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SPDEs with affine multiplicative fractional noise
in space with index ; < H < 3
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Abstract

In this article, we consider the stochastic wave and heat equations on R with non-
vanishing initial conditions, driven by a Gaussian noise which is white in time and
behaves in space like a fractional Brownian motion of index H, with 1/4 < H < 1/2.
We assume that the diffusion coefficient is given by an affine function o(z) = ax + b,
and the initial value functions are bounded and Holder continuous of order H. We
prove the existence and uniqueness of the mild solution for both equations. We show
that the solution is L?(2)-continuous and its p-th moments are uniformly bounded, for
any p > 2.
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1 Introduction

In this article, we consider the stochastic wave equation:

0%u 0%u .
ﬁ(tﬁ) = @(t,x) +o(u(t,z)X(t,x), t€[0,T], zeR
u(0,2) = wup(w), (SWE)

0

51 0.2) = w(),

and the stochastic heat equation:

ou 1 0%u .

— = - —(t,x X T

ta) = S o(ta)+olulta)X(ta), te0.T] s R SHE)
U(O,$) = UO(aj)
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SPDEs with fractional noise with H < %

where o(z) = az + b is an affine function and X denotes the formal derivative of a
spatially homogeneous Gaussian noise X, which is white in time and behaves in space
like a fractional Brownian motion (fBm) with index H € (i, %) The precise definition of
X is given in Section 2.1 below. The initial value functions uy and vy are bounded and
uniformly Holder continuous of order H, i.e. there exists a constant C' > 0 such that

lug(x) — up(y)| < Clo —y| forall z,y € R

lvo(z) — vo(y)| < Clz — y|H forall z,y € R.

We denote by G;(x) the fundamental solution of the wave (respectively heat) equation,
that is

1
Gi(z) = il{mq} for the wave equation,
1 | |2 )
Gt (.I‘) = W exp —? for the heat equatlon.
i

Let (-Ft)tZO be the filtration generated by X (see (2.3)). The goal of the present article
is to prove the following result.

Theorem 1.1. Let X be a spatially homogeneous Gaussian noise which is white in time
and behaves in space like a fBm with index H € (%, %), o an affine function and ug, vo
uniformly H-Hélder continuous functions. Let p > 2. Then, equation (SWE) (respectively
(SHE)) has a unique solution in the space of L*({))-continuous and adapted processes

u={u(t,z);t € |0,T],x € R} satisfying

sup  Elu(t,z)|P < oo
(t,z)€[0,T]xR

and

2/p
crol (Bluts,y) = us, 2)l7)
sup / / Gi_(z—y — dydzds < oc. (1.1)
(t,z)€[0,T]xR J0O JR2 sl ) ly — 2[>72H

In particular, Theorem 1.1 covers the case of equation (SWE) with o(z) = z, ug(z) = b
and vg = 0, and equation (SHE) with o(z) = = and ug(z) = b, which are known in the
literature as the Hyperbolic Anderson Model (HAM), respectively the Parabolic Anderson
Model (PAM). In fact, the solution % of (PAM) can be written as © = u + b, where u is the
solution to (SHE) with o(z) = z + b and uy = 0. Equation (PAM) plays a major role in
the study of the KPZ equation in physics, via the Hopf-Cole transformation. Its discrete
form was studied in [7]. One possible method for studying equations (HAM) and (PAM)
is based on the idea that the solution can be expressed as a series of multiple stochastic
integrals with respect to X. This method was used in references [22, 23, 24, 4] in
the case of the heat equation, and in references [14, 13, 3] in the case of the wave
equation. This approach is particularly useful when the noise behaves in time like a
fBm, and martingale techniques cannot be applied. We do not pursue this approach here.
Instead, we will use the classical method of Picard iterations, our main efforts being
dedicated to showing that the Picard iteration sequence is well-defined and converges in
the underlying space.

One of the limitations of the present article is the fact that we require that o is an
affine function. We explain briefly where this restriction comes from. As in [10], to
show that the sequence (u"),>; of Picard iterations converges, we need to establish a
recurrence relation for the differences (u” —u"~!),,>; between two consecutive iterations.
Because of the presence of the term (1.1) in the definition of the space in which the
solution lives (see Definition 3.6 below), this leads inevitably to the need of controlling
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a spatial increment of the process o(u™) — o(u""!) using the same increment for the
process u™ — u" ! (see relation (3.13) below). The only way we were able to achieve this
was by requiring that ¢ satisfies:

lo(z) —o(y) —o(u)+ o) <Clx —y—u+v| Vr,y,u,ve€R (1.2)

for some constant C' > 0, which is equivalent to saying that o is affine. This condition is
also needed to check that the limit of (u"),, is a solution and to prove that the solution
is unique. Indeed, to obtain uniqueness we need to bound a spatial increment of the
process o(u) — o(v) in terms of the same increment for the process u — v, assuming that
u and v are two solutions. The existence and uniqueness of solution for equations (SWE)
and (SHE) in which ¢ is an arbitrary Lipschitz function remains an open problem.

The concept of solution is defined as follows. We say that a random field u =
{u(t,z);t € [0,T],z € R} is a (mild) solution of (SWE) (respectively (SHE)), if u is
predictable and for any (¢,z) € [0,7] € R

u(t,z) = w(t,z) + /0 /]RGt_S(x —y)o(u(s,y)) X(ds,dy) a.s. (1.3)

where the stochastic integral is interpreted in the sense explained in Section 2.2 below,
and w = {w(t, z);t € [0,T],z € R} is the solution of the homogeneous wave (respectively
heat) equation with the same initial conditions as in (SWE) (respectively (SHE)), namely:

1ot 1
w(t,z) = 3 / vo(y)dy + 3 (uo(x +1t) +ug(z — t)) for the wave equation,
r—t

w(t,z) = / Gi(x —y)uo(y)dy for the heat equation.
R

This problem has a very rich history, since stochastic partial differential equations
(SPDEs) driven by a spatially homogeneous Gaussian noise have been studied intensively
in the past fifteen years. We recall that a spatially homogeneous Gaussian noise is a
zero-mean Gaussian process X = {X;(p);t > 0,¢ € D(R?)} with covariance

E[X:(p) X, (¥)] = (t A s)T(p %),

where D(R?) is the set of infinitely differentiable functions on R? with compact support,
I is a non-negative-definite tempered distribution on R and ¢ (z) = t(—x). By the
Bochner-Schwartz theorem, there exists a tempered measure 1 on R? whose Fourier
transform in S'(R?) is I'. Here we denote by S'(R?) the space of tempered distributions
on RY. Therefore,

BIX()X,(0)] = (t1s) | Fo©FOuide). .0

Since its covariance is invariant under translations, the noise can be viewed as a
stationary random distribution, in the sense introduced by It6 in [25] (see Section 2.1
below for the precise definition).

Due to difficulties in the construction of the stochastic integral with respect to X,
most of the results related to the study of SPDEs with this type of noise were obtained
under the following assumption:

Assumption A. I' is given by a non-negative-definite tempered measure (or in particular,
I is given by a non-negative locally integrable function f).

In the presence of this assumption, it is known that a general class of SPDEs with
non-vanishing initial conditions (which includes the wave equation in dimension d < 3
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and the heat equation in any dimension) have random field solutions (see, e.g., [42, 8,
11, 30, 10, 15]). Various properties of the solution, like Holder continuity of the sample
paths or smoothness of the law, have been investigated by many authors (see, e.g.,
[5, 29, 39, 36, 31, 38, 16]). Concerning the spectral measure y, in all above-mentioned
references it is assumed that

1

On the other hand, as far as the semigroup approach to SPDEs is concerned, we remark
that Peszat and Zabczyk [34] (see also [33]) obtained the existence and uniqueness
of a function-space valued solution to the stochastic wave equation (with d < 3) and
stochastic heat equation (in any dimension) under condition (1.5) and the following:

Assumption B. There exists a constant C > 0 such that I' + C)\; is a non-negative
measure, where )\, is the Lebesgue measure on R?.

In the case of the stochastic wave equation in any space dimension, the existence of
the solution has been studied in [32, 12, 9] using different approaches. More precisely,
in [32] the covariance I' is assumed to satisfy Assumption B, while in [12, 9] the authors
suppose that it fulfils Assumption A. On the other hand, in [12] the spectral measure p
satisfies (1.5), while in [32, 9] it satisfies

1
sup/ ———nu(d€) < 0. (1.6)
nek Jre 1+ 1§ —nf? )
Using arguments from [27], Peszat [32] showed that conditions (1.5) and (1.6) are
equivalent, if Assumption B holds.

In this article, we will assume that d = 1 and X is a spatially homogeneous Gaussian
noise with the same spectral measure p as the fBm of index H, i.e.

p(d€) = ep €)M dg, (1.7)
with ]
o I'(2H +217)rs1n(7rH). (1.8)

We recall that the fBm with index H € (0,1) is a zero-mean Gaussian process B =
{B(z)}+er with covariance: (see e.g. Section 7.2.2 of [37])

Ewwmm=4ﬂmmvmmmmo (1.9)

where F denotes the Fourier transform, and p is given by (1.7). The fBm with index
H = 1/2 coincides with the Brownian motion.

Note that the measure p given by (1.7) satisfies (1.5), for any H € (0,1). However,
condition (1.6) does not hold when H < 1/2 (see Appendix A). On the other hand,
when H > 1/2, the Fourier transform in S’(R) of i is the locally integrable function
f(z) = H(2H — 1)|z|?~2, which satisfies Assumption A above. But when H < 1/2,
Assumption A fails, as the Fourier transform of 1 in §'(R) is a genuine distribution T,
which is obtained by regularization: (see e.g. Chapter 1, Section 3 of [20])

M) = HEH =) [ (ple) = o(O))a"2ds, ¢ € D(R),
and coincides with (1/2)V”, where V" denotes the second distributional derivative of
V(z) = |z|* (see [26]). Therefore, the techniques used in the references mentioned
above cannot be applied in the case H < 1/2.
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The first step in the study of SPDESs is to develop a stochastic integral with respect to
the noise. Since the trajectories of the fBm are a-Holder continuous with a < H, the
fBm with index H < 1/2 has “rougher” sample paths than the Brownian motion. For this
reason, we expect more restrictive conditions for integration with respect to a Gaussian
noise which behaves in space like a fBm with H < 1/2, compared to the “smoother” case
H>1/2.

