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From Sine kernel to Poisson statistics
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Abstract
We study the Sineβ process introduced in [B. Valkó and B. Virág. Invent. math. 177
463-508 (2009)] when the inverse temperature β tends to 0. This point process has
been shown to be the scaling limit of the eigenvalues point process in the bulk of
β-ensembles and its law is characterized in terms of the winding numbers of the
Brownian carrousel at different angular speeds. After a careful analysis of this family
of coupled diffusion processes, we prove that the Sineβ point process converges
weakly to a Poisson point process on R. Thus, the Sineβ point processes establish a
smooth crossover between the rigid clock (or picket fence) process (corresponding to
β = ∞) and the Poisson process.
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1 Introduction and main result

Although random matrices were originally introduced by John Wishart [24] in 1928
as a tool to study population dynamics in biology through principal component analysis,
they became very popular much later in 1951 when Wigner [23] postulated that the
fluctuations in positions of the energy levels of heavy nuclei are well described (in
terms of statistical properties) by the eigenvalues of a very large Hermitian random
matrix. Random matrix theory (RMT) is now an active research area in mathematics
and theoretical physics with applications in statistics, biology, financial mathematics,
engineering and telecommunications, number theory etc. (see [6, 7, 18, 13, 1] for a state
of the art).

The classical models of Hermitian random matrices are the Gaussian orthogonal,
unitary and symplectic ensembles. It is well known that the joint law of the eigenvalues
of the matrices in those Gaussian ensembles is the Boltzmann-Gibbs equilibrium measure
of a one-dimensional repulsive Coulomb gas confined in a harmonic well. More precisely,
this joint law has a probability density Pβ on RN (N is the dimension of the square
matrices) given by

Pβ(λ1, · · · , λN ) =
1

ZN

∏
i<j

|λi − λj |β exp(−Nβ
4

N∑
i=1

λ2i ) (1.1)
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From sine kernel to Poisson statistics

where the inverse temperature β = 1 for the Gaussian orthogonal ensemble, respectively
β = 2, 4 for the unitary and symplectic ensembles. The linear statistics of the point pro-
cesses with joint probability density functions (jpdf) Pβ , β = 1, 2, 4 have been extensively
studied in the literature with different methods [6, 18].

In 2002, Dumitriu and Edelman [11] came up with a new explicit ensemble of random
tri-diagonal matrices whose eigenvalues are distributed according to the jpdf Pβ for
any β > 0 (see also [5, 2] where invariant ensembles associated to general β were
constructed).

Those tri-diagonal matrices have been very useful in the last decade, leading to
important progress on the understanding of the local eigenvalues statistics in the limit
of large dimension N for general β > 0. At the edge of the spectrum, it was first proved
[20] that the largest eigenvalues converge jointly (when zooming in the edge-scaling
region of width N−2/3 around 2) to the low lying eigenvalues of a random Schrödinger
operator called the stochastic Airy operator (see also [12]). Similar results were proved
for the bulk in [22] by Valkó and Virág. For λ belonging to the Wigner sea (−2, 2), the
authors of [22] consider the point process

ΛN := (2πNρ(λ) (λi − λ))i=1,··· ,N (1.2)

where (λ1, · · · , λN ) is distributed according to Pβ and ρ(λ) = 1
2π

√
4− λ2 is the Wigner

semi-circle density. Indeed, the mean level spacing around level λ for the points with
law Pβ is approximately 1/(Nρ(λ)) when N � 1. The mean point spacing of ΛN defined
in (1.2) is therefore of order 2π and in this scaling, one can now investigate the limiting
statistics of this point process when N →∞. The authors of [22] precisely answer this
question proving that the point process ΛN converges in law 1 to a point process Sineβ
on R first introduced in [22] and characterized in terms of a family (αλ)λ∈R of coupled
one-dimensional diffusion processes, the stochastic sine equations. As expected for the
eigenvalues statistics in the bulk, the point process Sineβ is translation-invariant in
law. The family of diffusions (αλ)λ∈R can be interpreted as the hyperbolic angle of the
Brownian carousel with parameter λ and its law is characterized as follows: Given a
(driving) complex Brownian motion (Zt)t≥0, the diffusions αλ, λ ∈ R satisfy

dαλ = λ
β

4
e−

β
4 t dt+ Re((e−iαλ − 1)dZt) , αλ(0) = 0 . (1.3)

Note that all the diffusions αλ, λ ∈ R are adapted to the filtration of the Brownian motion
(Zt). This coupling induces a strong interaction between the diffusions which makes
the joint law difficult to analyse, as we shall see. A key feature shared by the processes
αλ, λ ∈ R is that they all converge almost surely as t→∞ to a limit αλ(∞) which is an
integer multiple of 2π. The characterization of the law of the Sineβ point process 2 can
now be enunciated as follows

(Sineβ([λ, λ′]))λ<λ′
(d)
=

(
αλ′(∞)− αλ(∞)

2π

)
λ<λ′

. (1.4)

In this paper, we are interested in the limiting law of the Sineβ process when the
inverse temperature β goes to 0. Theorem 1.1 is the main result of this paper and gives
the convergence as β → 0 of the Sineβ process towards a Poisson point process onR. This
convergence at the continuous (N =∞) level seems rather natural since taking β → 0

amounts to decreasing the electrostatic repulsion (and hence the correlation) at the

1The convergence is with respect to vague topology for the counting measure of the point process.
2If A is a Borel set of R, Sineβ(A) inside A denotes the number of points inside A. In other words, Sineβ is

the counting measure of the point process.
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Figure 1: (Color online). Sample paths of two diffusions αλ/(2π) (blue curve) and αλ′/(2π)

(red curve) for λ < λ′ and for a small value of β. We see that whenever bαλ/(2π)c jumps,
bαλ′/(2π)c jumps at the same time in agreement with Lemma 3.4.

discrete level, i.e. between the N points distributed according to Pβ . If one takes β = 0

abruptly for fixed N , the probability density P0 corresponds (up to a rescaling depending
on β) to the joint law of independent Gaussian variables and it is then straightforward to
check the convergence (as N →∞) of the point process with law P0 towards a Poisson
process. Theorem 1.1 exchanges the order of the limits β → 0 and N →∞, describing
the statistics when N → ∞ first and then β → 0. It also gives the precise rate of the
convergence.

Theorem 1.1. As β → 0, the Sineβ point process converges weakly in the space of
Radon measure (equipped with the topology of vague convergence [15]) to a Poisson
point process on R with intensity dλ

2π . In particular, we have, for any k ∈ N and λ < λ′,

P[Sineβ [λ, λ′] = k]→β→0 exp

(
λ− λ′

2π

)
(λ′ − λ)k

(2π)kk!
,

and the numbers of points of Sineβ inside two disjoint intervals are asymptotically
independent.

Let us briefly discuss some implications of Theorem 1.1 and mention a few related
questions on the spectral statistics of random matrices and random Schrödinger opera-
tors.

In [16], the authors have shown that the circular β-ensemble, which was later shown
to be Sineβ in [19], interpolates between Poisson and clock distributions on the circle
(point process with rigid spacings like the numerals on a clock) by considering random
CMV matrices. Theorem 1.1 provides a more precise description of this interpolating
process on the Poisson process side.

In our study, we are led to examine a time homogeneous family of diffusions (θλ)λ∈R
defined as

dθλ = λ
β

4
dt+ Re((e−iθλ − 1)dZt) , θλ(0) = 0 . (1.5)

This family of coupled diffusions also appears in [17] to describe the law of the limiting
point process of a certain critical random discrete Schrödinger operator. Our result can
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be extended in this context to prove that this critical Schrödinger operator continuously
interpolates between the extended (clock/picket fence) and localized (Poisson) regimes.
More precisely, one could prove using our ideas that the random spectrum has Poissonian
statistics in the limit of large temperature.

