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Abstract

In this paper we investigate the dynamical behavior of a polymer interface, in inter-
action with a distant attractive substrate. The interface is modeled by the graph of
a nearest neighbor path with non-negative integer coordinates, and the equilibrium
measure associates to each path η a probability proportional to λH(η) where λ ∈ R+

and H(η) is the number of contacts between η and the substrate. The dynamics is
the natural “spin flip” dynamics associated to this equilibrium measure. We let the
distance to the substrate at both polymer ends be equal to aN where a ∈ (0, 1/2) is a
fixed parameter, and N is the length the system. With this setup, we show that the
dynamical behavior of the system crucially depends on λ: when λ ≤ 2

1−2a
we show

that the system only needs a time which is polynomial in N to reach its equilibrium
state, whereas λ > 2

1−2a
the mixing time is exponential in N and the system relaxes

in an exponential manner which is typical of metastability.
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1 Introduction

The aim of this paper is to study the dynamics of a model for an interface interacting
with a substrate. This study was partially inspired by a recent work in theoretical physics
[6] which proposed a model to account for metastable transition for wetting of droplets
on a grooved surface. The origin of the metastable behavior is the following: consider
a droplet that lies on the top of a surface cavity (see Figure 1). If the substrate is
energetically favorable, then the lowest energy state is the one where the droplet wets
the bottom of the cavity. However, to reach this state, the droplet primarily has to
increase its surface tension, and thus to overcome an energy barrier. For this reason,
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Metastable wetting

the droplet will remain above the cavity for some time, until some perturbation helps it
perform the transition.

In [6] this situation was reduced to a 1+1 toy model in order to make some qualitative
description of the relaxation to equilibrium of the droplet. The object of this paper is to
bring this description on rigorous ground. For technical convenience, we study a model
that slightly differ from the one in [6] in the sense that it is based on the simple random
walk pinning model instead of the so-called Solid-On-Solid model.

Liquid Liquid

Substrate Substrate

Figure 1: In this work, we model the transition corresponding to the moment when the
interface of the liquid wets the bottom of the substrate cavity.

The random walk pinning model has been introduced several decades ago (see the
seminal paper [8]) and has been the object of a large number of studies, both in its
homogeneous and disordered versions (see [10] or [11] for recent reviews).

The prototypical random walk pinning model is defined as follows: Given N ∈ 2N, we
set

SN :=
{
η = (ηx)x∈[0,N ] | η0 = ηN = 0 and ∀x ∈ [0, N ], ηx ∈ Z+ and |ηx+1 − ηx| = 1

}
.

(1.1)
The graph of η models an interface or polymer that stretches in the horizontal direction.
The constraint ηx ∈ Z+ materializes the fact our polymer cannot visit the half space
[0, N ]×Z− which is occupied by a solid substrate or wall. Given η ∈ SN , we define H(η)

to be the number of contact points of the graph of η with the wall (we refer to Figure 2
for a graphical representation of the polymer).

H(η) =
∑

0≤x≤N

1{ηx=0} (1.2)

and for λ ∈ R, the corresponding Gibbs measure is given by

πλN (η) =
1

ZλN
λH(η), (1.3)

where λ is what we call the pinning parameter. It is equal to exp(−E/kBT ) where E is
the energy of interaction of the monomers with the wall, T is the temperature, and kB
is the Boltzman constant. Hence λH(η) correspond to the Boltzman weight associated
to a trajectory η. In (1.3), ZλN is the normalizing constant which makes πN a probability
measure, it is called the partition function of the system,

ZλN :=
∑
η∈SN

λH(η). (1.4)

The model was introduced to analyze the wetting transition for polymers interacting
with an attractive substrate. This transition can be observed through the study of the
free-energy, defined as

f(λ) := lim
N→∞

(
1

N
logZλN

)
− log 2. (1.5)
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Metastable wetting

We have a simple explicit expression for F (λ) (see [7], (7.14), (7.24) and (7.46)):

f(λ) = log

(
λ

2
√
λ− 1

)
1λ>2. (1.6)

It can be shown that for large N under πN , η has asymptotically a positive contact
fraction H(η)/N if f(λ) > 0 (that is λ > 2) and that the contact fraction vanishes for
λ ≤ 2 (see [10, Chapter 2]). The phase transition is said to be of order two as f and its
derivative are continuous at λ = 2.

The dynamical version of this model has been investigated only more recently. The
dynamics is a Markov chain on SN for which πN is the invariant measure and whose
transitions are given by updates of local coordinates (see Section 2.2 for a formal
description). The dynamics are usually studied to understand how a system relaxes to
equilibrium. In [5], the authors proved that the mixing-time of the polymer dynamics
on SN is of order N2 (up to logarithmic correction) for every λ. The scaling limit of the
polymers profile under diffusing scaling was investigated in [13].

In the present work, we study the effect of elevated boundary condition on the
dynamics. For a ∈ (0, 1/2) we define

SaN :=
{
η = (ηx)x∈[0,N ] | η0 = ηN = 〈aN〉,∀x ∈ [0, N ], ηx ≥ 0 and |ηx+1 − ηx| = 1

}
, (1.7)

where 〈s〉 denotes the smallest even integer larger or equal to s.
We define the Gibbs measure for the polymer with elevated boundary condition as

follows

πλ,aN (η) :=
1

Zλ,aN
λH(η), (1.8)

where the partition function Zλ,aN is given by

Zλ,aN :=
∑
η∈SaN

λH(η). (1.9)

If λ > 2, from the results on the model with standard boundary condition, the walk is
locally attracted to the wall. However, because of the boundary condition, reaching the
energetically favorable wall has an entropic cost, and there is a non-trivial competition
between energy and entropy.

Before going into the details of the dynamics we study in detail the equilibrium distri-
bution under (1.8), see Section 2.1. In particular we must identify the local equilibrium
states of the polymer, which can be informally described as follows.

When λ is sufficiently large (how large exactly is made explicit in Section 2.3), as
a result of this competition the polymer has two possible local equilibrium states (or
phases) that are separated by a bottleneck. Let us give a more precise description of
both. For each a ≥ 0, there exists a critical pinning force λc(a) (strictly increasing in a)
such that

Free (λ < λc) In this phase, the height of the polymer has fluctuation order N1/2

around the attaching height aN and it stays unaware of the attractive wall at zero.

Pinned (λ ≥ λc) In that phase, the polymer drives from aN to zero with optimal slope
−dλ, see (2.4), then presents a pinned region that has macroscopic length (i.e. of
order N ) where it stays within distance of order logN from the wall and finally, it
returns to height aN with slope dλ. Of course this can occur only if a < dλ (see
Figure 2).
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Metastable wetting

See also Figure 2 for an illustration of these two phases.
Which of these local equilibrium state is the more favorable depends on the values of

λ and a, see Figure 3. The above statements are made precise in Theorem 2.2, where we
provide a scaling limit of the polymer as N goes to infinity in each of the above phases.

〈aN〉

0 N

〈aN〉

〈aN〉 〈aN〉

Figure 2: Typical behavior for η at equilibrium when λ < λc(a) (free phase at the top)
and λ ≥ λc(a) (pinned phase at the bottom). The dotted line illustrates fa,λ, which is the
scaling limit when N →∞.

