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Abstract

We explicitly compute the exit law of a certain hypoelliptic Brownian motion on a
solvable Lie group. The underlying random variable can be seen as a multidimensional
exponential functional of Brownian motion. As a consequence, we obtain hidden
identities in law between gamma random variables as the probabilistic manifestation
of braid relations. The classical beta-gamma algebra identity corresponds to the only
braid move in a root system of type A2. The other ones seem new.

A key ingredient is a conditional representation theorem. It relates our hypoelliptic
Brownian motion conditioned on exiting at a fixed point to a certain deterministic
transform of Brownian motion.

The identities in law between gamma variables tropicalize to identities between
exponential random variables. These are continuous versions of identities between
geometric random variables related to changes of parametrizations in Lusztig’s canon-
ical basis. Hence, we see that the exit law of our hypoelliptic Brownian motion is the
geometric analogue of a simple natural measure on Lusztig’s canonical basis.
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1 Introduction

Let G be a complex semi-simple group of rank r. We fix a Borel subgroup B. B = NH

where H ≈ (C∗)
r is a maximal complex torus and N is a lower unipotent subgroup N .

We denote by h ≈ Cr the Lie algebra of H. If a ≈ Rr is the subspace where roots are
real, we have h = a + ia. Moreover, we write A := exp (a).

Since a is an Euclidean space thanks to the Killing form 〈·, ·〉, there is a natural notion
of Brownian motion on a. Then the Brownian motion with drift µ is denoted by:

X
(µ)
t := Xt + µ t

In the context of geometric crystals, the Robinson-Schensted correspondence with
random input X(µ) is performed by solving, on the Borel subgroup B, a left-invariant
stochastic differential equation driven by this Brownian motion ([7] section 10, [6]). One
then obtains a Lie group valued stochastic process Bt

(
X(µ)

)
, which was first introduced

by [3]. More is said in the preliminary section. We refer to this process as our hypoelliptic
Brownian motion because its infinitesimal generator satisfies the (parabolic) Hörmander
condition. Although we will not make use of this fact, it is reassuring to know that it has
a smooth transition kernel.

The stochastic process Bt
(
X(µ)

)
has an NA decomposition:

Bt

(
X(µ)

)
= Nt

(
X(µ)

)
At

(
X(µ)

)
The A part is a multiplicative Brownian motion and does not converge. We focus on the
N part which plays the role of a multidimensional exponential functional of Brownian
motion. Let ∆ be set the set of simple roots and C be the open Weyl chamber:

C := {x ∈ a | ∀α ∈ ∆, 〈α, x〉 > 0}

When µ ∈ C the N part converges to N∞
(
X(µ)

)
. We refer to the law of N∞

(
X(µ)

)
as the

exit of law of the hypoelliptic Brownian motion.
The first result is the conditional representation theorem 2.12 that characterizes the

law of a certain integral transform of Brownian motion as the Brownian motion X(µ)

conditioned to N∞
(
X(µ)

)
being fixed.

As a consequence, we are able to give an explicit formula for the exit law in theorem
2.16. This is our second main result. The expression involves independent gamma
variables. In the case of the group SL2, one recovers Dufresne’s identity in law on the
exponential functional of a Brownian motion with drift [8]. For W a standard Brownian
motion and µ > 0, this identity states that the random variable 2

∫∞
0
e−2W (µ)

s ds has the
same distribution as 1

γµ
, where γµ is a gamma random variable with parameter µ. For
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groups with higher rank, the presented construction gives the explicit law of multiple
exponential functionals of Brownian motion.

Almost surely, N∞
(
X(µ)

)
belongs to the set of totally positive matrices Nw0

>0 ⊂ N .
The study of totally positivity in reductive groups has been initiated by George Lusztig
(see [16] for a survey), motivated by the theory of canonical bases. We will only need
the fact that Nw0

>0 possesses equivalent charts indexed by reduced words i of the longest
element w0 in the Weyl group. Simply by noticing that the law of N∞

(
X(µ)

)
uses gamma

variables and charts that depend on a choice of reduced word, we find hidden identities
in law between these gamma variables. Primitive identities are associated to braid
moves. It follows that we have as many primitive identities as there are rank 2 root
systems. That is the content of our third main result, stated as theorem 2.21.

In fact, the identities between gamma variables tropicalize to identities between
exponential random variables. We also prove the discrete version involving geometric
random variables, using Lusztig’s parametrization of canonical bases.

Structure of the paper

We begin by stating the three main theorems 2.12, 2.16 and 2.21 in section 2, after
the necessary preliminaries on Lie theory and total positivity. We will illustrate our
claims thanks to examples from SL2 and SL3.

It is more convenient to postpone the proof of the conditional representation theorem
2.12 and explain right away how it implies the two others. In section 3, we show
how rational identities between gamma variables tropicalize to min-plus identities
between exponential variables. It implies the discrete version involving geometric
random variables.

In section 4, we prove the conditional representation theorem. Thanks to results
from [7] and [6], we reduce the problem to an induction whose base case is a result by
Matsumoto and Yor on a relationship between Brownian motions with opposite drifts
[18]. Just before diving into the proof, we explain how the Matsumoto-Yor theorem is the
SL2 case of ours. The reader should note that the numbering of theorems in [7] might
change upon publication. Here, we are referring to the second version of the preprint
that is on the arxiv.

Finally, we conclude with some open questions.

Acknowledgments

The author is grateful to Marc Yor for fruitful discussions on exponential functionals
of Brownian motion and beta-gamma identities. This paper is dedicated to his memory.
I am also thankful to Philippe Bougerol for his guidance during my PhD thesis [6], on
which this article is based.