It was shown in [26] that the domain of the Wiener integral with respect to the fBm
of index H € (0,1) is the completion of D(RR) with respect to the inner product

(0, 6 = /]R Fol&) Fo@u(de), (1.10)

and coincides with the space of distributions S € §’(R), whose Fourier transform 7.5
is a locally integrable function which satisfies [}, [F.S(£)[*u(d€) < co. The authors of
[6] have recently proved that a similar characterization can be given for the class of
stochastic integrands with respect to the space-time Gaussian noise X. Based on this
characterization, we give a new criterion for integrability with respect to X, which is
inherited from the theory of fractional Sobolev spaces, and constitutes the starting point
of the developments in the present article. In particular, this criterion supplies us with
the necessary tools for proving that the Picard iteration sequence is well-defined and
converges to the solution of equation (SWE) (or (SHE)). Furthermore, we remark that,
because of the above-mentioned techniques, the term in (1.1) comes into the picture in a
quite natural way when setting up the Picard scheme, and indeed has been crucial in
order to prove the uniqueness of the solution.

The restriction H > 1/4 arises from a technical condition that we need to impose on
the fundamental solution G, namely: (see Remark 3.2 below)

T
| [1Fcioriere-nagar < o
0 R

This condition appears when, in the induction step, we have to prove that the (n + 1)-th
Picard iterate satisfies the fractional-Sobolev type regularity given by formula (1.1).
We do not claim that the threshold 1/4 is optimal, because it comes directly from the
Sobolev space methods applied in the present article. Nevertheless, comparing with
some related results (see e.g. [24]), it seems intuitively natural not to be able to prove
our result for all H < 1/4, because in this case the noise is not a regular function in the
time variable.

This article is organized as follows. In Section 2, we collect all the preliminary
results about the noise and the stochastic integral, together with the new criterion
for integrability mentioned above. The proof of Theorem 1.1 is presented in Section 3.
Each of these sections is divided into several sub-sections, which are summarized at the
beginning of the section. Some auxiliary results are presented in Appendices A, B, C and
D.

We conclude the introduction with few words about the notation. We denote by D(K)
the space of infinitely differentiable functions on R? with compact support contained in
an open set K. We denote by S(RR) the class of rapidly decreasing infinitely differentiable
functions on R. The Fourier transform of a function ¢ € L'(R?) is defined by

Fo(©) = [ e plwyn

where ¢ -z = )%, &x; is the Euclidean inner product in R%. We let B(R?) be the class
of Borel sets in R? and B;,(R?) be the class of bounded Borel sets in R?. We denote by
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L%(IRCI7 ) the space of complex-valued functions on R¢, which are square-integrable
with respect to the measure p. We denote by L2(12) the space of complex-valued square-
integrable random variables defined on 2. The same notations without the subscript C
denote the corresponding subspaces consisting of real-valued elements.

2 The noise and the stochastic integral

This section is divided in three parts. In Section 2.1, we introduce the Gaussian noise
X, which can be viewed as a stationary random distribution, as in [2]. In Section 2.2, we
recall the construction of the stochastic integral with respect to X, following closely the
approach of [6]. We point out that the considerations in Sections 2.1 and 2.2 are indeed
valid for any H € (0,1) and in fact for any symmetric measure p on R which satisfies
(1.5). In this case, the process {X (¢, z)}.cr (defined in Remark 2.1 below) is a Gaussian
process with stationary increments and spectral measure ¢u. Finally, in Section 2.3 we
consider the case H € (0, %) and we obtain a new criterion for integrability with respect
to X, using tools from the theory of fractional Sobolev spaces, borrowed from [18].

2.1 The noise

We let X = {X(¢); ¢ € D((0,00) x R)} be a zero-mean Gaussian process, defined on
a probability space (2, F, P), with covariance:

E[X(p)X(4)] =/OOO/]thﬂ(t,-)(f)fw(tw)(f)u(df)dt =: (¢, ¥)n, (2.1)

for any ¢, € D((0,0) x R), where p is given by p(df) = cy [€|*72Hd¢ (see (1.7)) with
0 < H < 1. Note that in the space variable, X has the same covariance structure as the
fBm with index H (see (1.10)).

We denote by H the completion of D((0,00) x R) with respect to (-,-)3;. The map
¢+ X (i) is an isometry from D((0,00) x R) to L?(2) which can be extended to H. We
use the notation:

X = [ [ ptta)xndn), pen

The process X = {X(¢); ¢ € D((0,00) x R)} is a (real) stationary random distribution,
a concept which was introduced by It6 in dimension one (see [25]), and generalized to
higher dimensions by Yaglom (see [41]). This means that the map ¢ — X () is linear
and continuous from D((0,00) x R) to L?(Q2), and the covariance of X is invariant under
translations, i.e.

E[X(mhp) X (tnt)] = E[X(p)X(¢)] forany h € Ry xR,

where (1,¢)(t,x) = @(t + h1,x + ha) and h = (hy, he). By Theorem 3 of [41], X has the
spectral representation:

X(p) = /R /R Fo(r.O)M(dr,de), ¢ € D((0,00) x R),

where F¢ denotes the Fourier transform of ¢ in (¢, z):

Fo(r,€) = / / T o1, 2 dtde,
RJR

and M = {M(A); A € B,(R?)} is a Gaussian complex random measure on R? with
zero-mean and control measure I1(dr, d§) = s=drpu(d€), i.e.

E[M(A)M(B)] =TI(ANB) forany A, B € By(R?).
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For any ¢t > 0 and ¢ € D(R), we denote X;(¢) = X (1j9 4¢). This is well-defined, since
Lo, € H (see page 1128 of [2]). Moreover,

- / Fool) M (de),
R

where {M;(A); A € By(R)} is a symmetric Gaussian complex random measure on R with
zero-mean and control measure tu, given by

1— e—i‘rt

My (A) = / L (O M(dr, df). 2.2)
R2 1T

The process M = {M;(A);t > 0, A € B,(R)} is a martingale measure (as defined in [42],

but with complex values), with respect to the filtration

Fio=o{X,(p);s€[0,8,p eDR)IVN, t>0 (2.3)

(see Appendix B). Here we denote by N the class of P-negligible sets in F. As we will
show in the next section, the martingale measure M plays an important role in the
construction of the stochastic integral with respect to X

Forany ¢ € L(RR, 1), we can define the integral M;(¢) := [, #(€)M;(d€) as an element
in L(12), by approximation with simple functions. For any s,t > 0and ¢,9 € L&(R, u),

BM/($)ML()] = (t A 5) /R (VP Eplde). 2.4)

Hence, X(¢) = My(Fp) for any ¢ € D(R). For any s < t and ¢, € D(R),

E[Xi() Xa()] = (EA s / Fol) FH@u(de).

Since M is symmetric, M;(¢) is real-valued for any function ¢ € L%(R,u) which
satisfies ¢(€) = ¢(—¢) for all £ € R. In particular, X, () is real-valued for any ¢ € D(R).
Remark 2.1. A random field {X (¢,z); ¢ > 0,z € R} can be naturally associated to our
noise X. In fact, using an approximation argument it can be shown that for any ¢ > 0 and
x € R, one has Lo0,x(0,2] € H and X (t,x) := X(l(o,t]x(o,m]) = f]R]:l(O,m] (§)M(d€). (This
follows from Theorem 3.10 of [2].) The process {X(t,z); ¢t > 0,2 € R} has wide-sense
stationary increments (in the sense of [6]), with covariance

BIX(t,2)X (s,9)] = (t A 5) /R Flio.a) (€)F o) (©) plde)

(see Theorem 2.7 of [6]). Finally, we observe that, for any fixed ¢ > 0, the process
{X:(¢); p € D(R)} coincides with the distributional derivative of the process {Y;(¢) =
Jr (x)X (t,z)dx; o € D(R)} since by integration by parts and stochastic Fubini theorem,

/ Foo€)My(de) = / ( / Flo(é )dz) M, (dg) = — /}R ¢ @)X (1)

This is consistent with the developments in Section 2.2 of [26].

2.2 The stochastic integral

In this section, we construct the stochastic integral with respect to X. This con-
struction is essentially the same as the one described in Section 4 of [6], where the
authors develop an integral with respect to the random field {X(¢,2); ¢ > 0,2 € R}
defined in Remark 2.1. However, we have chosen to focus more on the stationary random
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distribution X = {X (¢); ¢ € D((0,00) x R)}, so that our presentation is fully consistent
with the mathematical framework in the theory of SPDEs (see, e.g., [10, 35]). As already
mentioned, here we still consider that H € (0, 1).

Note that for any interval (z,y] C R, we can define the random variable

&me:Xumwwp:Afmm@mwa 2.5)

Remark 2.2. For an arbitrary set A € B,(R), X;(A) cannot be defined by the relation
Xi(A) := X(1(0,x4), since the function 1 44 may not be in H. To see this, note that
by applying Theorem 3.10 of [2] to the set A’ = (0,t] x A and the measure II(dr,d¢) =
(2m) " tdrp(d), we infer that 1o x4 € H if and only if [i [F14(&)]2p(d€) < oo. If H > 1/2,
the Fourier transform of 4 is the locally integrable function f(z) = H(2H — 1)|z|?7~2
and therefore,

3 | L@ Pude) = [ [ fa—pdody < o

for any set A € B,(R) (see Lemma 5.6 of [28]). But when H < 1/2, as mentioned in
the Introduction, the Fourier transform of u is a genuine distribution and the above
argument cannot be applied. Indeed, in Appendix C, we construct a set A € B,(R) for
which [i; [F1a(€)[?1(d€) = oo. For such a set A, the function 1(g x4 is not in # and
X (A) is not well-defined. Therefore, when H < 1/2, the stochastic integral with respect
to X cannot be constructed using the approach of [10].

The construction of the integral with respect to X will be based on the random
variables X;((z,y]) given above. The properties of this integral are obtained indirectly,
using its relationship with the integral with respect to M. The integrals with respect to
M which will appear below are defined as in Walsh’s lecture notes [42]. We assume that
the reader is familiar with this kind of stochastic integrals.

In order to proceed with the construction of the integral with respect to X, let us
denote by &, the set of (real) linear combinations of processes of the form

g(w,t,x) = Y (w)1qp ()10 (), (2.6)

where 0 < a < b, Y is a R-valued bounded F,-measurable random variable, and u,v € R
with u < v. The subscript r in £, emphasizes the fact that a “rectangle” (of form (u, v]) is
used in (2.6). If g € &, is of form (2.6), we define the stochastic integral of g with respect
to X by:

(9 X)e =Y (Xino((u, v]) = Xena((u,v])).

This definition is extended by linearity to all processes in &,. The stochastic integral
(g X); can be expressed as an integral with respect to the martingale measure M, as
follows.

Lemma 2.3. For any g € &,., the variable (g - X); has the spectral representation:

mmFééwwmwmw. 2.7)

Proof. It is enough to assume that g is of form (2.6). The general case follows by linearity.
Using (2.5), it follows that (g-X); = Y (Myap(1)) — Mina(v)), where ¢ := Fl(, ) € LE(R, p).
On the other hand, the process

D(w, t,x) = Fg(w,t,-)(§) = Y (W)L (t)(E)
isin L (M), but is not an elementary process. (Recall that a C-valued elementary process

is a process of form (2.6) in which Y is C-valued and the interval (u, v] is replaced by a set
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A € By(R). A simple process is a complex linear combination of elementary processes.)
By approximating 1) with a sequence (¢,,),, of simple functions, it can be shown that

/ / M (ds, d€) = Y (Myny (1)) — Myna(1)).