The main objective of this paper is to describe the behavior of this system under
the heat bath dynamics for this polymer model. The precise definition of the generator
is given in (2.10), although a quick look at Figure 4 already gives a good idea of the
definition of the jump rates.

This system presents three distinct behaviors under the heat bath dynamics as N
grows, depending on the specific choice of a and λ. More precisely, there exist three
regions in the phase diagram (see Figure 3) that we informally describe as follows:

(a) Free phase - there are no bottlenecks for the dynamics and the polymer relaxes to
equilibrium in polynomial time (this is of course also the case when λ ≤ 2 for which
the polymer is not even locally attracted by the wall due to entropic repulsion).

(b) Free phase (double well) - as above, the polymer does not attach to the substrate
when at equilibrium, however, if one starts the system at a pinned configuration, it
will take a long time (exponential in N ) for it to reach the free phase.

(c) Pinned phase (double well) - in this phase, the system stays pinned at equilibrium, but
if one sets the initial condition at the free phase, the polymer takes an exponential
time to attain the attractive wall.

The precise formulation of these statements can be found in Theorem 2.3 below. The
regions (b) and (c) present what we call metastable behavior (provided one starts the
system from the local equilibrium phase). In Theorem 2.4 we show that in this case,
the time to observe the transition to equilibrium converges to an exponential random
variable when properly rescaled.

2 Model and results

2.1 Statics for the system with elevated boundary conditions

In order to study the behavior of the system at equilibrium it is natural to define its
free energy (whose existence is ascertained by Proposition 2.1 below) as

f(λ, a) := lim
N→∞

(
1

N
logZλ,aN

)
− log 2. (2.1)
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Metastable wetting

In order to derive the expression f(λ, a), we must evaluate the cost for the polymer
to drift-down with a given slope d until it meets the wall, and then try to optimize this
scheme by taking the maximum over d. This is done in the next proposition, which gives
the following expression for the free-energy.

Proposition 2.1. The free energy of the system with elevated boundary condition
defined by Equation (2.1) exists. It is the solution of the following optimization problem,

f(λ, a) := max
{

0, max
d∈[2a,1]

(
f(λ)

(
1− 2a

d

)
− 2a

d q(d)
)}
, (2.2)

where q is defined on [0, 1] as follows

q(d) :=− lim
N→∞

1

N
log
∣∣{ simple paths of length N linking 0 to 〈dN〉

}∣∣+ log 2

=
1

2

[
(1 + d) log(1 + d) + (1− d) log(1− d)

]
≥ 0.

(2.3)

If f(λ, a) is positive (and thus λ > 2), then maximum maxd∈[2a,1]

(
f(λ)

(
1− 2a

d

)
− 2a

d q(d)
)

is attained when

d = dλ :=
√

1− exp(−2f(λ)) = 1− 2

λ
. (2.4)

Hence we also have

f(λ, a) :=
(

f(λ)
(
1− 2a

dλ

)
− 2a

dλ
q(dλ)

)
+

=

(
f(λ)− a log

(
1 + dλ
1− dλ

))
+

. (2.5)

The function f(λ, a) is analytic in a and λ except on the critical curve λ = λc(a), deter-
mined by the unique solution λc(a) of the equation

f(λ) = a log

(
1 + dλ
1− dλ

)
= a log(λ− 1)

The right derivative of f(λ, a) at λ = λc(a), is positive, and thus the phase transition in λ
is of first order.

The above proposition is proved in Section 3.
From these results, we can also deduce the typical behavior of S under πλ,aN : it says

that when λ > λc(a) the polymer typically drift towards the wall with a slope dλ on both
sides and presents a pinned region in the middle which is of length N(1− 2a/dλ), see
Figure 2 (bottom), whereas when λ < λc(a) the polymer typically lies in the free phase.
For the case λ = λc(a), estimates on the exponential scale are not sufficient to decide in
which phase the polymer lies. However, our proofs contain finer estimates and allows us
to establish that when λ = λc the polymer is typically pinned (see Proposition 3.3). From
the proof of the above proposition, one can derive a scaling limit result for the polymer
at equilibrium. When λ > 2

1−2a , we set

fa,λ(x) := max(a− dλx, 0, a+ dλ(x− 1)). (2.6)

Theorem 2.2. When λ ≥ λc(a) we have for all ε > 0

lim
N→∞

πλ,aN

(
max
x∈[0,1]

∣∣∣∣ 1

N
η(Nx)− fa,λ(x)

∣∣∣∣ ≥ ε) = 0, (2.7)

when λ < λc(a)

lim
N→∞

πλ,aN

(
max
x∈[0,1]

∣∣∣∣ 1

N
η(Nx)− a

∣∣∣∣ ≥ ε) = 0, (2.8)
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2 6 10 14 18
0

0.1

0.2

0.3

0.4

λ

a

Phase diagram

λ = λc(a)

λ = 2
1−2a

free phase

free phase (double well)

pinned phase (double well)

Figure 3: The phase diagram for the polymer close to an attractive wall. The red line
λ = 2

1−2a separates the fast mixing free phase from the free phase with double well
(where metastability is observed). The pinned phase is determined by λ > λc(a), which

is equivalent to the condition a < log(λ/2
√
λ−1)

log(λ−1) .

The proof of the above result will be provided in Subsection 3.3.
In fact with only a minor additional effort one could in principle prove a large deviation

principle for the rescaled path 1
N η(Nx), when λ 6= λc. However, this is not in the scope

of this paper. Let us mention [3] where an LDP was proved for a continuous wetting
model with elevated boundary condition (see also [9] which focuses on the case λ = λc).

2.2 Dynamics

Let us now introduce the generator LλS of our dynamics, which corresponds to a heat
bath of our polymer. For this, given a polymer η ∈ SN and 1 ≤ x ≤ N − 1, we define the
polymer with corner flipped at x by{

ηxx = ηx+1 + ηx−1 − ηx,
ηxy = ηy, for x 6= y.

(2.9)

The operation η → ηx transforms a local maximum at x into a local minimum (respec-
tively local minimum into a local maximum).

Let S be a space of polymers with length N (with either zero or elevated boundary
conditions). The generator LλS acts on f : S → R as follows

(LλS)f(η) :=
∑
η′∈S

rλ(η, η′)
(
f(η′)− f(η)

)
=

N−1∑
x=1

rλ(η, ηx)
(
f(ηx)− f(η)

)
, (2.10)

where the rates rλ are given by (see also Figure 4 for a graphical representation of the
jump rates)

rλ(η, ηx) =


1
2 if ηx and ηxx > 0,
λ
λ+1 if ηx±1 = 1 and ηx = 2,

1
λ+1 if ηx = 0,

0 if ηx±1 = 0

rλ(η, η′) = 0 if η′ /∈ {ηx | x ∈ {1, . . . , N − 1}}.

(2.11)
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〈aN〉 〈aN〉

0 N

1
2

λ
1+λ

1
1+λ

Figure 4: Graphical representation of the jump rates for the system with elevated
boundary conditions. A transition of the chain corresponds to flipping a corner, the rate
of a given transition depends on its effect on the number of contact with the wall (note
that not all possible transition are represented on the figure). These rates are chosen so
that πλS is reversible.

