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Abstract

Explicit rate of convergence in variance (or more general entropies) is obtained for a
class of Piecewise Deterministic Markov Processes such as the TCP process, relying on
functional inequalities. A method to establish Poincaré (and more generally Beckner)
inequalities with respect to a diffusion-type energy for the invariant law of such hybrid
processes is developed.
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1 Introduction

This work is devoted to the study of convergence to equilibrium for a class of
Piecewise Deterministic Markov Process (PDMP). These hybrid processes, satisfying a
deterministic differential equation between random jumps, have received much atten-
tion recently: we refer to [5] and the references therein for an overview of the topic.
Ergodicity and, then, speed of convergence to the steady state are particularly studied.
As far as this last point is concerned, coupling methods have recently proved efficient
in order to get explicit rate of convergence in Wasserstein distances for PDMP (see
[18, 7, 10, 27, 13] for instance, among many others). On the other hand, another classical
approach to quantify ergodicity, based on functional inequalities, is hardly used, since
the usual methods do not directly apply. Our aim is to adapt them (see also [34] in this
direction).

Let Ω be an open set ofRd. The dynamics is defined thanks to a vector field b : Ω→ Rd,
a jump rate λ : Ω→ R+, and a transition kernel Q which will be seen either as a function
from Ω to P (Ω) the set of probability measures on Ω, or as an operator on some functional
space. For x ∈ Ω let (ϕx(t))t≥0 be the flow associated to b, namely the solution of

∂tϕx(t) = b (ϕx(t)) , ϕx(0) = x.

Starting at point x, the process (Xt)t≥0 deterministically follows this flow up to its first
jump time Tx with law

P (Tx < s) =

∫ s

0

λ (ϕx(u)) e−
∫ u
0
λ(ϕx(w))dwdu = 1− e−

∫ s
0
λ(ϕx(w))dw.
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At time Tx, the process jumps according to the law Q (ϕx(Tx)), and starts anew from its
new position. The infinitesimal generator of the process is

Lf(x) = b(x).∇f(x) + λ(x) (Qf(x)− f(x)) , (1.1)

defined at least for bounded f ∈ C1 (Ω). We note

Ptf(x) = E (f(Xt)|X0 = x)

the associated semi-group. The following assumptions hold throughout this work:

• The flow is well-defined and it fixes Ω: if x ∈ Ω then ϕx(t) ∈ Ω for all t > 0.
• The process is non-explosive: there can’t be infinitely many jumps in a finite time

interval, so that the process (and therefore the semi-group) is defined for all time.
We suppose λ > 0.

• The functions λ and b are smooth; we write Jb(x) = [∂ibk(x)]1≤i,k≤d the Jacobian
matrix of b = (bk)1≤k≤d.

• The process admits a unique invariant law µ, and Pt is ergodic in the sense
Ptf(x) −→

t→∞

∫
fdµ for all f ∈ L2(µ) and all x ∈ Ω. Moreover all polynomial moments

of µ are finite and, denoting by A the set of function in C∞(Ω) whose derivatives
grow at most polynomially at infinity, Q, L and (Pt)t≥0 are well-defined on A and
they fix A.

These strong assumptions allow us to focus only on the quantification of ergodicity. Note
that the uniqueness of the invariant measure, the finiteness of its moments and the
ergodicity of the process may often be proved by checking it is irreducible and admits a
Lyapunov function (cf. [25]). Throughout this work the test functions will always belong
to the set A, in order to keep the study at a formal level, all the forthcoming elementary
definitions and calculations being licit in this framework.

We recall here some classical arguments (see [4, Chapter 5] for a general introduction
to functional inequalities and for the detailed proofs of the assertions in this paragraph).
For f ∈ A, we write Γ (f) = 1

2L(f2)− fLf the carré du champ operator of L, Γ(f, g) the
corresponding symmetric bilinear operator obtained by polarization, and

Γ2(f) =
1

2
L (Γf)− Γ (f, Lf) .

Writing ψ(s) = PsΓ (Pt−sf), from ∂tPtf = LPtf = PtLf one gets

ψ′(s) = 2PsΓ2 (Pt−sf) .

Hence, if the Bakry-Emery (or Γ2) criterion Γ2 > ρΓ holds for some ρ > 0, the Gronwall
Lemma yields ψ(0) ≤ e−2ρtψ(t), namely

Γ (Ptf) ≤ e−2ρtPtΓf. (1.2)

For instance for the Ornstein-Uhlenbeck process with generator

LOUf(x) = ∆f(x)− ρx · ∇f(x),

this reads

|∇Ptf |2 ≤ e−2ρtPt|∇f |2, (1.3)

where |.| is the Euclidian norm of Rd. In fact, the sub-commutation (1.2) is equivalent to
the Bakry-Emery criterion. Nevertheless the latter does not usually hold in our settings.
That said, a simple adaptation of the Γ2 argument will give, at least in the constant jump
rate case, a gradient estimate similar to (1.3). In the following we denote by A∗ the
usual transpose of a matrix A and thus by u∗v the scalar product of two vectors.
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Theorem 1.1. Assume λ is constant and |∇Qf(x)|2 ≤M(x)Q|∇f |2(x) with M such that

∀(x, u) ∈ Ω×Rd, 2u∗Jb(x)u+ λ (M(x)− 1) |u|2 ≤ −η|u|2 (1.4)

for some η ∈ R. Then for all t > 0, f ∈ A and x ∈ Ω,

|∇Ptf |2(x) ≤ e−ηtPt|∇f |2(x). (1.5)

Inequality (1.4) is a balance condition on the drift and the jumps, reminiscent of the
condition on the curvature in [20, Theorem 1.2]. More precisely, suppose |∇Qf(x)|2 ≤
M(x)Q|∇f |2(x) for some functionM on Ω. If M < 1, Q is a contraction of the Wasserstein
distance (this will be detailed in Section 2); it means two particles that simultaneously
jump can be coupled so that they get closer. More generally M measures how two such
particles can be coupled in order for them not to get too far away one from the other. On
the other hand, Jb measures how two trajectories of the deterministic flow tend to get
closer or to drift apart. Indeed,

ϕx(t)− ϕy(t) = x− y + tJb(x)(x− y) + t o
y→x

(x− y) + o
t→0

(t)

⇒ |ϕx(t)− ϕy(t)|2 = |x− y|2 + 2t(x− y)∗Jb(x)(x− y) + t o
y→x

(
|x− y|2

)
+ |x− y| o

t→0
(t),

We see that the condition u∗Jb(x)u < 0 for all (x, u) ∈ Ω×Rd implies the flow contracts
the space in the neighbourhood of all points of Ω.

Note that by integrating Inequality (1.5) with respect to µ and writing

Wt =

∫
|∇Ptf |2dµ,

Theorem 1.1 implies Wt ≤ e−ηtW0 for all t > 0, f ∈ A, which is equivalent to ∂tWt ≤
−ηWt for all t > 0, f ∈ A, or to (∂tWt)t=0 ≤ −ηW0 for all f ∈ A.

In the non-constant jump rate case, under a condition similar to (1.4), we will prove
there exist constants β > 0 and η ∈ R such that

∂tWt ≤ −ηWt + 2βEt (1.6)

where Et is defined as

Et =

∫
Γ (Ptf) dµ.

Both Wt and Et are usually called energy ; we may say Wt is the classical (or diffusion-
like) energy, while Et is the Markovian one. They coincide in the case of the Ornstein-
Uhlenbeck process. The Markovian energy usually appears in particular when one is
concerned with the variance of Ptf with respect to µ,

Vt =

∫
(Ptf)2dµ−

(∫
Ptfdµ

)2

.

We say µ satisfies a Poincaré (or spectral gap) inequality with respect to Γ if there exists
a constant c > 0 such that V0 ≤ cE0 for all f ∈ A. Since ∂tVt = −2Et, such an inequality
is equivalent to Vt ≤ e−

2t
c V0, namely to an exponential decay in L2(µ). The same goes for

entropy and Gross log Sobolev inequality, or general Φ-entropies (see [17] and Section 3
for some definitions), at least for diffusion processes.

For reversible processes (i.e. when L is symmetric in L2(µ)) there is a strong
link between, on the one hand, Wasserstein distances and coupling and, on the other
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hand, variance (or entropy) and functional inequalities (see [6, 16, 30]); nevertheless
PDMP are not reversible. Furthermore their invariant measures usually do not satisfy a
Poincaré inequality for Γ, which is non-local, not easy to handle, satisfying no chain rule
(nevertheless, see [15] for a case in which such an inequality does indeed hold).

However, they may satisfy a diffusion-like Poincaré inequality of the form

∀f ∈ A
∫
f2dµ−

(∫
fdµ

)2

≤ c

∫
|∇f |2dµ, (1.7)

in other words Vt ≤ cWt. Such an inequality, which involves the classical energy rather
than the Markovian one, implies concentration properties for the measure µ (see [4]),
but is a priori not directly linked to the convergence to equilibrium in general.

Suppose such an inequality holds. Then, from inequality (1.6), if η > 0,

∂t (Wt + βVt) ≤ −ηWt

≤ − η

1 + βc
(Wt + βVt) .

This yields:

Theorem 1.2. Assume the Poincaré inequality (1.7) holds, and |∇Qf(x)|2 ≤M(x)Q|∇f |2(x)

with M such that for µ-almost all x ∈ Ω and for all u ∈ Rd,

u∗
(

2Jb(x) +
∇λ(x)(∇λ(x))∗

βλ(x)

)
u+ λ(x) (M(x)− 1) |u|2 ≤ −η|u|2 (1.8)

for some constants η, β > 0. Then

Wt + βVt ≤ (W0 + βV0) e−
ηt
βc+1 .

Note that
Wt + βVt = ‖∇Ptf‖2L2(µ) + β‖Ptf − µf‖2L2(µ)

is equivalent to the square of the usual Sobolev H1-norm of Ptf − µf . Thus Theorem 1.2
provides a decay in H1(µ) rather than in L2(µ). In this sense, our method can be seen as
an hypocoercive method of modified Lyapunov functional (see [38, 24, 9], etc.), although
it is quite simple. In these settings, it is usual to assume a Poincaré inequality (1.7) holds.
There are classical criteria on a function F on Rd to decide whether the law e−F (x)dx

satisfies such an inequality, and several ways to estimate the constant c. However, for
PDMP, the invariant law is usually quite unknown. The second part of this work will thus
be dedicated to the obtention of such inequalities, which are interesting by themselves
as they provide concentration bounds for the measure µ.

