 we have

P (‖W‖ ≤ tu1

2
‖W‖q) ≤ R(b)tα/2P (‖W‖ ≤ u1

2
‖W‖q), for all 0 ≤ u, t ≤ 1.

Hence, with ρ = 1/2, τ = (ε/R(b))2/α , condition (ii) of Theorem 3.4 holds. Hence, ‖W‖ ∈
minH0,q(C) for some C depending only on p, q and α. In particular, (using n = 1) we now
have that ‖W‖ ∈ maxH0,q(C). So, by Theorem 5.5, ‖W‖ ∈ min maxHp,q(D), for some D
depending only on p, q and α.
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Corollary 6.7. Let 0 < α ≤ 2, 0 ≤ p < q. If α 6= 2 we assume that q < α. Let
X1,X2, ..,Xn be symmetric α-stable, independent random vectors in a separable Banach
space. Let h : IRn

+ → IR+ be a function as in Theorem 5.3 which is λ-homogeneous for
some λ. Then

h(‖X1‖, ‖X2‖, .., ‖Xn‖) ∈ min maxHp,q(C)

and the constant C depends only on α, p, q.

Proof. By Corollary 6.6 a constant σ can be found, which depends only on α, p, q and
such that the conclusion of Theorem 5.1 holds true for X = ‖Xi‖ for i = 1, 2, .., n. Now
we can proceed as in the proof of Theorem 5.3.

Before proceeding with the next result we would like to explain its connection with
the Gaussian Correlation Conjecture.

The conjecture we refer to says that

(6.2) µ(A ∩B) ≥ µ(A)µ(B)

for any symmetric, convex sets A and B in IRn, where µ is a mean zero Gaussian measure
on IRn.

In 1977 L. Pitt (1977) proved that the conjecture holds in IR2. Khatri (1967) and
Šidák (1967, 1968) proved (6.2) when one of the sets is a symmetric slab (a set of the form
{x ∈ IRn : |(x, u)| ≤ 1} for some u ∈ IRn). For more recent work and references on the
correlation conjecture, see Schechtman, Schlumprecht and Zinn (1995), and Szarek and
Werner (1995). The Khatri-Šidák result as a partial solution to the general correlation
conjecture has many applications in probability and statistics, see Tong (1980). In partic-
ular, it is one of the most important tools discovered recently for the lower bound estimates
of the small ball probabilities, see, for example, Kuelbs, Li and Shao (1995), and Tala-
grand (1994). On the other hand, the Khatri-Šidák result only provides the correct lower
bound rate up to a constant at the log level of the small ball probability. If the correlation
conjecture (6.2) holds, then the existence of the constant of the small ball probability at
the log level for the fractional Brownian motion (cf. Li and Shao (1995)) can be shown.
Hence, hypercontractivity for minima, small ball probabilities and correlation inequalities
for slabs are all related in the setting of Gaussian vectors.

Let Cn denote the set of symmetric, convex sets in IRn. Since the correlation conjecture
iterates, for each α ≥ 1,the following is a weaker conjecture.

Conjecture Cα. For any l, n ≥ 1, and any A1, · · · , Al ∈ Cn, if µ is a mean zero, Gaussian
measure on IRn, then

µ

(
α(

l⋂
i=1

Ai)

)
≥

l∏
i=1

µ(Ai).

One can restate this (as well as the original conjecture) using Gaussian vectors in IRn as
follows: for l, n ≥ 1, and any A = A1 × · · · ×Al ⊆ IRnl let

‖ · ‖A = the norm on IRnl with the unit ballA,

‖ · ‖l = the norm on IRn with the unit ballAl.
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If G,G1, · · · , Gl are i.i.d. mean zero Gaussian random variables in IRn , let

G = (G, · · · , G) and H = (G1, · · · , Gl).

Then, Cα can be rewritten as:

Restatement of Conjecture Cα. For all l, n ≥ 1, and any t > 0,

Pr(‖G‖A ≤ αt) = Pr(G ∈ αt(A1 × · · · ×Al))
≥ Pr(H ∈ t(A1 × · · · ×Al)) = Pr(‖H‖A ≤ t).

By taking complements, reversing the inequalities and raising both sides of the inequality
to a power, say N , we get:

Pr(min
j≤N
‖Gj‖A > αt) ≤ Pr(min

j≤N
‖Hj‖A > t).

Again, reversing the inequalities and raising both sides to the power K,

Pr(max
k≤K

min
j≤N
‖Gj,k‖A > αt) ≤ Pr(max

k≤K
min
j≤N
‖Hj,k‖A > t).