We observe that LλS is reversible with respect to the probability measure

πλS(η) =
1

ZS
λH(η), (2.12)

where ZS =
∑
η∈S λ

H(η). Moreover the dynamics is irreducible; therefore its semi-group

converges towards πλS as t goes to infinity. The Dirichlet form for the dynamics is defined
by

E(f) = −
∑
η∈S

(LλSf)(η)f(η)πλS(η) =
1

2

∑
(η,η′)∈S2

(f(η′)− f(η))
2
πλS(η)rλ(η, η′). (2.13)

The spectral gap of the Markov chain is the minimal positive eigenvalue of L and the
relaxation time is its inverse. It is equal to

Trel(a, λ) := max
f

VarπλS (f)

E(f)
= gap−1(a, λ). (2.14)

2.3 Metastability on the phase space

The behavior of the dynamics depends mainly on the free-energy profile of the state-
space S. Depending on the values of a and λ, it might look like a single well potential
or present several local minima, see Figure 3. In the second case one should expect a
metastable behavior and a relaxation time that is proportional to exp(NEa) where Ea is
the renormalized activation energy, which is the free energy barrier one has to overtake
to go from a local energy minimum to the lowest energy well.

It is important to realize that the barrier for the free energy may be related to an
entropic bottleneck rather than a high barrier for the Hamiltonian. For example, if one
starts with a free polymer (not touching the wall), then the only obstacle for it to become
pinned is that there are very few paths that have a single point of contact with the wall
(most paths stay at a distance ∼

√
N from the pinning height aN ). This is a consequence

of the large deviation principle for the maximum of a random walk bridge.

Even though the geometry of our space is slightly more complicated than the above
description suggests, we are able to transform this heuristic picture into a rigorous
result.

There are three phases to study (apart from critical curves)
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(a) The localized phase where λ ≥ λc(a). In that case there is an activation energy
which corresponds to the entropic cost needed to bring the middle point of the
polymer down to the wall, when starting from a flat polymer whose height oscillates
around 〈aN〉. This activation energy is independent of λ and is equal to q(2a).

(b) The case where 2
1−2a < λ < λc(a), for which dλ > 2a. In that case the polymer is

delocalized at equilibrium, but there is a positive activation energy to go out of the
pinned phase. It is equal to(

f(λ)

(
1− 2a

dλ

)
− 2a

dλ
q(dλ)

)
+ 2q(2a) > 0. (2.15)

(c) The case λ ≤ 2
1−2a , for which dλ ≤ 2a. In that case there is only one local minimum

in the free-energy profile and hence, no activation energy. In this case the relaxation
time is polynomial in N .

These three phases are illustrated in Figure 3 and their properties are a consequence
of the variational principle which defines the free energy (2.2), they can be deduced from
the proof of Proposition 2.1. The main object of this paper is then to show rigorously
that the mixing time is of order exp(NEa) in cases (a) and (b) while it behaves like a
power of N in case (c). We also want to show that in cases (a) and (b) the system has a
metastable behavior in the sense that the time to jump from the metastable state to the
equilibrium state scales as an exponential random variable.

All the above statements are made precise in the following section.

2.4 The main results

Theorem 2.3. There exists a constant K such that, when λ ≤ 2
1−2a , for all N sufficiently

large

Trel ≤ NK . (2.16)

On the other hand when λ > 2
1−2a

lim
N→∞

1

N
log Trel = E(a, λ), (2.17)

where E(a, λ) is the activation energy of the system which is equal to

E(a, λ) :=

{
f(λ)− a log

(
1+dλ
1−dλ

)
+ q(2a) when λ ∈ ( 2

1−2a , λc(a)],

q(2a) when λ ∈ [λc(a),∞).
(2.18)

The above results culminate in the following statement, which confirms the metastable
behavior of our polymer model.

We partition the state space SaN into two subsets: S̄aN the set of paths that never touch
the wall and ŠaN the set of paths that have at least one contact point with the substrate
at zero.

S̄aN := {η ∈ SaN | ∀x ∈ [0, N ], ηx > 0},
ŠaN := SaN \ S̄aN = {η ∈ SaN | ∃x ∈ [0, N ], ηx = 0}.

(2.19)

We chose the accents in S̄ and Š to mimic the shape of the free and pinned polymers
respectively.

Recall the definition (2.14) of the relaxation time.
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Theorem 2.4. Fix a ∈ (0, 1/2) and λ > 2/(1− 2a) then set

EN1 =

{
S̄aN , if λ ∈ (2/(1− 2a), λc(a)) and

ŠaN , if λ ≥ λc(a)
(2.20)

and EN2 = (EN1 )c. We then have that

Pπλ,aN (· | EN2 )

[
η(tTrel) ∈ EN1

]
−−−−→
N→∞

exp{−t}. (2.21)

More than that, the finite-dimensional distributions of 1IEN1 (ηtTrel
) converge to those of a

process ηt, which starts at one and jumps with rate one to zero, where it is absorbed.

3 Technical Preliminaries

3.1 Proof of Proposition 2.1 and sharp estimates for partition functions

In this Section, we prove not only Proposition 2.1, but also a variety of precise
estimate concerning the partition function of system with further restrictions. While
these estimates are sharper than what is needed to prove the existence of the free-
energy, they will be useful in the next sections when we study the dynamics and to prove
Theorem 2.2. We focus on Equation (2.2), as all the other statement of Proposition 2.1
can be deduced from it by simple computations.

Recalling (2.19), we let Z̄aN resp. ŽaN be the partition functions obtained by summing
over the subsets S̄aN and ŠaN respectively,

Z̄aN :=
∑
η∈S̄aN

λH(η) and ŽaN :=
∑
η∈ŠaN

λH(η), (3.1)

we have

f(λ, a) = max

(
lim
N→∞

1

N
log Z̄aN , lim

N→∞

1

N
log ŽaN

)
− log 2, (3.2)

provided that these limits exist. Equation (2.2) is a consequence of the following result

Lemma 3.1. We have

lim
N→∞

1

N
log Z̄aN = log 2,

lim
N→∞

1

N
log ŽaN = log 2 + max

d∈[2a,1]

(
f(λ)

(
1− 2a

d

)
− 2a

d q(d)
)
.

(3.3)

Furthermore

max
d∈[2a,1]

(
f(λ)

(
1− 2a

d

)
− 2a

d q(d)
)

=

{
f(λ)− a log

(
1+dλ
1−dλ

)
when λ ≥ 2

1−2a ,

−q(2a) when λ ≤ 2
1−2a .

(3.4)

Proof. The first equality is straightforward: by standard properties of the simple random
walk

Z̄aN = 2NP[SN = 0 ; Sn > −〈aN〉, ∀n ≤ N ] ≈ c√
N

2N . (3.5)

To estimate the other one, we partition ŠaN according to the values taken by the leftmost
and rightmost point of contact with the wall. We define for η ∈ S̄aN

Lη =: inf
{
x ∈ [0, N ]|ηx = 0

}
, Rη := sup

{
x ∈ [0, N ]|ηx = 0

}
. (3.6)

Note that these variables can take values in the set

Ma
N =

{
(l, r) ∈ (2Z)2|〈aN〉 ≤ l ≤ r ≤ N − 〈aN〉

}
, (3.7)
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Metastable wetting

see Figure 5. Then for (l, r) ∈Ma
N we define

Šl,r := {η ∈ ŠaN | (Lη, Rη) = (l, r)}, (l, r) ∈Ma
N ,

Žl,r :=
∑
η∈Šl,r

λH(η). (3.8)

In words, Žl,r is the partition function of the system restricted to Šl,r. As the cardinal of
Ma
N is sub-exponential in N , we have

lim
N→∞

1

N
log ŽaN = lim

N→∞
max

(l,r)∈Ma
N

(
1

N
log Žl,r

)
, (3.9)

provided that these limits exist. Thus, our job is to control the behavior on the exponential
scale of Žl,r.