The original motivation of the present work was the study of the so-called TCP process
on Ω = R+, whose generator is

∀x > 0, f ∈ A, Lf(x) = f ′(x) + x (f(δx)− f(x)) , (1.9)

for some δ ∈ (0, 1). It has been studied in [18], which inspired the main ideas of this
work. In addition to the previous difficulties (no Poincaré inequality for Γ, non-constant
rate of jump), there is another one which is particular to this process : the jump vanishes
at the origin. Nevertheless, as an illustration of the efficiency of our method, we will
prove the following:

Proposition 1.3. For f ∈ A, define

Entf = µ
(
f2 log f2

)
−
(
µf2

)
log
(
µf2

)
.
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Then if (Pt)t>0 is the semi-group associated to the generator (1.9), there exist c, r > 0

such that for all f ∈ A,

EntPtf ≤ ce−rtµ(f ′)2.

Moreover it is possible to get explicit values for c and r such that this holds.

The paper is organized as follows. Slightly generalized versions of Theorems 1.1 and
1.2 are stated and proved in Section 2. A general strategy to obtain some functional
inequalities (including the Poincaré inequality) for PDMP by the study of their embedded
chain is exposed in Section 3 and applied in several illustrative models in Section 4,
where in particular Proposition 1.3 is proved. A perturbative results for Poincaré and
log-Sobolev inequalities is stated and proved in an Appendix.

Acknowledgements. The author would like to thank the anonymous referees for
their great help in improving this work, and acknowledges the support of the ANR
PIECE.

2 Exponential decay

We keep the notations and assumptions of the Introduction. In particular we study
the semi-group (Pt)t≥0 with generator L defined by (1.1).

When A is a linear operator on A and φ is a bilinear symmetric one, for f, g ∈ A we
define

ΓA,φ(f, g) =
1

2
(Aφ(f, g)− φ(f,Ag)− φ(Af, g)) .

With respect to f , ΓA,φ(f, f) is quadratic, and linear with respect to A and φ. We will
always note f 7→ φ(f) the quadratic form associated to a bilinear form f, g 7→ φ(f, g) and
similarly we will always note f, g 7→ q(f, g) the symmetric bilinear form associated by
polarization to a quadratic form f 7→ q(f) on A. Let

ψ(s) = Psφ (Pt−sf) , s ∈ [0, t]

which interpolates between φ (Ptf) and Pt (φf). Then

ψ′(s) = 2PsΓL,φ (Pt−sf) .

To prove Theorems 1.1 and 1.2 we should consider φ(f) = |∇f |2. In fact it will be
convenient for the applications to work with a weighted gradient φa(f) = a|∇f |2 with
a > 0 a scalar field on Ω in A (so that f ∈ A ⇒ φa(f) ∈ A).

Lemma 2.1. 1. For all f ∈ A

Γb∗∇,φa(f) =
b∗∇a

2a
φa(f)− a(∇f)∗Jb∇f.

2. Suppose there exists a function M on Ω such that, for all f ∈ A, φa(Qf) ≤
MQ (φa(f)), and let I be the identity operator on A. Then for all f ∈ A

Γλ(Q−I),φa(f) ≥ −a(∇f)∗(∇λ)(Qf − f) +
λ

2
(1−M)φa(f).

Proof. First we note that

∇ (b∗∇f) = Jb∇f +Hfb
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with Hf (x) = [∂i∂kf(x)]1≤i,k≤d the Hessian of f , and

b∗∇
(
a|∇f |2

)
= (b∗∇a)|∇f |2 + 2ab∗Hf∇f

Thus

Γb∗∇,φa(f) =
1

2
b∗∇

(
a|∇f |2

)
− a(∇f)∗∇ (b∗∇f)

=
1

2
(b∗∇a)|∇f |2 − a(∇f)∗Jb∇f.

As far as the second point is concerned,

Γλ(Q−I),φa(f) =
1

2
λ (Q (φa(f))− φa(f))− a(∇f)∗(∇λ)(Qf − f)− λa(∇f)∗(∇Qf −∇f)

≥ λ

2

(
Q (φa(f)) + φa(f)− 2

√
φa(f)φa(Qf)

)
− a(∇f)∗(∇λ)(Qf − f).

We conclude by

2
√
φa(f)φa(Qf) ≤ 2

√
Mφa(f)Qφa(f) ≤Mφa(f) +Q (φa(f)) .

We can now state the following :

Theorem 2.2. Assume λ is constant and there exist a function M on Ω and a constant
η ∈ R such that, for all f ∈ A, φa (Qf) ≤MQ (φa(f)) and

∀(x, u) ∈ Ω×Rd, 2u∗Jb(x)u+

(
λ (M(x)− 1)− b∗∇a(x)

a(x)
+ η

)
|u|2 ≤ 0.

Then
φa(Ptf) ≤ e−ηtPt (φa(f)) .

In particular with a = 1 we retrieve Theorem 1.1.

Proof. From Lemma 2.1, since in the constant rate case ∇λ = 0,

ΓL,φa(f) ≥ −a(∇f)∗Jb∇f + a

(
b∗∇a

2a
+
λ

2
(1−M)

)
|∇f |2

≥ η

2
φa(f).

Hence if ψ(s) = Psφa(Pt−sf),

ψ′(s) = 2PsΓL,φa(Pt−sf) ≥ ηψ(s)

and ψ(t) ≥ eηtψ(0), which concludes.

Remark that we did note use the ergodicity of the process here, and that η can be
negative.

This commutation between the semigroup and the gradient leads to a contraction
in Wasserstein distance. More precisely, define on Ω the distance associated to the
weighted gradient D =

√
a∇ by

d(x, y) = inf

{∫ 1

0

|γ′(s)|√
a (γ(s))

ds, γ : [0, 1]→ Ω, smooth, γ(0) = x, γ(t) = y

}
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and the associated Wasserstein distance between two probability laws ν1, ν2 having a
finite pth moment (i.e. for which there exists a x0 ∈ Ω with νi [dp(., x0)] <∞) by

Wd,p(ν1, ν2) = inf
X∼ν1, Y∼ν2

(E [dp(X,Y )])
1
p .

A function f will be called κ-Lipschitz with respect to D if ∀x, y ∈ Ω,

f(x)− f(y) ≤ κd(x, y).

This is equivalent for a smooth function to ‖Df‖∞ ≤ κ, and we have the Kantorovich-
Rubinstein dual representation (see [39])

Wd,1(ν1, ν2) = sup {ν1f − ν2f, ‖Df‖∞ ≤ 1} ,

where we use the operator notation νf =
∫
fdν.

Recall that by duality a Markov semi-group acts on the right on probability laws by

(ν1Pt) f := ν1 (Ptf) .

If Pt were absolutely continuous with respect to the Lebesgue measure for t > 0 - which
is not the case for a PDMP since for all time t there is a non-zero probability that the
process hasn’t jumped yet - the gradient estimate of Theorem 2.2 would yield, from [31,
Theorem 2.2], a contraction of theWd,2 distance :

Wd,2 (ν1Pt, ν2Pt) ≤ e−
η
2 tWd,2 (ν1, ν2) .

Instead of trying to adapt Kuwada’s result, since our work is more concerned about
variance than Wasserstein distance, we will only state the weaker result :

Corollary 2.3. In the setting of Theorem 2.2, for all laws ν1, ν2 with finite first moment,
if ν1Pt and ν2Pt still have finite first moment,

Wd,1 (ν1Pt, ν2Pt) ≤ e−
η
2 tWd,1 (ν1, ν2) .

Proof. Theorem 2.2 yields the weaker gradient estimate

‖DPtf‖∞ ≤ e−
η
2 tPt‖Df‖∞ = e−

η
2 t‖Df‖∞.

This implies theWd,1 decay, thanks to the Kantorovich-Rubinstein dual representation

Note that the invariant measure does not intervene neither in Theorem 2.2 nor in
Corollary 2.3, so that its existence and uniqueness are not necessary. Besides, on a
complete space, a contraction of the Wasserstein distance implies ergodicity, from [19,
Theorem 5.23].

We won’t push the analysis further concerning the Wasserstein distance, but refer
to the study in [7] of the TCP process where an exponential decay is first obtained for
a distance equivalent to d(x, y) =

√
|x− y| and then is transposed to d(x, y) = |x − y|p

via moments estimates and Hölder inequality. For further considerations on gradient-
semigroup commutation, one shall consult [12, 3, 31].

We now turn to the non-constant jump rate case. Let a ∈ A be a non-negative
scalar field on Ω. Throughout all the text we will say a probability measure ν satisfies a
weighted Poincaré inequality with constant c and weight a if for all f ∈ A

νf2 − (νf)
2 ≤ cν

(
a|∇f |2

)
. (2.1)

Let Vt = µ (Ptf)
2 − (µf)

2 and Wt = µφa(Ptf). Note that in the Introduction Wt was
defined with the constant weight a = 1, so that the following is slightly more general
than Theorem 1.2:
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Theorem 2.4. Assume that µ satisfies the weighted Poincaré inequality (2.1) with
constant c and weight a and that there exist a function M and constants η, β > 0 such
that for µ-almost all x ∈ Ω, for all f ∈ A and for all u ∈ Rd, φa(Qf) ≤MQ (φa(f)) and

u∗
(

2Jb(x) +
a

βλ(x)
∇λ(x)(∇λ(x))∗ + λ(x) (M(x)− 1)− b∗∇a(x)

a(x)
+ η

)
u ≤ 0.(2.2)

Then
Wt + βVt ≤ e−

ηt
βc+1 (W0 + βV0) ,

and
Wt ≤ (1 + βc)e−

ηt
βc+1W0.