The conclusion follows. O

Fix T > 0. Similarly to [10], we let Py be the completion of £, with respect to || - ||

where
ol =5 [ [ ot Pt

In view of (2.7) and the isometry property of Walsh’s stochastic integral with respect to
M, the map g — {(g9 - X)t}1e[0,r is an isometry between &, and a subspace of the space
of continuous square-integrable martingales (M;);c[o,r] with My = 0, endowed with the
norm || M|| = {E(M2)}'/2. This map can be extended to Py. We denote the image of
g € Py under this map by

(g~X)t:/0//]Rg(s,x)X(ds,dx), t €10,T].

We now identify the elements of the space Py.

Definition 2.4. We say that a function S :  x [0,7] — S’(R) is predictable if the map
(w,t) — S(w,t)(y) is predictable, for any ¢ € S(R?). We will denote by Poyr, the
predictable o-field on Q x R.

Remark 2.5. If S : Q2 x [0,7] — S’(R) coincides with a function g : @ x [0,7] x R = R
(e. S(w,t)(¢) = [Jga9(w,t,z)p(x)dz for all ¢ € S(R)) and g is predictable, then S is
predictable (in the sense of Definition 2.4). This follows by Fubini’s theorem.

Remark 2.6. If S : Q x [0,7] — S'(R?) is a predictable function such that FS(w,t,-) is a

function for all (w,?), then by Lemma 4.2 of [6], there exists a Poxr, x B(IR)-measurable
function @ : Q x [0,7] x R — C such that for all (w,t),

FS(w,t,-)(§) = P(w,t,&) for almostall £ € R.

Below we will work with ®(w,t, &), but we will write FS(w,t,-)(£).

We consider the set Ax of predictable functions S : 2 x [0,7] — S’(R) such that
FS(w,t,-) is a locally integrable function for any (w,t) and

E/ / |FS(t, ) ()P u(dé)dt < oo.
The space Ax is endowed with the inner product
(S1, S2)ax = E / RIS CEACRIGAESY

We let [|S[3, = (S,S)ax. We identify S; and S if [|S1 — Sa[[ax = 0.
Theorem 2.7. The set Ax coincides with Py. For any S € Ax andt € [0,T],

S(s,z)X(ds,dx)

7E/ / |FS(s, )(€)|2p(d€)ds (2.8)
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and (S - X); admits the spectral representation:

/ /Ss x) X (ds, dx) //]:S M(ds,d§) a.s. (2.9)

For any S € A, the predictable quadratic variation of S - X is:

(S - Xt_/ / IFS(s,) ()P u(de)ds, € [0,T). (2.10)

Proof. Clearly, (g,h)o = (g,h)r, for any g, h € &., where we have denoted by (-, -)o the
inner product associated with the norm || - ||op. By Theorem 4.3 of [6], we know that
&, is dense in Ax, and Ax is complete. Hence, Py = Ax. Relation (2.9) follows by an
approximation argument, using Lemma 2.3 and the fact that &, is dense in A x. Relation
(2.10) follows from (2.9). O

2.3 A criterion for integrability

In this section, we obtain a new criterion for integrability with respect to X, which
plays a crucial role in the present article. Here, we assume that H € (0, %).

Throughout this article, we say that a measurable function g : R — R is tempered if
there exists a tempered distribution 7, € S'(R) such that Typ = [, g(x)p(z)dz, for all
p e S(R).

If g is a tempered function the Fourier transform of g in §’(R) is a tempered distri-
bution, defined by Fg(¢ f]R g(x x)dzx,$ € S(R). When this distribution is a locally
integrable function, denoted also by }' g, we have

/ o(2) Fo(x)dz = / Fo(6)6(©)de forall 6 € S(R).
R R

In this case, the function Fg is also tempered.
We begin with a deterministic result, related to the theory of fractional Sobolev
spaces, which improves slightly Proposition 3.4 in [18].

Proposition 2.8. Let g : R — R be a tempered function whose Fourier transform in
S’(R) is a locally integrable function. For any 0 < H < 1/2,

ex / Fg(&) Pl " de = Cy / 9(2) — g@)Ple — yPH 2dady,  (2.11)
R R?2

when either one of the two integrals above is finite. Here cy is the constant given by
(1.8) and Cy = H(1 — 2H)/2.

Proof. First, assume that the integral on right-hand side of (2.11) is finite. Then
l9(z +y) —g(y)I? g(z+-) —g(")
o [ ()= |

21— H
1

T on

2
dz

L*(R)

f(g(er ) —g(-))

|Z|1_H

2

dz,
L%(R)

where we used Plancherel’s theorem for the last equality. The application of Plancherel’s
theorem is justified because the function g(z + -) — g(-) belongs to L?(R), for almost all
z € R. Since Fg is a tempered function, taking into account the definition and properties
of the Fourier transform in §’(R), we can infer that

(Fa(z+))(€) =™ Fy(§) ae.,
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and therefore, the last expression is equal to

et — 17 I'(2H + 1) sin(nH)
// I |2 2H| |]:g(§)|2dfd22: ( H(l,?H /l]:g | |£|1 2Hd§,

using Fubini’s theorem and Lemma D.2 (see Appendix D). This proves that the integral
on the left-hand side of (2.11) is finite. The constant which appears in front of the last
integral above is exactly cy /Cy.

When the integral on the left-hand side of (2.11) is finite, we can use the same
argument as above, but in reverse order. O

Note that an immediate consequence of the proof of Proposition 2.8 is that, if one of
the terms in (2.11) diverges, the other one must diverge too (because we have proved
that, if one of them is finite, the other one must be finite too).

Based on the previous result, we now identify a subset of Ax.

Theorem 2.9. Let S : Q2 x [0,7] x R — R be a predictable function, such that for almost
all (w,t) € Qx[0,7T], S(w,t,-) is a tempered function whose Fourier transform FS(w,t,-)
in §'(R) is a locally integrable function. If

CHE/ / / |S(t, x) — S(t,y) |z — y|* 2dzdydt < co (2.12)

then S € Ax and E|(S - X)r|?> = I(T). Moreover, for any p > 2,

p/2
E|(S-X)r \p<zpC'p/2 (/ //|S (t,2) — S(t,y)[*|z — |2H2dxdydt> (2.13)

where z, is the constant in the Burkholder-Davis-Gundy inequality for continuous mar-
tingales.

Proof. Note that the function (w,t,z,y) — [S(w,t,z) — S(w,t,y)|?|x — y|*" 2 is Poxr, X
B(R?)-measurable, due to the fact that

Paxkr,xr C Paxr, x B(R).

By (2.12), there exists a set N € Poyxgr, with (P x Leb)(NN) = 0 such that for all (w,t) € N,

/ / 18w t,2) — S(w, )2z — yPH~2dedy < oo,
RJR

We apply Proposition 2.8 to the function g = S(w, t,-) with (w,t) ¢ N. We obtain that
for any (w,t) ¢ N.

cH / | FS(w,t, ) (€] 2" de = Cy / / 1S(w, t, )= S(w, t,y)|*|x—y[* 2dady. (2.14)
R RJR

For any (w,t) € Q x [0,T], we identify the function S(w,t,-) with the distribution in
S’'(R) induced by it. By Remark 2.5, S : Q x [0,7] — S’(R) is predictable (in the sense of
Definition 2.4).

As in Remark 2.6, there exists a function ® : Q2 x [0, 7] x R — C which is Poxr, x B(R)-
measurable, such that for any (w,t), FS(w,t,)(¢) = ®(w,t,&) for almost all £ € R. Hence
for any (w,t) € Q x [0,T],

/\fS(w,t,-)(fS)IQ\fll‘ZHdﬁ=/ |D(w, t,&)7[¢]' 2 de. (2.15)
R R
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From (2.14) and (2.15), it follows that for any (w,t) ¢ N,

e / |®(w, t, )P 21 de = Cu / / S(w, t,2) = S(w, t,y)*le — y[*"*dady.  (2.16)
R R /R

We now take the integral with respect to P(dw)dt. We obtain that

T
o / / FS(t.6) [€]'2H dedt = I(T) < oo, 2.17)
0 R

This proves that S € Ax. The fact that E|(S - X)r|? = I(T) follows from (2.8) and (2.17).
We now prove (2.13). By Burkholder-Davis-Gundy inequality,

E|(S- X)7|P < 2,E ((S : X)’}/Q) . (2.18)

By (2.10), we know that for almost all w € €2,

T
(S-X)T(w):cH/O /R|(I>(w,t,§)|2\§|1_2Hd§dt. (2.19)

Let F' be the set of (w, t)’s for which (2.16) does not hold, and F,, = {t € [0,7T]; (w,t) €
F'}. Since (P x Leb)(F) = 0, by Fubini’s theorem, Leb(F,,) = 0 for almost all w. Hence,
there exists a set Qg with P(Qg) = 1 such that for all w €  fixed, equality (2.16) holds
for almost all ¢t € [0,7]. Taking the integral with respect to dt, we obtain that for any
w € Qo,

T
2 1-2H
cu /O /]R B(w, £,6)[? |¢] 2 dedt

T
:C’H/ //|S(w,t,x)—S(w,t,y)|2|:1c—y|2H_2d:vdydt. (2.20)
o JrJR

From (2.19) and (2.20), we infer that:

T
(S-X)T:CH/ //|S(t,$c)—S(t,y)|2|x—y|2H_2dmdydt a.s.
o JrJR

Relation (2.13) follows, using(2.18). O

3 Proof of Theorem 1.1

This section is dedicated to the proof of Theorem 1.1. In particular, from now on,
we assume that H € (%, %) In Section 3.1, we gather some preliminary (deterministic)
results which are needed in the subsequent sections. Section 3.2 will be devoted to
prove that the sequence (u"),>¢ of Picard iterations is well-defined, for both equations
(SWE) and (SHE). In Section 3.3, we show that the sequence (u"),>o converges (in
a certain Banach space, which is defined below), and its limit is the desired solution.
Moreover, we show that the solution is unique. Finally, in Section 3.4, we state and
prove an extension of Gronwall’s lemma, which is of independent interest, and is used in

Section 3.3.

3.1 Preliminary results

In this section, we give some estimates for various integrals containing the funda-
mental solution G of the wave or heat equations. Recall that the Fourier transform of G,

is:
sin(t[¢])
€]

2
FGy(§) = exp (t|§|> for the heat equation.

FGt(g) =

for the wave equation,
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Lemma 3.1. Let G be the fundamental solution of the wave or heat equation. Then, for

both equations, the integral
T
= [ [ 1FGior i dea
0 JR

converges if and only if « € (—1,1). When the integral converges, we have

1
Ar(a) = 2@ C’am T2~ for wave equation, (3.1)
2 1
Ar(a) = ] T (Oé;) TU-9/2 " for heat equation, (3.2)
—a
where
(1 —a)~'T'(a) sin(mra/2) ifa € (0,1)
Co=1¢ a(1-a) T+ a)sin(ra/2) ifa € (—1,0)
/2 ifa = 0.