〈aN〉

0 N

〈aN〉

Lη

Rη
〈aN〉

Lη Rη

N − 〈aN〉

Figure 5: A surface in Š7,17 (left) for a = 0.24, N = 24 and the corresponding set M0.24
24 .

Lemma 3.2. We have for all l, r ∈Ma
N

Žl,r = (1 + o(1))
〈aN〉
l

〈aN〉
N − r

(
(l + 〈aN〉)/2

l

)(
(N − r − 〈aN〉)/2

N − r

)
Zλr−l. (3.10)

where the o(1) term tends to zero when N →∞ uniformly in l, r. As a consequence there
exists a constant C (depending on λ, and a) such that for all N, r and l,

1

C
Y (N, l, r) ≤ Žl,r ≤ CY (N, l, r), (3.11)

where

Y (N, l, r) =2N

√
1

l − 〈aN〉+ 1

√
1

N − r − 〈aN〉+ 1
(3.12)

× exp
{
F (λ)(r − l)− lq(〈aN〉/l)− (N − r)q(〈aN〉/(N − r))

}
. (3.13)

We finish the proof of Lemma 3.1 and postpone the proof of Lemma 3.2.

Using Equation (3.11), we have

max
(l,r)∈Ma

N

1

N
log Žl,r =

max
(l,r)∈Ma

N

(
f(λ)

r − l
N
− l

N
q(〈aN〉/l)− (N − r)

N
q(〈aN〉/(N − r))

)
+ log(2) + o(1). (3.14)
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Considering d1 = 〈aN〉/l, d2 = 〈aN〉/(N − r)), it is a standard exercise to show that the
limit of the above maximum is

max
{d1,d2≤1 | a(d−1

1 +d−1
2 )≤1}

(
f(λ)

(
1− a(d−1

1 + d−1
2 )
)
− a
(
d−1

1 q(d1) + d−1
2 q(d2)

))
. (3.15)

Then we conclude (3.4) by remarking that the maximum above is attained for d1 = d2.

Proof of Lemma 3.2. Because the end points of the pinned region are fixed, the set Šl,r
has a natural product structure which yields

Žl,r = Zλr−lQ(l, 〈aN〉)Q(N − r, 〈aN〉) (3.16)

where

Q(a, b) := #{(Sn)n∈[0,a] | S0 = 0, Sa = b,∀n ∈ [1, a], Sn > 0 and |Sn − Sn−1| = 1}.

Without the constraint Sn > 0, Q(a, b) would be just a binomial coefficient. The constraint
just yields a factor

P [Sn > 0, ∀n ∈ (0, a] | Sa = b] ,

which is controlled with Lemma A.1, yielding (3.10).

To deduce (3.11) from it, we use the Stirling formula to estimate the binomial
coefficients and [10, Theorem 2.2 (1)] to replace Zλr−l by exp((F (λ) + log 2)(r − l)).

3.2 Typical behavior at the critical point λ = λc(a)

As a consequence of the estimates of the previous section, we can prove that the
polymer is typically pinned when λ = λc(a).

Proposition 3.3. For any a ∈ (0, 1/2), there exists a constant C such that for every
N ≥ 0

1

C
2N ≤ Žλc(a)

N ≤ C2N . (3.17)

As a consequence
lim
N→∞

πλc(a)(ŠaN ) = 1. (3.18)

Proof. To shorten the expressions involved in the above lemma, we write

Ȳ (N, l, r) := exp (F (λ)(r − l)− lq(〈aN〉/l)− (N − r)q(〈aN〉/(N − r))) . (3.19)

From Lemma 3.2 it is sufficient to show that when λ = λc(a)

∑
r,l

√
1

l − 〈aN〉+ 1

√
1

N − r − 〈aN〉+ 1
Ȳ (l, r) (3.20)

is bounded away from zero and infinity. If one allows r and l to assume real values, then
the quantity in the exponent of Ȳ (l, r), that is

y(l, r) := (r − l)f(λ)− lq(〈aN〉/l)− (N − r)q(〈aN〉/(N − r)),

is maximized at (lmax, rmax), where lmax = N − rmax = (λ+1)〈aN〉
λ−1 .

Hence we can restrict the sum in (3.20) to

l ∈
[(

(λ+ 1)a

λ− 1
− ε
)
N,

(
(λ+ 1)a

λ− 1
+ ε

)
N

]
,
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r ∈
[(

1− (λ+ 1)a

λ− 1
− ε
)
N,

(
1− (λ+ 1)a

λ− 1
+ ε

)
N

]
.

For a fixed small ε > 0 as the rest of the sum gives a contribution which is exponentially
small in N . In this interval the square root term in (3.20) is always of order N−1. Hence
what remains to show is that∑

l∈[( (λ+1)a
λ−1 −ε)N,(

(λ+1)a
λ−1 +ε)N]∩2Z

∑
r∈[(1− (λ+1)a

λ−1 −ε)N,(1− (λ+1)a
λ−1 +ε)N]∩2Z

Ȳ (l, r),

is of order N .

Using the second order Taylor expansion (in r and l) of y around the maximal points
(the reader can check that the second derivative is of order 1/N ), we can find a positive
constant C such that uniformly in N

1

C

[
(l − lmax)2 + (r − rmax)2

]
N−1 ≤ y(l, r)−y(lmax, rmax) ≤ C

[
(l − lmax)2 + (r − rmax)2

]
N−1.

Combining this with the fact that y(lmax, rmax) = O(1) (and this is the only place where
λ = λc is needed), and usual results to compare sums and integrals, we obtain the
desired result.

To deduce (3.18) we use (3.5).

3.3 Proof of Theorem 2.2

We start by proving (2.8). Since the scaling limit when λ < λc(a), is trivial in the
absence of wall, the only thing left to check is that

lim
N→∞

πλ,aN (ŠaN ) = 0. (3.21)

This is true by Lemma 3.1 and in fact the convergence is exponentially fast.

Let us now move to the proof of (2.7). Thanks to Proposition 3.3, we know that when
λ ≥ λc(a) the polymer is typically pinned. Hence it is sufficient to prove the result for
the restricted measure πλ,aN · |ŠaN ) =: π̌. Set

L0 := Naλ/(λ− 2) and R0 := N(1− aλ/(λ− 2)).

Using Lemma 3.2, it is possible to check (we leave it as an exercise) that

lim
N→∞

πλc(a)
(
Lη ∈

(
L0 −Nα, L0 +Nα

)
, Rη ∈

(
R0 −Nα, R0 +Nα

))
= 1, (3.22)

for some α ∈ (1/2, 1).

What remains to check then is that conditionally to any value of Lη and Rη in the
interval given above, the probability appearing in (2.7) decays to zero (in fact it decays
to zero exponentially fast). This is very standard and we also leave it as an exercise to
the reader.