Let us also compare the results stated in Theorem 1.1 with those of a previous work
[4] where we consider the stochastic Airy ensemble, Airyβ , obtained in the scaling limit
of β-ensembles at the edge of the spectrum. In this context, we proved that the number
of points Airyβ(] −∞, λ]) inside the interval ] −∞, λ] displays Poisson statistics in the
small β limit. This permitted us to obtain the limiting distributions as β → 0 of each of the
lowest eigenvalues (individually) of the Airyβ ensemble. In particular, we obtained the
weak convergence of the TW (β) distribution towards the Gumbel distribution. Although
the Sineβ and Airyβ characterizations in law (in terms of a family of coupled diffusions)
look very similar, the analysis of the limiting marginal statistics of the number of points
inside a finite closed interval Airyβ [λ, λ′] for λ < λ′ and the asymptotic independence
when β → 0 of the respective numbers of points of the Airyβ point process into two
disjoint intervals remain open even after our study [4]. In this aspect, Theorem 1.1 gives
a much more powerful and complete description of the Sineβ process in the small β limit.
In this case, we are able to prove the asymptotic independence between the number
of points of the Sineβ process in two disjoint intervals. This part of the proof requires
new ideas in order to obtain estimates on the relative positions between two coupled
diffusions αλ and αλ′ . The nice feature of the Sineβ process is its translation invariance
in law. This property makes the analysis of Sineβ easier than the one of the Airyβ process.
The non-homogeneous intensity of the Airyβ process is governed by the edge-scaling
crossover spectral density of β-ensembles computed explicitly in [8, 14] for β = 2 (see
also [4]).

Other spectral statistics of random matrices at high temperature, i.e. when β → 0,
have been investigated in [2, 3]. In [2], the authors study the empirical eigenvalue
density in the limit of large dimension N for β-ensembles when β tends to 0 with N as
β = 2c/N where c > 0 is a constant. The authors compute the limiting spectral density
ρc(λ) explicitly in terms of parabolic cylinder function and establish a Gauss-Wigner
crossover, in the sense that the family ρc interpolate between the Gaussian probability
distribution (c = 0) and the Wigner semi-circle (c→ +∞). The case of Gaussian Wishart
matrices has also been studied in [3].

It would be interesting to have a description of the crossover statistics of the β-
ensembles obtained in the double scaling limits when β tends to 0 with N → ∞ (this
question is briefly discussed in [4] for the statistics at the edge of the spectrum).

Organization of the paper. We start in section 2 by looking at the limiting marginal
distributions of the random variables Sineβ [λ, λ′] for λ < λ′. We first study a classical
problem on the exit time of a diffusion trapped in the well of a stationary potential
(obtained by neglecting the slow evolution with time). Then, we prove that the jump
process of bαλ/(2π)c converges weakly to an (inhomogeneous) Poisson point process
by first approximating αλ with diffusions processes with piecewise constant drifts on a
subdivision of small intervals and then by using the convergence of the exit time of the
stationary well established previously. This requires estimates on the sample paths of a
single diffusion, in a spirit similar to [4, 10]. In Section 3, we investigate the asymptotic
independence of the numbers of points of Sineβ in two disjoint intervals. We prove a
crucial estimate regarding the typical relative positions of two diffusions αλ and α′λ for
λ < λ′. Loosely speaking, the main point is to use this estimate to prove that, in the
limit β → 0, the jumps of the process bαλ/(2π)c immediately follow those of bαλ′/(2π)c
(see Fig. 1) while the processes bαλ/(2π)c and b(αλ′ − αλ)/(2π)c never jump at the same
time (see Fig. 4). The asymptotic independence follows essentially from the fact that
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two Poisson point processes adapted to the same filtration are independent if and only if
they never jump simultaneously.

We gather in the next paragraph important properties of the family (αλ) already
established in [Section 2.2, [22]] that we will use throughout the paper.

First properties of the coupling of the diffusions αλ:

(i) For all λ < λ′, αλ′ − αλ has the same distribution as αλ′−λ ;

(ii) “Increasing property”: αλ(t) is increasing in λ ;

(iii) bαλ(t)/(2π)c is non-decreasing in t ;

(iv) E[αλ(t)] = λβ4
∫ t
0
e−βs/4ds ;

(v) limt→∞ αλ(t)/(2π) exists and is an integer a.s.

We will also use the following notation:

{x}2π = x− 2π
⌊ x

2π

⌋
.
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2 Limiting marginal distributions

We are first interested in the limiting law of the random variable Sineβ [0, λ] when
β → 0 for a single fixed λ. In this case, we re-write the diffusion αλ in a more convenient
way:

dαλ = λ
β

4
e−

β
4 tdt+ 2 sin(

αλ
2

)dBt , (2.1)

where B is a real standard Brownian motion (which depends on λ). Let us introduce
the change of variable Rλ := log(tan(αλ/4)). A straightforward computation (see [22])
shows that:

dRλ =
1

2

(
λ
β

4
e−

β
4 t cosh(Rλ) + tanh(Rλ)

)
dt+ dBt , Rλ(0) = −∞ . (2.2)

2.1 Trapping in the stationary potential

In this subsection, we study an exit time problem for a Langevin diffusion Sλ evolving
in a stationary potential Vβ defined for r ∈ R as

Vβ(r) := −1

2

(
λ
β

4
sinh(r) + log cosh(r)

)
.
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This problem is relevant to our study thanks to the slow variation with time of the
non-stationary potential as β → 0 in which the diffusion Rλ evolves. The diffusion Sλ
satisfies the following stochastic differential equation

dSλ = −V ′β(Sλ) dt+ dBt , Sλ(0) = −∞ . (2.3)

In the whole paper, the diffusions Rλ and Sλ defined respectively in (2.2) and (2.3) are
coupled, driven by the same Brownian motion B. Under this coupling, we have almost
surely

Rλ(t) ≤ Sλ(t)

for all t ≤ ζ where ζ is the first explosion (stopping) time

ζ := inf{t > 0 : Sλ(t) = +∞} .

' log(1/β)/2

' log(1/β)

(0, 0)aβ

bβ

Figure 2: The potential Vβ(r) as a function of r.

In this paragraph we investigate the limiting law of the stopping time ζ through its
Laplace transform defined for ξ > 0 as

gξ(r) := Er[e
−ξζ ] ,

where r is the initial position of the diffusion Sλ.
We know from classical diffusion theory (see also [4]) that gξ satisfies

1

2
g′′ξ (r)− V ′β(r)g′ξ(r) = ξgξ(r) , with gξ(r)→ 1 as r → +∞ . (2.4)
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Let us first examine the expectation of the first explosion time of Sλ. Due to the
strong barrier separating the local minimum and the local maximum (see Fig. 2), it is
natural to expect the asymptotic of this mean exit time not to depend on the starting
point of the diffusion, when β → 0, as long as it is located in the well (“memory-loss
property”). This is the purpose of Proposition 2.1. We then show that this first exit
time properly rescaled by its mean value converges in law to an exponential distribution
(Proposition 2.2) when the starting point is in the well.

Proposition 2.1. Suppose that the diffusion Sλ starts from r := rβ such that rβ → −∞.
Then its expected exit time denoted tβ(r) := Er[ζ] has the following equivalent when
β → 0:

tβ(rβ) ∼ 8π

βλ
.