2 Main results

2.1 Preliminaries

Lie theory: We will need some (mostly standard) notations and terminology for semi-
simple groups and algebras (see for example [19], [10]). Let g be a complex semi-simple
Lie algebra of rank r, and h ≈ Cr is a maximal abelian subalgebra, the Cartan subalgebra.
It has a Cartan decomposition g = n ⊕ h ⊕ u. ∆ = {αi, 1 ≤ i ≤ r} ⊂ h∗ (resp. ∆∨ ⊂ h)
denote the simple roots (resp. coroots) of g. The real part of the Cartan subalgebra a

( h = a + ia) is the subspace where simple roots are real valued. The structure of g is
entirely encoded by the Cartan matrix A =

(
ai,j = αi

(
α∨j
))

1≤i,j≤r. The coefficients in the

Cartan matrix determine the relations between Chevalley generators (fα, hα = α∨, eα),
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for α ∈ ∆. Simple roots form a basis of h∗ dual to the fundamental coweights (ω∨α)α∈∆.
Let G be a simply-connected complex Lie group with Lie algebra g. N , H and U are

the subgroups with Lie algebras n⊕ h⊕ u. H ≈ (C∗)
r is a maximal torus. B = NH and

B+ = HU form a pair of opposite Borel subgroups. We have a one-parameter subgroup
for every α ∈ ∆:

∀t ∈ C, yα(t) := exp(tfα), xα := exp (teα)

When convenient, they will sometimes be written yi and xi, 1 ≤ i ≤ r.
We identify h and h∗ thanks to the Killing form 〈·, ·〉. In this identification, α∨ = 2α

〈α,α〉 .

In general, we will write for any β ∈ h∗, β∨ = 2β
〈β,β〉 ∈ h. The reflection on h with respect

to the hyperplane kerβ is:
∀h ∈ h, sβ (h) = h− β (h)β∨

The Weyl group of G is defined as W = Norm(H)/H. It acts on the torus H by
conjugation and hence on h. As a Coxeter group, it is generated by the reflections
(sα)α∈∆. Every w ∈W can be written as a product si1 . . . sik for a sequence i = (i1, . . . , ik).
A reduced word for w ∈W is a sequence i of shortest possible length `(w). The set of all
possible reduced words for w is denoted by R(w). The Weyl group has a unique longest
element denoted by w0 and we set m = `(w0).

The Bruhat decomposition states that G is the disjoint union of cells:

G =
⊔
ω∈W

B+ωB+ =
⊔
τ∈W

BτB+

In the largest opposite Bruhat cell BB+ = NHU , every element g admits a unique
Gauss decomposition in the form g = nau with n ∈ N , a ∈ H, u ∈ U . In the sequel, we
will write g = [g]−[g]0[g]+, [g]− ∈ N , [g]0 ∈ H and [g]+ ∈ U for the Gauss decomposition.
Also [g]−0 := [g]−[g]0.

Remark 2.1. The reader unfamiliar with Lie groups can have in mind the example of
SLn(C), of rank r = n−1. The following matrices can be chosen as Chevalley generators.
If Ei,j = (δi,rδj,s)1≤r,s≤n are the usual elementary matrices, then hi = Ei,i − Ei+1,i+1,
ei = Ei,i+1, and fi = Ei+1,i. h is the set of complex diagonal matrices with zero trace,
which we identify with {x ∈ Cn |

∑
xi = 0}. Then H is the set of diagonal matrices

with determinant 1. N (resp. U ) is the set of lower (resp. upper) triangular unipotent
matrices. We have:

∀t ∈ C, yi(t) = Id + tEi+1,i, xi(t) = Id + tEi,i+1

The Weyl group W is the group of permutation matrices and acts on h by permuting
coordinates. In the identification with the symmetric group acting on n elements, the
reflections si are identified with transpositions (i i+ 1). The longest word w0 reorders
the elements 1, 2, . . . , n in decreasing order.

In the case of GLn, the second Bruhat decomposition is known in linear algebra as
the LPU decomposition which states that every invertible matrix can be decomposed
into the product of a lower triangular matrix L, a permutation matrix P and an upper
triangular matrix U . P is unique. The largest opposite Bruhat cell corresponds to P = id.
It is dense as it is the locus where all principal minors are non-zero.

Remark 2.2 (Cartan-Killing classification). Complex simple Lie algebras are known, and
are classified by types:

• Type Ar−1: g = slr G = SLr(C)

• Type Br: g = so2r+1 G = SO2r+1(C)

• Type Cr: g = spr G = Spr(C)
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• Type Dr: g = so2r G = SO2r(C)

• Exceptional types: E6, E7, E8, F4, G2.

The number in subscript indicates the rank.

The set of roots is denoted by

Φ := {β ∈ h∗ | sβ ∈W} .

Roots split into positive and negative roots Φ = Φ+
⊔

Φ−, with Φ+ being the set of roots
that can be written as a positive sum of simple roots. Reduced expressions of Weyl group
elements give convex orderings of positive roots (see [11]):

Lemma 2.3. Let (i1, . . . , ik) be a reduced expression of w ∈W . Then for j = 1, . . . , k:

βi,j := si1 . . . sij−1
αij

produces all the positive roots in the set of inversions of w:

Inv (w) :=
{
β ∈ Φ+, wβ ∈ Φ−

}
.

For w = w0, it produces all positive roots i.e Inv (w0) = Φ+.

When i ∈ R(w0), we call the sequence (βi,j)1≤j≤m an enumeration of positive roots.
When the chosen reduced expression is obvious from context, we will drop the subscript
i. In appendix, we list positive root enumerations for rank 2 systems.

Total positivity: In the classical case of GLn, a totally non-negative matrix is a matrix
such that all its minors are non-negative. Thanks to the classical Cauchy-Binet formula,
totally non-negative matrices (GLn)≥0 form a semi-group. In [15], Lusztig generalized
total positivity to reductive groups motivated by the theory of canonical bases. At that
level of generality, taking the semi-group property as a definition is simpler. The totally
non-negative part of G is denoted G≥0 and is defined as the semi-group generated by
the following sets:

• The semi-group H>0 := A = exp (a) ≈
(
R∗+
)r

• The semi-group generated by {xα(t), t > 0, α ∈ ∆}: U≥0

• The semi-group generated by {yα(t), t > 0, α ∈ ∆}: N≥0

We will be interested in parametrizations of G≥0. Lusztig proved that totally non-
negative elements admit a Gauss decomposition made of totally non-negative elements.

Theorem 2.4 ([15] Lemma 2.3). Any element g ∈ G≥0 has a unique Gauss decomposition
g = nau with n ∈ N≥0, a ∈ A and u ∈ U≥0.

Therefore, one can focus on the parametrizations of U≥0. The following theorem
generalizes a result of Whitney [21] from GLn to G. It says that a totally positive element
in U can be written as a product of elementary matrices, depending on where it falls in
the Bruhat decomposition.