4 Dynamics

In what follows we analyze the dynamics introduced in Subsection 2.2. We first prove
lower and upper bounds on the relaxation time of the dynamics on different phases.
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4.1 Activation energy and lower bound on the relaxation time

In this section, we use the equilibrium estimates proved in Section 3 to get an
exponential lower-bound on the relaxation time of the dynamics for the λ > 2/(1− 2a)

phase. The idea is just to localize a bottleneck in the space of polymer configuration (see
[14, Section 13.3]).

Proposition 4.1. When λ > 2
1−2a , one has

lim inf
N→∞

1

N
log Trel ≥ E(a, λ), (4.1)

where E(a, λ) is defined in (2.18).

When λ > 2
1−2a , suppose that the polymer starts from an initial configuration that is

metastable (either the pinned state when λ < λc(a) or the unpinned one when λ > λc(a)).
Then, in order to attain equilibrium, it has to visit a configuration that has only one
contact with the wall. These configurations are difficult to reach, since they are very
few (when compared to the free phase) and they don’t present a substantial energy
compensation (as the pinned phase would). In other words, they represent an entropic
bottleneck.

Proof. We use the characterization (2.14) of the relaxation time to obtain the lower
bound with the function f(η) := 1ŠaN

the indicator function of trajectories with at least
one contact with the wall. We have

πλ,aN (ŠaN ) :=
ŽaN
ZaN

.

and thus

Varπλ,aN
(f) = πλ,aN (ŠaN )−

(
πλ,aN (ŠaN )

)2

=
ŽaN Z̄

a
N

(ZaN )2
.

One can compute explicitly the Dirichlet form of f . It is equal to

E(f) =
1

1 + λ
πλ,aN (∂ŠaN ), (4.2)

where for a set A ⊂ SaN ,

∂A := {η ∈ A | ∃η′ ∈ SaN \ A, rλ(η, η′) > 0}.

In particular ∂ŠaN is the set of polymers with exactly one contact with the wall. We have

πλ,aN (∂ŠaN ) =

(∑N−〈aN〉
l=〈aN〉 Ž

l,l
)

ZaN
.

Hence
Varπλ,aN

(f)

E(f)
= (1 + λ)

ŽaN Z̄
a
N

ZaN

(∑N−〈aN〉
l=〈aN〉 Ž

l,l
) . (4.3)

Using the same tools as in the proof of Lemma 3.1, we obtain that

lim
N→∞

1

N
log

N−〈aN〉∑
l=〈aN〉

Žl,l


= max
{x∈[a,1−a]}

(
xq(x−1a) + (1− x)q((1− x)−1a)

)
= log 2− q(2a). (4.4)
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Thus using what we know about the asymptotic behavior of ŽaN Z̄aN and ZaN (Proposi-
tion 2.1 and Lemma 3.1) we have

lim
N→∞

1

N
log

(
Varπλ,aN

(f)

E(f)

)
=

{
f(λ)− a log

(
1+dλ
1−dλ

)
+ q(2a) when λ ∈ ( 2

1−2a , λc(a)],

q(2a) when λ ∈ [λc(a),∞).
(4.5)

which, thanks to the characterization (2.14) of the relaxation time, yields the result.

4.2 Decomposition of Markov chains

Whereas deriving a lower bound on the relaxation time is quite straightforward once
the bottleneck has been properly identified, upper-bounds usually require more work.
Our strategy here is to decompose our Markov chain into smaller chains for which we
are able to compute the mixing time, using either the flow method (Lemma 4.9) or well
established results for dynamical pinning with zero boundary condition (from [5]).

In the present section, we quote the main result that allows for such decomposition.
Roughly speaking, this is a continuous time version of the estimates developed in [12],
which provide a way to estimate the spectral gap of a chain in terms of the gaps of its
decomposed parts.

For this, let S be a state space endowed with a collection of transition rates r(η, η′)
inducing a Markov process on S which is reversible with respect to some probability
measure π.

Assume that S is partitioned into a disjoint union of subset {Si}i∈M̄ and let π̄ be the
probability measure on M̄ induced by π which is defined by

π̄(i) =
∑
η∈Si

π(η), for i ∈ M̄. (4.6)

Define the generator L̄ acting on functions φ : M 7→ R by

(L̄φ)(i) =
∑

r̄(i, i′)(φ(i′)− φ(i)) (4.7)

where
r̄(i, i′) = (π̄(i))

−1
∑

η∈Si,η′∈Si′

π(η)r(η, η′). (4.8)

This defines a continuous time Markov process on M̄ that is reversible with respect to
π̄. This process is also referred to as the projection chain on M̄ . We also introduce, for
each i ∈M , the restricted chain in Si which corresponds to the original chain, with the
transitions that exit Si are canceled. Its generator is given by

(Lif)(η) =
∑
η′∈Si

ri(η, η
′)(f(η′)− f(η)). (4.9)

This induces a Markov process which is irreducible w.r.t πi := π(·|Si). We set gap,
(gapi)i∈M̄ and gap to be the spectral gap associated to L, (Li)i∈M̄ and L̄ respectively.

As remarked in [4, Proposition 2.1], the following adaptation of [12, Theorem 1] in
continuous time holds

Proposition 4.2. Set γ := maxi maxη∈Si

(∑
η′∈S\Si r(η, η

′)
)

, then

gap ≥ min

(
gap

3
,

gap(mini∈M gapi)

¯gap + γ

)
. (4.10)

In what follows, we will make repeated use of the above proposition in order to
estimate the relaxation time of the process from above.
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4.3 Upper-bound on the relaxation time

Proposition 4.3. When λ ≤ 2
1−2a , for all N sufficiently large

Trel ≤ N16. (4.11)

On the other hand when λ > 2
1−2a

lim sup
N→∞

1

N
log Trel ≤ E(a, λ), (4.12)

An important step for the proof is to show that the chain restricted to each of the local
wells ŠaN and S̄aN , mixes rapidly. For the unpinned phase, this is an easy consequence
of [15]. While for the pinned phase this is much more delicate and will be proved it in
Section 4.4.

Theorem 4.4. Fix any a ∈ (0, 1/2) and λ ≥ 0 and consider the process on the pinned
phase ŠaN , derived from the original rates in (2.10) after the restriction introduced in
(4.9). Then,

gap1 ≥ c(a, λ)N−12, (4.13)

for every N ≥ 1.

Remark 4.5. The powers of N that are present in Proposition 4.3 and Theorem 4.4
are far from being optimal. It is reasonable to think that the spectral gap should be of
order N−2 when λ < 2/(1− 2a) but we are not able to prove this with our method. An
interesting issue would be to determine whether there is a critical slow-down of the
dynamics: if the spectral gap becomes much smaller when λ = 2/(1− 2a).

Proof of Proposition 4.3. We use Proposition 4.2, for the decomposition of the chain in
the two subspaces S1 := ŠaN and S2 := S̄aN . From Theorem 4.4 the relaxation time for
the chain restricted to S1 is smaller or equal to c(a, λ)N12, and according to Proposition
B.1 (proved in the Appendix) the relaxation time for the chain restricted to S2 is O(N2).
Furthermore γ is bounded above by N .

Hence the important thing is to control gap, i.e. to control the rate of jump from one
phase to the other.