Proof. Since µ is the invariant measure of the process, µLg = 0 for all g ∈ A. In
particular if φ is a quadratic form on A, µ (Lφ(f)) = 0 and

∂t (µ (φ(Ptf))) = 2µ (φ(Ptf, LPtf))

= −2µΓL,φ(Ptf).

In particular

∂tWt = −2µΓL,φa(Ptf).

From Lemma 2.1,

Γλ(Q−I),φa(f) ≥ −a(∇f)∗(∇λ)(Qf − f) +
λ

2
(1−M)φa(f)

≥ − a2

2βλ
|(∇f)∗∇λ|2 − βλ

2
(Qf − f)2 +

λ

2
(1−M)φa(f).

Again from Lemma 2.1 and from Inequality (2.2),

ΓL,φa(f) ≥ η

2
φa(f)− βλ

2
(Qf − f)2.

On the other hand, if φ2(f) = f2 then ΓL,φ2 is the usual carré du champ operator. From
the Leibniz rule Γb∗∇,φ2f = 0, so that

∂tVt = −2µΓλ(Q−I),φ2
(Ptf)

= −µλ
(
Q(Ptf)2 + (Ptf)2 − 2(Ptf)(QPtf)

)
≤ −µλ (QPtf − Ptf)

2

the last inequality being a consequence of the Cauchy-Schwartz inequality for Q. At the
end of the day, we get

∂t (Wt + βVt) ≤ −ηWt

and, thanks to the weighted Poincaré inequality (2.1),

∂t (Wt + βVt) ≤ −
η

1 + βc
(Wt + βVt),

which yields the first assertion. Then

Wt ≤Wt + βVt ≤ e−
ηt
βc+1 (W0 + βV0) ≤ (1 + βc)e−

ηt
βc+1W0.

Note that η could depend on x, so that the weight that intervenes in the Poincaré
inequality may be different from a. For instance for the TCP with linear rate on R+

(Example 4.4), one could consider a(x) = x and η(x) = −κ− αx for some κ, α > 0. Then
it would be sufficient to prove an inequality with weight ã(x) = 1 + x, which is weaker
than both the classical inequality with constant weight and the inequality with weight a.
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3 Functional inequalities for PDMP

This section is devoted to the obtention of the Poincaré inequality (2.1) and of slightly
more general functional inequalities for µ the invariant measure of the process (Xt)t≥0

with generator (1.1).

3.1 Confining operators

The variance is a way among others to quantify the distance to equilibrium. In this
section we suppose that for all f ∈ A the so-called p-entropies

Entpf =
µf2 −

(
µf

2
p

)p
p− 1

for p ∈ (1, 2],

Ent1f = µ
(
f2 log f2

)
−
(
µf2

)
log
(
µf2

)
are well-defined. We say that µ satisfies a Beckner’s inequality B(p, c) if

∀f ∈ A, Entpf ≤ cµ|∇f |2. (3.1)

For p = 2 this is the Poincaré inequality, for p = 1 this is the Gross log Sobolev one.
Since Entpf is non increasing with p ∈ (1, 2] (see [33]; note that we took the definitions
of [11]), B(p, c) implies B (q, c) whenever q ≥ p. On the other hand by Jensen inequality
(p− 1)Entpf is non decreasing with p ∈ [1, 2]. In particular all Beckner’s inequalities for
p ∈ (1, 2] are equivalent up to some factor. For the global study of these inequalities and
of more general Φ-entropies, we refer to [17] and [11].

For α ∈ [0, 1] we say µ satisfies a generalized Poincaré inequality I(α, c) if

∀f ∈ A, ∀p ∈ (1, 2], (p− 1)1−αEntpf ≤ cµ|∇f |2. (3.2)

For α = 0 this is still the Poincaré inequality, for α = 1 this is the log Sobolev one, and for
α ∈ (0, 1) this is an interpolation between these two cases which implies the following
concentration property: there exists a constant L > 0 such that for any Borel set A with

µ(A) ≥ 1
2 , if At is the set of points at distance at most t from A, then µ(At) ≥ 1− eLt

2
2−α

(see [33]). To prove I(α, c) is equivalent to prove B
(
p, c(p− 1)α−1

)
for all p ∈ (1, 2].

In this section, for the sake of simplicity, we won’t consider weighted inequalities such
as the weighted Poincaré inequality (2.1) with a 6= 1. Everything would work the same,
and, at least in dimension one, a weighted inequality can be seen as a non-weighted one
through a change of variable (see an application in Section 4.4).

Remark that if µ satisfies B(p, c) for p ∈ [1, 2], then it satisfies a Poincaré inequality. In
this case, providing the inequality (2.2) of Theorem 2.4 holds, Wt decays exponentially
fast, and

EntpPtf ≤ cWt ≤ c(1 + βc)e−
ηt

1+βcW0.

Let ψ : Ω → Ω be a smooth function with Jacobian matrix Jψ, and let |Jψ| be the
Euclidian operator norm of Jψ, namely

|Jψ| = sup
{
|Jψu|, u ∈ Rd, |u| = 1

}
.

We say ψ is γ-Lipschitz (where γ ∈ R+) if for all x ∈ Ω, |Jψ(x)| ≤ γ. It is clear that in this
case when the law of a random variable Z satisfies B(p, c) then the law of ψ(Z) satisfies
B(p, γ2c). In order to get Beckner’s inequalities for the invariant law of a PDMP we will
prove a generalization of this fact, based on an initial idea of Malrieu and Talay [37].

Let H be a Markov kernel on Ω that fixes A.
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On H1 and entropic convergence for contractive PDMP

Definition 3.1. Let c, γ > 0, p ∈ [1, 2]. We say that H is (c, γ, p)-confining if both the
following conditions are satisfied :

• Sub-commutation: ∀f ∈ A, ∀x ∈ Ω,∣∣∣∣∇(Hf 2
p

) p
2

∣∣∣∣2 (x) ≤ γH|∇f |2(x). (3.3)

• Local Beckner’s inequality: ∀f ∈ A, ∀x ∈ Ω,,

Hf2(x)−
(
Hf

2
p

)p
(x)

p− 1
≤ cH|∇f |2(x). (3.4)

if p > 1 and

H
(
f2 ln f2

)
(x)−Hf2(x) lnHf2(x) ≤ cH|∇f |2(x). (3.5)

if p = 1.

If γ < 1 we say H is (c, γ, p)-contractive. When there is no ambiguity for p, H will simply
be called confining (or contractive) if there exist c, γ > 0 satisfying both conditions.

Note that (3.5) holds iff (3.4) holds for all p > 1

Examples:

• Let ψ be a γ-Lipschitz function and Hf(x) = f(ψ(x)). The sub-commutation (3.3) is
clear, and the local inequality (3.4) holds with c = 0, since H(x) is a Dirac mass.

• The sub-commutation is always satisfied with γ = 0 if H(x) = ν is a constant
kernel, namely is a probability on Ω, so that ν is confining iff it satisfies a Beckner’s
inequality.

• If N is a standard Gaussian vector on Rd and (Bt)t≥0 a Brownian motion on Rd

then

Ktf(x) = E (f(x+Bt)) = E
(
f(x+

√
tN)

)
is (t, 1)-confined for the usual gradient and p = 1 (see [4, Chapter 1]). If the
Brownian motion is replaced by an elliptic diffusion, a sub-commutation is given by
its Bakry-Emery curvature (see [4, Chapter 5]).

• Remark this definition could be extended to a Markov kernel H : Ω1 → P (Ω2)

with Ω1 ⊂ Rd and Ω2 ⊂ Rn. For instance if ϕ is the flow associated to a vector
field b on Ω1 then Hf(t) = f (ϕx(t)) is a Markov kernel from R+ to P(Ω1), and
∂tHf = H (b∗∇f).

Here is maybe our most important, although very simple result:

Lemma 3.2. For i = 1, 2, let Hi be a (ci, γi, p)-confining Markov kernel on Ω.

1. Then H1H2 is a (c2 + γ2c1, γ1γ2, p)-confining Markov kernel.

2. If ν ∈ P (Ω) satisfies B(p, c) then νH2 satisfies B(p, c2 + γ2c).

3. Suppose H is (c, γ, p)-contractive and the Markov chain generated by H is ergodic
in the sense there exists ν ∈ P (Ω) such that for all x ∈ Ω and f ∈ A, Hnf(x) goes
to νf as n goes to infinity. Then the invariant law ν satisfies B

(
p, c(1− γ)−1

)
.
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On H1 and entropic convergence for contractive PDMP

Proof. Let p ∈ (1, 2] (the case p = 1 is similar and already treated in [18]). First,∣∣∣∣∇(H1H2f
2
p

) p
2

∣∣∣∣2 ≤ γ1H1

(∣∣∣∣∇(H2f
2
p

) p
2

∣∣∣∣2
)
≤ γ1γ2H1H2|∇f |2

and

H1H2f
2 −

(
H1H2f

2
p

)p
p− 1

=
1

p− 1

(
H1

[
H2f

2 −
(
H2f

2
p

)p]
+H1

(
H2f

2
p

)p
−
(
H1H2f

2
p

)p)
≤ c2H1H2|∇f |2 +

1

p− 1

(
H1g

2 −
(
H1g

2
p

)p)
with g =

(
H2f

2
p

) p
2

≤ c2H1H2|∇f |2 + c1H1|∇g|2

≤ (c2 + γ2c1)H1H2|∇f |2.

The second point is obtained from the first one by considering H1 = ν. Concerning the
third assertion, by induction from the first one we get for all n ∈ N

Hnf2 −
(
Hnf

2
p

)p
p− 1

≤ c

(
n∑
k=0

γk

)
Hn|∇f |2.

The weak convergence of Hn to ν concludes.

Example: Let (Ek)k≥0 be an i.i.d. sequence of standard exponential variables, and
(Xk)k≥0 be the Markov chain on R+ defined by Xk+1 = Xk+Ek

2 . Its transition operator is

Pf(x) = E

(
f

(
x+ E0

2

))
.