Proof of Proposition 2.1. From (2.4), it is easy to see that the expected exit time tβ(r)

satisfies the boundary value problem

1

2
t′′β(r)− V ′β(r)t′β(r) = −1 , with tβ(r)→ 0 as r → +∞ . (2.5)

Solving (2.5) explicitly we obtain the integral form

tβ(r) = 2

∫ +∞

r

dx

∫ x

−∞
exp (2 [Vβ(x)− Vβ(y)]) dy . (2.6)

By extracting carefully the asymptotic behavior of this integral in the limit β → 0 (see
Appendix A.1), we obtained the desired result.

The Laplace transform of the exit time satisfies the fixed point equation

gξ(r) = 1− 2ξ

∫ +∞

r

dx

∫ x

−∞
exp(2[Vβ(x)− Vβ(y)])gξ(y)dy.

With classical arguments similar to those of [4], we prove the following proposition in
Appendix A.1.

Proposition 2.2. Conditionally on Sλ(0) = r := rβ such that rβ → −∞ when β → 0, the
first explosion time ζ of the diffusion (Sλ(t))t > 0 converges weakly when rescaled by the
expected exit time 8π/(βλ) towards an exponential distribution with mean 1.

The process θλ such that Sλ := log tan(θλ/4) satisfies

dθλ = λ
β

4
dt+ 2 sin(

θλ
2

)dBt .

Proposition (2.2) translates into a convergence of the stopping time ζ2π := inf{t > 0 :

θλ(t) > 2π}.
Proposition 2.3. Conditionally on θλ(0) = θ0 := θβ0 such that θβ0 → 0+ when β → 0, the
stopping time βλ

8π ζ2π converges weakly when β → 0 towards an exponential distribution
with mean 1.

2.2 Convergence of the jump process

We consider the diffusion αλ defined in (1.5) or equivalently for a single λ, in (2.1).
For k ∈ N, let

ζk := inf{t > 0 : αλ(t) > 2kπ} . (2.7)

Note that those stopping times correspond to the jumps of the process bαλ/(2π)c. We
denote by Ft the filtration associated to the diffusion process αλ. In this paragraph, we
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will sometimes omit the subscript λ in αλ to simplify the notations. We consider the
rescaled empirical measure µβλ of the β

4 ζk defined on R+

µβλ[0, t] =

+∞∑
k=1

δζk

[
0,

8πt

β

]
. (2.8)

We divide the time interval R+ into random small intervals Ik := [Skn
8π
β ,

Sk+1

n
8π
β ], k ∈ N,

independent of the diffusion α where S0 = 0 and:

Sk :=

k∑
i=1

τi ,

where the τi are i.i.d. random variables with mean 1 uniformly distributed on [1/2, 3/2].
For each k ∈ N, conditionally on FSk

n
8π
β

, we define the two diffusion processes α+
n

and α−n such that, for t ∈ Ik,

dα+
n = λ

β

4
e−

Sk
n 2πdt+ 2 sin(

α+
n

2
)dBt , α+

n (
Sk
n

8π

β
) = α(

Sk
n

8π

β
) ,

dα−n = λ
β

4
e−

Sk+1
n 2πdt+ 2 sin(

α−n
2

)dBt , α−n (
Sk
n

8π

β
) = α(

Sk
n

8π

β
) .

By the increasing property, it follows that for any k ∈ N and t ∈ Ik, we have

α−n (t) ≤ α(t) ≤ α+
n (t) .

Theorem 2.4. As β → 0, the empirical measure µβλ converges weakly in the space of
Radon measures (equipped with the topology of vague convergence [15]) to a Poisson
point process on R+ with inhomogeneous intensity λ e−2πt dt. In particular, we have, for
any k ∈ N,

P[µβλ[0, t] = k]→β→0 exp(− λ

2π
(1− e−2πt)) ( λ2π )k(1− e−2πt)k

k!
. (2.9)

The proof of Theorem 2.4 is done in the next paragraph 2.3. It uses a careful analysis
of the behaviour of a single diffusion αλ in the small β limit.

Remark 2.5. Theorem 2.4 establishes the convergence of the rescaled empirical mea-
sure of the jumps of the process bαλ/2πc under the initial condition αλ(0) = 0. It is easy
to generalize this result to other starting times s0 and positions αλ(s0) 6= 0 such that s0
scales with 1/β and αλ(s0) is close enough to 0 modulo 2π.

More precisely, fix a time s > 0 and denote by µβλ,s,x the rescaled counting mea-
sure of the jumps of bαλ/2πc on the time interval [8πs/β,+∞) with the initial condition
αλ(8πs/β) = x. Then, for any family of starting points (xβ) such that {xβ}2π 6 4 arctan(β1/4),
the measure µβλ,s,xβ converges weakly in the space of Radon measures towards a Poisson

point process on [s,+∞) with inhomogeneous intensity λ e−2πt dt.

Thanks to the equality in law

µβλ(R+)
(d)
=

αλ(∞)

2π

(d)
= Sineβ [0, λ] ,

we easily deduce from Theorem 2.4 the convergence of the marginals of the Sineβ point
process.

Corollary 2.6. Let λ < λ′. The random variable Sineβ [λ, λ′] converges weakly as β → 0

to a Poisson law with parameter λ′−λ
2π .
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2.3 Estimates for a single diffusion and proof of Theorem 2.4

We analyse in this paragraph the diffusion αλ and the jumps of bαλ/(2π)c in the
limit β → 0. The results we obtain are derived using the diffusion Rλ := log(tan(αλ/4))

satisfying the SDE (2.2). We defer the proof of those technical lemmas in Appendix A.2.
In the following, for all t > 0 and x ∈ R+, the law of the diffusion process αλ starting
from x at time t is denoted Px,t. When t = 0, we use the short cuts Px for Px,0 and and
P for P0,0.

In the following Lemma, we first prove that if the diffusion αλ starts just below 2π

modulo 2π, then bαλ/(2π)c will jump in a time of order log 1
β much shorter than the

typical time between two jumps (of order 1/β) with probability going to 1.

Lemma 2.7. Let 0 < ε < 1 and s > 0. Denote ŝ := 8πs/β. We define the first reaching
time

ζλ2π := inf{t ≥ ŝ : αλ(t) = 2π + 2πbαλ(ŝ)/(2π)c} . (2.10)

Then, there exists a constant c > 0 (depending only on s, ε and λ) such that for all β > 0

small enough,

P

[
ζλ2π < 9 log

1

β

∣∣∣∣{αλ(ŝ)}2π = 2π − 4 arctan(βε)

]
> 1− βc .

Lemma 2.7 permits us to show that the time spent by αλ away from 0 modulo 2π is
negligible compared to the time scale 1/β. This is the content of Lemma 2.8.

Lemma 2.8. Let t > s ≥ 0, x ∈ R+. Let us define

Ξβ(s, t, x) := Ex,8πs/β

[∫ 8π
β t

8π
β s

1{{αλ(u)}2π≥4 arctan(β1/4)}du

]
. (2.11)

Then, for all t ≥ s > 0, there exists C > 0 (depending only on t and λ) such that for all
β > 0 and x ∈ R+,

Ξβ(s, t, x) 6
C√
β

log
1

β
.

We can now prove Theorem 2.4 using the previous estimates:

Proof of Theorem 2.4.
The proof follows the same lines as the proof of [Theorem 4.1 in [4]]. The idea is to

approximate the number of jumps of the diffusion α by those of stationary diffusions and
to use the increasing property. To this end, we will use the subdivision of R+ introduced
above and the diffusions α+

n and α−n .
From Kallenberg’s theorem [15], we just need to see that, for any finite union I of

disjoint and bounded intervals, we have when β → 0,

E[µβλ(I)] −→ λ

∫
I

e−2πt dt , (2.12)

P[µβλ(I) = 0] −→ exp(−λ
∫
I

e−2πt dt) . (2.13)

Denote by [t1; t2] the right most interval of I, by J the union of disjoint and bounded
intervals such that I = J ∪ [t1; t2] and by t0 the supremum of J .