Theorem 2.5 ([15] Proposition 2.7, [2] Proposition 1.1). For any w ∈ W with k = `(w),
every reduced word i = (i1, . . . , ik) in R(w) gives rise to a parametrization of Uw>0 :=

U≥0 ∩BwB by:

xi : Rk>0 → Uw>0

(t1, . . . , tk) 7→ xi1(t1) . . . xik(tk)
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We also define the transition maps:

Ri,i′ := x−1
i′ ◦ xi

which play a particularly important role.
For the purposes of this paper, we will only need the case of w = w0 and we will call

such a parametrization the Lusztig parametrization of Uw0
>0 . The positive reals (t1, . . . , tm)

such that u = xi (t1, . . . , tm) ∈ Uw0
>0 will be called Lusztig parameters of u, the dependence

in i being implicit.

On Lusztig’s canonical basis: We will only be interested in the parametrizations of
the canonical basis. The combinatorics of total posivity in the group G are related to
the combinatorics of Lusztig’s canonical basis for the dual group, after a tropicalization
procedure [.]trop. More is said on tropicalization in section 3 where [Ri,i′ ]trop is defined.
For now, let us record the following:

Theorem 2.6 (see [13], [14]). There is a canonical basis L of Uq (n∨), the lower unipotent
part of the dual quantum group Uq (g∨). It has a natural parametrization associated to
every reduced word i ∈ R (w0):

Li : N`(w0) −→ L
and the changes of parametrizations are given by:

[Ri,i′ ]trop = L−1
i′ ◦ Li .

Brownian motion(s): Since a is made into an Euclidean space thanks to the Killing
form 〈·, ·〉, there is a natural notion of Brownian motion on a. Indeed, 〈·, ·〉 is a scalar
product once restricted to a and the induced norm is denoted by || · ||. Let (Ω,A,P) be
the canonical probability space of a Brownian motion X on a. For µ ∈ a, the Brownian
motion with drift µ is denoted by:

X
(µ)
t := Xt + µ t .

Brownian motion with drift µ and starting position x0 ∈ a is written:

X
(x0,µ)
t := x0 +Xt + µ t .

One obtains a left-invariant Brownian motion Bt(X(µ)) on B by solving the following
stochastic differential equation driven by any path X. The symbol ◦ indicates that the
SDE has to be understood in the Stratonovitch sense:{

dBt(X
(µ)) = Bt(X

(µ)) ◦
(∑

α∈∆
1
2 〈α, α〉fαdt+ dX

(µ)
t

)
B0(X(µ)) = Id

(2.1)

The SDE can be explicitly solved ([3]):

Bt(X
(µ)) =

 ∑
k≥0

i1,...,ik

fi1 . . . fik

∫
t≥tk≥···≥t1≥0

k∏
j=1

dtj
||αij ||2

2
e
−αij (X

(µ)
tj

)

 eX
(µ)
t (2.2)

Clearly, Bt(X(µ)) has an NA decomposition is given by:

Nt(X
(µ)) =

∑
k≥0

i1,...,ik

∫
t≥tk≥···≥t1≥0

e−αi1 (X
(µ)
t1

)···−αik (X
(µ)
tk

) ||αi1 ||2

2
. . . (2.3)

. . .
||αik ||2

2
fi1 . . . fikdt1 . . . dtk (2.4)
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At

(
X(µ)

)
= eX

(µ)
t (2.5)

Remark 2.7. The presence of half squared norms ||α||
2

2 is here to account for the fact
that time does not flow in the same fashion for all roots. In the simply-laced groups

(ADE-types), one can choose all roots to be the same length, hence choosing ||α||
2

2 = 1

for all α.

Remark 2.8. In the A1 case only, we opt out of the normalization made in the previous

remark. Indeed, the classical choice for the only root is α = 2. Hence the factor ||α||
2

2 = 2

in the following example of SL2.

Example 2.9 (SL2 - A1 type). Let X(µ) be a Brownian motion with drift µ on R. The
SDE is:

dBt(X
(µ)) = Bt(X

(µ)) ◦

(
dX

(µ)
t 0

2dt −dX(µ)
t

)
and its solution is:

Bt(X
(µ)) =

(
eX

(µ)
t 0

eX
(µ)
t

∫ t
0

2e−2X(µ)
s ds e−X

(µ)
t

)
Example 2.10 (SLn - An−1 type). As in remark 2.1, let X be a Brownian motion with
drift µ on {x ∈ Rn |

∑
xi = 0}. For notational reasons, we drop the superscript (µ) and

put indices as exponents. The SDE becomes:

dBt(X
(µ)) = Bt(X

(µ)) ◦



dX1
t 0 0 · · · 0

dt dX2
t 0

. . .
...

0 dt
. . .

. . . 0
...

. . .
. . . dXn−1

t 0

0 · · · 0 dt dXn
t


and its solution Bt(X(µ)) is given by:

eX
1
t 0 0 · · ·

eX
1
t

∫ t
0
eX

2
s−X

1
s ds eX

2
t 0 · · ·

eX
1
t

∫ t
0
eX

2
s1
−X1

s1ds1

∫ s1
0
eX

2
s2
−X1

s2ds2 eX
2
t

∫ t
0
eX

3
s−X

2
s ds eX

3
t

. . .
...

...
. . .

. . .


The process At(X(µ)) is a multiplicative Brownian motion on A ≈

(
R∗+
)r

and does not
converge. The main theorems concern the N part, which converges when the drift is
inside the Weyl chamber, and we are able to give an explicit formula for the exit law. On
a few occasions, we will need to consider the path π driving the flow B. (π) to be any
path. The previous construction carries verbatim if π is a semi-martingale.

2.2 Conditional representation theorem

The symbol
L
= stands for equality in law between random variables. Moreover, a

generic gamma random variable with parameter a > 0 is denoted γa.