Clearly (Pf)′(x) = 1
2P (f ′)(x), so that | (Pf)

′ |2 ≤ 1
4P |f

′|2. On the other hand P (x),
the law of x+E

2 , is the image by a 1
2 -Lipschitz transformation of the exponential law

E(1), which satisfies a Poincaré inequality B(2, 4) (cf. Theorem [4, Theorem 6.2.2] for
instance). Thus P is (2, 1

4 , 2)-contractive. On the other hand it is clear the chain is
irreducible, it admits C = [0, 3] as a small set and V (x) = x+ 1 as a Lyapunov function
(since PV (x) ≤ 3

4V (x) + 1x<3) so that it is ergodic (see [25] for definitions and proof).
According to Lemma 3.2, the invariant measure satisfies a Poincaré inequality B

(
2, 8

3

)
.

This chain can be obtained from the TCP process with constant jump rate (Section 4.1
below) if the process is only observed when it jumps. This is the so-called embedded chain
associated to the continuous process, which we now introduce in a general framework.

3.2 The embedded chain

Recall X = (Xt)t≥0 is a process on Ω with generator given by (1.1). Let (Sk)k≥0 be
the jump times of X and let Zk = XSk . The Markov chain (Zk)k≥0 is called the embedded
chain associated to X.

For s ∈ [Sk, Sk+1), Xs = ϕZk(s− Sk) where we recall ϕx is the flow associated to the
vector field b. Since

d

dt

(
f (ϕx(t))

)
= (b∗∇f) (ϕx(t)) ,

we shall say that a function f is non-decreasing (resp. constant, concave, etc.) along the
flow if t 7→ f(ϕx(t)) is non-decreasing (resp. constant, etc.) for all x ∈ Ω; in other word if
b∗∇f ≥ 0 (resp. = 0, etc.).

Conditionally to the event Zk = x, the inter-jump time Tk = Sk+1 − Sk has a density

px(t) = λ (ϕx(t)) e−
∫ t
0
λ(ϕx(s))ds
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On H1 and entropic convergence for contractive PDMP

onR+. We assume the inter-jump times are a.s. finite (which is clear if lim inf
t→∞

λ (ϕx(t)) > 0

for all x), and define

Kf(x) =

∫ +∞

0

f (ϕx(t)) px(t)dt = E (f(ϕx(Tk))|Zk = x) .

Then P = KQ is the transition operator for the chain Z.
Transferring properties from X to Z, or the converse, is far from obvious. In fact it

is quite easy to find counter-examples for which one is ergodic and not the other (see
examples 34.28 and 34.33 of [22]). In [21] this problem is solved with the definition
of another embedded chain by adding observation points at constant rate. That being
said, in the following we won’t delve into this issue, and simply assume Z has a unique
invariant law µe (which can often be proved under conditions of irreducibility, aperiodicity
and existence of a Lyapunov function). In this case we can express µ from µe:

Lemma 3.3 (Theorem 34.31 of [22], p.123). Assume C = µeK
(

1
λ

)
= µe

[∫∞
0
e−

∫ t
0
λ(ϕx(s))dsdt

]
<

∞. Then

µf = C−1µeK

(
f

λ

)
.

In other words, µ = νeK̃ where

K̃f(x) =
1

K( 1
λ )(x)

K

(
f

λ

)
(x)

νef =
1

C
µe

[
fK

(
1

λ

)]
.

In the following we will always assume the condition C <∞ holds, so that νe and K̃
are well defined.

Here is our plan: from Lemma 3.2, we may establish a Beckner’s inequality for µe by
proving the operator P is contractive. By perturbative results on functional inequalities
(see [17] or Appendix) this may give an inequality for νe. Finally, again from Lemma 3.2,
we may transfer the inequality from νe to µ by proving the operator K̃ is confining.

The rest of this section will thus enlighten some general facts which will later help us
(mostly in dimension 1) prove K and K̃ are confining. It is strongly inspired by the work
of Chafaï, Malrieu and Paroux [18], in which a log-Sobolev inequality is proved for the
invariant measure of the embedded chain of a particular PDMP, the TCP with linear rate
(see Example 4.4).

Recall we assumed λ > 0, so that

t 7→ Λx(t) :=

∫ t

0

λ (ϕx(u)) du

is invertible for all x ∈ Ω. Moreover since we assumed the jump times are a.s. finite,
necessarily, for all x ∈ Ω, Λx(t)→∞ as t→∞. Remark that

Λϕx(s)(t) = Λx(t+ s)− Λx(s) (3.6)

which yields both

b(x)∗∇x (Λx(t)) =
d

ds

∣∣∣∣
s=0

(
Λϕx(s)(t)

)
= λ (ϕx(t))− λ(x) (3.7)
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On H1 and entropic convergence for contractive PDMP

and, taking u = Λϕx(s)(t) in t+ s = Λ−1
x

(
Λϕx(s)(t) + Λx(s)

)
,

Λ−1
ϕx(s) (u) = Λ−1

x (u+ Λx(s))− s. (3.8)

If X0 = x and if Tx is the next time of jump then

E =

∫ Tx

0

λ (φx(u)) du

is independent from X0, and has a standard exponential law. In other words Tx
dist
=

Λ−1
x (E), and Tϕx(t)

dist
= Λ−1

ϕx(t) (Λx(Tx)).

Lemma 3.4. If λ is non-decreasing along the flow, then for all x ∈ Ω and t > 0, the law
of Tϕx(t) is the image of the law of Tx by a 1-Lipschitz function.

Proof. Let x ∈ Ω and t > 0. For s > 0 we note G(s) = Λ−1
ϕx(t) (Λx(s)), so that Tϕx(t)

dist
=

G(Tx). From d
du (Λx(u)) = λ (ϕx(u)), we get

G′(s) =
λ (ϕx(s))

λ
(
ϕϕx(t)

(
Λ−1
ϕx(t) (Λx(s))

))
=

λ (ϕx(s))

λ (ϕx (t+G(s)))

From the relation (3.8) and the fact that Λx (hence Λ−1
x ) is non-decreasing,

t+G(s) = Λ−1
x (Λx(s) + Λx(t)) ≥ Λ−1

x (Λx(s)) = s.

Thus λ (ϕx(s)) ≤ λ (ϕx (t+G(s))) and |G′(s)| ≤ 1.

The assumption that the jump rate is non-decreasing along the flow is natural in
several applications where the role of the jump mechanism is to counteract a determinis-
tic trend (growth/fragmentation models for cells [13], TCP dynamics [18], etc.). In this
context, the more the system is driven away by the flow, the more it is likely to jump.
From a mathematical point of view, thanks to Lemma 3.4, a Beckner’s inequality for the
law K(x) may be transferred to K (ϕx(t)) for all t > 0.

In fact this is also true for K̃. Let T̃x be a random variable on R+ with density
e−Λx(t)∫∞

0
e−Λx(w)dw

, so that

K̃f(x) = E
[
f
(
ϕx

(
T̃x

))]
.

Lemma 3.5. If λ is non-decreasing along the flow, then for all x ∈ Ω and t > 0, the law
of T̃ϕx(t) is the image of the law of T̃x by a 1-Lipschitz function.

Proof. We will prove Lemma 3.4 applies here. Indeed the law of T̃ϕx(t) is the law of

T̃x − t conditionally to the event T̃x > t, exactly as the law of Tϕx(t) is the law of Tx − t
conditionally to the event Tx > t. We need to find a jump rate which defines T̃x as the
jump time of a Markov process.

Let e−V (s)ds be a positive probability density on R+, assume V is convex and let

r(t) =
e−V (t)∫∞

t
e−V (s)ds

.

Note that r(t) = d
dt

(
− ln

∫∞
t
e−V (s)ds

)
, so that

e−
∫ t
0
r(s)ds =

∫ ∞
t

e−V (s)ds.
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On H1 and entropic convergence for contractive PDMP

Differentiating this equality yields

r(t)e−
∫ t
0
r(s)ds = e−V (t).

We want to prove r is non-decreasing. From the convexity of V ,

r(t) =
e−V (t)∫∞

t
e−V (s)ds

=

∫∞
t
V ′(s)e−V (s)ds∫∞
t
e−V (s)ds

≥ V ′(t).

As a consequence,

r′(t) = r(t) (r(t)− V ′(t)) ≥ 0.

In the case of T̃x, if λ is non-decreasing along the flow then V (t) = Λx(t)−ln
∫∞

0
e−Λx(w)dw

is convex, so that the corresponding r is non-decreasing and Lemma 3.4 applies.

Lemma 3.6. For all f ∈ A, x ∈ Ω,

b(x)∗∇ (Kf) (x) = λ(x)K

(
b∗∇f
λ

)
(x).

In particular if λ is non-decreasing along the flow, |b∗∇ (Kf) | ≤ K|b∗∇f |.

Proof. From the representation

Kf(x) = E (f (ϕx(Tx))) = E
(
f
(
ϕx
(
Λ−1
x (E)

)))
,

we compute (recall f ∈ A is smooth and compactly supported)

b(x)∗∇ (Kf) (x) =
d

ds

∣∣∣∣
s=0

(Kf (ϕx(s)))

= E

(
d

ds

∣∣∣∣
s=0

f
[
ϕϕx(s)

(
Λ−1
ϕx(s) (E)

)])
= E

(
d

ds

∣∣∣∣
s=0

f
[
ϕx

(
s+ Λ−1

ϕx(s) (E)
)])

= E

(
d

ds

∣∣∣∣
s=0

f
[
ϕx
(
Λ−1
x (E + Λx(s))

)])
(from Relation (3.8))

= E
(

Λ′x(0)
(
Λ−1
x

)′
(E) (b∗∇f)

[
ϕx
(
Λ−1
x (E)

)])
= E

(
λ(x)

λ
(
ϕx
(
Λ−1
x (E)

)) (b∗∇f)
[
ϕx
(
Λ−1
x (E)

)])
.

If λ is non-decreasing along the flow, λ (ϕx(t)) ≥ λ(x) for all t ≥ 0.

Lemma 3.7. Let h(x) =
∫∞

0
e−Λx(u)du. Then for all f ∈ A, x ∈ Ω,

b(x)∗∇
(
K̃f
)

(x) =
K̃(hb∗∇f)(x)

h(x)
.

In particular if λ is non-decreasing along the flow |b∗∇K̃f |(x) ≤ K̃|b∗∇f |(x).

Proof.