Proof. For the wave equation, we use Lemma D.1 with o/ =1 — « € (0, 2):
o sin?(¢|¢ . [Csin’z
[ ircuorira = [ a2 [Tt
0

> 1 — cos(2
:tl—a/ Locos@r) ), _ poagiag,, (3.3)
0 e

where the last integral converges if and only if o € (—1,1). Thus, we obtain (3.1). For
the heat equation,

2 |cloge — e page o [ —ta?
./let(m el de /Re €l de 2/0 5 gy

2 ) ’

using the change of variable y = tz2. The last integral converges if and only if o > —1.
Finally, the integral fOT t=(@+1)/24t converges if and only if a < 1, whence we also deduce
(3.2). O

Remark 3.2. In the sequel, we will apply Lemma 3.1 with o« = 2(1 — 2H) (which imposes
the restriction H > 1/4), and also with « =1 — 2H.

Lemma 3.3. Assume that 1/4 < H < 1/2. Let G be the fundamental solution of the wave
or heat equation. Forany 0 < a < b <T, set

b
Fla,b) = / /R G2 (2) /R FCaa()PIEPO21 dedzds.

Fla,b) = C(b— a)*H 1 for the wave equation
" C(b—a)* 71 for the heat equation

Then

where C' > 0 is a constant depending on H, which is different for the two equations.

Proof. Using (3.3) and (3.4) with o = 2(1 — 2H), we see that

C(s—a)*=1  for the wave equation
2(1-2H)
/|J:G‘S (OP I dg = { C(s —a)?"=3/2 for the heat equation
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where C' > 0 is a constant depending on H, which is different for the two equations. This
integral is finite because H > 1/4. On the other hand,

21t for the wave equation
/ Gi(z)*dz = { 211/2¢=1/2 for the heat equation (3:5)

Therefore, for the wave equation, we have:
b b—a
F(a,b) = €271 / (b—s)(s —a)y"~1ds = C27! / (b—a—r)rti=1ar
a 0
= 027'8(2,4H)(b — a)** 11,

where 5(a,b) =T'(a)['(b)/T'(a + b) is the beta function. For the heat equation,

b
F(a,b) = 027r1/2/ (b—5)"Y2(s — a)?H=3/24s
1
= 27?8 ( J2H — 2) (b—a)?H-1
using again the fact that H > 1/4. O

Lemma 3.4. Let G be the fundamental solution of the wave or heat equation. For any
€ (—1,1) and for any h € R,

T _ .
CT|h|!= for the wave equation

_ 2 87 <
/0 /]R(l cos(Eh) [FGu(€)I7[€]* d dt < { C|h|*=>  for the heat equation,

where C = [ (1 — cosn)n®~2dn.

Proof. 1t is enough to consider the case h > 0. If h < 0, we use the fact that cos({h) =
cos(&|h|). For the wave equation, since sin?(t[¢]) < 1,

3 Sln sin®(té]) | . a 1—cos(€h) . via
//1 cos(£h)) — €| dgdth/R = d¢ = CTh'™,

using Lemma D.1 with o/ = 1 — «. For the heat equation,

- ‘2

T —e
/ / (1 — cos(¢h)) e 1€ ¢ de dt = / (1= cos(enn = L
0 R R

e |€|@de < Cht™2,

using again Lemma D.1 and the fact that 1 — e~ Z1¢° < 1. O

Lemma 3.5. Let G be the fundamental solution of the wave or heat equation. For any
€ (—1,1) and forany h € R

CT|h|*=®  for the wave equation
2 « <
/ / FCrnly) = FGuy)I" [€]" dE dt < { C|h|(*=®)/2 " for the heat equation,

where C' is a constant depending on « (which is different for the two equations).

Proof. We suppose that h > 0. The case h < 0 is similar. For the wave equation, using the
fact that |sin((¢ + h)|¢]) — sin(¢]¢])|* < Cmin(1, h|€])?, we see that the integral is smaller
than ) ) ' )
mln(17h|£‘) d§ — CThl—Oz mln(l’ |77|)

cT
OO 1 R |n*

dn < CT h'~e,
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using the change of variables = h{. For the heat equation, the integral is

¢ 2 2 2 1767”5'2
| [t a—enierapigeagas = [ et it g g
0 JR R ‘5'
—h|€%/2)\2 —n?/2\2
s/ toe =08 ;i/ " ge = h“—a)/?/ e _621/ L in,
R €] R In|

using the change of variables n = h'/2¢£. The last integral is seen to be finite using the
2
fact that 1 — e~ /2 < n?/2 for || < 1. O

3.2 Picard iteration scheme

In this section, we show that the sequence (u™),>¢ of the Picard iterations is well-
defined in some Banach space (see Definition 3.6 below). This sequence is defined
iteratively. We set u’(¢,z) = w(t,z) for any ¢t € [0,7] and x € R. For any n > 0 and for
any (t,z) € [0,T] x R, we let

u L (t,z) = w(t, x t i—s(x—1y)o(u"(s, s,dy), .
(e = wit.)+ [ [ Groslo =)o (s.9) X(ds.dy 3.6)

provided that the stochastic integral is well-defined, in the sense explained in Section
2.2 above. In this section, the function o does not need to be affine. Recall that the term
w(t, z) corresponds to the contribution of the initial data, and explicit formulas for it are
given in the Introduction.

We now introduce the solution space. Let p > 2 be fixed.

Definition 3.6. We denote by X the set of L?(Q)-continuous and (F;);-adapted processes
Y ={Y(t,z);t € [0,T],z € R} such that |Y||x, < co and ||Y]|x, < co, where

1/p
Ve = sw  (EY(La)F)
(t,z)€[0,T]xR

and

(B (s.9) Y (s, 9) " -

t
Y{x, =  sup / / G? (z—vy dy dz ds
¥l (t,x)e0,T]xR | Jo JR2 sl ) ly — 2[>=2H

Forany Y € X, we define ||Y|lx := ||V |lx, + ||V || x,. We identify two processes Y; and Y5
for which ||Y; — Yz||x = 0.

With these definitions, one checks that (X, || - || ») defines a Banach space. The main
result of the section is the following theorem. Note that an immediate consequence of it
will be that, for any n > 0, the process u" is well-defined and belongs to X.

Theorem 3.7. Let o be an arbitrary Lipschitz function. Let p > 2 be fixed. Then, for any

n >0,
u"(t,x) is well-defined for any (t,z) € [0,7] X R,
sup  Elu"(t,z)’ < oo, and
(t,2)€[0,T]xR (P)
2/p
cro (Blun(s,y) - u(s,2)lP)
sup / Gi_ (x —vy) — dydzds < oo
(t,z)€[0,T]xR J0 JR2 ! ly — 2[>72H
EJP 20 (2015), paper 54. ejp.ejpecp.org
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and, for any h € R with |h| < 1,

sup Elu™(t,x + h) —u™(t,z)> < C,|h*H
(t,2)€[0,T]xR Q)
sup Elu™(t + h,z) —u™(t,z)|> < C,|h|?,
(t,z)€[0,TAN(T—h)] xR

where = 2H for the wave equation, and § = H for the heat equation. Here C,, is a
constant which depends on n (and also on H, T, o,uy and vg).

Proof. By induction, we prove that properties (P) and (Q) hold for any n > 0. As already
mentioned, the constant C' (depending on p, H, T, 0, ug and vy) may be different from line
to line. We split the proof in four steps, as follows.

Step 1. We start by checking properties (P) and (Q) for n = 0. It is clear that the variable
u®(t, ) = w(t,z) is well-defined for any (¢,z). Using the particular form of w for each
equation, and the fact that ug and vy are bounded, we see immediately that for both
equations,
sup lw(t, z)| < oo. (3.7)
(t,z)€[0,T]xR

Let us postpone for the moment the proof of the third condition in (P), so that we first
check the validity of property (Q) for the case n = 0.

For this, we consider separately the wave and heat equations, using the corresponding
formulas for w(t, r) for each equation. For the wave equation, |w(t,z +h) — w(t,z)|? <
2(A; + Az), where

2
Ay =

/R (Gule + h— y) — Cule — y)voly)dy

1
As = 1 lug(z + h 4+ t) —ug(x + 1) + ug(z + h —t) — ug(x — t)|2.
Since v is uniformly H-Hélder continuous, A, < C|h|?H. By a change of variables, and
Holder’s inequality (using the fact that [ G(t,y)dy = t), we have:

2
A =

/R Gu(y) (w0l + h — ) — volz — ))dy

< t/Gt@) lvo(e + h — y) — vole — y)Pdy < CP|RPH
R

where for the last inequality we used the fact that vy is uniformly H-Holder continuous.
We now examine the time increments of w. We suppose that » > 0. The case h < 0 is
similar. We have |w(t + h,z) — w(t,z)|? < 2(B; + Bs), where

2
B, =

/R (Gran(x — ) — Gelz — y))voly)dy

1
By = luo(z +t + h) —ug(x +t) +ug(x — t — h) — up(x — t)|*.

Since u is uniformly H-Hélder continuous, B, < C|h|?!. By Hélder’s inequality,

2

1
B, = 1 ’/R(l{m+t<y<z+t+h} + Vo t—hey<a—ty) Vo(y) dy

IN

1
) h /R(l{m+t<y<w+t+h} + 1{w7t7h<y<a:7t}) ‘UO(ZINZ dy < Ch27

where for the last inequality we used the fact that vy is bounded.
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In the case of the heat equation, the space increments of w are treated similarly to
the term A; above (with vy replaced by ug). For the time increments, we assume again
that A > 0, the case h < 0 being similar. Using the semigroup property of GG, Holder’s
inequality (since f]R G¢(y)dy = 1) and the fact that u¢ is uniformly H-Hoélder continuous,
we obtain (see (4.8) of [39]):

:‘/GMM/Y%M*QWMWﬂDfm@DW@
R R
sA;a@yécxx—@mdz—w—uMAPwdy

SO/GMwa@=CW-
R

|w(t + h,x) —

Therefore, we conclude that property (Q) holds for n = 0.
It remains to show that the third condition in (P) holds in this case. More precisely,

we write
t 2
[w(s,y +2) —w(s,y)|
//Gis( ( B dz ) dyds=1' + I,
0o JR

where the terms I’ and I” are obtained by splitting the dz integral into two integrals,
corresponding to the regions {|z| > 1} and {|z| < 1}, respectively. Note that

1
I’<4sup|wtx|2//G / ||2ﬁdz dy ds,
(t,) lz]>1 17

which is uniformly bounded for all (¢,z) € [0,7] x R, due to (3.5) and the fact that
H < 1/2. For I”, we use the fact that |w(s,y + z) — w(s, y)|?> < C|z|?H, since we have
already proved that property (Q) holds for n = 0. Hence,

t
I”g/ /fos(x—y) / |2|* =2 dz | dyds,
0 JR |z|<1

which is uniformly bounded in (¢,z), due to (3.5) and the fact that H > 1/4. This
concludes the first step of the proof.