P (γa ∈ dx) =
1

Γ(a)
xa−1e−x1R+ (x) dx

where Γ is the gamma Euler function.
Let C (R+, a) be the space of continuous functions with values in a. The following

theorem defines our path transform:

EJP 20 (2015), paper 108.
Page 7/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3666
http://ejp.ejpecp.org/


Beta-gamma identities and Lie functionals of BM

Theorem 2.11 ( [4] Proposition 6.4 , [7] section 5 ). For any totally non-negative g ∈ U≥0,
there is a path transform Tg : C (R+, a) −→ C (R+, a) such that for any path X:

∀t ≥ 0, Bt (TgX) = [gBt (X)]−0

This transform is well-defined in the sense that the Gauss decomposition always exists
for g ∈ U≥0.

From now on, fix a reduced word i ∈ R(w0) of length m = `(w0) and call (β1, . . . , βm)

the associated positive roots enumeration. Choose w̄0 to be any representative in G on
the longest element w0 in W = Norm(H)/H. Also, we introduce the shift vector:

θ =
∑
α∈∆

log

(
〈α, α〉

2

)
ω∨α

where ω∨α are the fundamental coweights. As in remark 2.7, for ADE groups, θ = 0

because all roots can be chosen and are chosen to be of the same squared norm 2. We
can state the following theorem whose proof is postponed to section 4:

Theorem 2.12 (Conditional representation theorem). Let g ∈ Uw0
>0 , µ ∈ C and W a

standard Brownian motion on a.
Then Λx0 := x0 + Teθge−θ

(
W (w0µ)

)
is distributed as a Brownian motion Xx0,(µ)

• with drift µ

• with initial position x0

• conditioned on N∞(X0,(µ)) = Θ(g) where

Θ : Uw0
>0 −→ Nw0

>0

is the bijective function Θ(g) := [gw̄0]−

Moreover, if we pick g = xi1 (t1) . . . xim (tm) ,m = `(w0) being random with independent

Lusztig parameters such that tj
L
= γ〈β∨j ,µ〉, then Λx0 is a standard Brownian motion with

drift µ starting at x0.

Remark 2.13. The conditioning approach owes a lot to Baudoin and O’Connell [1] in
spirit, but ends up being quite different. Indeed, that paper considered a conditioning of
Brownian motion X(µ) with respect to simple integrals

∫∞
0
e−α(X(µ)), for α a simple root.

Nevertheless, the geometric path model developed in [7] and [6] makes it more natural
to condition with respect to N∞(X(µ)). The random variable N∞(X(µ)) not only contains
the simple integrals, but also iterated ones.

Example 2.14 (Θ in A1-type). For G = SL2, one can choose:

w̄0 =

(
0 −1

1 0

)
Then:

Θ

((
1 t

0 1

))
=

[(
1 t

0 1

)(
0 −1

1 0

)]
−

=

(
1 0
1
t 0

)
Example 2.15 (Θ in A2-type). For G = SL3, one can choose:

w̄0 =

0 0 1

0 −1 0

1 0 0


EJP 20 (2015), paper 108.

Page 8/20
ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3666
http://ejp.ejpecp.org/


Beta-gamma identities and Lie functionals of BM

If:

g =

1 t1 0

0 1 0

0 0 1

1 0 0

0 1 t2
0 0 1

1 t3 0

0 1 0

0 0 1


Then:

Θ (g) =

1 t1 + t3 t1t2
0 1 t2
0 0 1

0 0 1

0 −1 0

1 0 0


−

=

 1 0 0
1
t1

1 0

1
t1t2

1+
t1
t3

t2
1


2.3 Exit law

Thanks to the conditional representation theorem, we obtain the exit law with little
effort.

Theorem 2.16 (Law of N∞(X(µ))). If X(µ) is a Brownian motion with drift µ the Weyl
chamber, thenNt(X(µ)) converges almost surely inside the open cellNw0

>0 andN∞(X(µ)) =

Θ (xi1(t1) . . . xim(tm)) where the Lusztig parameters tj are independent random variables
with:

tj
L
= γ〈β∨j ,µ〉

Proof. The condition µ ∈ C entails the convergence of iterated integrals in the explicit
expression of Nt(X), equation (2.3). The fact that N∞(X(µ)) ∈ Nw0

>0 follows from a total
posivity criterion (Theorem 1.5 in [2] or Theorem 1.11 in [9]) formulated in terms of
generalized minors. Basically, one has only to adapt the proofs of theorem 5.2 in [7], or
lemma 4.3 in [3] to the case of infinite time horizon.

The law of N∞(X(µ)) comes directly from theorem 2.12.

It is worth noting that the probability measure has a smooth density and charges
the entire space Nw0

>0 , which is an open dense cell of N≥0. Other cells are of smaller
dimension and therefore of zero measure. Hence, it can be viewed as an N≥0-valued
random variable.

Let us examine the example of SL2, the group with smallest rank.

Example 2.17 (A1-type). For G = SL2, a = R, α = 2, α∨ = 1 and:

N∞(X(µ)) =

(
1 0∫∞

0
2e−2X(µ)

s ds 1

)

We know that Θ

((
1 y

0 1

))
=

(
1 0
1
y 1

)
, and as such theorem 2.16 tells us that:

(
1 0∫∞

0
2e−2X(µ)

s ds 1

)
L
=

(
1 0
1
γµ

1

)

This is exactly Dufresne’s identity in law [8].

Here, the law of N∞(X(µ)) can be seen as a meaningful generalization of Dufresne’s
identity which uses an inverse gamma. In the group setting, we see that the map Θ plays
the role of the inverse map. Higher dimensional examples give new identities about
exponential functionals of Brownian motion.