K̃f(x) = E
[
f
(
ϕx

(
T̃x

))]
.
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Note that Fx(t) =
∫ t

0
e−Λx(s)∫∞

0
e−Λx(w)dw

ds the cumulative function of T̃x is invertible. Let U be

a uniform random variable on [0, 1]. Then

K̃f(x) = E
[
f
(
ϕx
(
F−1
x (U)

))]
⇒ b(x)∗∇K̃f(x) = E

[
d

ds

∣∣∣∣
s=0

f
(
ϕx

(
s+ F−1

ϕx(s)(U)
))]

= E
[(

1 + b(x)∗∇x
(
F−1
x (U)

))
(b∗∇f)

(
ϕx
(
F−1
x (U)

))]
,

If u ∈ [0, 1], from ∇x
(
Fx
(
F−1
x (u)

))
= ∇x(u) = 0 we get

b(x)∗∇x
(
F−1
x (u)

)
=
−b(x)∗∇x(Fx)

(
F−1
x (u)

)
F ′x
(
F−1
x (u)

) . (3.9)

On the first hand F ′x(t) = e−Λx(t)∫∞
0
e−Λx(w)dw

. On the other hand from Equality (3.7) we compute

b(x)∗∇x(Fx)(t) =

∫ t
0

(λ(x)− λ (φx(s))) e−Λx(s)ds∫∞
0
e−Λx(w)dw

+ Fx(t)

∫∞
0

(λ (φx(w))− λ(x)) e−Λx(w)dw∫∞
0
e−Λx(w)dw

= λ(x)Fx(t) +

[
e−Λx(s)

]t
0∫∞

0
e−Λx(w)dw

− λ(x)Fx(t)− Fx(t)

[
e−Λx(ω)

]∞
0∫∞

0
e−Λx(w)dw

=
−1 + e−Λx(t) + Fx(t)∫∞

0
e−Λx(w)dw

.

Relation (3.9) yields

1 + b(x)∗∇x
(
F−1
x (u)

)
= 1−

−1 + e−Λx(F−1
x (u)) + Fx

(
F−1
x (u)

)
e−Λx(F−1

x (u))

= eΛx(t)(1− Fx (t)).

with t = F−1
x (u). Thanks to Equation (3.6),

eΛx(t)(1− Fx (t)) = eΛx(t)

∫ ∞
t

e−Λx(s)∫∞
0
e−Λx(v)dv

ds

=

∫∞
0
e−Λx(w+t)+Λx(t)dw∫∞

0
e−Λx(v)dv

=

∫∞
0
e−Λϕx(t)(w)dw∫∞

0
e−Λx(v)dv

.

Bringing the pieces together, we have proved

b(x)∗∇
(
K̃f
)

(x) = E

[
h
(
ϕx
(
F−1
x (U)

))
h(x)

(b∗∇f)
(
ϕx
(
F−1
x (U)

))]

=
K̃ (hb∗∇f) (x)

h(x)

When λ is non-decreasing along the flow, from (3.7), x 7→ Λx(t) is non-decreasing along
the flow for all t ≥ 0, and h (ϕx(t)) ≤ h(x).

4 Examples

We refer to the Appendix to check the general assumptions of the introduction (and
especially f ∈ A ⇒ Ptf ∈ A) hold in the following examples.
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4.1 The TCP with constant rate

A simple yet instructive example on R+ is the TCP with constant rate of jump with
generator

Lf(x) = f ′(x) + λ (E (f(Rx))− f(x))

whereR is a random variable on [0, 1) and λ > 0 is constant. It is a simple growth/fragmentation
model, or may be obtained by renormalizing a pure fragmentation model (cf. [28] for
instance). In [35, 32], ergodicity is proved and it is shown the moments of the invariant
measure µ are all finite.

Applying Theorem 2.2 with Jb = 0, M = E
(
R2
)

and a = 1, we get

Proposition 4.1. for all f ∈ A,

|(Ptf)′|2 ≤ e−λ(1−E(R2))tPt|f ′|2.

Corollary 2.3 then yields a contraction at rate λ
(
1− E

(
R2
))

of the Wasserstein
distance W1(ν1Pt, ν2Pt). In fact by coupling two processes starting at different points
to have the same jump times and the same factor R at each jump, one get that for any
p ≥ 1, the Wp distance decays at rate λp−1 (1− E (Rp)) (see [18]), and those rates are
optimal (see [36]). In particular λ

(
1− E

(
R2
))

is the rate of decay ofW2
2 (which in turn

implies Proposition 4.1).

Let

Kf =

∫ ∞
0

f(x+ s)λe−λsds.

Obviously (Kf)′ = K(f ′). Moreover the exponential law E(1) satisfies a Poincaré inequal-
ity B(2, 4), so that by the change of variable z 7→ z/λ, E(λ) satisfies B(2, 4λ−2). Finally,
the law K(x) is the image of E(λ) by the translation u 7→ u + x, which is a 1-Lipschitz
transformation. As a conclusion,

Lemma 4.2. The operator K is (4λ−2, 1, 2)-confining.

As far as the jump operator Qf(x) = E (f(Rx)) is concerned, we have already used
the sub-commutation

((Qf)′)
2 ≤ E

(
R2
)
Q(f ′)2.

However a local Poincaré inequality (3.4) for Q(x) would mean ∀f ∈ A, x > 0,

E
(
f2(Rx)

)
− (E (f(Rx)))

2 ≤ cE
[
(f ′(Rx))

2
]

⇔ E
(
g2
x(R)

)
− (E (gx(R)))

2 ≤ c

x2
E
[
(g′x(R))

2
]

with gx(r) = f(rx). This implies the law of R satisfies B
(
2, cx−2

)
for all x > 0, hence

B (2, 0), which means R is deterministic. Indeed, when R is deterministic, the local
inequality always holds:

Lemma 4.3. If R = δ a.s. with a constant δ ∈ [0, 1) then Q is (0, δ2, p)-contractive.

When R is random, what prevents to straightforwardly use our argument is the
possibility of arbitrarily little concentrated jump, for instance with uniform law on (0, x)

for any x. It’s a shame because if, say, R is uniform on
(
0, 1

2

)
, it means when the process

jumps it is at least divided by 2 but can be even much more contracted. In particular its
invariant measure should be more concentrated near zero than the process with R = 1

2

a.s. for which, as we will see, the invariant measure satisfies a Poincaré inequality. This
illustrates a limit of our procedure.
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On H1 and entropic convergence for contractive PDMP

Proposition 4.4. If R = δ is deterministic then µ satisfies the Poincaré inequality

∀f ∈ A, µ(f − µf)2 ≤ 4

λ2(1− δ2)
µ(f ′)2.

As a consequence,

∀f ∈ A, µ(Ptf − µf)2 ≤ 4e−λ(1−δ2)t

λ(1− δ2)
µ(f ′)2.

Proof. SinceK andQ are confining, from Lemma 3.2, P = KQ is (4λ−2δ2, δ2, 2)-confining

and µe the invariant measure of the embedded chain satisfies B
(

2, 4δ2

λ2(1−δ2)

)
. From

Lemma 3.3, µ = µeK and so by Lemma 3.2 again µ satisfies B
(

2, 4
λ2(1−δ2)

)
. The second

inequality is a consequence of this Poincaré inequality and of Proposition 4.1.

In fact in this example the spectrum of the generator in L2(µ) is explicit: there
are polynomial eigenfunctions, and since the tail of µ is exponential, polynomials are
dense in L2(µ) and these eigenfunctions are the only ones in L2(µ). The eigenvalues
are lk = λ(E

[
Rk
]
− 1) with k ∈ Z+. The convergence rate of the L2-norm obtained in

Proposition 4.4 for a deterministic R appears to be 1
2 |l2| and not the spectral gap |l1|,

and of course
1

2
|l2| = λE

[
(1−R)

1 +R

2

]
≤ λE(1−R) = |l1|.

Nevertheless 1
2 |l1| ≤

1
2 |l2| so we get the right rate up to a factor 1/2.

4.2 The storage model

Let U be a positive random variable with all moments being finite, and consider the
generator on R+

Lf(x) = −xf ′(x) + λ (E [f(x+ U)]− f(x)) .

This is, in a sense, the converse of the TCP: the jumps send the process away from 0 and
the flow brings it back. Applying Theorem 2.2 with M = 1, a = 1 and Jb = −1, we get

|∇Ptf |2 ≤ e−2tPt|∇f |2. (4.1)

Besides in this case it is easy to obtain a Wasserstein decay, as the distance s between
two processes starting at different points and coupled to have the same jump times and
the same jump sizes U at each jump satisfies s′ = −s, and such a decay implies (4.1) (see
[31]; the converse is not clear, since Pt is a mix of a Dirac mass and a smooth density).

To prove a Beckner’s inequality, the same problem arises as in the previous example
with a random R: here the law K(x), namely the law of e−Tx with T an exponential
random variable, can be as little concentrated as possible when x goes to infinity, so that
K does not satisfy a local Beckner’s inequality (3.4).

4.3 The TCP with increasing rate

Consider the generator on R+

Lf(x) = f ′(x) + λ(x) (f(δx)− f(x)) . (4.2)

We have already studied the constant rate case. Before tackling the case of λ(x) = x,
we consider in this section an intermediate difficulty, with the following assumptions:
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On H1 and entropic convergence for contractive PDMP

λ is smooth non-decreasing, all its derivatives grow at most polynomially at infinity,
λ(0) = λ∗ > 0, and lnλ is a κ-Lipschitz function. Let β = 2κ2

1−δ2 , so that

(λ′)2

βλ
− λ

(
1− δ2

)
=

λ
(
1− δ2

)
2

(
(λ′)2

λ2κ2
− 2

)
≤ −

λ∗
(
1− δ2

)
2

.

In other word, Inequality (2.2) holds with η = −λ∗(1−δ2)
2 and a = 1. To apply Theorem

2.4, we also need to prove a Poincaré inequality.

Lemma 4.5. The operators

Kf(x) =

∫ ∞
0

f(x+ t)λ(x+ t)e−
∫ t
0
λ(x+s)dsdt

and

K̃f(x) =

∫ ∞
0

f(x+ t)
e−

∫ t
0
λ(x+s)ds∫∞

0
e−

∫ u
0
λ(x+s)ds

dt

are
(

4
λ2
∗
, 1, 2

)
-confining.