We note that

r̄(1, 2) =
1

1 + λ

π(∂ŠaN )

π(ŠaN )
(4.14)

and thus

gap =
r̄(1, 2)

π̄(2)
=

1

1 + λ

ZaN

(∑N−〈aN〉
l=〈aN〉 Ž

l,l
)

Z̄aN Ž
a
N

. (4.15)

We deduce from (4.4), Lemma 3.1, (2.18) and Proposition 2.1, that

− lim
N→∞

1

N
log gap :=

{
0 if λ ≤ 2

1−2a ,

E(a, λ) if λ ≥ 2
1−2a .

(4.16)

This concludes the case λ > 2
1−2a .

To prove the inequality (4.11) we need to show that gap is bounded from below by an
appropriate power of N . From (4.15), using the Lemma 4.6 (see below) we have

gap ≥ c r̄(1, 2) ≥ c(a, λ)N−3 (4.17)
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We finish the proof using Proposition 4.2 to conclude that

gap ≥ min
(gap

3
,

gap min(gap1, gap2)

gap + γ

)
≥ c(a, λ) min

(
N−3,

N−3−12

N

)
≥ c(a, λ)N−16,

(4.18)

finishing the proof of the proposition modulo Lemma 4.6 which is established below.

Lemma 4.6. When λ ≤ 2
1−2a , there exists C = C(a, λ) > 0 such that

π(∂ŠaN )

π(ŠaN )
≥ CN−3. (4.19)

Proof. We just have to prove that

max
l∈{〈aN〉,〈aN〉+2,...,N−〈aN〉}

Žl,l ≥ c(a, λ)N−1 max
l,r∈Ma

N

Žl,r.

According to (3.11), it is enough to show that

max
l∈{〈aN〉,〈aN〉+2,...,N−〈aN〉}

Ȳ (N, l, l) ≥ c(a, λ) max
l,r∈Ma

N

Ȳ (N, l, r). (4.20)

Then, writing the inequality for the logarithm, it is sufficient to check that there
exists C > 0,

max
l∈{〈aN〉,〈aN〉+2,...,N−〈aN〉}

−lq(〈aN〉/l)− (N − l)q(〈aN〉/(N − l))

≥ max
(l,r)∈Ma

N

f(λ)(r − l)− lq(〈aN〉/l)− (N − r)q(〈aN〉/(N − r))− C. (4.21)

If we didn’t have the restriction that r and l are even integers, the l.h.s. of Equation
(4.21) would be maximized when l = N/2 and the r.h.s. when

l = N − r := min

(
〈aN〉
dλ

, N/2

)
,

which equals N/2 when λ ≤ 2
1−2a . This proves (4.21) if N/2 is even. If N/2 is not an even

integer, taking N/2 + 1 instead of N/2 only changes the value of

−lq(〈aN〉/l)− (l −N)q(〈aN〉/(N − l))

by a constant amount and thus (4.21) holds for a well chosen constant C.

4.4 Proof of Theorem 4.4

In this section we establish that the pinned phase of the polymer dynamics (see
Figure 2) mixes fast, uniformly in the parameters a ∈ (0, 1/2) and λ ∈ R. We do so by
using Proposition 4.2 for an appropriate decomposition of the dynamics in the pinned
phase. We use the partition (recall (3.8))

ŠaN =
⋃

(l,r)∈Ma
N

Šl,r.

We call gap(l, r) the spectral gap of the dynamics ηl,r restricted to Šl,r, gap the gap of
dynamics defined on Ma

N by (4.8). We can easily prove Theorem 4.4 using the following
result
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Proposition 4.7. The three following bounds hold for all N .

(i)
min

(l,r)∈Ma
N

gap(l, r) ≥ (1− cosπ/N).

(ii)
max

(l,r)∈Ma
N

max
η∈Šl,r

∑
η′∈ŠaN\Šl,r

rλ(η, η′) ≤ N.

(iii)
gap ≤ CN−10

Proof of Proposition 4.7 (i) and (ii). For the first point we show that ηl,r is composed
of three independent components, corresponding to the intervals [0, l], [l, r] and [r,N ]

(the middle one being possibly degenerated when l = r). More precisely, let {η1(t)}t≥0,
{η2(t)}t≥0 and {η3(t)}t≥0 be given by the restrictions of ηl,r(t) to [0, l], [l, r] and [r,N ]

respectively; η1(t) : {0, . . . , l} → Z+ being given by η1
x(t) = ηl,rx (t) and analogously for η2

and η3. Due to the inhibition of transitions at the connection points l and r, η1, η2 and η3

are independent dynamics. Hence for fixed l and r we have

gap(l, r) = min(gap1, gap2, gap3). (4.22)

The dynamics η1 and η3 are both corner-flip dynamics with constraint and enter the
frame-work of Appendix B. Hence from Proposition B.1

min(gap1, gap3) ≥ min((1− cos(π/l), (1− cos(π/(N − r)))) ≤ 1− cos(π/N).

Concerning η2, [5, Theorem 3.1] gives

gap2 ≥ 1− cos(π/(r − l)) ≥ 1− cos(π/N).

This proves part (i), while (ii) is easy to check from the definition of the rates (2.11).

The remaining and most delicate point is to estimate the spectral gap of the projection
chain (gap). The method we use for this is to use Proposition 4.2 again to reduce the job
to estimating spectral gap of a one dimensional chain.

4.5 Proof of Proposition 4.7 point (iii)

We partition Ma
N into the following disjoint subsets

Ma
N =

⋃
r∈[〈aN〉,N−〈aN〉]∩2Z

([〈aN〉, r] ∩ 2Z)× {r} =:
⋃

r∈[〈aN〉,N−〈aN〉]∩2Z

Mr. (4.23)

For this decomposed chain we have again γ ≤ N . We call X̄ the projection chain on
[〈aN〉, N − 〈aN〉] ∩ 2Z and gap2 its spectral gap. We call Xr the chain reduced to Mr

(which we can identify with 2Z ∩ [〈aN〉, r]) and gapr its spectral gap.

Proposition 4.8. There exists a constant C(λ) such that for all N

(i) gapr ≥ CN5/2, for r ∈ (2Z ∩ [〈aN〉, N − 〈aN〉])
(ii) gap2 ≥ CN5

Both Xr and X̄ are one dimensional Markov chains. Using the method of flows
introduced by Sinclair it is simple to control the spectral gap of such chains, as shown in
the following lemma.
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Lemma 4.9. If one has a reversible chain on {0, . . . , L} with equilibrium measure p and
transitions q that satisfies the two following conditions

(a) minn∈[1,L] max(q(n, n− 1), q(n− 1, n)) ≥ α
(b) For any n,

min(
∑
m≤n

p(m),
∑
m≥n

p(m)) ≤ βp(n)

Then the relaxation time of the chain is smaller than βL/α.

Proof. We have to estimate the quantity B of [14, Corollary 13.24], where our choice
for the paths (Γn,m) consists in taking the shortest nearest neighbor paths. For a given
e = (n− 1, n), Q(e) := p(n− 1)q(n− 1, n) = p(n)q(n, n− 1). The ratio for which we want
an upper bound is

1

Q(e)

∑
m≤n−1

∑
z≥n

p(m)p(z)L ≤ 1

αp(n)

∑
m≤n−1

∑
z≥n

p(m)p(z)L =
βL

α
(4.24)

We supposed here that max(q(n, n − 1), q(n − 1, n)) = q(n, n − 1), but it also works the
other way around.