Let us use the random subdivision introduced above. It is crucial to control the
position of the diffusion at the starting point of all the sub-intervals. As a consequence of
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Lemma 2.8, with large probability, the diffusion α is close to 0 modulo 2π in the beginning
of each of the sub-intervals overlapping [0, t2]3.

More precisely, denote by Ck := {{α((8π/β)Sk/n)}2π 6 4 arctan(β1/4)} and consider:

C :=

b2nt2c+1⋂
k=0

Ck.

Every sub-interval intersecting [0, t2] is taken care of in this event as by definition
Sk ∈ [k/2, 3k/2]. Its probability is bounded from above by

P[Cc] 6
b2nt2c+1∑
k=0

P[{α((8π/β)Sk/n)}2π > 4 arctan(β1/4)]

6 2E[

∫ 3nt2+3

0

1{{α((8π/β)u/n)}2π>4 arctan(β1/4)}du]

6
n

4π
β Ξβ(0, 3t2 + 1, 0)→β→0 0

where we used the notation and result of Lemma 2.8 for the last line.
We now turn to the proof of 2.12. Note that thanks to the linearity of the expectation,

we simply need to prove (2.12) for intervals I of the form I = [0, t2]. The upper bound
simply follows from the SDE form:

E[α(t)] = λ
β

4

∫ t

0

e−βs/4ds .

We immediately derive:

E[µβ [0, t2]] = E[bα((8π/β)t2)/(2π)c] 6 λ

∫ t2

0

e−2πsds .

For the lower bound, denote by N+
k , N−k and Nk the number of jumps of α+

n , α−n and
α in the sub-interval [(8π/β)Sk/n, (8π/β)Sk+1/n].

E[µβ [0, t2]] >
b2nt2c+1∑
k=0

E[N−k 1{(Sk/n)<t2}|Ck]−
b2nt2c+1∑
k=0

E[N−k 1{(Sk/n)<t2}|Ck]P[Cck] .

The second sum of the RHS can be simply bounded from above by:

E[number of jumps of θλ in [0, 3 t2(8π)/β]]× sup
k∈{0,··· ,b2nt2c+1}

P[Cck]

P[Ck]
.

The first expectation is bounded from above by a number independent of β and the
second term (bounded by P[Cc]/(1 − P[Cc])) tends to 0 as β → 0. Moreover, thanks to
Proposition 2.3, we have

E
[
N+
k

∣∣Ck]→β→0 E[λ(τk+1/n) exp(−2πSk/n)].

Using the convergence of the Riemann sum when n → ∞, it gives the desired lower
bound.

Let us now examine the convergence 2.13 for a single interval [t1, t2] first. By the
Markov property:

P[µβ [t1, t2] = 0] 6 E
[ ∞∏
k=0

P
[
N+
k = 0

∣∣Ck, (τi)i]1{Sk+1/n > t1, Sk/n 6 t2}

]
+ P[Cc] .

3For the generalization of Remark 2.5, the initial position modulo 2π at time s0 belongs to the interval
[0, 4 arctan(β1/4)) so that the event C0 occurs almost surely by definition.

EJP 19 (2014), paper 114.
Page 10/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3742
http://ejp.ejpecp.org/
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Using the convergence in each of the sub-intervals (given by Proposition 2.3)

P
[
N+
k = 0

∣∣Ck]→β→0 E[exp(−λ(τk+1/n) exp(−2πSk/n)))],

we obtain:

lim sup
β→0

P[µβ [t1, t2] = 0] 6 E[

∞∏
k=0

exp(−λ(τk+1/n) exp(−2πSk/n)))1{Sk+1/n > t1, Sk/n 6 t2}] .

Thanks to the convergence of the Riemann sum when n → ∞, we deduce the upper
bound. The lower bound can be done using the same techniques as above. To generalize
the result to any finite union of intervals I, we use the simple Markov property which
gives

P[µβλ(I) = 0] = E[1{µβ(J)=0} P[µβ([t1, t2]) = 0|α(8πt0/β)]].

To conclude, let us introduce an independent random time U sampled uniformly in
[t0, t1]. With probability going to 1, α(8πU/β) belongs to an interval of the type [2π, 2π +

4 arctan(β1/4)). We can then iterate the previous arguments to obtain the result.

3 Asymptotic spatial independence

3.1 Ordering of two diffusions

For λ < λ′, we now control the expected time spent by the process {αλ′}2π below the
process {αλ}2π where αλ and αλ′ are coupled according to (1.5). The following Lemma
is a crucial step towards the proof of the asymptotic independence of the limiting point
process on disjoint intervals and will be used for the proof of Lemmas 3.4 and 3.5.

Lemma 3.1. Let t > 0, λ < λ′ and

Θβ(t) := E

[∫ 8π
β t

0

1{{αλ′ (u)}2π≤{αλ(u)}2π}du

]
.

Then, there exists two constants c, C > 0 (depending only on t and λ′) such that for all
β > 0,

Θβ(t) 6
C

β1−c .

Proof. We set

Eu := {{αλ′(u)}2π < {αλ(u)}2π} .

Before evaluating the probability of the event Eu, we need to introduce for u > 0 the last
jump time of the process bαλ′2π c before time u, i.e.

ζ(u) := sup{ζλ′k : k ∈ N, ζλ′k ≤ u} .

The main idea is to prove that any time u such that Eu occurs is associated to a jump
time of αλ′ right before u.

We set u0 := u− 9 log 1
β and bound from above the probability of the event Eu by

P [Eu] ≤ P
[
Eu ∩

{
ζ(u) ∈ [u0, u]

}]
+ P

[
Eu ∩

{
ζ(u) < u0

}]
≤ P

[
Eu ∩

{
ζ(u) ∈ [u0, u]

}]
+ P

 ⋂
s∈[u0,u]

Es

 (3.1)
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u

2π

0

ζ(u)

{αλ}2π
{αλ′}2π

u0

Figure 3: Representation of the event Eu ∩ {ζ(u) < u0}.

where we have noticed the inclusion Eu∩{ζ(u) < u0} ⊆
⋂
s∈[u0,u]

Es for the second line (see

Fig. 3). Indeed the definition of ζ(u) implies that the process bαλ′2π c has not jumped during
the time interval [ζ(u), u] so that the relative ordering (modulo 2π) {αλ′(t)}2π < {αλ(t)}2π
at time t = u has to be preserved for all t ∈ [ζ(u), u).

We now tackle the second probability of (3.1) using the fact that αλ is close to 0

modulo 2π with large probability:

P

 ⋂
s∈[u0,u]

Es

 ≤ P
 ⋂
s∈[u0,u]

Es ∩
{
{αλ(u0)}2π ≤ 4 arctan(β1/4)

}
+ P

[
{αλ(u0)}2π ≥ 4 arctan(β1/4)

]
.

We introduce the stopping time

ζ>(u0) := inf{t ≥ u0 : {αλ′(t)}2π > {αλ(t)}2π}

and notice that, conditionally on the event Au0
:= Eu0

∩
{
{αλ(u0)}2π ≤ 4 arctan(β1/4)

}
,

we have almost surely for all t ∈ [u0, ζ>(u0)],

{αλ′(t)− αλ(t)}2π = 2π − ({αλ(t)}2π − {αλ′(t)}2π) .

We define a diffusion process α̃λ′−λ and its associated first reaching time of 2π such that

dα̃λ′−λ(t) = (λ′ − λ)
β

4
e−

β
4 tdt+ Re((e−iα̃λ′−λ(t) − 1)dZt) , t ≥ u0

with α̃λ′−λ(u0) = 2π − ({αλ(u0)}2π − {αλ′(u0)}2π) ,

and ζ̃2π := inf{t ≥ u0 : α̃λ′−λ(t) = 2π} .