From now on, we assume the following induction hypothesis: properties (P) and (Q)
hold for u™. We aim to prove that (P) and (Q) also hold for u"*!.

Step 2. This step of the proof is devoted to show that u"*!(¢,z) is well-defined for all
(t,x) € [0,T] x R and the following relationship holds:
sup  Elu"(t,z)|P < . (3.8)
(t,x)€[0,T]xR
In order to prove that u"*!(¢, r) is well-defined for any (¢, z) € [0,7] x R, we have to

show that the stochastic integral on the right-hand side of (3.6) is well-defined. For this,
we apply Theorem 2.9 to the function

Sn(s,y) = Gis(z — y)o(u"(s,y)) 1, (s)

(which depends also on (¢, x)). We will show that:

(i) u™ has a predictable modification (called also u");

(ii) Sp,(w, s, ) is in L*(R) for almost all (w,s) € 2 x [0,T];
(iii) S,, satisfies the following condition:

t
sup E/ / / 1S (5,y) — Su(s, 2) |y — 2| "2 dy dz ds < . (3.9)
0 R

(t,z)€[0,T]xR
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To prove (i), we note that u™ is L?(Q)-continuous (by property (Q)) and u"(t,z) is
Fi-measurable for any =z € R (by the construction of the stochastic integral). Therefore,
u™ has a predictable modification. (For this, we use the extensions to random fields of
Theorem 30, Chapter IV of [17] and Proposition 3.21 of [35].) To prove (ii), we note that

T
E/ /|S S,y |dyds<C<1—|—supEu (t,x )/ /Gt_s(x—y)dyds<oo,
o Jr

and hence, [ [Sn(w, s,y)|dy < oo for almost all (w, s). This proves (ii). Note also that (ii)
implies that the Fourier transform of S, (w, s, ) is given by a function, for a.a. (w, s).
To prove (iii), we bound the integral in (3.9) by 2(I; + I2), where

t 2
|o(u"(s,y)) —o(u"(s,2)
L = E/ //fos(w—y) (|y)z|22H ) dy dzds,
Gi_g(x — Gi_s(x — 2)|?
I, = E/ //\0 (s,2) 2| 1o (@ |yzz|2 tQH( ) dydzds.

Using the fact that o is Lipschitz, and Jensen’s inequality, we see that

n n 2/p
‘ i (Blu(s,9) - u(s.2)|")
IlgC/ //ths(at—y) dydzds,
0o JRJR

y— P

which is uniformly bounded in (¢, z) by the induction hypothesis (the third condition in
(P)). By Jensen’s inequality and Proposition 2.8,

Gi_s(x —y) — Gi_s(x — 2)|?
I, < C|(1+supE|u"(t,x) | i=s( i=s(@ = 2)| dydzds
(t,x) \y—z|2 2H

< C 1+<supE|u (t,x)|> //|-7:Gt SO |€]' 7 dg ds,
(t.2)

the sup being finite by the induction hypothesis (the second property in (P)). The last
integral is uniformly bounded for ¢ € [0, 7], by Lemma 3.1. This shows that u"*!(¢, z) is
well-defined.

Next, we show that (3.8) holds. By the definition (3.6) of u"*!(¢, z) and Theorem 2.9,

Elu™*L(t, x)|p<0{|wtz |p+E(/ // [Sn (s |y_z‘2 2(1_51 ,2)? dydzdg)p/2}~

The first term is uniformly bounded in (¢,z) by (3.7). The second term is bounded by
C(J1 + J2), where

Ll o (u (s, ) — o (u" (s, 2)) |2 o/
(/o . Gi_,(x —vy) = 222 dydzds) ]

Using the fact that ¢ is Lipschitz and applying Minkowski’s inequality for integrals (see
A.1, page 271 of [40]), we see that

Ji = E

Jo =

2/p p/2
Cro (Efu(s,9) — u(s, 2)l7)
J1<C /0 - Gi_,(z—vy) PR dy dzds ,
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which is uniformly bounded in (¢, z), by the induction hypothesis (the third condition in
(P)). Similarly for J,, we have:

/ _ 2 p/2
Jo <C (/ / 1+ Elu"(s, z)|p) P|Ges(r—y) = 2Gt2;( 2l dydzds)
R2 |y_Z|

/2
|Gi_s(x —y) — Gi_s(x — 2)|? v

the sup being bounded by the induction hypothesis. As mentioned above, the last integral
is uniformly bounded in ¢ € [0, 7). Thus, we have obtained the validity of (3.8)).

Step 3. Now, we prove that ™! satisfies the third condition in (P), i.e.

Gi_s(x — 2/p
- [OT] ]R/ /]R2 t|z|2 5T (E\u"“(s y+z)— ”+1(s,y)|p) dydzds < co. (3.10)
T)e X
By (3.6) and Theorem 2.9,

Bl (s,y+2) —u" T (s,y) |
< Clw(s,y + z) —w(s,y)|?

+C’E/0/ Gor(y+2—v) = Gs—r(y — v))o(u"(r,v)) X (dr, dv)
< Clw(s,y +2) —w(s,y)|’
+0E(/ | Gumrly+ 2 =) = Gy = 0o 0)
p/2
— (Gs—r(y+2z—17) — Gg_,,(y6))0(u"(r,6))2|1}_v|2_2Hdvdf)dr> .

Since we have already proved that the third condition in (P) holds for w, it suffices to
show that

[ L2t o (] ettt

1 p/2 2/p
— (Gs—r(y+2—=7) — Gs—r(y — 0))o(u"(r, @))|2m dv dv dr) ] dy dz ds

is uniformly bounded in (¢, ). After adding and subtracting the mixed term (Gs_,(y +
z =) — Gs_r(y —v))o(u"(r,v)) inside the squared term of the last integral above, we
see that the previous integral is bounded by 2(A; + A,), where

Ay = /ds/dy/ Gt|5|f;H [(// Gor(y+2—v) = Goypy —v)|?

p/2]2/P
md’l}d’l—] d’l") ]

Ay = / ds/dy/ Gi- 8|2 2_H [ (/ dr/]R2 dv dv |o(u™(r,v))|?

[(Go—r(y+ 2z — U) — GS,T(y — U)) — (Gs—r(y + 2 — @) — Gor(y — U))2>pﬂ‘|

x |o(u"(r, 7)) = o(u" (r,0))|*

2/p
X

‘1} _@|2—2H
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We first deal with As. By Minkowski’s inequality for integrals,

Ay < /ds/dy/ Gt|52 Croslo —y)” </ dr/}Rz dodo (Elo(u" (r,0)) " )W

Gs—r(Yy+2—v) = Gs—r(y —v)) = (Gs—r(y + 2 —0) — G5 r(y_@))|2>'

| ’U|2 2H

Taking into account that o is Lipschitz and u™ satisfies the second condition in (P) (by
the induction hypothesis), we have that A, can be bounded by

Gi_(z—y)
C |1+ | sup E|u"(¢,z)| /ds/dy/ g2 577
(t,z) E

* (G r(y+2—-0) =G r(y—0)) = (Gs_(y+2—-0) — Gy (y — @))|2 -
X / /]R2 | dv dv dr.

) —17|2_2H

By Proposition 2.8, all this expression can be estimated (up to a constant) by

/ds/dy/ Gi 72 G2 —Y) / /\1 e 2| G, ()2 €121 de dr.

Using Fubini’s theorem and Lemma D.2, this later expression is equal (up to a constant)

to
t ; — ( ) 2 1¢£12(1—2H) )
~/0‘/]RGt78(x Y) /0 /]R|.7:G577«(§)| |f| dédr ) dyds,
¢ T
: - 2 |¢12(1—2H)
< (/O /RGt_s(a: y)dyds> (/O /]R\]-"Gr(f)\ €] dfdr>’

which is uniformly bounded in (¢,z) by Lemma 3.1 with o = 2(1 — 2H).
As far as A; is concerned, applying again Minkowski’s inequality for integrals, we
have:

A, < /ds/dy/th|822_H (//}R Gor(y+2 =) = Gopy —v)?

G
X <E|a(u"(r7z’)))—U(u"(r,@))|p) /p| —opai dvdvdr)

Using the fact that o is Lipschitz and Fubini’s theorem,

_ 2/p
(Blun(r,v) = wn(r, o))
A1<C/ds/dr/dv/dv v—v\Q 5T
Gi_s(z —y)?
([ [ B EE G e -0 - G- o).

Observe that, doing the change of variables §y =y — v,

Grul—
/dz/d t\z|2 Gies@ =9 1 (g2 =) = Gurly — )

Gis(x—y—v)? _ _
/dz/d’ - |z|2—2H ) |GS,T(y+z)—GS,r(y)\2.
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Hence, again by Fubini theorem,

mse s [ Lo [ gl el
/ d“/ do G-yl — g — v)? (BluG0) —u“(r,v)|p)2/”)

|U _ 1—}|272H

:/ ds/ dr/dz/ 2alGT yTz\ZQ - Gy
X (/RdU/Rd@Gt_s(zfﬂ—v)z (E|un(s_7:’v) _un(s_ﬁﬁﬂp)wp),

|U —’D|2_2H

where in the last equality we have done the change of variable 7 = s — r. By applying
Fubini’s theorem one more time, this last term is equal to

451G +2) — G ()
oo e [
2/
t (E\u"(s—?,v)—u”(s—F,z‘))\p) ’
x/ ds/dv/d@Gt_s(xffgfv)z .
7 R JR

|’U _ @‘2—2H

Performing now the change of variables 5 = s — 7, we can write

ase [l [ a [ a2 2 G0
= niz ~\Ip 2/p
x (/Ot_TdS/]RdU/RdthrS(x_y_v)2 <E|u"(3,v)_u (5,0)] ) )

|’U _ {}‘2—2H

2/p
(E|u”(§, v) — u"(3, @)|p)
<C sup /ds/dv/dvl,s —)2

T (rw)€0,T)xR lv —o[>~2H

/dT/dZ/d_IG ym ¢ G-

By the induction hypothesis (the third condition in (P)), the supremum appearing in the
last term above is finite. The remaining integral is

/dr/dz/ gl duls —E’I/Otdf/RVGT(f)FmPQHdé,

(by Proposition 2.8), and this is uniformly bounded in ¢ € [0,7], by Lemma 3.1. This
concludes the proof of (3.10).

Step 4. This final step is devoted to prove that property (Q) hold for »"*1.