Proof of Proposition 4.8. The plan of the proof is the same for the two points: prove that
the assumptions of Lemma 4.9 are satisfied some α and β using the estimates of Lemma
3.2.

Let us start with Xr. We can identify Mr with {0, . . . , L}, L = (r − 〈aN〉)/2. To check
the point (a) of Lemma 4.9, we remark that if l < r the rate at which Xr jumps from l to
l + 2 is equal to

1

1 + λ
× πλ,aN (ηl+2 = 0 | Lη = l, Rη = r) =

1

1 + λ

λZλr−l−2

Zλr−l
, (4.25)

and is bounded from below by a constant that depends only on λ (see [10, Theorem 2.2]).
The point (b) is equivalent to

min

∑
m≤l

Žm,r,
∑
m≥l

Žm,r

 ≤ βŽl,r. (4.26)

From (3.11)-(3.12), it is sufficient to prove .

min

∑
m≤l

Ȳ (N,m, r),
∑
m≥l

Ȳ (N,m, r)

 ≤ β

C
√
N
Ȳ (N, l, r). (4.27)

Let us rewrite Ȳ (N, l, r) to underline the dependence in l.

Ȳ (N, l, r) =: A(N, r) exp (−f(λ)l − lq(〈aN〉/l))

The reader can check that the function q is convex and hence that l 7→ −f(λ)l −
lq(〈aN〉/l) is a concave function. Then

U(l) := exp (−f(λ)l − lq(〈aN〉/l))

has a unique local maximum. As a consequence, for all l, U(m) ≤ U(l) either for all m ≥ l
or for all m ≤ l, thus

min(
∑
m≤l

U(m),
∑
m≥l

U(m)) ≤ NU(l). (4.28)
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This implies that (4.26) is satisfied for β = CN3/2, with a constant C that does not
depend N or r.

Let us now move to X̄, whose state space can be identified with {0, . . . , L}, L =

(N − 〈aN〉)/2. The rate at which X̄ jumps from r to r − 2 is equal to

1

1 + λ
πλ,aN (ηr−2 = 0 | Rη = r)

=
1

1 + λ
πλ,aN (ηr−2 = 0 | Rη = r, Lη ≤ r − 2)× πλ,a(Lη ≤ r − 2| Rη = r) (4.29)

From (4.25) and the comment below it

πλ,aN (ηr−2 = 0 | Rη = r, Lη ≤ r − 2) ≥ c(λ) > 0.

For the second factor we remark that

πλ,a(Lη ≤ r − 2| Rη = r) ≥ πλ,a(Lη = r − 2| Rη = r)

πλ,a(Lη = r − 2| Rη = r) + πλ,a(Lη = r| Rη = r)

≥ min

(
1/2,

πλ,a(Lη = r − 2| Rη = r)

πλ,a(Lη = r| Rη = r)

)
, (4.30)

and that (recall (3.16))

πλ,a(Lη = r − 2| Rη = r)

πλ,a(Lη = r| Rη = r)
=
λQ((r − 2), 〈aN〉)

Q(r, 〈aN〉)
≥ CN−1,

where the last inequality is obtained by using Lemma A.1 to replace Q by binomial
coefficients.

Hence we can choose α = CN−1 in Lemma 4.9. For point (b) of Lemma 4.9 we need
to prove that

min

∑
q≤r

Žq,
∑
q≥l

Žq

 ≤ βŽr. (4.31)

where
Žr =

∑
l≤r

Žl,r

is the partition function restricted to trajectories which satisfies Rη = r. Changing β by
a factor CN , on can replace Žr by

V (r) =
∑
l≤r

Ȳ (N, l, r).

Then let us call lmax the point where the maximal value of −f(λ)l − lq(〈aN〉/l) is
reached. Since l 7→ Ȳ (N, l, r) is unimodal, its maximal value on {l |l ≤ r} is reached at
min(lmax, r) and hence

1 ≤ V (r)/Ȳ (N,min(lmax, r), r) ≤ N (4.32)

Hence by changing β by a factor N again we can replace V (r) by Ȳ (N,min(lmax, r), r).
The reader can check that the function r → Ȳ (N,min(lmax, r), r) is log-concave and thus
unimodal. Hence it satisfies

min(
∑
q≤r

Ȳ (N,min(lmax, q), q),
∑
q≥r

Ȳ (N,min(lmax, q), q)) ≤ NY (N,min(lmax, r), r). (4.33)

and (4.31) is satisfied with β = CN3 (one multiplies by N to have the inequality for V
and by N again to have it for Žr).

EJP 20 (2015), paper 17.
Page 19/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3241
http://ejp.ejpecp.org/


Metastable wetting

5 Proof of Theorem 2.4

In this section, we will make use of the techniques in [1], and the estimates in
the remainder of this article to establish Theorem 2.4. The reference [1] gives a very
convenient way to look at metastability using martingales and incorporates interesting
techniques introduced in [2].

For this proof, we are going to make use of the following result

Theorem 5.1 ([1]). Let XN
t be Markovian processes on spaces ΩN which are partitioned

into EN1 and EN2 = (E2
1 )c, and suppose that

πN (EN1 )� πN (EN2 ), where πN is the stationary measure for XN
t , (5.1)

gapN � min{gapN1 , gapN2 }, where gapNi is the spectral gap of XN
t restricted to ENi .

(5.2)

Then, starting from πN1 (·) = πN (·|EN1 ), the finite dimensional distributions of the process
1IEN1 (XN

tTrel
) converge to that of Xt, where Xt jumps from one to zero at rate one and then

is absorbed.

Proof. The above theorem is not stated as above in [1], but we now indicate how to
deduce such statements from this article. We have to verify conditions (L1) and (L2G)
from Theorem 2.2 of [1]. In view of (5.1), we can deduce (L2) and consequently (L2G).

Since we are dealing with only two valleys (EN1 and EN2 ), we can use Lemma 2.9 of
[1] to reduce (L1) to (5.2). In reference [1], after this lemma, there is an explanation of
why the jump rates of the limiting process Xt should be as stated, see also (5.1) and the
first paragraph in Subsection F in [1].

Observe also that the time rescaling Trel corresponds to that in Lemma 2.9 of [1].

Proof of Theorem 2.4. Joining the results in Theorem 4.4, Propositions 4.1 and B.1, we
can easily obtain (5.1) and (5.2) whenever λ > 2a/(1− 2a) with λ 6= λc(a). This implies
Theorem 2.4.

Remark 5.2. It is natural to ask whether one can obtain a stronger convergence than
that stated in Theorem 2.4. This would correspond for instance to establishing the
condition (L4U) in Lemma 2.5 of [1] for properly chosen Ex’s. It is clear that under
our partition S̄aN and ŠaN this cannot be true. By defining well separated sets Ē and
Ě corresponding to the free and pinned phases respectively, one could easily verify
condition (L4U) when η ∈ Ē . However the case η ∈ Ě seems more challenging and we
leave it as an exciting open problem.

A less ambitious improvement that is possible to be obtained in Theorem 2.4 is the
convergence of the semi-group (see Proposition 2.7 of [1]). This requires us to prove
(L4), which we sketch below.