Proof. The sub-commutation (3.3) is a direct consequence of Lemmas 3.6 and 3.7, since
the rate of jump is non-decreasing and b = 1. On the other hand K(x) (resp K̃(x)) is the
law of x+ Tx (resp. x+ T̃x) which is from Lemma 3.4 the image by a 1-Lipschitz function
of T0 (resp. T̃0). Thus we only need to prove the inequality holds for K(0) and K̃(0).

For the case of K(0), denote by F (t) = 1−e−Λ0(t) the cumulative function of T0. Then,
if E is a standard exponential random variable,

T0
dist
= F−1

(
1− e−E

)
= Λ−1

0 (E).

Since Λ−1
0 is a non-decreasing concave function with

(
Λ−1

0

)′
(0) = 1

λ∗
, T0 is a 1

λ∗
-Lipschitz

transformation of E, whose law satisfies the Poincaré inequality B(2, 4).
In Lemma 3.5 we saw the cumulative function of T̃0 is t 7→ 1 − e−

∫ t
0
r(s)ds with an

increasing function r defined by

r(t) =
e−Λ0(t)∫∞

t
e−Λ0(s)ds

.

The previous argument shows T̃0 is a 1
r(0) -Lipschitz transformation of E, and

r(0) =
1∫∞

0
e−Λ0(s)ds

≥ 1∫∞
0
e−λ∗sds

= λ∗.

Remark: in fact if moreover λ(x) ≥ k(1 + x)q for some k > 0 and q ∈ [0, 1], the laws
of T0 and T̃0 satisfy some generalized Poincaré inequality I(α, c) with α = 2q

q+1 (see [8,

Theorem 3] and [17]), or in other words the Beckner’s inequalities B
(
p, c(p− 1)α−1

)
for

all p ∈ (1, 2]. By the previous arguments, K and K̃ are
(
c(p− 1)α−1, 1, p

)
-confining for all

p ∈ (1, 2].

Corollary 4.6. The invariant measure µ of the process satisfies a Poincaré inequality
B(2, c) for some explicit c > 0.
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Proof. It is clear the jump operator Q is (0, δ2, 2)-contractive, so that from Lemma 3.2,

P = KQ is
(

4δ2

λ2
∗
, δ2, 2

)
-contractive, and µe the invariant measure of the embedded chain

associated with the process satisfies a Poincaré inequality B
(

2, 4δ2

λ2
∗(1−δ2)

)
. Let

h(x) = K

(
1

λ

)
(x) =

∫ ∞
0

e−
∫ s
0
λ(x+u)duds.

It is a non-increasing function with h(0) ≤
∫∞

0
e−λ∗sds = 1

λ∗
. In order to prove the

perturbation νe of µe, defined by νe(f) = 1
µe(h)µe(fh), satisfies a Poincaré inequality, we

will use Lemma 4.16, which requires an upper bound on the median me of µe. Note that
it is possible to couple a process X with rate λ and a process Z with constant rate λ∗ so
that, if they start at the same point, the first one will always stay below the second one:
suppose such a coupling (X,Z) has been defined up to a jump time Tk of X. Then both
process increase linearly up to the next jump time Tk+1 of X. At time Tk+1, X jumps, but
Z jumps only with probability λ∗

λ(XTk+Tk) , else it does not move. In other words the jump

part of the generator of Z is thought as

λ∗ (f(δx)− f(x)) = λ(x)

((
λ∗
λ(x)

f(δx) +

(
1− λ∗

λ(x)

)
f(x)

)
− f(x)

)
.

Such a coupling proves me is less than the median of the invariant law of the process
with constant rate λ∗. Let Z∞ be a random variable with this invariant law, so that, if E
is a standard exponential random variable,

Z∞
dist.
= δ

(
Z∞ +

1

λ∗
E

)
⇒ (1− δ)E(Z∞) =

δ

λ∗
.

Hence from Markov’s inequality, me ≤ 2δ
λ∗(1−δ) . Finally, from Lemma 4.16, νe satisfies a

Poincaré inequality with constant

c′ =
32δ2

λ3
∗(1− δ2)h

(
2δ

λ∗(1−δ)

) ,
and since K̃ is confining, from Lemma 3.2, µ = νeK̃ satisfies such an inequality with
constant

c =
4δ2

λ2
∗

+ c′.

Remark: if, again, λ(x) ≥ k(1 + x)q for some k > 0 and q ∈ [0, 1], these arguments
prove the invariant measure satisfies a generalized Poincaré inequality I(α, c) for some
c > 0 and α = 2q

q+1 . Thus the invariant measure inherits the concentration properties of

the law of the jump time T0: the logarithm of its density tail is (at most) of order −xq+1.

Let (Pt)t≥0 be the semi-group associated to the generator (4.3) and for f ∈ A let
Wt = µ ((Ptf)′)

2 and Vt = µ (Ptf − µf)
2. We have proved Theorem 2.4 holds:

Corollary 4.7. If λ is increasing with λ(0) = λ∗ > 0 and lnλ is κ-Lipschitz then

Wt + βVt ≤ (W0 + βV0)e−
η

1+βc t.
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with c given by Corollary 4.6 and

η =
λ∗(1− δ2)

2

β =
2κ2

1− δ2
.

4.4 The TCP with linear rate

In this section,

Lf(x) = f ′(x) + x (f(δx)− f(x)) , (4.3)

where δ ∈ [0, 1), and we will prove Proposition 1.3. We keep the general notations for
(Pt)t≥0, Q, λ and µ (for the proof of ergodicity, see [26]), and write Entf = µ

(
f2 ln f2

)
−

µ(f2) lnµ(f2).

In the first instance, from Theorem 2.4, Proposition 1.3 is proven in Section 4.4.1
under the additional assumption that the invariant law satisfies some weighted functional
inequalities. These weighted inequalities are equivalent to non-weighted inequalities
for the invariant measure of a twisted process, and the latter may be established thanks
to the tools of Section 3. More precisely, in Section 4.4.2, we prove that the transition
operator of the embedded chain corresponding to the twisted process is contractive,
which implies its invariant law satisfies a log-Sobolev inequality, and in Section 4.4.3 we
transfer this inequality to the continuous-time process via perturbative arguments.

4.4.1 Decay of the gradient, given the weighted functional inequalities

Recall Theorem 2.4 is based on a balance condition on the way the space is contracted or
expanded by the drift and the jumps. Here, the deterministic motion is just a translation
at constant speed: the flow is isometric. On the other hand the jumps mechanism do
contract the space, but there are few jumps in the vicinity of the origin, and thus a
condition as (1.8) cannot hold uniformly in x > 0 with η > 0. An idea is to consider a
metric different from the euclidian one which is uniformly contracted for all x > 0. This
metric can be equivalent to the euclidian one for x away from 0, but near 0, it should
distend the distances, so that the deterministic flow φx(t) = x + t contracts the new
metric (this is reminiscent of the construction of the Lyapunov function Ṽ in [7, Section
3]) .

As we saw on Section 2, working with another metric is equivalent to working with
weighted gradients, namely considering the condition (2.2) with a 6= 1. To cope with the
rate of jump that vanishes at the origin, we will apply Theorem 2.4 with a weight a that
behaves linearly near 0. More precisely, let

a(x) = 1− e−x,
φa(f) = a|f ′|2,
Wt = µ (φa (Ptf)) .

Lemma 4.8. Suppose µ satisfies the weighted Poincaré inequality

∀f ∈ A, µ (f − µf)
2 ≤ cµ (φa(f))

for some c > 0, and let

θ =

√
5− 1

2
+ ln

(
3 +
√

5

2

)
' 1.58.
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Then for all β > ((1− δ)θ)−1, t > 0 and f ∈ A,

Wt ≤ e−
(1−δ)θ− 1

β
1+βc t (1 + βc)W0.

Proof. Note that a is a concave function, so that

a (δx) = a (δx+ (1− δ)0) ≥ δa(x) + (1− δ)a(0) = δa(x).

Therefore

φa(Qf)(x) = a(x)δ2|f ′(δx)|2 ≤ δa(δx)|f ′(δx)|2 = δQ (φa(f)) (x).

To apply Theorem 2.4 we thus have to bound below

a′(x)

a(x)
+ x(1− δ)− a(x)

xβ
≥ (1− δ)

(
1

ex − 1
+ x

)
− 1

β
.

The function g(x) = 1
ex−1 + x goes to +∞ at 0 and +∞ and admits a unique positive

critical point for which

ex = (ex − 1)2

⇒ x = ln

(
3 +
√

5

2

)
.

Hence for all x > 0, g(x) ≥ g
(

ln
(

3+
√

5
2

))
= θ and Theorem 2.4 holds with η = (1− δ)θ−

1
β .

Corollary 4.9. Suppose µ satisfies the weighted inequalities, for all f ∈ A,

µ (f − µf)
2 ≤ c1µ (φa(f)) ,

Entf ≤ c2µ (φa(f)) (4.4)

for some c1, c2 > 0, and let θ be such as defined in Lemma 4.8. Then for all β >

((1− δ)θ)−1, t > 0 and f ∈ A,

EntPtf ≤ c2e−
(1−δ)θ− 1

β
1+βc1

t (1 + βc1)µ(f ′)2.

Proof. From Lemma 4.8 and the fact a ≤ 1,

EntPtf ≤ c2Wt ≤ c2e−
(1−δ)θ− 1

β
1+βc1

t (1 + βc1)W0 ≤ c2e−
(1−δ)θ− 1

β
1+βc1

t (1 + βc1)µ(f ′)2.

Thus, to prove Proposition 1.3, it only remains to prove a weighted log-Sobolev
inequality holds. Let

ψ(x) =

∫ x

0

1√
a(y)

dy.