We consider first the space increments of v”t!. By definition (3.6) of «™*! and
Theorem 2.9, we see that

Blu" ™ (t,x +h) —u" Tt 2) 2P < C(Iy + I + 1),
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where Iy = |w(t,z + h) —w(t,z)|?,

t o(u"(s —o(u™(s, 2))?
- [ /RJGt_s(th)Gt_s<xy>|2'( (o)) — o 2D gy gz s

y—"

n=p [ [ HEIE G- 0) - Geste - 0)-
(Gi_s(x+h—2)—Gi_s(x— 2)|* dy dz ds.

We have already proved that Iy < C|h|*". Let us treat I;. Since ¢ is Lipschitz,

_ 2
11<CE//|Gt s@+h—y)— G_s(x—y ( [u SyTZ; 2; "(5,9)] dz) dy ds

=C(I; + 1),

where I} and I{ denote the integrals corresponding to the regions {|z| > 1}, respectively
{l2| < 1}. Since [}, /., |2|27~2d is finite, we have

t
I < C sup E|u”(t7x)|2//|Gt,5(w+h—y)—Gt,s(a:—y)|2dyds
(t,z)€[0,T)eR 0 JR

t
C s Bt / / 1= e 2 | F QL (€ de ds
(t,z)€[0,TIeER o JR

t
C sw Bl (to)] / / (1~ cos(€h)) | FGL(6)]? de ds,
(t,z)€[0,TIeER 0o JR

using Plancherel’s theorem for the first equality above. Using Lemma 3.4 (with a = 0),
we obtain that
I < Clh| sup  Elu"(t,x)|*.
(t,z)€[0,T)eR

For I{, we use the induction hypothesis (the first condition in (Q)), to infer that
Elu™(s,y + 2) —u™(s,y)|? < Cph|z|*H. Since Ji1<ny |2|*1 =2z is finite,
t
o< ccn/ / Gy s(z+y+h) — Grs(z +y)[dyds < CCylAl.
0o JR

Let us now treat the term I,. Using the fact that ¢ is Lipschitz and Proposition 2.8,

I

IN

c<1+supE|u (t,2) )//W 127G (6)2 |2 de ds
(t,x)

C<1+supE|u (t, )] >/ / 1 — cos(h|€])) | FGi—s(€)|? [€]*2H dg ds.
(t.2)

Using Lemma 3.4 (with a = 1 — 2H), we obtain that
L <C (1 + sup E|u"(t,x)|2> |n|?H.
(t,x)

This concludes the proof for the space increments of u"*!.
We consider now the time increments of «" 1. We assume that 2 > 0. The case h < 0
is similar. By (3.6) and Theorem 2.9, for any ¢t < T — h,

Blu" ™ (t 4 h,x) —u" Tt 2)? < C(Jo + J1 + J2),
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where Jy = |w(t + h,z) — w(t, z)|?,

e IGein_s(x —y)o(u"(s,y)) = Grin_s(x — 2)o(u" (s, 2))|?
J = / /132 oy — 2 dydzds

J, = E / [ N(Gronsla =) = Gl =)o (" (59)) -
(Gran_o(@—2) = Gi_s(x — 2))o(u(s, 2)) 2y — 2272 dy d= ds.

It was shown above that J;, < C \h|2H (the case n = 0). As far as J; is concerned, adding
and subtracting Gi1p—s(z — y)o(u™(s, z)), we see that J; < 2(J11 + J12), where

t+h n n 2
oglu’(s, —olu’(s,z
Jll - E/ Gt+h s(:L - y) ‘ ( ( :Z)z Z|2_(2H( ))| dz dy ds
t+h — ) — — )2
J12 _ / / |2 |Gt+h S( y) QG_t;I;*S(x Z)' dy dz ds.
R?2 ly — 2|

Since o is Lipschitz, J;; is smaller than a constant times

t+h 2
u™(s,y+2z) —u"(s,y
E/ AG§+h-8(I‘ ( | [2[2=2H = dz) Ay s

which can be written Ji; + J{}, where J;; and Jj; are the integrals corresponding to the
regions {|z| > 1}, respectively {|z| < 1}. Since H < 1/2, the integral [, ., |2[2H=2dz is
finite, and hence

!
Jll

IN

t+h
Cswp Bt [ [ G o= v dyds

(t,x)
= C(Csup E|u" to:\Q/ /stydyds
(t,x)

The last integral is equal to Ch? for the wave equation, respectively Ch'/? for the heat
equation (see (3.5)). For J{|, we use the induction hypothesis (the first condition in (Q)).
Since H > 1/4, [(, <1y |2|*H~=2d> is finite and

t+h
Jih < C’Cn/ / Gipp_s(x —y) dyds,
¢ R

which is the same integral as above. As for Ji5, since ¢ is Lipschitz,

t+h 2
2 |Giin—s(@—y) = Gryns(x —2)|
<1+supE|u”(t,x) ) /t /]R2 ) — 2P dy dz

(t.x)
h
C<1+supE|u (t, ) )/ /\fG )% 1€ dgdr,
(t.x)

using Proposition 2.8 (after the change of variables r = t 4+ h — s). By applying Lemma 3.1
with a = 1 — 2H, we see that the last integral is equal to Ch?7*! for the wave equation,
and ChY for the heat equation.

We now treat Jo. As in the case of J;, we add and subtract the mixed term (G p—s(x—
y) — Gi—s(x — y))o(u"™(s, 2)). Hence Jo < 2(Ja1 + Jo2), where

Jau = E/ /IR? Grin—s(z —y) — Gz —y)|?
o (u"(5,)) = o(u"(s,2))]* ly — 2[*~* dy dz ds

J = E// (5, 2P [(Grns(@ —y) = Goos(z —y)) —
IR2
(Gron—s(x —2) = Gis(x = 2)] ly — 2" 2 dy d= ds.

J12

IN
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These terms are treated similarly to J;;, respectively Jio. More precisely, Jo; < C(J4; +
J5,), where J5, and J3, are integrals corresponding to the regions {|z| > 1}, respectively
{]z| < 1}. Similarly to Jj;, we obtain that

t
T £ Csup B 1,2)] / / Grsns(@ — ) — Goos(z — )| dy ds.
t,x 0 JR

By Plancherel’s theorem, the previous integral is equal to (27)~! times

R ! _ 2
I= /0 /]R FGuin(€) - FGL(6)] de ds.

By applying Lemma 3.5 with o = 0, we see that this integral is smaller than C'th for the

wave equation, respectively C'h'/? for the heat equation.

Similarly to J7}, we have

t
< e, / / (Geinslz —y) — Gr_a(z — ) dy ds.
0 R

As noted above, this last integral is bounded by C'th for the wave equation, respectively
Ch'/? for the heat equation.
As for Jyo, similarly to the argument used for Ji5, we have

(t,x)
(Gian_s(x —2) = Gi_s(x — 2))? ly — 2|*" 2 dy dz ds.

m<e <1+supE|u"<t,m>|2> | [ Grnesta =) = Gesfa =) -

By Proposition 2.8, the integral above is equal to a constant times

t
/O /}R FGron () — FGoy(©)2¢[=2 de d.

By applying Lemma 3.5 with a = 1 — 2H, we see that this integral is smaller than Cth?H
for the wave equation, respectively Ch¥ for the heat equation. This concludes the proof
for the space increments of 4" *!. To summarize, we have proved that «"*! satisfies the
property (Q) with Cp,11 = C(1 + K, + C,,), where K, = sup(, ;)0 7jer Elu” (t, )]
Therefore, we can conclude the proof of Theorem 3.7. O

3.3 Convergence of Picard iterations

In the preceding section, we have set up the Picard iteration scheme and proved that
for any n > 0, u™ is a well-defined process in the Banach space X given by Definition
3.6. Here, we will prove that the sequence (u"),,>o converges in X and the limit is the
unique solution to equation (SWE) (or (SHE)). For this, we will assume that ¢ satisfies
condition (1.2). As noted in the Introduction, this is equivalent to saying that ¢ is an
affine function.

As usual, we will prove that (u"),>o defines a Cauchy sequence in X. The main
ingredient for the proof is the next result, which establishes a recurrence relation for
the pair (V,,, W,,), the latter being defined as follows. For any n > 1 and for any ¢ € [0,7],
we define

2/p
Viu(t) := sup (E|u"(t,x) - u"—l(t,x)\P)
x€R
t
Wa(t) := sup / G2 (a— ) ly — 222
z€R J0o JR2

n n—1 n n—1 P 2/p
X (E\u (s,y) —u"" " (s,y) —u"(s,2) +u"" (s, 2)| ) dydzds.

EJP 20 (2015), paper 54. ejp.ejpecp.org
Page 24/36


http://dx.doi.org/10.1214/EJP.v20-3719
http://ejp.ejpecp.org/

SPDEs with fractional noise with H < %

Theorem 3.8. Assume that o is an affine function, i.e. o(z) = ax + b for some a,b € R.
For any n > 0 and for any t € [0,T], we have

t
Voy1(t) < / Vi (s)J1(t — s)ds + C W, (1), (3.11)
0

and
t t
Wi (t) < / Vi (s)J2(t — s)ds +/ W (8)J1(t — s)ds, (3.12)
0 0

p/2

where C' = 25/ “Cy2*P~1/Pq2, and J, and J, are some non-negative functions in L' ([0, T)).

Proof. As usual, we denote by C a constant (depending on p, H,T and a) which may be
different from line to line. We split the proof in two parts: the first one will be devoted to
prove (3.11), while in the second one we will show (3.12).

Step 1. We start by checking (3.11). By (3.6) and Theorem 2.9,

E| u™ (¢, x) —u"(t, )P
P

=F Gt s(x—y {0 (5,9)) —o(u" 1 (s,7)) }de dy)

<on ( / 16 = ot o, — o 0}

sl — o (s.2) — 0w (s, )}y — 22 dy dzds)”

After adding and subtracting the term
Gi—s(z — y){o(u" —o(u" (s, 2))},

2/p
we see that (E|u”+1(t,x) - u”(t,x)|p) < C(A; + Ay), where

AR

9 p/2 2/p
X ‘a(u”(s,y)) —o(u" Y (s,y)) — o(u™(s,2)) + o(u" (s, z))| dy dz ds) }

ao=[B([ [ j6a =) - Gsa P

/2 2/p
lotu(6,) = o s,2)Ply <P 2sas) ™|

As far as A; is concerned, applying (1.2) (with C' = ¢) and Minkowski’s inequality for
integrals, we obtain that
Ay < a®> W, (b). (3.13)

Regarding A-, using the fact that o is Lipschitz (with Lipschitz constant a) and applying
again Minkowski’s inequality for integrals, we have

A2<a // |Gt s ZL'— Gt 5(1'—2)‘2
R2
X (E|u”(s,z) —u" (s, 2) |p) ly — 2> =2 dy dz ds

t
< a2 / V(s )/ Gy s —y) — Grs(m — 2)ly — 222 2dydzds

/v (s) 1 (¢ — s)ds (3.14)
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where
Ji(t) == a’ / Gi(y) — Ge(2)Ply — 2* dydz = C / |FG(&)P1¢]' 2" dg,  (3.15)
R?2 R

by Proposition 2.8. By (3.3) and (3.4), J;(t) = Ct*! for the wave equation and J; (t) =
CtH~1 for the heat equation. In both cases, J; is an integrable function on [0, T]. Since
estimates (3.13) and (3.14) are uniform with respect to x € R, putting them together
one obtains that (3.11) holds.