Example 2.18 (A2-type). For G = SL3, a =
{
x ∈ R3 | x1 + x2 + x3 = 0

}
. Consider a

Brownian motion X(µ) on a with drift µ in the Weyl chamber. The simple roots are
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α1 =

 1

−1

0

 , α2 =

 0

1

−1

. We obtain that:

N∞(X(µ)) =

 1 0 0∫∞
0
e−α1(X(µ)

s )ds 1 0∫∞
0
e−α1(X(µ)

s )ds
∫ s

0
e−α2(X(µ)

u )du
∫∞

0
e−α2(X(µ)

s )ds 1


We choose the reduced word i = (1, 2, 1) ∈ R(w0). If:

(t1, t2, t3)
L
=
(
γ〈α∨1 ,µ〉, γ〈α∨1 +α∨2 ,µ〉, γ〈α∨2 ,µ〉

)
are independent gamma random variables with corresponding parameters, then example
2.15 and theorem 2.16 tell us that:

N∞(X(µ))
L
=

 1 0 0
1
t1

1 0

1
t1t2

1+
t1
t3

t2
1

 (2.6)

This result in itself seems new. It can be restated as follows in terms of the two positive
parameters a = 〈α∨2 , µ〉 >, ã = 〈α∨2 , µ〉 > 0 and the two correlated real Brownian motions:

Bt :=
1√
2

(
X1
t −X2

t

)
; B̃t :=

1√
2

(
X2
t −X3

t

)
The equality (2.6) is equivalent to the fact that the triple(∫ ∞

0

e−
√

2Bs−asds,

∫ ∞
0

e−
√

2B̃s−ãsds,

∫ ∞
0

e−
√

2Bs−asds

∫ s

0

e−
√

2B̃u−ãudu

)

has the same distribution as

(
1
γa
,

1+ γa
γã

γa+ã
, 1
γaγã

)
.

Notice that the two first marginals are consistent with Dufresne’s identity. In order
to see that, one has to perform a Brownian rescaling of time by a factor 2 and invoke the

classical identity
1+ γa

γã

γa+ã

L
= 1

γã
.

2.4 Beta-gamma algebra

Because of the results and examples in the previous subsection, we see that there is
a natural notion of gamma law and inverse gamma law on the group. Here γ. denote
independent gamma random variables.

Definition 2.19 (gamma law on U and inverse gamma on N ). For µ ∈ C and (β1, . . . , βm)

being the positive roots enumeration associated to a reduced expression of w0 =

si1 . . . sim , define Γµ to be the law of the positive (in the sense of total positivity) Uw0
>0 -

valued random variable

Γµ
L
= xi1

(
γ〈β∨1 ,µ〉

)
. . . xim

(
γ〈β∨m,µ〉

)
Define the inverse gamma law on Nw0

>0 as:

Dµ
L
= Θ (Γµ) .

Those laws are well defined, in the sense that the above expressions do not depend
on the choice of a reduced expression:
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Proposition 2.20. If i and i′ are reduced words of w0, then for every µ ∈ C, the following
equality in law holds between independent gamma random variables:(

γ〈β∨
i′,1,µ〉

, . . . , γ〈β∨
i′,m,µ〉

)
L
= Ri,i′

(
γ〈β∨i,1,µ〉, . . . , γ〈β∨i,m,µ〉

)
Proof. Theorem 2.16 relates the above laws to the exit law of our hypoelliptic Brownian
motion, which is intrinsically defined.

The formula defining Γµ has more to it than meets the eye. Indeed, in order to
have the law being the same for all reduced expressions of w0, there must be hidden
non-trivial equalities in law. These can be qualified as identities from the beta-gamma
algebra, as some authors call them (see e.g [5] and references therein). More is said in
the next section. It is remarkable to think of them as a probabilistic manifestation of a
group structure, more precisely of braid relationships.

If s, s′ ∈W are reflections associated to simple roots and d is the order of ss′, a braid
relationship in W is the equality between d terms:

ss′s · · · = s′ss′ . . .

A braid move or a d-move occurs when substituting ss′s . . . for s′ss′ . . . within a reduced
word. Considering two reduced expressions of the same Weyl group element, a well
known result due to Hideya Matsumoto [17] and Tits [20] states that one is obtained
from the other by successive braid moves (see also [11]).

sisjsi · · · = sjsisj . . .

Using this fact, saying that Γµ is defined unambiguously is equivalent to saying that
proposition 2.20 holds for reduced words which differ by a braid move. Hence for any
µ ∈ a, such that αi(µ) > 0 and αj(µ) > 0, one has:

xi
(
γ〈α∨i ,µ〉

)
xj

(
γ〈siα∨j ,µ〉

)
xi
(
γ〈sisjα∨i ,µ〉

)
. . .

L
=xj

(
γ〈α∨j ,µ〉

)
xi
(
γ〈sjα∨i ,µ〉

)
xj

(
γ〈sjsiα∨j ,µ〉

)
. . .

It turns out that the rank 2 cases (A2, B2, C2 and G2) contain all the possible hidden
identities. This is the classical rank 2 reduction. Fix one of these root systems, and
consider two reduced words i, i′ of the longest element w0 in a rank 2 system. The maps
Ri,i′ can be computed for every group explicitly and have been tabulated by Berenstein
and Zelevinsky as theorem 5.3 in [2]. Now, write thanks to fundamental coweights
µ = a1ω

∨
i + a2ω

∨
j and (p1, p2, . . . ) = Ri,i′ (t1, t2, . . . ). By using the explicit formulas for the

change of Lusztig parameters and the root enumerations given in tables 1, 2, 3 and 4,
we obtain the following theorem:

Theorem 2.21 (Beta-gamma algebra identities). Associated to every rank 2 root system,
the following identities in law hold:

• Type A2 (table 1): w0 = s1s2s1 = s2s1s2. i = (1, 2, 1) and i′ = (2, 1, 2). Let
p1 = t2t3

t1+t3
, p2 = t1 + t3, p3 = t1t2

t1+t3
. Then:

(t1, t2, t3)
L
= (γa1 , γa1+a2 , γa2)

if and only if

(p1, p2, p3)
L
= (γa2 , γa1+a2 , γa1)
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• Type B2 (table 2): w0 = s1s2s1s2 = s2s1s2s1. i = (1, 2, 1, 2) and i′ = (2, 1, 2, 1). Let:

p1 =
t2t

2
3t4
π2

, p2 =
π2

π1
, p3 =

π2
1

π2
, p4 =

t1t2t3
π1

where π1 = t1t2 + (t1 + t3)t4, π2 = t21t2 + (t1 + t3)2t4. Then:

(t1, t2, t3, t4)
L
= (γa1 , γa1+a2 , γa1+2a2 , γa2)

if and only if

(p1, p2, p3, p4)
L
= (γa2 , γa1+2a2 , γa1+a2 , γa1)

• Type C2 (table 3): w0 = s1s2s1s2 = s2s1s2s1. i = (1, 2, 1, 2) and i′ = (2, 1, 2, 1). Let:

p1 =
t2t3t4
π1

, p2 =
π2

1

π2
, p3 =

π2

π1
, p4 =

t1t
3
2t3
π1

where π1 = t1t2 + (t1 + t3)t4, π2 = t3t
2
4 + (t2 + t4)2t1. Then:

(t1, t2, t3, t4)
L
= (γa1 , γ2a1+a2 , γa1+a2 , γa2)

if and only if

(p1, p2, p3, p4)
L
= (γa2 , γa1+a2 , γ2a1+a2 , γa1)

• Type G2 (table 4): w0 = s1s2s1s2s1s2 = s2s1s2s1s2s1. i = (1, 2, 1, 2, 1, 2) and i′ =

(2, 1, 2, 1, 2, 1). Let:

p1 =
t2t

3
3t

2
4t

3
5t6

π3
, p2 =

π3

π2
, p3 =

π3
2

π3π4

p4 =
π3

π1π2
, p5 =

π3
1

π4
, p6 =

t1t2t
2
3t4t5
π1

where:

π1 =t1t2t
2
3t4 + t1t2(t3 + t5)2t6 + (t1 + t3)t4t

2
5t6

π2 =t21t
2
2t

3
3t4 + t21t

2
2(t3 + t5)3t6 + (t1 + t3)2t24t

3
5t6

+ t1t2t4t
2
5t6(3t1t3 + 2t2 + 2t3t5 + 2t1t5)

π3 =t31t
2
2t

3
3t4 + t31t

2
2(t3 + t5)3t6 + (t1 + t3)3t24t

3
5t6

+ t21t2t4t
2
5t6(3t1t3 + 3t2 + 3t3t5 + 2t1t5)

π4 =t21t
2
2t

3
3t4(t1t2t

3
3t4 + 2t1t2(t3 + t5)3t6 + (3t1t3 + 3t23 + 3t3t5 + 2t1t5)t4t

2
5t6)

+ t26(t1t2(t3 + t5)2 + (t1 + t3)t4t
2
5)3

Then:
(t1, t2, t3, t4, t5, t6)

L
= (γa1 , γ3a1+a2 , γ2a1+a2 , γ3a1+2a2 , γa1+a2 , γa2)

if and only if

(p1, p2, p3, p4, p5, p6)
L
= (γa2 , γa1+a2 , γ3a1+2a2 , γ2a1+a2 , γ3a1+a2 , γa1)
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3 Identities in law

3.1 Gamma identities

Let us make some remarks on the obtained gamma identities. The classical beta-
gamma algebra identity states that if γa and γb are two independent gamma random
variables with parameters a > 0 and b > 0, then:(

γa
γa + γb

, γa + γb

)
(3.1)

form a pair of independent random variables.

This fact is easy to retrieve from the A2 case. Indeed, by considering (t1, t2, t3)
L
=

(γa1 , γa1+a2 , γa2) independent variables with the designated laws and (p1, p2, p3) alge-
braically defined as above, we know that p2 and p3 are independent. And since p2

independent of t2, we get that p2 = γa1 + γa2 is independent of p3
t2

= γa1
γa1+γa2

.

Moreover, Lukacs [12] proved that the independence for the pair in (3.1) characterizes
the gamma law. This leads to the first open question in section 5.

3.2 Exponential identities

A generic exponential random variable with parameter µ > 0 is denoted by eµ:

P (eµ ∈ dx) = µe−µx1R+
(x) dx

Consider a rational expression in k variables a ∈ Q (x1, . . . , xk) that has no minus sign.
Tropicalizing a to [a]trop tantamounts to replacing the algebraic operations (+,×, /) by
(min,+,−). A rational expression in the operations (min,+,−) is now commonly referred
to as a tropical expression. Formally, if a and b are rational subtraction-free functions,
then:

[a+ b]trop = min(a, b)

[ab]trop = a+ b

[a/b]trop = a− b

[a ◦ b]trop = [a]trop ◦ [a ◦ b]trop
For example: [

t2t3
t1 + t3

]
trop

= t2 + t3 −min(t1, t3)

A less algebraic definition could be used, using a limit that always exists:

Proposition 3.1 (Analytic tropicalization). For a rational and subtraction-free expression
in k variables a ∈ Q (x1, . . . , xk), we have that for h > 0:

−h log a
(
e−

x1
h , . . . , e−

xk
h

)
= [a]trop (x1, . . . , xk) +O(h) (3.2)

where O(h) is a quantity such that O(h)
h is bounded as h→ 0, uniformly in the variables

(x1, . . . , xk).

Proof. Let us prove the statement by induction on the size of the expression a, meaning
the number of operations it uses (addition, multiplication and division). For the base
case, notice that if a is a monomial or a constant, then the statement is trivially true.
Now, for the induction step, if a is a product or ratio of two rational subtraction-free
expressions, for which the statement is true, the statement follows using the properties
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of the logarithm. If a = a1 + a2 is a sum whose terms satisfy the induction hypothesis,
then for x = (x1, . . . , xk) ∈ Rk:

−h log a
(
e−

x1
h , . . . , e−

xk
h

)
= − h log

(
a1

(
e−

x1
h , . . . , e−

xk
h

)
+ a2

(
e−

xk
h , . . . , e−

xk
h

))
= − h log

(
eO(1)−h−1[a1]trop(x) + eO(1)−h−1[a2]trop(x)

)
= min ([a1]trop(x), [a2]trop(x)) +O(h)

− h log
(

1 + eO(1)−h−1|[a1]trop−[a2]trop|(x)
)

= [a]trop(x) +O(h)

It is well known that Ri,i′ tropicalize to changes of parametrizations in Lusztig’s
canonical basis (Theorem 2.6). Therefore, we consider the following crystallizing proce-
dure for the rational subtraction-free expressions Ri,i′ . The use of the logarithm function
has to be understood component-wise:

[Ri,i′ ]trop (u1, u2, . . . ) := lim
h→0
−h logRi,i′

(
e
−u1
h , e

−u2
h , . . .

)
Now, on the probabilistic side, one can recover a tropical version of gamma identities

involving exponential variables. The following lemma shows how gamma variables
degenerate to exponential variables.

Lemma 3.2 (Yor [22]). As h > 0 goes to zero, −h log γhµ converges in law to eµ, an
exponential variable with parameter µ.