Endowed with those definitions, we have the following upper-bound

P

 ⋂
s∈[u0,u]

Es ∩ Au0

 = P [{ζ>(u0) ≥ u} ∩ Au0
]

≤ P
[
ζ̃2π ≥ 9 log

1

β

]
≤ βc

where we have used the equality in law (α̃λ′−λ(t), t ≥ u0) = (αλ′(t)− αλ(t), t ≥ u0) for
the second line and Lemma 2.7 (as well as the increasing property) to obtain the last
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upper-bound. Gathering the above inequalities, we obtain

P [Eu] ≤ P
[
ζ(u) ∈ [u0, u]

]
+ βc + P

[
{αλ(u0)}2π ≥ 4 arctan(β1/4)

]
.

Now, to conclude, we just have to integrate this latter inequality with respect to u. First
notice that we have almost surely∫ 8π

β t

9 log(1/β)

1{ζ(u)∈[u−9 log 1
β ,u]}du ≤ 9 log

1

β
µβλ′ [0,

8π

β
t] .

Integrating the other terms as well with respect to u ∈ [0, 8πβ t] and taking the expectation,
we get

Θβ(t) ≤ 9 log
1

β

(
1 + E

[
µβλ′ [0,

8π

β
t]

])
+ Ξβ(0, t, 0)

≤ 9 log
1

β

(
1 +

λ

2π

)
+ 8π t βc−1 + Ξβ(0, t, 0)

where Ξβ(0, t, 0) is defined in (2.11). The conclusion now follows from Lemma (2.8).

3.2 Limiting coupled Poisson processes

Lemma 3.1 shall be an important tool to prove the asymptotic independence between
αλ(∞) and αλ′(∞)− αλ(∞) for λ < λ′.

Theorem 2.4 gives the weak convergence of the random measures µβλ and µβλ′ in the
space of measures on R+ equipped with the topology of vague convergence denoted
M+(R+). Due to the equality in law

αλ′ − αλ
(d)
= αλ′−λ , (3.2)

Theorem 2.4 also implies the weak convergence of the (positive) random measure µβλ′−λ
such that for all t ≥ 0,

µβλ′−λ[0, t] :=

⌊
αλ′(t)− αλ(t)

2π

⌋
towards a Poisson measure Pλ′−λ with intensity (λ′ − λ) e−2πtdt.

We now fix λ < λ′ < λ′′ and work with the three diffusions αλ, αλ′ and αλ′′ coupled
according to (1.5). We are interested in the limiting joint distribution of the triplet of
random measures (µβλ, µ

β
λ′ , µ

β
λ′′−λ′) according to this coupling.

From the above convergences, it is straightforward to deduce the relative-compactness
of the family of the triplets of (random) measures

{
(
µβλ, µ

β
λ′ , µ

β
λ′′−λ′

)
, β > 0} (3.3)

for the weak topology over (M+(R+))3 equipped with the product topology of vague
convergence.

Let us take a sequence βk → 0 when k →∞ such that the processes(
µβkλ , µ

βk
λ′ , µ

βk
λ′′−λ′

)
(3.4)

converge jointly weakly in the product space when k →∞ to a triplet

(P(βk)
λ ,P(βk)

λ′ ,P(βk)
λ′′−λ′)
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of point measures on R+ whose marginal distributions are given respectively by the law
of the Poisson measures Pλ and Pλ′ and Pλ′′−λ′ and whose joint law depends a priori
on the chosen sub-sequence (βk). In the following, we study this triplet and we drop
the superscript (βk) to ease the notations. We shall in fact see later that all the possible
limit points have the same law. Therefore the law of the triplet does not depend on the
subsequence (βk) and the weak convergence of (3.3) holds (see Remark 3.6).

In the next Lemma, we regard the point measures Pλ,Pλ′ and Pλ′′−λ′ as Poisson
point processes and prove that they are indeed jointly Poisson processes on a common
filtration. This is an important step for our needs.

Lemma 3.2. Let λ < λ′ < λ′′ and F := (Ft)t≥0 be the natural filtration associated to the
process (Pλ,Pλ′ ,Pλ′′−λ′) i.e. such that

Ft := σ(Pλ(s),Pλ′(s),Pλ′′−λ′(s), 0 ≤ s ≤ t).

Then, the marginal processes Pλ and Pλ′ and Pλ′′−λ′ are (Ft)-Poisson point processes
with respective intensities λe−2πtdt and λ′e−2πtdt and (λ′′ − λ′)e−2πtdt.

The main point used to prove this Lemma is that all the diffusions (αλ, λ ≥ 0 are
measurable with respect to the same driving (complex) Brownian motion (Zt) as they
are strong solutions of the SDEs (1.5). A proof can be found in Appendix A.3.

Lemma 3.2 can easily be generalized to finitely many λ’s:

Lemma 3.3. Let us fix an integer k ≥ 3 and λ0 < λ1 < · · · < λk. For all i, j ∈ {1, · · · , k}
such that j > i, define the point measures Pλi and Pλj−λi as above. Let F := (Ft)t≥0 be
the filtration:

Ft := σ(Pλi(s),Pλj−λi(s), 0 ≤ s ≤ t, i, j ∈ {1, · · · , k} such that j > i).

Then, for all i, j ∈ {1, · · · , k} with j > i, the marginal processes Pλi and Pλj−λi are
(Ft)-Poisson point processes with respective intensities λi e−2πtdt and (λj − λi) e−2πtdt.

To fix notations, we will denote by (ξλi )i∈N resp. (ξλ
′

i )i∈N, (ξ
λ′−λ
i )i∈N the points associ-

ated to the Poisson processes Pλ and Pλ′ and Pλ′−λ such that

Pλ[0, t] =
∑
i

δξλi [0, t] , Pλ′ [0, t] =
∑
i

δξλ′i
[0, t] , Pλ′−λ[0, t] =

∑
i

δ
ξλ
′−λ
i

[0, t] .

For β > 0, we also recall the notations

µβλ[0, t] =
∑
i

δζλi [0,
8πt

β
] , µβλ′ [0, t] =

∑
i

δζλ′i
[0,

8πt

β
] , µβλ′−λ[0, t] =

∑
i

δ
ζλ
′−λ

i

[0,
8πt

β
] .

Lemma 3.4. Let λ < λ′. Then, we have almost surely

Pλ ⊆ Pλ′

i.e. for all i ∈ N, there exists j ≥ i such that ξλi = ξλ
′

j .

Proof. We have to prove that for any t > 0,

P
[
∃i : ξλi < t, ξλi 6∈ Pλ′

]
= 0 . (3.5)

The probability (3.5) is the increasing limit of the sequence (pn)n∈N defined as

pn := P

[
∃i : ξλi < t,∀j ≥ i, |ξλi − ξλ

′

j | >
1

2n

]
. (3.6)
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It suffices to prove that pn = 0 for any n. Let us introduce the probability

pβn := P

[
∃i :

β

8π
ζλi < t,∀j ≥ i, β

8π
|ζλi − ζλ

′

j | >
1

2n

]
. (3.7)

Denote byMp(R+) the space of point measures and recall that it is closed in the space
M+(R+) for the vague convergence topology. Notice that the set

{(µ, ν) ∈ (Mp(R+))2 : µ =

∞∑
i=1

δxi , ν =

∞∑
i=1

δyi ,∃i such that yi < t and ∀j, |yi − xj | >
1

2n
}

is open in (Mp(R+))2 equipped with the product topology of the vague convergence on
the space of point measures. It comes from the straightforward fact that if µk ∈Mp(R+)

converges towards µ ∈ Mp(R+) for the vague topology, the points of µk belonging to
[0, t] for all but finitely many k converge to points of µ in [0, t].