Step 2. Let us now prove (3.12). For this, we first define, for any n > 1,
My (r,v) == o(u™(r,v)) —o(u" " (r,v)), (r,v) €[0,T] x R.

Taking into account that W,,;1(¢) can be written as

Gt s CL’ - 2
n+1 = sup
ek JoJre  |2[*7 T

n+1 n n+1 n 2/p
x(Ew (s.y+2) —u"(s,y +2) —u" (s.y) +u(s,y)") dydzds,

we see that the latter integral is bounded (up to a constant) by

//WG?ZTQ — { (/ /}RQ Goor(y + 7 = 0) — Gor(y — v))mn(r,v)

2/p

1 p/2
— (Gs—r(y+ 2 —0) = Gs—p(y — 0))my(r, T))|2wdv dv dr) ] dy dz ds.
v—10

(3.16)
This follows by Theorem 2.9, noting that (by (3.6))

Bl (s,y+2) —u"(s,y +2) —u"T(s,y) + u"(s,y) "
p

=F Gs—r(y+2—2v) — Gs_(y — v))myp(r,v) X (dr, dv)

Adding and subtracting the term {G;_,(y + z — v) — Gs_.(y — v) }m,(r, V), we see that
the 1ntegral (3.16) is bounded by 2(B; + B;), where

By = ds |y | G”f;H |Go—r(y + 2 —v) = Gsr(y — v)?
2] R?

p/2 2/p
U_’U|2_2I_Id’0d'ljd7"> ‘|

t _ 2 s
By :/ ds/ dy/ dzw [E (/ dr [ dvdv|m,(r,v)]?
0 R R E 0 R2

(Gs—r(y+2—0) = Gs—r(y —v)) = (Gs—r(y + 2 —0) — Gs—s(y — U))|2>p/2‘|

lv— o220

X |my, (r,v) — mn(nz‘))\Q

2/p

X

To deal with the term B;, we argue as we did for the term A; in the proof of Theorem
3.7. Indeed, by applying Minkowski’s inequality for integrals,

Gi_s(z—vy
B, < /ﬁ/@/df|;H /APSTWwﬂoG Ay =)

1

X (E|mn(r7v) m?L(T U)|p) mdvdvdr

We now apply several times Fubini’s theorem, together with the following changes of
variables:
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1. y:=y— v (v fixed),
2. 7:=s—r (s fixed),
3. 5:=s—7 (7 fixed).

Using these techniques, we infer that

G+ 2) = Gr(m)?
Bl<C’/dr/dz/d P2
2/
 (Elma(s,0) = ma(s,0)p)
/ /dv/dva —s( — ) =T

Using the fact that o satisfies (1.2) and taking the supremum with respect to x — 4 of the
integral in the parenthesis above, we get

t B A (7)]2
B, <C / Wit — 7) / (Grly +2) — G(5)] dgdzdr.
0 R2

|Z|272H

Performing again another change of coordinates (7 := ¢t — 7), and recalling definition
(3.15) of J;, we finally obtain that

t
B < / W (rT)J1(t — 7)dr. (3.17)
Concerning the term Bs, analogous arguments as before yield

Gi_s(x — 2/p
B; < / ds/ dy/ t| = 2H / dr/}Rdedv E|my(r,v |p)

Gsor(y+2—v) = Gor(y —v)) = (Gs—r(y + 2 =) — Gy (y — 0))?
lv— o228

sc/ ds/dy/ G TZ Gtz —y) )/SdrVn(r)

B _ _ . & _ 5)12
X( / Gyr(y + 2 v) Gor(y—0) = Go_y(y+2—0) + Go_r(y — )| dvd@),
]RQ

|U _ 17|2—2H

By Proposition 2.8, the expression inside the parenthesis above is equal to
C [ =P IFG) l2 de
R
We apply Fubini’s theorem and then Lemma D.2 to compute the dz integral. We end up

with . .\
By<C / / G2 (x—v) / V() / Gy () PIEPO2 de drdyds.
0JR 0 R

Applying Fubini’s theorem one more time, we obtain

By < /0 V(1) { / /R G2z —y) /R |st_r(5)|2|§|2“—2H>dsdyds} dr
- [ vt { [ e str<§>|2|£|2<1—2H>d§dzds] dr.

All that we need to check is that the latter expression inside the brackets can be written
in the form J,(t — r), where .J, : [0,7] — Ry is an integrable function. This is precisely
the statement in Lemma 3.3. Therefore,

t
By < / Vo (r) Ja(t — r)dr. (3.18)

0
Putting together (3.17) and (3.18), we conclude that (3.12) holds. O
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We are now ready to prove the main result of this section.

Theorem 3.9. The sequence (u"),>¢ converges in X to a process u, which is L*(Q)-
continuous, and is the unique solution in X to equation (SWE) (or (SHE)).

Proof. We first show the existence of u. By Theorem 3.8, we have
t

Muia(0) < [ (Ma(s) + Moo (5)) (¢ = )i,
0

where J(t) = C(J1(t) + J2(t)) and

zeR

2/p t
w0 = swp { (Bl ,0) - o) s { [ 62 oty -
0 JR?

By Lemma 3.10 below,
sup M, ()2 < co.
n20t€[07T]
This implies that > - ||u” — u" || x, < oo for i = 1,2, and consequently, > -, [[u" —
u"1||x < co. Therefore, (u"), is Cauchy in X. Therefore, there exists a process u € X
such that
nh_}rrgo lu"™ — u||lx = 0. (3.19)

In particular, the sequence {u"(t,z)}, converges to u(t,r) in L?(Q2) uniformly in
(t,z) € [0,T] x R. Since u" is L*(Q2)-continuous (by property (Q) in Theorem 3.7), the
process u is L?({2)-continuous. This process is also adapted and satisfies

1/p
sup <E|u(t, :v)|p) < 00.
(t,z)€[0,T]xR
By an extension to random fields of Proposition 3.21 of [35], it follows that u has a
predictable modification (called also u).

We now show that u satisfies the integral equation (1.3). For this, we take the limit
as n — oo in the definition (3.6) of the Picard sequence (u™),. On the left-hand side,
u" (¢, ) — u(t,z) in LP(Q) by (3.19). The right-hand side of (3.6) converges in L?(12)
to the right-hand side of (1.3), since

p

E / /R Gi_(z — y){o(u™(s,)) — o(u(s, 1))} X (ds, dy)| — 0. (3.20)

To see this, we note that by Theorem 2.9, the previous expectation is bounded by

cr ([ [ 16eata =it s.) - otuts.)
Gyl = ol (5,2) — ouls, DI ly — 2 dydzds)””.
which is bounded by C(A4; + As), where
_ ' 2 _ L 2H-2
m=e([ [ -l
<o (5,) — o s, )} ~ o (5,2)) — o{u(s, )} dy dz ds)””

po=ip ([ [ WG D Be O o)) ot ) dy ds>p/2.
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Using Minkowski’s inequality and the fact that o satisfies (1.2), we see that A; <
Cllu™ — ull,, which converges to 0 by (3.19). As for A,, using similar arguments we
obtain

2/p
A2 <C (Sup E|un(t7x) - u(t7$)|p>
(t,2)

t N N2 p/2
0 JR2 ly — 2|

which also converges to 0 by (3.19). This concludes the proof of (3.20).

Finally, we prove the uniqueness of the solution in X. Assume that there exist two
predictable processes u and v which both satisfy (1.3). We denote d(t, z) = u(t,x) —v(t, ).
For any t € [0,T], we define

V(t) := sup E|d(t, x)\2

zeR
t E|d —d 2
Wi(t) := sup/ G?_ (v —vy) | (s,g) Q—gi{’ 2l dy dzds.
zeR Jo JR2 ly — 2|

As in the proof of Theorem 3.8 (replacing u™ by v and «"~! by v, and taking p = 2), we
have:

V() < /Ot V(s)Ji(t —s) + CW(t)

W(t) < /Ot V(s)Ja(t — s)ds + /Ot W (s)J1(t — s)ds.

We denote M (t) = V(t) + W (t). It follows that

M) < /O M(s)J(t — 5)ds

where J(t) = ¢(J1(t) + J2(t)). By Lemma 15 of [10], M (¢t) = 0 for all ¢t € [0,T]. Hence
u(t,z) = v(t,z) a.s. for any t € [0,T],z € R. O

Note that our main result Theorem 1.1 is an immediate consequence of the above
Theorem 3.9.

3.4 An extension of Gronwall’s lemma

In this section, we state and prove an extension of Gronwall’s lemma, which was used
in the proof of Theorem 3.9. This result can be viewed as a version of Lemma 15 in [10].

Lemma 3.10. Let (f,)n>0 be a sequence of non-negative functions on [0, T, such that
Mo = supycpo, 1) fo(t) < 0o and My = sup,¢jo 7 f1(t) < co. Let M = Mo + M;. Assume that
for any n > 2 and for anyt € [0,T],

fult) < /0 (Facs(8) + fuz(s))a(t — ) ds, (3.21)

where g : [0,T] — R is an integrable function. Then, there exists a sequence (a,),>1 Of

positive numbers such that ), - a}/p < oo for any p > 0, and

sup fn(t) < Ma, foralln>0. (3.22)
In particular, ), -, Sup.eo, 1 fn()Y? < oo for any p > 0.
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Proof. The argument is similar to the one used in the proof of Lemma 15 of [10]. Set
G(t) = fot g(s)ds. We assume that G(T) > 0. (The case G(T) = 0 is trivial.) Let
X, (Xn)n>1 be independent identically distributed random variables with values in [0, T
and density g(s)/G(T), s € [0,T], defined on the same probability space (2, F, P). We
denote S, = > | X;.
Let K = max (G(T),1). Applying (3.21) with n = 2, we have:
t
R < [ (A=) ot =)a(s)ds

= G(T)E(l{Xlgt}(fl(t_Xl) +fo(t—X1))) (3.23)
<2M K E(1{x,<0})-

For n = 3, we obtain

150 < [ (Rle=5)+ A= 9)g(s)ds
= G(T) [ 1sen (Blt=X@) + At - X)) Pde)
< G(T) /Q Lix(w)<ty [G(T) /Q L () <t—X (w)} (f1(t = X(w) = Xi(w1))
ot = X(w) = Xa(w1)) ) Pldan) + fu(t = X (w))] P(dw)

< G(T)/Ql{x(w)gt} [QMG(T)/Q1{X1(w1)§th(w)}P(dw1)+M]P(dw)

<2M G(T)QE(l{XlJerSt}) + MG(T)E(l{Xlﬁt})
<3MK’E(1{x,<t}),

where we used (3.23) for the second inequality above. We denote

= 2]

where |z] is the integer k such that k <z < k + 1.
Next we show that, for any n > 2, and for any ¢ € [0, 7], we have

fut) S Mb, K" 1P(S,, <t), (3.24)

where b,, is the n-th term of Fibonacci sequence with b; = b, = 1. The proof of (3.24)
follows by induction. We have already seen that it holds for n = 2 and n = 3. Suppose
that (3.24) holds up to some n. We prove it for n + 1. We must distinguish two cases: n is
odd and n is even.