Let us now estimate the probability of making the metastable transition from R to
Rc before the relaxation within R. This corresponds to the hypothesis (L4) in [1]. For
this, we denote by Er and P r the expectation and probability measures governing the
process ηt reflected when exiting R. Then, for any given time T ,

ErπR

[ ∫ T/2

0

1IXs∈∂Rδs
]

= TπR(∂R)/2, (5.3)

by Fubini. Moreover,∫ T

0

1IXs∈∂Rds ≥
(
T
2 ∧ (H(∂R)c ◦ θH∂R)

)
· 1IH∂R<T/2, (5.4)
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whose expectation is at least cPπR [H∂R < T/2]. Therefore

P rπR [H∂R < T ] ≤ cTπR. (5.5)

This proves (L4) of [1] with help of Proposition 4.3 and (4.4).

Remark 5.3. For polymer dynamics there is another trail to follow in order to improve
Theorem 2.4, using monotonicity of the system. As shown in [5, Section 2], pinning
dynamics have nice order preserving properties. This has been used in [4, Theorem 1.3]
to prove a metastable behavior for the polymer interacting with a repulsive interface
which can be crossed, providing a slightly stronger result than ours. We believe that the
proof of [4] could in principle be replicated in our case, but we did not wish to reproduce
a long proof here.

A Wall avoiding random walks

Lemma A.1. For a fixed a ∈ (0, 1/2) for the symmetric nearest random walk on Z

lim
N→∞

sup
l∈[〈aN〉,N]

l even

∣∣∣P [Sn > 0, ∀n ∈ (0, l] | Sl = 〈aN〉]− 〈aN〉
l

∣∣∣ = 0. (A.1)

Proof. First let us consider a random-walk with drift 〈aN〉l , i.e. with IID increments

satisfying P̃[Sn+1 − Sn = ±1] = 1
2

(
1± 〈aN〉l

)
instead of the symmetric random-walk. As

the walk is conditioned to Sl = 〈aN〉 one has

P [Sn > 0, ∀n ∈ (0, l] | Sl = 〈aN〉] = P̃ [Sn > 0, ∀n ∈ (0, l] | Sl = 〈aN〉] . (A.2)

We now claim that the right hand side of the above equation does not change much if we
drop the conditioning. More precisely∣∣∣P̃ [Sn > 0, ∀n ∈ (0, l] | Sl = 〈aN〉]− P̃ [Sn > 0, ∀n ∈ (0, l]]

∣∣∣ ≤ c(a)N−1/10. (A.3)

For this, we define a coupling Q between the two above probabilities, which goes as
follows.

• One first samples the random variables ξ1, . . . , ξl ∈ {−1, 1} uniformly conditioned
on their sum being 〈aN〉. Clearly, the partial sums Sn of ξi’s have distribution
P̃[·|Sl = 〈aN〉].

• Then, one samples a random variable Sl under P̃ independently from the above
and write ∆ for the even number Sl − 〈aN〉.

• Finally, if ∆ ≥ 0 (respectively ∆ < 0) we flip |∆|/2 of the variables ξi which had
value +1 (respectively −1). We call ξ′i the modified increments and observe that
their partial sum S′n has distribution P̃[·].

Now we can estimate∣∣∣P̃ [Sn > 0, ∀n ∈ (0, l] | Sl = 〈aN〉]− P̃ [Sn > 0, ∀n ∈ (0, l]]
∣∣∣

≤ Q[ξi 6= ξ′i for some i ≤ 〈N1/6〉] +Q[Sn touches 0 after 〈N1/6〉]

+Q[S′n touches 0 after 〈N1/6〉].

(A.4)

The last term above is clearly smaller or equal to c(a) exp{−c′(a)N−1/6}, by a large
deviations bound. We now observe that Q[Sn touches 0 after 〈N1/6〉] is non-decreasing
in l (by a coupling argument), so we can assume that l = N . Again, a simple large
deviations estimate is enough to bound this term by c(a) exp{−c′(a)N−1/6}.
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To estimate Q[ξi 6= ξ′i for some i ≤ 〈N1/6〉], we consider two separate cases:
Case 1 (l−〈aN〉 ≤ N2/3) - In this case, we expect both Sn and S′n to give only upward

steps before N ′ = 〈N1/6〉. In fact a crude estimate gives

EQ[(N ′−SN ′)/2] ≤ N ′

〈aN〉
l − 〈aN〉

2
≤ N1/6+2/3

2〈aN〉
N>c(a)

≤ N1/6+2/3−1

a
≤ c(a)N−1/6. (A.5)

The same is true for S′ instead of S by a very similar argument. This finishes the proof
of (A.3) for the first case.

Case 2 (l−〈aN〉 ≥ N2/3) - In this case, we expect that the third step in the construction
of Q (when we change some of the ξi to ξ′i) does not select any index i ≤ N ′ to be updated.
This can be made precise by first estimating

Var(∆) = l

(
1 + 〈aN〉

l

)
l

(
1− 〈aN〉2

)
2

≤ l − 〈aN〉, (A.6)

so that
P [|∆| ≥ (l − 〈aN〉)3/5] ≤ (l − 〈aN〉)1−6/5 = (l − 〈aN〉)−1/5. (A.7)

We can now evaluate

Q[Si differs from S′i for some i ≤ N 〈N
1/6〉] ≤ EQ

[
#{i ≤ 〈N1/6〉; ξi 6= ξ′i}

]
≤ 〈N1/6〉(l − 〈aN〉)3/5

min
{

(l − 〈aN〉)/2, (l + 〈aN〉)/2
} + P

[
|∆| ≥ (l − 〈aN〉)3/5

]
≤ 2N1/6(l − 〈aN〉)−2/5 +N−1/10 ≤ 3N−1/10.

(A.8)

This finishes the proof of (A.3).
We now conclude the proof of the Lemma, by observing that

P̃
[
∃n ≥ (0,

√
l], Sn = 0

]
=
〈aN〉
l

(A.9)

and combining this with (A.3).

B Corner-flip dynamics with constraint

Let M and L be integers such that |M | ≤ L and L−M is even. Set

SML :=
{
η = (ηx)x∈[0,L] | η0 = 0, ηL = M, and |ηx+1 − ηx| = 1,∀x ∈ [0,M ]

}
.

We define the partial order ≤ on SML by

η ≤ η′ ⇔ ηx ≤ η′x∀x ∈ [0, L]. (B.1)

Now given, χ ≤ ξ in SML , we define

SML (χ, ξ) :=
{
η ∈ SML | χ ≤ η ≤ ξ

}
. (B.2)

The corner-flip dynamics on SML (χ, ξ) is defined by the following transition rates
(recall the definition of ηx):

c(η, ηx) = 1
21{ηx∈SML (χ,ξ)},

c(η, η′) = 0 if η′ /∈ {ηx | x ∈ {1, . . . , L− 1}}.
(B.3)

Proposition B.1. The spectral gap of the corner-flip dynamics in SML (χ, ξ) satisfies

gapML (χ, ξ) ≤ (1− cos(π/L)). (B.4)

Proof. The proof of this statement is done for the corresponding discrete time Markov
chain in [15], in the more general setup of lozenge tiling. The statement appears in the
last line of Table 1 and is obtained by combining Theorem 7 with Lemma 1.
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