If n is fixed, we therefore have pn ≤ lim infβ→0 p
β
n using the joint convergence of

(µβλ, µ
β
λ′) in the space (Mp(R+))2 (along the subsequence (βk)) and the Portmanteau

theorem. It suffices to check that

lim sup
β→0

pβn = 0 .

We need to work with a random subdivision of the interval [0, 8πt/β]. As before, we
consider a sequence (τk)k∈N of i.i.d. positive random variables distributed uniformly in
[ 12 ,

3
2 ] and form the sum Sk =

∑k
i=1 τi.

Noting that for all x, y such that |x − y| ≤ 1/(2n), there exists k ∈ N such that
x, y ∈ [Sk/n, Sk/n+ 2/n], we obtain

pβn ≤ P
[
∃k ≤ b2ntc+ 1 : bαλ

2π
c jumps on the interval

8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]
but not bαλ′

2π
c
]
.

Due to the increasing property, the event inside the probability can not happen if the
process {αλ}2π starts below {αλ′}2π at the beginning of the interval. Therefore,

pβn ≤
b2ntc+1∑
k=1

P

[
{αλ′(

8π

β

Sk
n

)}2π ≤ {αλ(
8π

β

Sk
n

)}2π
]
.

which can in turn be upper-bounded as follows

b2ntc+1∑
k=1

P

[
{αλ′(

8π

β

Sk
n

)}2π ≤ {αλ(
8π

β

Sk
n

)}2π
]
≤ βn

4π
E

[∫ 8π
β (3t+1)

0

1{{αλ′ (u)}2π≤{αλ(u)}2π}du

]

≤ βn

4π
Θβ(3t+ 1) ≤ βc (3.8)

where we have used Lemma 3.1 to obtain the last inequality which holds for β small
enough (c is a constant which does not depend on β).

Lemma 3.5. Let λ < λ′. Then the (Ft)-Poisson point processes Pλ and Pλ′−λ are
independent.

Proof of Lemma 3.5. From a classical result (see Proposition (1.7) Chapter XII, §1,
p.473 in [21]) on Poisson processes, we know that it suffices to prove that the two
(Ft)-Poisson processes Pλ and Pλ′−λ do not jump simultaneously, i.e. that for t > 0,

P
[
∃i, j ∈ N : ξλi < t, ξλ

′−λ
j < t, ξλi = ξλ

′−λ
j

]
= 0 . (3.9)
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Figure 4: (Color online). Sample paths of the diffusions αλ/(2π) (blue curve) and αλ′/(2π)

(red curve) together with (αλ′ − αλ)/(2π) (green curve) for λ < λ′ and for a small value
of β. Again we see that bαλ/(2π)c and b(αλ′ − αλ)/(2π)c never jump simultaneously
while bαλ′/(2π)c and b(αλ′ −αλ)/(2π)c always jump at the same times in agreement with
Lemma 3.5, Lemma 3.4 and Remark 3.6.

For n ∈ N, we consider the probability

pβn := P

[
∃i, j ∈ N :

β

8π
ζλi < t,

β

8π
ζλ
′−λ

j < t,
β

8π
|ζλi − ζλ

′−λ
j | < 1

2n

]
. (3.10)

If n is fixed, then we have the convergence (the studied set is open as in the proof Lemma
3.4)

lim inf
β→0

pβn ≥ pn := P

[
∃i, j ∈ N : ξλi < t, ξλ

′−λ
j < t, |ξλi − ξλ

′−λ
j | < 1

2n

]
.

To prove (3.9), it therefore suffices to prove that

lim sup
n→∞

lim sup
β→0

pβn = 0 . (3.11)

For this, we need to work with a random subdivision of the interval [0, 8πt/β]. As
before, we consider a sequence (τk, k ∈ N) of i.i.d. positive random variables uniformly
distributed in [1/2, 3/2] and independent of the processes and form the sum Sk =

∑k
i=1 τi

(S0 := 0).
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Figure 5: Illustration for inclusion (3.15).

The probability (3.10) can be upper-bounded as follows

P

[
∃i, j ∈ N, k ≤ b2ntc+ 1 :

8π

β

Sk
n
≤ ζλi , ζλ

′−λ
j ≤ 8π

β
(
Sk
n

+
2

n
)]

]
= P

[
∃k ≤ b2ntc+ 1 : bαλ′ − αλ

2π
c and bαλ

2π
c both jump on the interval

8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]]

≤
b2ntc+1∑
k=1

P

[
{αλ′(

8π

β

Sk
n

)}2π ≤ {αλ(
8π

β

Sk
n

)}2π
]

(3.12)

+

b2ntc+1∑
k=1

P

[
bαλ′

2π
c jumps two times during the interval

8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]]
. (3.13)

For this bound, we have used the fact that, conditionally on

{αλ(
8π

β

Sk
n

)}2π ≤ {αλ′(
8π

β

Sk
n

)}2π , (3.14)

the increasing property and the equality in law (3.2) impose{
bαλ′ − αλ

2π
c and bαλ

2π
c both jump on the interval

8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]}
(3.15)

⊆
{
bαλ′

2π
c jumps two times during the interval

8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]}
.

Indeed, the equality in law (3.2) implies that bαλ′ (t)−αλ(t)2π c is increasing with respect
to t (once the difference αλ′ − αλ has reached the value 2kπ where k ∈ N, it remains
forever above this value). This fact and the increasing property imply that under the
event (3.15), the process bαλ′2π c has to jump two times on the interval 8π

β [Skn , (
Sk
n + 2

n )]

(see Fig. 5). We now estimate the two sums in (3.12). The first one was already tackled
in (3.8).
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For the other sum in (3.12), we write

b2ntc+1∑
k=1

P

[
bαλ′

2π
c jumps two times during the interval

8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]]

=

b2ntc+1∑
k=1

P

[
µβλ′

[
8π

β

[
Sk
n
, (
Sk
n

+
2

n
)

]]
= 2

]
.

If n is fixed and β → 0, Theorem 2.4 gives the following convergence

b2ntc+1∑
k=1

P

[
µβλ′ [

8π

β

Sk
n

[1, 1 +
2

n
]] = 2

]

→β→0
λ2

16π2
E

b2ntc+1∑
k=1

exp

(
− λ

2π
e−2π

Sk
n (1− e−2π 2

n )

)
e−4π

Sk
n (1− e−2π 2

n )2


= O(n−1) . (3.16)

The convergence (3.11) now follows from the two estimates (3.8) and (3.16) and the
independence between the two Poisson processes Pλ and Pλ′−λ is proved.

Remark 3.6. Using similar arguments as in the proof of Lemma 3.4, one could also
show that for all λ < λ′, Pλ′−λ ⊆ Pλ′ . Using then Lemma 3.5, it implies the almost-sure
equality Pλ′ = Pλ+Pλ′−λ4. It therefore determines the law of the triplet (Pλ,Pλ′ ,Pλ′′−λ′)
and the weak convergence of the family (3.3) when β → 0 holds.

Nevertheless, we do not need this stronger result as we will only use the previous
equality for the total number of points in R+ αλ′(∞)/(2π) = αλ(∞)/(2π) + (αλ′(∞) −
αλ(∞))/(2π) which holds trivially.

As an immediate consequence of Lemma 3.4 and Lemma 3.5, we obtain the following
result using the characterization of independent Poisson processes mentioned above.

Lemma 3.7. Let λ0 < λ1 < λ2. Then, the (Ft)-Poisson processes Pλ0
and Pλ2−λ1

are
independent.