First, assume that n is odd. Say n = 2m + 1 for some positive integer m. Then
kp =kn—1 =mand k11 =k, +1=m+ 1. Thus,

uer® < [ (e =)+ Facalt = 9)a(s)ds
= 6(0) [ 1xercn (Fnlt = X)) + fualt = X)) Pla)

< G(T)/Ql{x(w)gt} (Mbn+1Kn_1E(1{SknSth(w)})

+ Man"_2E(1{skn_1Sth(w)}))P(dw)’
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using the induction hypothesis for the last inequality. Using the fact that k,,_; = k,, and
the recurrence relation of Fibonacci numbers:

bn+2 - bn+1 + bn»

we obtain that the right-hand side of the last inequality is bounded by
G(T)Mby 2 K™ /Q Lix )<ty Ellis,, <t-x (@) P(dw)

:G(T)ManK"_l/Ql{xmwl)ﬁ}/ﬂ1{sm<w2)St—xmm»P(dw)P(dwl)

< Mby g K™ P(Spi1 < t) = Mb, 4o K" P(Sk,,, <1).

n+1

Suppose now that n is even. Say n = 2m for a positive integer m. Then k,, = k41 =m
and k,_1 = k, —1 =m — 1. Using again the induction hypothesis, we have

fo1(t) < G(T) /Q Lix ()<t} (fn(t — X (W) + faa(t - X(w))>P(dw)

<G(T) /Q Lix ()<t} (M bni1 K" 'E(lys, <i-x(@)))+
Mb, K" ?E(lgs, . gth(w)})> P(dw)

< Mb, 1 K"P(S), <)+

Man"_l/Q Lix, (o)<t} /Q1{Sm,1(wz)gtfxm(wl)}P(dW)P(dwl)

< Mby 1 K"P(Sk, <t) + Mb, K" ' P(S,, <t)

n —

< M(bn_H + bn)KnP(Skn < t) = Mbyio KnP(Skn+1 < f).

This finishes the proof of (3.24).
From (3.24) we infer that (3.22) holds with ag = a; = 1 and

an = b1 K" 'P(Sy, <T) for n>2.

The fact that ano ai/ P < oo for any p > 0 follows since
1
b, = —

145\ [(1-v5)"
V5 2 B 2

and we know that, by Lemma 17 of [10], for any a > 1 and for any p > 0,

Z a"/pP(Sn < T)l/p < 00.

n=1

A Peszat’s condition

In this section, we show that condition (1.6) fails when p is given by (1.7) with
0< H<1/2.

Lemma A.1. Forany H < 1/2,

1 1-2H
sup/ — ¢ d¢ = oo.
neR ]R1+|§_77|2|‘

EJP 20 (2015), paper 54. ejp.ejpecp.org
Page 31/36


http://dx.doi.org/10.1214/EJP.v20-3719
http://ejp.ejpecp.org/

SPDEs with fractional noise with H < %

Proof. We have

1 1—-2H 1 1-2H
sup/ig dézsup/—un de
S0P J T e e S0P J T eE ST

o0 1 [e )
> su 4+ g = Tim [ ——— (64 ) 2H e,
) T s i [ g (e

since the last integral is an increasing function of . The conclusion follows by the
monotone convergence theorem, since limn_,oo(g + 77)1*2H = 0. O

B Martingale Measure

The following definition was introduced in [42] for real-valued processes. Here we
extend it to complex-valued processes.
Definition B.1. A complex-valued process {M;(A);t > 0,A € By(R)} is a martingale
measure with respect to a filtration {F; };>¢ if
(a) for any A € B,(R), {M:(A)}i>0 is a square-integrable complex-valued martingale with
respect to {F;}+>0, with My(A) =0a.s,;
(b) for any t > 0, {M,(A); A € By(R)} is a o-finite L?(2)-valued signed measure, in the
sense that it satisfies the following two properties:
(b1) My (AU B) = M;(A) + M(B) a.s. for any disjoint sets A, B € B,(R);
(b2) there exists a sequence (Ey )i C By(R) with Ey C Exy; for all k and UxE = R, such
that for any k, sup 4¢3, E|M;(A)* < 0o and E|M;(A,)|* — 0 for any sequence (A,), C By
with A4,, | 0, where B, = {B € B(R); B C Ey}.
Lemma B.2. The process M = {M;(A);t > 0, A € By(R)} defined by (2.2) is a complex-
valued martingale measure with respect to { F;}+>o with covariation

(M(A), M(B)); = tn(AN B).

Proof. By approximation with simple functions, we can define the integral M(y) :=
Jge (7, 6)M(dr, d€) as an element in L§(Q2), for any € L¢(IR?,II). This integral has the
property that for any ¢, € L4(R?,1I),

BUM() M) = 3= [ otr 00 Orn(ae).

Therefore, for any s < t and A € By(R), M;(A) - M,(A) = M(F1(54-14) is orthogonal
to X, (¢) = M(Fly, - Fo), for any u < s and ¢ € D(R). Since {M(¢); ¢ € LE(R?1I)}
is a Gaussian process, it follows that M;(A) — M,(A) is independent of F;. In addition,
E[M;(A)] =0 for any t > 0. Hence, {M;(A)};>0 is a martingale with respect to {F;};>0.
This proves that M satisfies property (a). Property (b) follows immediately from (2.4).
The statement about the covariation follows from Proposition 4.1 of [6]. O

C A Borel set A for which [, |[F14(¢)]*u(d) = +oo

Let p(d€) = cp|¢|* 27 d¢ with H € (0, 1), where the constant ¢y is given in (1.8). We
construct a bounded Borel set A in R such that [, [F14(£)[*1(d€) = +o0. By Proposition
2.8, this is equivalent to prove that

[La(z) = 1a(y)?
[ ey = o

First, note that we have, for any a < b < ¢ satisfyingb—a =c— b,

b c
/ / |z — y|*2dedy = By (b— a)??, (C.1)
a Jb
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where By = (1 — 22#-1)/(H(1 — 2H)) is a positive constant.
Let 8 := 77 and define the Borel set

U ak, bkl

where a; and b, are defined recursively as follows: set a; := 0 and b; := 1, and then
define, for all k > 2,

1 1
af = bkfl—i—m b}c = ak+k7

Observe that b, — ay, = apy1 — by, = k—?, for all k > 1. Moreover, A is bounded. To see
this, note that by induction, for any £ > 2,

k—1

1 11
ak:HZZTﬁ and bk—2+2§:1 R
J

and hence both sequences (ay) and (by)x are bounded by 2(1 + a) where a := >, k=° <
0.

Finally, note that, (J;~,(bk, ax+1) C A° :== R\ A. Then, we have that

]-A _]-A
_//| |x—y|2 2H ddy—Q//rkU—yPH Qd:vdy—QZ/ (/ |$_y|2H 2d:c)dy
k > 1+1
L)
— Juy,

ak+1
> ZZ/ / — | 2dxdy
by

1
:2BHZ bk—ak) 2H :2BHZE = +00,
k=1 k=1

using (C.1) for the second-last equality above. Hence, we obtain [}, [F14(&)|?u(d) = 400

D Some auxiliary results

Lemma D.1. The integral fooo(l —cosx)x~*"tdxr =: ¢, converges if and only if o € (0,2).
In this case,

a T'(1 — a) cos(ra/2) ifa € (0,1)
Ca =14 —atHa—-1)"T'(2—-a)cos(ra/2) ifac€(1,2)
/2 ifa=1.

For any « € (0,2) and for any ¢ > 0, we have

o 1 _
/O %@dm — cal® (D.1)

Proof. To see that the integral converges if a € (0,2), we use the fact that 1—cosz < 2%/2
when |z| <1, and 1 — cosz < 2 when |z| > 1.

For the other implication, note that sin®r > 72 sin? 1 for any r € [0, 1]. Hence, for any
z €10,2], 1 —cosa = 2sin?(z/2) > 27 (sin® 1)z? and

1 —cosz 2
00 > / ———dx > 27! (sin? 1)/ 2?7 !'dr implies that a < 2.
0 z 0
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It remains to show that the integral diverges if « < 0. In fact, applying a change of

variables, we have
*1—cosx 2 [ sin®(zn/2)
—dx = — ————dx.
0 xa—i—l o o wa—&-l

Now, observe that for some small ¢ > 0 we will have that

* sin?(z7/2) sin? sin®(z7/2)
/ —er drz ) / —geri 2
0 n>1nodd "¢
1

(n+e)atl’

> 2esin’(m(e +1)/2) Y

n>1nodd

and the latter series diverges whenever a < 0. Here we used the fact that if = €
(n—e,n+¢) and n is an odd integer, then sin®(z7/2) > sin®(7(n+¢)/2) = sin®(7(14¢)/2).
In order to deduce the explicit formulas for ¢, we first integrate by parts, yielding

> 1 — cos 1 [ si
/ colsydy _ 7/ slnydy
oyt aJo yY*

By formula 3.761-4 of [21], we know that

0 . de — ™
/o IO = ) cos(un/2)

If a € (0,1), using (D.2) with y = 1 — «, we have

/0 Siyr;ydy = 2T (a) 517:1(71'04/2) =T'(1 - «a)cos (%) .

where for the second equality we used the identity:

for p € (0,1). (D.2)

MNa)T(1—-a) = for any a € (0,1)

sin(ma)

(see formula (6.1.17) of [1]).
The calculation of ¢, in the case « € [1,2) is given on pages 568-569 of [19].
Finally, relation (D.1) follows using the change of variables y = £x. O

Lemma D.2. Forany0 < H < 1/2 and £ € R, we have:

|1 _e—i§x|2
jz2—2H T €

12 2T(2H + 1) sin(wH)
R H(1-2H)
Proof. Assume that £ > 0. (The case ¢ < 0 is similar.)

/ L=em™ ) D= . 4/00 Locosler) ) qromATCH) o omy2),
0

[2—2H r2—2H 1-2H

where for the second equality we used Lemma D.1 with « = 1 — 2H. The conclusion
follows since I'(2H + 1) = 2HT'(2H). O
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