It is a concave, non-decreasing, one-to-one function. If Z is a random variable with law µ

and Y = ψ(Z), then

E
(
f2(Z) ln f2(Z)

)
− E

(
f2(Z)

)
lnE

(
f2(Z)

)
≤ cE

(
a(Z)(f ′)2(Z)

)
⇔ E

(
g2 (Y ) ln g2 (Y )

)
− E

(
g2 (Y )

)
lnE

(
g2 (Y )

)
≤ cE

(
(g′)2 (Y )

)
with g(y) = f

(
ψ−1(y)

)
. As a consequence we will study the Markov process ψ(X) =

(ψ(Xt))t≥0, where X = (Xt)t≥0 has generator (4.3), and prove a classical non-weighted
log-Sobolev for the invariant measure of this twisted process, which will imply the
weighted log-Sobolev assumed in Corollary 4.9.
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4.4.2 Confining operators for the twisted process

The jump kernel of ψ(X) is

Qψg(z) = g
(
ψ
(
δψ−1(z)

))
.

Let Kψ and K̃ψ be the operators defined in Section 3.2 corresponding to the process
ψ(X).

Lemma 4.10. For all g ∈ A,

|(Qψg)′| ≤
√
δQψ|g′|

|(Kψg)′| ≤ Kψ|g′|
|(K̃ψg)′| ≤ K̃ψ|g′|.

Proof. Recall a (δx) ≥ δa(x) for all x ≥ 0, and so

(Qψg)′(z) = δ
(
ψ−1

)′
(z)ψ′

(
δψ−1(z)

)
Qψg

′(z)

=
δ
(
ψ−1

)′
(z)√

a (δψ−1(z))
Qψg

′(z)

≤
√
δ
(
ψ−1

)′
(z)√

a (ψ−1(z))
Qψ|g′|(z)

=
√
δQψ|g′|(z).

On the other hand the vector field associated to ψ(X) is bψ(z) = 1√
a(ψ−1(z))

, and the rate

of jump is non-decreasing along the flow. Hence, according to Lemma 3.6,

bψ|(Kψg)′| ≤ Kψ (bψ|g′|)

(and according to Lemma 3.7, the same goes for K̃α). Note that the support of both
probability measures Kψ(z) and K̃ψ(z) is [z,∞], and that bψ is non-increasing along the
flow, so that

|(Kψg)′|(z) ≤ Kψ (bψ|g′|) (z)

bψ(z)
≤ Kψ (|g′|) (z)

(and the same goes for K̃ψ).

Lemma 4.11. For any z > 0, the law Kψ(z) (resp. K̃ψ(z)) can be obtained from Kψ(0)

(resp. K̃ψ(0)) through a 1-Lipschitz transformation.

Proof. Let Tx be the first time of jump of X starting from x. According to Lemma 3.4,

there exists a 1-Lipschitz function G such that Tx
dist
= G(T0). Note that Kψ (ψ(x)) is the

law of ψ (x+ Tx). Let H(z) = ψ
(
x+G

(
ψ−1(z)

))
, so that ψ(x + Tx)

dist
= H (ψ(T0)). We

compute

|H ′(z)| = |G′
(
ψ−1(z)

) (
ψ−1

)′
(z)ψ′

(
x+G

(
ψ−1(z)

))
|

≤
ψ′
(
x+G

(
ψ−1(z)

))
ψ′ (ψ−1(z))

.

Now ψ is concave, and in the proof of Lemma 3.4 we have seen that x+G(s) ≥ s for all
s ≥ 0; hence |H ′(z)| ≤ 1 for all z ≥ 0.

Similarly, let T̃x be a random variable on R+ with density e−
∫ t
0 (x+s)ds∫∞

0
e−

∫u
0 (x+s)dsdu

, so that

K̃ψ (ψ(x)) is the law of ψ
(
x+ T̃x

)
. From Lemma 3.5 there exists a 1-Lipschitz function

G̃ such that T̃x
dist
= G̃(T̃0), and the previous argument concludes.
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Lemma 4.12. Both Kψ(0) and K̃ψ(0) satisfy B(1, 4).

Proof. If T0 is the first time of jump of X starting from 0 then Kψ(0) is the law of ψ(T0).
For any f ∈ A,

Kψf(0) =

∫ ∞
0

f (ψ(u))ue−
u2

2 du

=

∫ ∞
0

f (z) e−
(ψ−1(z))

2

2 +lnψ−1(z)+ 1
2 ln(a(ψ−1(z)))dz.

On the other hand, if N is a standard Gaussian variable then K̃ψ(0) is the law of ψ (|N |),
and for all f ∈ A

K̃ψf(0) =

∫ ∞
0

f (ψ(u))
(π

2

)− 1
2

e−
u2

2 du

=

∫ ∞
0

f (z) e−
(ψ−1(z))

2

2 + 1
2 ln(a(ψ−1(z)))− 1

2 ln(π2 )dz.

For ε ∈ {0, 1}, let Vε(z) = 1
2

(
ψ−1(z)

)2 − ε lnψ−1(z)− 1
2 ln

(
a
(
ψ−1(z)

))
; we want to prove

Vε is strictly convex. Writing x = ψ−1(z), we compute ∂z(x) =
√
a(x) and

V ′ε (z) =
√
a(x)

(
x− ε

x
− a′(x)

2a(x)

)
V ′′ε (z) =

a′(x)

2

(
x− ε

x
− a′(x)

2a(x)

)
+ a(x)

(
1 +

ε

x2
− a′′(x)

2a(x)
+

1

2

(
a′(x)

a(x)

)2
)

= ε

(
a(x)

x2
− a′(x)

2x

)
+
a′(x)x

2
+

(a′(x))
2

4a(x)
+ a(x)− 1

2
a′′(x).

As a first step, note that V ′′1 (z) ≥ V ′′0 (z): indeed, V ′′1 (z)− V ′′0 (z) = j(x)
x2 with

j(y) = a(y)− y

2
a′(y)

⇒ j′(y) =
1

2
a′(y)− y

2
a′′(y) > 0

(since a is non-decreasing and concave). Since j(0) = 0, it implies j(y) ≥ 0 for all y ≥ 0,
in other words V ′′1 (z) ≥ V ′′0 (z). On the other hand,

V ′′0 (z) ≥ a(x)− 1

2
a′′(x)

≥ 1

2
.

As a consequence, both Kψ(0) and K̃ψ(0) satisfy B(1, 4) (see for instance [4, Theorem
5.4.7], applied to the diffusion with generator ∂2

x − V ′ε∂x).

To sum up the consequences of the previous results,

Corollary 4.13.

1. The operators Kψ and K̃ψ are (4, 1, 1)-confining and the operator Qψ is (0,
√
δ, 1)-

contractive.

2. The invariant measure νψ of the embedded chain associated to ψ(X) satisfies

B
(

1, 4
√
δ

1−
√
δ

)
.
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Proof. The sub-commutation property has been showed in Lemma 4.10, and the local
inequality is clear for Qψ which is deterministic, and is a consequence of Lemma 4.11

and 4.12 for Kψ and K̃ψ.
From Lemma 3.2, the transition operator of the embedded chain associated to ψ(X),

Pψ = KψQψ, is (4
√
δ,
√
δ, 1)-confining, conclusion follows again from Lemma 3.2.

4.4.3 Perturbation and conclusion

The last step of our procedure is the study of a perturbation of νψ. Since the rate
of jump of Z = ψ(X) at point z is λψ(z) = ψ−1(z) and the operator Kψ is such that
Kψf (ψ(x)) = E (f (ψ(x+ Tx))), according to Lemma 3.3, we need to investigate the
perturbation of νψ by the function g defined by

g (ψ(x)) = Kψ

(
1

λψ

)
(ψ(x))

= E

(
1

x+ Tx

)
.

Lemma 4.14. The function g is decreasing, and ln g is
√

2
π -Lipschitz.

Proof. Let

h(x) = E

(
1

x+ Tx

)
=

∫ ∞
0

e−
∫ t
0

(x+u)dudt =

∫ ∞
0

e−
t2

2 −xtdt,

so that g(z) = h
(
ψ−1(z)

)
. Since h is decreasing and ψ−1 is increasing, g is decreasing.

Moreover, as | (ln g)
′
(z)| =

√
a (ψ−1(s))|(lnh)′

(
ψ−1(z)

)
| and a ≤ 1, it is sufficient to

prove lnh is
√

2
π -Lipschitz. Since h′ < 0 and h′′ > 0, (lnh)′ is negative and increasing:

for all x ≥ 0,

0 ≥ (lnh)′(x) ≥ h′(0)

h(0)
= −

√
2

π
.

To apply to νψ and g the perturbation Lemma 4.16 of the Appendix, we need to
bound g(mψ), where mψ is the median of νψ, and νψ(g−1). In fact, note that νψ, which
is the invariant measure of the embedded chain associated to the process ψ(X), is
also the image through the function ψ of µe the invariant measure of the embedded
chain associated to the initial process X. In particular if me is the median of µe then
mψ = ψ (me). Keeping the notation h(x) = g (ψ(x)), we have g(mψ) = h(me) and
νψ(g−1) = µe(h

−1).

Lemma 4.15. We have

max

(
h(0)

h(me)
, µe

(
h−1

))
≤ 3

(
1 +

δ√
1− δ2

)
.

Proof. Recall that, keeping the notations of Section 3.2, if Tx is the first time of jump of

the process starting from x and E is a standard exponential variable, then Tx
dist
= Λ−1

x (E).

In the present case Λx(t) =
∫ t

0
(x+ u)du, so that Tx

dist
=
√
x2 + 2E − x. In particular if Y

is a random variable with measure µe, Y
dist
= δ
√
Y 2 + 2E, so that

(1− δ2)E
(
Y 2
)

= 2δ2E(E) = 2δ2.

From this,

P (Y ≥ t) ≤ δ2

(1− δ2)t2
,
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which implies

me ≤
√

2δ√
1− δ2

.

Moreover

h(x) = E

(
1

x+ Tx

)
≥ 1

x+ 2
P (Tx ≤ 2) ≥ 1

x+ 2
P (T0 ≤ 2) =

1

x+ 2

(
1− e−2

)
.

Hence
h(0)

h(me)
≤

√
π

2
× me + 2

1− e−2
≤ 3

(
1 +

δ√
1− δ2

)
.