3.3 Proof of Theorem 1.1

From Kallenberg’s theorem [15], we simply need to check that, for any finite union I
of disjoint and bounded intervals, we have when β → 0,

E[Sineβ(I)] −→ 1

2π

∫
I

dλ , (3.17)

P[Sineβ(I) = 0] −→ exp(− 1

2π

∫
I

dλ) . (3.18)

The convergence (3.17) follows from Corollary 2.6.
Towards (3.18), we consider first a union of two disjoint interval of the form

I := [λ0, λ1] ∪ [λ2, λ3] ,

where λ0 < λ1 < λ2 < λ3. By translation invariance of the Sineβ point process, we
can suppose without loss of generality that λ0 = 0. By definition of Sineβ, we have the
following equality in law

(Sineβ [0, λ1],Sineβ [λ2, λ3], )
(d)
=

(
αλ1

(∞)

2π
,
αλ3

(∞)− αλ2
(∞)

2π

)
.

4Note that this equality is obviously wrong when β > 0 i.e we don’t have the equality between bαλ′ (t)/(2π)c
and bαλ′ (t)/(2π)c+ b(αλ′ (t)− αλ(t))/(2π)c.
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Using Lemma 3.7, we deduce that

P [Sineβ [0, λ1] = 0,Sineβ [λ2, λ3] = 0]

→β→0 P [Pλ1(∞) = 0]P [Pλ3−λ2(∞) = 0] = exp

(
−λ1

2π

)
exp

(
−λ3 − λ2

2π

)
.

Now, if k ≥ 3 is an odd integer and I := [λ0, λ1] ∪ [λ2, λ3] ∪ · · · ∪ [λk−1, λk] where
λ0 ≤ · · · ≤ λk, the limiting Poisson point processes (Pλi−λi−1

)i=1,··· ,k defined in Lemma
3.3 are adapted to a common filtration and never jump simultaneously. Using again the
characterization of independent Poisson processes, we know that they are independent
processes (see Proposition (1.7) Chapter XII, §1, p.473 in [21]).

Theorem 1.1 is proved.

A Proof of auxiliary results.

A.1 Asymptotic of integrals and Laplace transform

Asymptotic of the integral (2.6). We denote by aβ (respectively bβ) the local minimum
(resp. maximum) of the potential Vβ(r) and derive asymptotic expansions for aβ and bβ
in the limit β → 0 using

V ′β(r) = 0⇔ λβ

8
=

e−r − er
(er + e−r)2

.

We deduce that

aβ = log β + log(λ)− 3 log 2 +O(β2) ,

bβ = −λβ
4

+ o(β2) ,

Vβ(aβ) =
1

2
log β +

1

2
log λ− log 2 +

1

2
+O(β2) ,

Vβ(bβ) =
λ2

64
β2 +O(β2) = O(β2) .

More generally, we have for x, y ∈ R

Vβ(aβ + y) =
1

2
log

βλ

4
+
y + e−y

2
− 1

2
(
λβ

8
)2ey − 1

2
log(1 + (

λβ

8
)2e2y) +O(β2) ,

Vβ(bβ + x) = −1

2
log

ex + e−x

2
(1− λβ

8
+O(β2))− λβ

8
sinh(x) +

λ2β2

64
cosh(x) +O(β2) .

Those computations permit us to find the asymptotic behaviour of tβ(rβ) (using also
the bounded convergence theorem),

tβ(rβ) ∼ 8

βλ

∫ +∞

rβ−bβ

dx

cosh(x)

∫ x+aβ

−∞
e−ye−e

−y
dy ∼ 8

βλ

∫ +∞

rβ−bβ

dx

cosh(x)
∼ 8π

βλ
. (A.1)

Proof of Proposition 2.2.

We consider the Laplace transform gβλ/(8π)ξ(r) of the rescaled exit time βλ/(8π)ζ of
the diffusion starting from r. If suffices to prove that, if (rβ)β>0 is such that rβ → −∞
as β → 0, we have for any 0 < ξ < 1, gβλ/(8π)ξ(rβ)→ 1/(1 + ξ) (Laplace transform of an
exponential distribution with parameter 1). To simplify notations, we will just write gβ(r)

for gβλ/(8π)ξ(r).
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Let us recall the fixed point equation

gβ(r) = 1− 2
βλ

8π
ξ

∫ +∞

r

dx

∫ x

−∞
exp (2 [Vβ(x)− Vβ(y)]) gβ(y)dy . (A.2)

Noting that gβ(r) ≤ 1, we obtain the lower bound

1− ξ βλ
8π
tβ(r) ≤ gβ(r) . (A.3)

Using the asymptotic (A.1), we obtain a lower bound

1− ξ ≤ lim inf
β→0

gβ(rβ) .

Plugging (A.3) into (A.2), we get an upper bound

gβ(r) ≤ 1− ξ βλ
8π
tβ(r) + 2ξ2(

βλ

8π
)2
∫ +∞

r

dx

∫ x

−∞
exp (2 [Vβ(x)− Vβ(y)]) tβ(y)dy .

After the derivation of the asymptotic quadruple integral (similar to the one of (A.1)), we
obtain

lim sup
β→0

gβ(rβ) ≤ 1− ξ + ξ2 .

Iterating this argument (the multiple integrals are always such that the integration
ranges permit to catch the maximum value of Vβ(x)− Vβ(y) inside the exponential as in
(A.1)), we get the result.

A.2 Proof of the estimates for a single diffusion

Recall the definition of Rλ := log(tan(αλ/4)) and its differential equation (2.2):

dRλ =
1

2

(
λ
β

4
e−

β
4 t cosh(Rλ) + tanh(Rλ)

)
dt+ dBt , Rλ(0) = −∞ ,

and denote by Tr(t) the first passage time to r ∈ R ∪ {+∞} after time t i.e.

Tr(t) := inf{s > t : Rλ(s) = r}.

In this sub-section, we first study the diffusion Rλ and then translate the estimates to the
diffusion αλ. We will denote by Pr0,t the law of the diffusion Rλ starting from position
r0 at time t. To simplify notations, we omit the subscript t in Pr0,t if t = 0 and write Tr
instead of Tr(t) if it appears in the probability space Pr0,t. We will also denote by Px the
law of a Brownian motion starting from x.

Our first lemma A.1 shows that if the diffusion Rλ is outside the well, then the
probability that it explodes in a short time (compared to 1/β) tends to 1.

Lemma A.1. Let 0 < ε < 1 and s > 0. Then, there exists a constant c > 0 (depending
only on λ, s and ε) such that for all β > 0 small enough and u ≤ 8πs/β,

Pε log 1
β ,u

[
T+∞ < 9 log

1

β

]
> 1− βc .

Note that it immediately gives the analogous result Lemma 2.7 for αλ.
Proof of Lemma A.1. We prove the desired inequality in the case u = 0 as the general
one follows easily by changing λ in equation (2.2). We have

Pε log 1
β

[
T+∞ < 9 log

1

β

]
≥ Pε log 1

β

[
T2 log 1

β
< 8 log

1

β
∧ T ε

2 log 1
β

]
P2 log 1

β ,8 log 1
β

[
T+∞ < log

1

β

]
.
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If ε
2 ln 1

β < r < 2 log 1
β , the drift term −V ′β(r) ≥ 1

2
er−e−r
er+e−r ≥ 1

4 for β small enough. Thus, for
t < T ε

2 log 1
β

, we have Rλ(t) ≥ Bt + t/4. Therefore,

Pε log 1
β

[
T2 log 1

β
< 8 log

1

β
∧ T ε

2 log 1
β

]
≥ Pε log 1

β

[
inf

0≤t≤8 log 1
β

Bt >
ε

2
log

1

β

]
.