Using the usual formula for pth moments in terms of tail probabilities we would get:

(6.3)

∥∥∥∥max
k≤K

min
j≤N
‖Gj,k‖A

∥∥∥∥
p

≤ α
∥∥∥∥max
k≤K

min
j≤N
‖Hj,k‖A

∥∥∥∥
p

.

Note that if the conjecture (6.2) were true then (6.3) would hold with α = 1. Even in the
case K = N = 1, the best that is known is the above inequality with constant

√
2. (Of

course, if N = 1, the case K = 1 is the same as the case of arbitrary K.) To see this
first let T =: ∪Ll=1Tl =: ∪Ll=1{(f, l) : f ∈ A◦l } where A◦l is the polar of Al. Now define
the Gaussian processes Yt and Xt for t ∈ Tl by Yf,l = f(G) and Xf,l = f(Gl). Then,
supt∈T Yt = maxl≤L ‖G‖l and supt∈T Xt = maxl≤L ‖Gl‖l. We now check the conditions of
the Chevet-Fernique-Sudakov/Tsirelson version of Slepian’s inequality (see also, Marcus-
Shepp (1972)). Let s = (f, p) and t = (g, q). If p = q, (Ys, Yt) has the same distribution as
(Xs,Xt), and hence

E|Ys − Yt|2 = E|Xs −Xt|2.

If p 6= q, then

E|Ys − Yt|2 ≤ 2

(
EY 2

s + EY 2
t

)
= 2

(
EX2

s + EX2
t

)
= 2E|Xs −Xt|2

Therefore, in either case one can use
√

2. Hence, by the version of the Slepian result
mentioned above,

E sup
t∈T

Yt ≤
√

2E sup
t∈T

Xt.
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On the other hand the results of de la Peña, Montgomery-Smith and Szulga (men-
tioned in the introduction) allow one to go from an Lp inequality to a probability inequality
if one has one more ingredient, hypercontractivity. By their results if one can prove that
there exists a constant γ <∞ such that for all K,N and symmetric, convex sets

(Comparison)

∥∥∥∥max
k≤K

min
j≤N
‖Gj,k‖A

∥∥∥∥
p

≤ γ
∥∥∥∥max
k≤K

min
j≤N
‖Hj,k‖A

∥∥∥∥
p

.

and for some q > p and all K,N and symmetric, convex sets

(Hyper-contr)

∥∥∥∥max
k≤K

min
j≤N
‖Hj,k‖A

∥∥∥∥
q

≤ γ
∥∥∥∥max
k≤K

min
j≤N
‖Hj,k‖A

∥∥∥∥
p

,

then one would obtain for some α,

Pr(min
j≤N
‖Gj‖A > αt) ≤ αPr(min

j≤N
‖Hj‖A > t).

By using independence to write each side as a power and then taking Nth roots and letting
N →∞ we obtain

Pr(‖G‖A > αt) ≤ Pr(‖H‖A > t).

Since the constant outside the probability is now 1 we can take complements and reverse
the inequality. Now, unraveling the norm and rewriting in terms of µ we return to the
inequality Cα. By Theorems 5.4 and 5.5 the two conditions above translate into four
conditions, two for max and two for min. The proof of the next theorem consists of
checking three of these conditions. Unfortunately we do not know how to check the forth
one and must leave it as an assumption.

Theorem 6.8. Let Y = maxl≤L ‖G‖l and X = maxl≤L ‖Gl‖l, where the norms ‖ ·‖l were
defined above. If

(6.4) ‖mn(Y )‖q ≤ C‖mn(X)‖q ,

for some 0 < p < q then for all t ≥ 0

P (Y ≤ ct) ≥ P (X ≤ t)

where the constant c depends on p and q only.

Proof. In order to apply Theorem 5.4, we need to show that there exist constants C1, C2

and C3 which depend only on p and q such that

(6.5) max hypercontractivity ‖Mn(X)‖q ≤ C1‖Mn(X)‖p,

(6.6) min hypercontractivity ‖mn(X)‖q ≤ C2‖mn(X)‖p,
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and

(6.7) ‖Mn(Y )‖q ≤ C3‖Mn(X)‖q .

To prove (6.5), note that Mn(X) is a norm of Gaussian vectors. and (6.5) follows
from the hypercontractivity of norms of Gaussian vectors (cf. for example, Ledoux and
Talagrand (1991), p. 60).