Finally, if Y is a random variable with law µe,

µe
(
h−1

)
= E

(
1

h(Y )

)
≤ 1

1− e−2

(
2 +

√
E (Y 2)

)
≤ 3

(
1 +

δ√
1− δ2

)
.

We can now bring the pieces together.

Proof of Proposition 1.3. We have proved in Corollary 4.13 that νψ satisfies a log-Sobolev
inequality. From Lemmas 4.14, 4.15 and 4.16, the perturbation νg of νψ defined by
νgf = 1

νψ(g)νψ (gf) also satisfies such an inequality. From Lemma 3.3, the invariant

measure of ψ(X) is νgK̃ψ, and it also satisfies a log-Sobolev inequality since K̃ψ is
confining (Corollary 4.13). It means µ, the invariant measure of X, satisfies a weighted
log-Sobolev inequality

µ
(
f2 ln f2

)
− µ(f2) lnµ(f2) ≤ cµ

(
a|f ′|2

)
.

The conditions of Corollary 4.9 are fulfilled, and Proposition 1.3 is proved.

Appendix

The general assumptions are satisfied in Section 4

Consider the TCP process on R+ with generator

Lf(x) = f ′(x) + λ(x) (Ef(Rx)− f(x)) . (4.5)

where R is a random variable in [0, 1) and λ is smooth positive increasing and all its
derivatives grow at most polynomially at infinity. This covers all the TCP processes
studied in Section 4. Starting at x, the process necessarily remains during a time t in
[0, x + t], on which λ is bounded, which implies there can’t be infinitely many jumps
in a finite time and the process is defined for all times. When f(x) = xp for p ≥ 1,
Lf ≤ −ρpf +Cp for some ρp, Cp > 0, and moreover starting from a compact K, it is clear
the transition density P(Xt = y | X0 = x) for t > 1 is uniformly bounded with respect to
x ∈ K and y ∈ [1, 2], which implies ergodicity ([6]) and all the moments of the invariant
measure are finite. The condition C <∞ in Lemma 3.3 is clearly satisfied.

The set A of C∞ function whose derivatives grow at most polynomially at infinity is
clearly fixed by L and by Qf = Ef(Rx). If f ∈ C∞, then so is Ptf (see [14, Theorem
VII.5, p.111]). Differentiating ∂tPtf(x) = LPtf(x) with respect to x, we obtain ∂t∂kxPtf =

L∂kxPtf + [∂kx , L]Ptf , where [, ] stands for the Poisson bracket. According to [14, Theorem
VII.10, p.117], this yields

∂kxPtf = Pt∂
k
xf +

∫ t

0

Pt−s[∂
k
x , L]Psf. (4.6)
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The assumptions on λ and R imply there exist Ck, Nk > 0 such that |[∂kx , L]g|(x) ≤
Ck(1 + x)Nksup

y≤x

∑
j<k

|∂jxg(y)| for any smooth g. Suppose f and all its derivatives grow at

most polynomially at infinity. If |f | ≤ c(1 + x)n, since starting from X0 = x necessarily
Xt ∈ [0, x+ t], then |Ptf | ≤ c(1 + x+ t)n ≤ ct(1 + x)n where t 7→ ct is locally bounded. By
induction on k in Equation 4.6, the same argument proves that if f ∈ A then Ptf ∈ A.

For the storage process with generator

Lf(x) = −xf ′(x) + λ (E [f(x+ U)]− f(x))

with E(Up) <∞ ∀p ≥ 0, we can adapt the previous arguments, but in fact in this case
Xt = e−tX0 + Vt where Vt does not depend on X0, but only on the Poisson process
Nt which defines the jump times and on the sequence (Uk)k≥1 of jump sizes. Since

Vt ≤
∑Nt
i=1 Ui, all the moments of Vt are finite, which allow to differentiate under the

integral sign to directly obtain ∂kxPtf = e−ktPt∂
k
xf . If |∂kxf | ≤ c(1 + x)n then |Pt∂kxf | ≤

cE (1 + (x+ Vt)
n) ≤ ct(1+x)n, hence Pt fixesA, and the cases of L and Qf = E [f(x+ U)]

are similar.

Monotonous perturbation on the half-line

Let ν be a probability measure on R+ with a positive smooth density (still denoted
by ν), and g be a positive smooth function on R+ such that ν(g) = 1. We define νg, the
perturbation of ν by g, by νg(f) = ν(fg) for all bounded f . Let m be the median of ν,
defined by ν ([0,m]) = 1

2 .

The aim of this section is to prove the following:

Lemma 4.16. Suppose g is non-increasing and g(0) := lim
x→0

g(x) 6=∞.

1. If ν satisfies the Poincaré inequality B(2, c1), then νg satisfies B(2, c2) with

c2 = 8
g(0)

g(m)
c1.

2. If ln g is κ-Lipschitz and ν satisfies the log-Sobolev inequality B(1, c1) then νg
satisfies B(1, c2) with for all ε ∈ (0, 1)

c2 ≤

 2

1− ε
+ 8

g(0)

g(m)

2 +

c1κ
2

2 + ε ln ν
(
g1− 1

ε

)
1− ε

 c1.

Remark: actually as far as point 2 is concerned the monotonicity of g is only needed
to get the explicit estimate of c2: as soon as ν satisfies a log-Sobolev inequality and ln g

is Lipschitz, νg satisfies a log-Sobolev inequality (see [2]).

Moreover when ν satisfies a log-Sobolev inequality and ln g is Lipschitz, ν (gα) is finite
for all α ∈ R (see [1]), so that c2 is finite.

proof of point 1. According to Muckenhoupt work (see [4, Theorem 6.2.2 p. 99 and
Remark 6.2.3]), a probability with density h > 0 satisfies B(2, c) iff Bmh(h) is finite when
mh is the median of h(t)dt and

Bα(h) = max

(
sup

x∈(α,∞)

(∫ ∞
x

h(t)dt

∫ x

α

1

h(t)
dt

)
, sup
x∈(0,α)

(∫ x

0

h(t)dt

∫ α

x

1

h(t)
dt

))
.
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Furthermore, in that case, the optimal c (namely the smallest c such that B(2, c) holds) is
such that

1

2
inf
α>0

Bα(h) ≤ 1

2
Bmh(h) ≤ c ≤ 4 inf

α>0
Bα(h) ≤ 4Bmh(h).

In the present case, for all x ≥ m,∫ ∞
x

g(t)ν(t)dt

∫ x

m

1

g(t)ν(t)
dt ≤

∫ ∞
x

g(x)ν(t)dt

∫ x

m

1

g(x)ν(t)
dt

≤ 2c1.

and for all x ≤ m∫ x

0

g(t)ν(t)dt

∫ m

x

1

g(t)ν(t)
dt ≤

∫ x

0

g(0)ν(t)dt

∫ m

x

1

g(m)ν(t)
dt

≤ 2
g(0)

g(m)
c1.

Hence νg satisfies B(2, c2) with

c2 ≤ 4 inf
α>0

Bα(νg) ≤ 4Bm(νg) ≤ 8
g(0)

g(m)
c1.

proof of point 2. Following a computation of Aida and Shigekawa ([2]), we apply the
inequality B(1, c1), namely

∀f ∈ A, ν
(
f2 ln f2

)
≤ c1ν(f ′)2 +

(
νf2

)
ln
(
νf2

)
,

to the function f
√
g, which reads

∀f ∈ A, νg
(
f2 ln f2

)
+ νg

(
f2 ln g

)
≤ c1νg

(
f ′ +

g′

2g
f

)2

+
(
νgf

2
)

ln
(
νgf

2
)
.(4.7)

From the inequality (a+ b)2 ≤ 2a2 + 2b2 and the assumption on ln g,

νg

(
f ′ +

g′

2g
f

)2

≤ 2νg(f
′)2 +

κ2

2
νg(f

2).

On the other hand, from the Young inequality st ≤ s ln s− s+ et applied with s = εf2 and

t = −ε−1 ln
(

g
g(0)

)
for any ε > 0,

−νg
(
f2 ln g

)
= −νg

(
f2 ln

(
g

g(0)

))
− ln g(0)νg

(
f2
)

≤ ενg
(
f2 ln f2

)
− (ε(1− ln ε) + ln g(0)) νg

(
f2
)

+ νg

((
g(0)

g

) 1
ε

)
.

Thus Inequality (4.7) yields

(1− ε)νg
(
f2 ln f2

)
≤ 2c1νg(f

′)2 +

(
c1κ

2

2
− ε(1− ln ε)− ln g(0)

)
νg
(
f2
)

+ νg

((
g(0)

g

) 1
ε

)
+νg(f

2) ln νg(f
2).

Thanks to Gross’ Lemma (2.2 of [29]), this implies (for ε < 1)

νg
(
f2 ln f2

)
− νg(f2) ln νg(f

2) ≤ 2c1
1− ε

νg(f
′)2 + γνg

(
f2
)

(4.8)
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with

γ =
c1κ

2

2 − ε(1− ln ε)− ln g(0)

1− ε
+

ε

1− ε

1 + ln

νg
((

g(0)
g

) 1
ε

)
ε




=

c1κ
2

2 + ε ln νg

(
g−

1
ε

)
1− ε

.

It is classical to retrieve a log-Sobolev inequality from Inequality (4.8) and a Poincaré
inequality, thanks to the following inequality (see [23], p.146): if h = f − νgf ,

νg
(
f2 ln f2

)
− νg(f2) ln νg(f

2) ≤ νg
(
h2 lnh2

)
− νg(h2) ln νg(h

2) + 2νg
(
h2
)
.

Together with Inequality (4.8) applied to h, and since h′ = f ′,

νg
(
f2 ln f2

)
− νg(f2) ln νg(f

2) ≤ 2c1
1− ε

νg(f
′)2 + (γ + 2)νg

(
(f − νgf)2

)
Since ν satisfies B(1, c1) it also satisfies B(2, c1). Thus, according to point 1 of Lemma

4.16, νg satisfies B
(

2, 8 g(0)
g(m)c1

)
, which means

νg
(
f2 ln f2

)
− νg(f2) ln νg(f

2) ≤
(

2

1− ε
+ 8

g(0)

g(m)
(2 + γ)

)
c1νg(f

′)2.
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