Proof. A direct proof using densities is possible and straightforward. Let us rather
present an aesthetically more pleasing derivation suggested by Marc Yor during a

private communication. We can reduce the problem to µ = 1 because eµ
L
= 1

µe1 and:

lim
h→0
−h log γhµ =

1

µ
lim
h→0
−h log γh

Now, if βa,b is a beta random variable with parameters a > 0 and b > 0, we can write γh
as a product of two independent random variables:

γh
L
= βh,1γ1+h

Knowing that (βh,1)
h is in fact a uniform random variable, − log βhh,1 is distributed as e1.

Hence:
−h log γh

L
= e1 − h log γ1+h

The proof is finished upon noticing that h log γ1+h converges to zero in probability.

Hence the tropical version of proposition 2.20:

Proposition 3.3. If i and i′ are reduced words of w0, then for every µ ∈ C, the following
equality in law holds between independent exponential random variables:(

e〈β∨
i′,1,µ〉

, . . . , e〈β∨
i′,m,µ〉

)
L
= [Ri,i′ ]trop

(
e〈β∨i,1,µ〉, . . . , e〈β∨i,m,µ〉

)
Proof. Before tropicalization, for the parameter hµ, we have:(

γ〈β∨
i′,1,hµ〉

, . . . , γ〈β∨
i′,m,hµ〉

)
L
= Ri,i′

(
γ〈β∨i,1,hµ〉, . . . , γ〈β∨i,m,hµ〉

)
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Then, using the previous lemma:(
e〈β∨

i′,1,µ〉
, e〈β∨

i′,2,µ〉
, . . .

)
L
= lim
h→0
−h log

(
γ〈β∨

i′,1,hµ〉
, γ〈β∨

i′,2,hµ〉
, . . .

)
L
= lim
h→0
−h logRi,i′

(
γ〈β∨i,1,hµ〉, γ〈β∨i,2,hµ〉, . . .

)
= lim
h→0
−h logRi,i′

exp

−h log
(
γh〈β∨i,1,µ〉

)
h

 , exp

−h log
(
γh〈β∨i,2,µ〉

)
h

 , . . .


= [Ri,i′ ]trop

(
e〈β∨i,1,µ〉, e〈β∨i,2,µ〉, . . .

)

Again, as all the information is contained in the rank two case, there is a finite list of
identities between exponential variables that sums up the results so far.

Theorem 3.4 (Exponential identities). Associated to every rank 2 root system, the
following identities in law hold:

• Type A2 (table 1): w0 = s1s2s1 = s2s1s2. Let p1 = t2 + t3 − min(t1, t3), p2 =

min(t1, t3), p3 = t1 + t2 −min(t1, t3). Then:

(t1, t2, t3)
L
= (ea1 , ea1+a2 , ea2)

if and only if

(p1, p2, p3)
L
= (ea2 , ea1+a2 , ea1)

• Type B2 (table 2): w0 = s1s2s1s2 = s2s1s2s1. Let:

p1 = t2 + 2t3 + t4 − π2, p2 = π2 − π1, p3 = 2π1 − π2, p4 = t1 + t2 + t3 − π1

where π1 = min(t1 + t2,min(t1, t3) + t4), π2 = min(2t1 + t2, 2 min(t1, t3) + t4). Then:

(t1, t2, t3, t4)
L
= (ea1 , ea1+a2 , ea1+2a2 , ea2)

if and only if

(p1, p2, p3, p4)
L
= (ea2 , ea1+2a2 , ea1+a2 , ea1)

• In the same fashion one can deduce the exponential identities for types C2 and G2.

At this point, it seems very important to mention that in [4], a path model for Coxeter
groups was developed, and exponential laws play a key role as infinima of a Brownian
motion, with appropriate drift. There, once again, hidden identities in law can be found,
involving general Coxeter braid relations. This goes beyond the crystallographic case
we just considered.

This leads to the second open question in section 5.
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3.3 Geometric identities

Let a generic geometric random variable with parameter 0 < z < 1 be denoted by
Gz:

∀k ∈ N,P (Gz = k) = zk (1− z)

Let z ∈ A such that − log z ∈ C. We write zβ
∨

= e〈β
∨,log z〉. The condition − log z ∈ C

entails that for every positive coroot β∨ ∈ (Φ+)
∨

, 0 < zβ
∨
< 1. This allows to formulate

identities in law between geometric random variables.

Proposition 3.5. If i and i′ are reduced words of w0, then for every µ ∈ C, the following
equality in law holds between independent geometric random variables:(

G
z
β∨
i′,1
, . . . ,G

z
β∨
i′,m

)
L
= [Ri,i′ ]trop

(
G

z
β∨
i,1
, . . . ,G

z
β∨
i,m

)
Proof. The claim is true because [Ri,i′ ]trop is one-to-one from Nm to Nm and thanks to
the elementary fact that:

beµc
L
= Gz

with z = e−µ.

It is immediate that the same identities as in theorem 3.4 hold between geometric
random variables. As a corollary, this allows us to prove that a natural analogue of Γµ
(or N∞

(
W (µ)

)
) exists at the level of Lusztig’s canonical basis.

Corollary 3.6. For any i ∈ R (w0) with (β1, . . . , βm) the associated positive root enu-

meration and
(
G

zβ
∨
1
, . . . ,G

zβ
∨
m

)
independent geometric random variables, the random

variable defined by

Cz (∞) := Li

(
G

zβ
∨
1
, . . . ,G

zβ
∨
m

)
has a distribution on Lusztig’s canonical basis that is independent of the choice of i.

4 Proof of the conditional representation theorem

Let us state a version of the Matsumoto and Yor relationship between Brownian
motions with opposite drifts, which itself is based on many previous works related to
exponential functionals of Brownian motion, including Dufresne’s identity.

Theorem 4.1 ( Matsumoto-Yor [18], theorem 2.2 ). Let B(µ) be a Brownian motion on a
Euclidean vector space V ≈ Rn with drift µ and β a linear form on V such that β(µ) > 0.
Denote by sβ the hyperplane reflection with respect to kerβ, by Qy the measure of
Brownian motion conditionally on its exponential functional being equal to y > 0:

Qy := P

(
·
∣∣∣ ∫ ∞

0

e−β(B(µ)
s )ds = y

)
and:

β∨ =
2β

〈β, β〉
Then:

B̂
(sβµ)
t = B

(µ)
t + log

(
1− 1

y

∫ t

0

e−β(B(µ)
s )ds

)
β∨

is a Qy-Brownian motion with drift sβµ = µ− β(µ)β∨.