(6.6) follows from Corollary 6.6. Finally (6.7) follows from Slepian’s lemma, see the
exposition before the statement of this theorem. Now we can apply Theorem 5.4 with
(6.4), (6.5), (6.6) and (6.7) in hand.

As a consequence of Theorem 6.8, we have the following modified correlation inequality
for centered Gaussian measure.

Corollary 6.9. (modified correlation inequality) Assume (6.4) holds. Then there exists
an absolute constant α such that

(6.6) µ
(
α(

L⋂
l=1

Al)
)
≥

L∏
l=1

µ(Al)

for any centered Gaussian measure µ and any convex, symmetric sets Al, 1 ≤ l ≤ L.

Remark 6.10. From Theorem 4.4 alone one gets the following: There exists an α < ∞
such that if, e.g., one has

∏L
l=1 µ(Al) ≥ 8/9, then

µ(α
L⋂
l=1

Al) ≥
L∏
l=1

µ(Al).

This gives some indication of the necessity of handling the case of “small” sets.

Section 7. Final remarks and some open problems.
In this section we mention a few results and open problems that are closely related to the
main results in this paper. At first, we give a very simple proof of the following result.

Proposition 7.1. For 0 < p < q <∞, if there exists a constant C , such that for all n,

(7.1) ‖Mn(X)‖q ≤ C‖Mn(X)‖p

then the following are equivalent:
(i) There exists a constant C , such that for all n,

(7.2) ‖Mn(Y )‖p ≤ C‖Mn(X)‖p;

(ii) There exists a constant C such that

(7.3) P (Y > t) ≤ C · P (X > t).
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Proof. It follows from de la Peña, Montgomery-Smith and Szulga (1994) that the hy-
percontractivity of X, (7.1), and the domination relation (7.2) imply the tail domination
(7.3). So we only need to show that (ii) implies (i). Without loss of generality, we assume
C > 1. Let δ be an independent random variable with

P (δ = 1) = 1/C, P (δ = 0) = 1− 1/C.

Then for all n and all t ≥ 0

P (Mn(δY ) < t) =Pn(δY < t) = (1− P (δY ≥ t))n = (1− C−1P (Y ≥ t))n

≥ (1− P (X ≥ t))n = P (Mn(X) < t)

which implies ‖Mn(δY )‖p ≤ ‖Mn(X)‖p. On the other hand, we have

EYEδ max
1≤i≤n

(δiY
p
i ) ≥ EY max

1≤i≤n
Eδ(δiY

p
i ) = C−1E max

1≤i≤n
Y pi .

which finishes the proof.

There are many questions related to this work. Let us only mention a few here.

Question 7.2. Is the best min-hypercontractive constant in (6.4) with Y = ‖X‖ for
symmetric Gaussian vectors X in any separable Banach space

C =
Γ1/q(q)

Γ1/p(p)
?

The constant follows from the small ball estimates, P (|X| < s) ∼ K · s as s → 0, of
one-dimensional Gaussian random variable X. Note that if β > 1 and P (|X| < s) ∼ K · sβ
as s → 0, then the resulting constant in this case is smaller. Thus the conjecture looks
reasonable in view of Proposition 6.3.

A related question is, under a max-hyper condition, what can one say about a non-
trivial lower bound for ‖Mk+1‖p/‖Mk‖p, particularly, in the Gaussian case. This may be
useful in answering the question.

A result of Gordon (1987) compares the expected minima of maxima for, in particular,
Gaussian processes. We mention this here because a version of Gordon’s results could
perhaps be used to prove the next Conjecture. Note that if the conjecture holds, then the
modified correlation inequality Cα holds.

Conjecture 7.3. Let G, Gl and norm ‖ · ‖l be as in Section 1. If Y = maxl≤L ‖G‖l and
X = maxl≤L ‖Gl‖l, then

‖mn(Y )‖q ≤ C‖mn(X)‖q .

Our final conjecture is related to stable measures. It is a stronger statement than our
Proposition 6.4 and holds for the symmetric Gaussian measures.
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Conjecture 7.4. Let ν be a symmetric α stable measure with 0 < α ≤ 2 on a separable,
Banach space F . Then for any closed, symmetric, convex set B ⊆ F and for each b < 1,
there exists R(b) such that for all 0 ≤ t ≤ 1,

ν(tB) ≤ R(b)tν(B), whenever ν(B) ≤ b.
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motion under Hölder norm and Chung’s functional LIL. J. Theor. Prob. 8, 361-386.

Ledoux, M. and Talagrand, M. (1991). Probability on Banach Spaces, Springer, Berlin.
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