This theorem has a dual version that characterises the reciprocal transform of
Brownian motion as a Brownian motion conditioned with respect to its exponential
functional:
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Theorem 4.2 ( Matsumoto-Yor [18], theorem 2.1). Let W (sβµ) be a Brownian motion on
V ≈ Rn with drift sβµ, β(µ) > 0 and:

Xt = W
(sβµ)
t + log

(
1 +

1

y

∫ t

0

e−β(W
(sβµ)
s )ds

)
β∨

Then X is a Brownian motion with drift µ, B(µ), conditioned to:∫ ∞
0

e−β(B(µ)
s )ds = y.

If moreover, we pick y as random with y
L
= 2
〈β,β〉γ〈β∨,µ〉

independent from W , then X is a

Brownian motion with drift µ.

Notice that compared to the original formulation, we used a multidimensional setting.
The change of sign is simply replaced by a hyperplane reflection. Let us now focus on
proving the conditional representation theorem. In the case of g = xα(ξ) with ξ > 0, the
group-theoretic path transform Tg has a simple expression ([7] Properties 5.19):

(TgX)t = Xt + log

(
1 + ξ

∫ t

0

e−α(Xs)ds

)
α∨

for any continuous path X. The result of Hiroyuki Matsumoto and Yor can be reformu-
lated as:

Theorem 4.3 (SL2 conditional representation). If g = xα(ξ), ξ > 0, W (sαµ) a Brownian
motion on a with drift sαµ such that α(µ) > 0 then X := Tg(W

(sαµ)) is a Brownian motion
with drift µ conditioned to

∫∞
0
e−α(Xs)ds = 1

ξ .

If moreover we pick ξ as random with ξ
L
= 〈α,α〉

2 γ〈α∨,µ〉 independent from W then X is
a Brownian motion with drift µ.

Remark 4.4. Recall that in the case of SL2, Θ

((
1 ξ

0 1

))
=

(
1 0
1
ξ 1

)
. Hence, theorem

2.12 becomes exactly theorem 4.3 in the particular case of the group SL2.

It is very surprising and impressive that Matsumoto and Yor fully worked out the SL2

case without starting from any group-theoretic considerations. We are now ready to
prove the conditional representation theorem.

Proof of theorem 2.12 . We can of course take x0 = 0. Let X = Teθge−θ (W
(w0µ)), and

thanks to the composition property 5.19 in [7] we have:

X = Teθge−θW
(w0µ)

= T
xi1

(
〈αi1 ,αi1 〉

2 t1

)
...xim

( 〈αim,αim
〉

2 tm
)W (w0µ)

= T
xi1

(
〈αi1 ,αi1 〉

2 t1

) ◦ · · · ◦ T
xim

( 〈αim,αim
〉

2 tm
)W (w0µ)

We apply inductively theorem 4.3 with Lusztig parameters taken to follow the right laws,
in order to get successive Brownian motions.

The end of proof follows from the deterministic inversion lemma for Lusztig parame-
ters in [7] theorem 8.16, which we know to be also valid for an infinite time horizon ([7]
subsection 8.5):

N∞

(
Teθge−θ

(
W (w0µ)

))
= Θ (g)
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Concerning notations, a little precision needs to be made at this point. The left-invariant
flow (Bt(.); t ≥ 0) considered in this paper is a conjugation by eθ on the one in [7] equation
(5.7). Hence the little correction in the above formula. In the end:

N∞

(
X0,(µ)

)
= Θ (g)

concluding the proof.

5 Some open questions

We end the paper by listing some open questions.

Question 5.1. We noticed in section 3 that the beta-gamma algebra identities in theorem
2.21 for type A2 characterize the gamma random variable thanks to [12]. Is it true in
other types?

We would like to say that if the group theoretic transforms related to total positivity
give independent random variables, then the input is made of gamma variables.

Question 5.2. In [4], for example in proposition 5.9, a sequence of mutually indepen-
dent exponential random variables naturally appears. These depend on a choice of
reduced expression, and one can deduce hidden identities in law identical to ours in
the crystalligraphic case. However, the general Coxeter setting of [4] goes beyond our
framework, simply because for a non-crystalligraphic Coxeter group W there is no Lie
group for which W is the Weyl group.

Moreover, the tropical relations that appear there have irrational coefficients, and
therefore cannot be the tropicalization of rational subtraction-free expressions. Indeed,
in the proof of theorem 3.12, for the dihedral root system I(m), transition maps make
use of λ = cos

(
2π
m

)
and Tchebicheff polynomials in λ. λ is indeed rational for the

crystallographic values m = 2, 3, 4, 6, but this is not true in general.

It would be very interesting to gain further insight in the Coxeter case and being able
to explicit such relations. Is it possible to obtain a geometric lifting to identities between
gamma variables?

6 Appendix: Positive root enumerations in rank 2

α1 =

 1

−1

0

 , α2 =

 0

1

−1

 121 212
β1 α1 α2

β2 α1 + α2 α1 + α2

β3 α2 α1

Table 1: Positive roots enumerations for type A2

α1 =

(
1

−1

)
, α2 =

(
0

1

) 1212 2121
β1 α1 α2

β2 α1 + α2 α1 + 2α2

β3 α1 + 2α2 α1 + α2

β4 α2 α1

Table 2: Positive roots enumerations for type B2
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α1 =

(
1

−1

)
, α2 =

(
0

2

) 1212 2121
β1 α1 α2

β2 2α1 + α2 α1 + α2

β3 α1 + α2 2α1 + α2

β4 α2 α1

Table 3: Positive roots enumerations for type C2

α1 =

 0

1

−1

 , α2 =

 1

−2

1

 ,

121212 212121
β1 α1 α2

β2 3α1 + α2 α1 + α2

β3 2α1 + α2 3α1 + 2α2

β4 3α1 + 2α2 2α1 + α2

β5 α1 + α2 3α1 + α2

β6 α2 α1

Table 4: Positive roots enumerations for type G2
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