This latter probability is easily computed with the reflection principle for Brownian
motion.

Pε log 1
β

[
inf

0≤t≤8 log 1
β

Bt >
ε

2
log

1

β

]
= P0

[
sup

0≤t≤8 log 1
β

Bt ≤
ε

2
log

1

β

]

= P0

[
|B(1)| ≤ ε

4
√

2

√
log

1

β

]
= 1−O(exp(−c log

1

β
)) .

We now consider the probability

P2 log 1
β ,8 log 1

β

[
T+∞ < log

1

β

]
We define Gλ(t) := Rλ(t) − Bt such that Gλ(0) = 2 log 1

β . The function Gλ satisfies the
following random ordinary differential equation

G′λ(t) =
1

2

(
λβ

8
e−

β
4 t
eGλ(t)+Bt + e−Gλ(t)−Bt

2
+
eGλ(t)+Bt − e−Gλ(t)−Bt
eGλ(t)+Bt + e−Gλ(t)−Bt

)
.

On the event

Eβ :=

{
sup

0≤t≤log 1
β

|Bt| ≤
1

2
log

1

β

}
,

which occurs with probability bigger than 1− exp(−c log( 1
β )) where c > 0 is a constant

independent of β, we can easily check that, for t ∈ [0, log 1
β ] and β > 0 small enough,

G′λ(t) ≥ λβ3/2

64
eGλ(t) − 1

2
.

This leads us to study the Cauchy problem

H ′λ(t) =
λβ3/2

64
eHλ(t) − 1

2
, Hλ(0) = 2 log

1

β
.

This ordinary differential equation can be solved explicitly. We find

e−Hλ(t)e−
t
2 = β2 − λβ3/2

32
(1− e− t2 ) .

It is easy to see that the exploding time of Hλ is of order
√
β as β → 0. On the event Eβ ,

we have Hλ(t) ≤ Gλ(t) for all t ≥ 0.
We can conclude that

P2 log 1
β ,8 log 1

β

[
T+∞ < log

1

β

]
≥ P0 [Eβ ] = 1−O(exp(−c log(

1

β
))) .
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Lemma A.2. Let us fix s > 0. There exists c′ > 0 (depending only on λ and s) such that
for all β > 0 small enough, and for all u ≤ 8πs/β, we have

P− 1
4 log 1

β ,u

[
T+∞ < 10 log

1

β

]
> c′

√
β . (A.4)

Proof of Lemma A.2. As before, we prove (A.4) in the case u = 0 as the general case
follows easily by changing λ in equation (2.2). The probability under consideration can
be bounded below by

P− 1
4 log 1

β

[
T 1

4 log 1
β
< log

1

β

]
P 1

4 log 1
β ,log

1
β

[
T+∞ < 9 log

1

β

]
.

For the first probability, we note that Rλ(t) > − t
2 +Bt and thus

P− 1
4 log 1

β

[
T 1

4 log 1
β
< log

1

β

]
> P0

[
B(log

1

β
)− 1

2
log

1

β
≥ 1

2
log

1

β

]
= P0

[
B1 >

√
log

1

β

]
∼

√
β√

2π log 1
β

.

From Lemma A.1, the second probability is bigger than 1 − βc for some positive
constant c > 0.

On the large scale-time of the order 1/β, we prove that the time spent by Rλ away
from the well of the potential V (away from 0 modulo 2π for αλ) is negligible, i.e. small
compared to the typical time 1/β between two jumps. This is Lemma A.3:

Lemma A.3. Let t > s ≥ 0 and x ∈ R ∪ {−∞}. Consider

Ξβ(s, t, x) := Ex,8πs/β

[∫ 8π
β t

8π
β s

1{Rλ(u) > − 1
4 log 1

β }
du

]
.

Then, for all t > s ≥ 0, there exists C > 0 (depending only on λ and t) such that for all
x ∈ R ∪ {−∞} and β > 0, we have:

Ξβ(s, t, x) 6
C√
β

log
1

β
.

Lemma A.3 can be translated for αλ, it gives Lemma 2.8.

Proof of Lemma A.3. The key estimate is the lower-bound (A.4) given by Lemma A.2
on the probability for the diffusion Rλ starting from the position − 1

4 log 1
β to blow up in

a short time. The idea is then to relate the time spent by the diffusion Rλ above the
level − 1

4 log 1
β with the number of explosions in the interval [8πs/β, 8πt/β] which is of

order O(1) (the typical time between two explosions is of order 1/β from Lemma 2.2). To
ease the notations, denote by ŝ := 8πs/β. For any u ≥ ŝ, recall that T+∞(u) is the first
explosion time after time u. We have

Px,ŝ

[
Rλ(u) > − 1

4
log

1

β

]
6 Px,ŝ

[
Rλ(u) > − 1

4
log

1

β
, T+∞(u) < 10 log

1

β

]
+ Px,ŝ

[
Rλ(u) > − 1

4
log

1

β
, T+∞(u) ≥ 10 log

1

β

]
6 Px,ŝ

[
Rλ(u) > − 1

4
log

1

β
, T+∞(u) < 10 log

1

β

]
+
(

1− c′
√
β
)
Px,ŝ

[
Rλ(u) > − 1

4
log

1

β

]
,
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where we have used the simple Markov property at time u, the inequality (A.4) as well
as the increasing property in the third line. We deduce that

Px,ŝ

[
Rλ(u) > − 1

4
log

1

β

]
6

1

c′
√
β
Px,ŝ

[
Rλ(u) > − 1

4
log

1

β
, T+∞(u) < 10 log

1

β

]
6

1

c′
√
β
Px,ŝ

[
The interval [u, u+ 10 log 1

β ] contains at least one explosion
]
. (A.5)

Denote by k the total number of explosions of the diffusion Rλ starting at Rλ(ŝ) = x in
the interval [8πs/β, 8πt/β]. Let 8πs/β < ζ1 < · · · < ζk < 8πt/β be the explosion times, we
easily see that almost surely∫ 8πt

β

8πs
β

1{∃i:ζi∈[u,u+10 log 1
β ]}
du ≤ (10 log

1

β
)× k .

Using Property (iv) of the diffusion αλ, we immediatly derive that Ex,ŝ(k) is smaller than
1 +λ/(2π). Using this inequality and integrating (A.5) with respect to u, we finally obtain

Ξβ(s, t, x) 6

(
1 +

λ

2π

)
10

c′
√
β

log
1

β
.

A.3 Proof of Lemma 3.2

Denote C0(R+) the space of continuous functions f : R+ → R+ such that f(t)→ 0 as
t→ +∞. To prove that Pλ is indeed a (Ft)-Poisson process with the correct intensity, it
suffices to check that its Laplace functional satisfies

E

[
exp(−

∫ t

s

f(u)Pλ(du))
∣∣Fs] = exp

(
−
∫ t

s

(1− e−f(u))λe−2πudu
)
. (A.6)

We have to check that the filtration (Ft) does not contain too much information compared
to the natural filtration denoted (Fλt ) associated to the process Pλ only, for (A.6) to remain
valid.

We denote by (Gt) the filtration associated to the complex Brownian motion (Zt)

which drives the processes αλ, αλ′ and αλ′′ according to (1.5).

The conclusion of Theorem 2.4 is equivalent to the convergence of the Laplace
functional of the point process µβλ to the Laplace functional of the Poisson process Pλ
(see Proposition 11.1.VIII (ii) of [9]). Let us fix ε > 0. Let us prove first that for any
ϕ ∈ C0(R+) and any 0 < s < t, the following convergence holds in probability:

E

[
exp(−

∫ t

s+ε

ϕ(u)µβλ(du))
∣∣G 8π

β s

]
→β→0 exp

(
−
∫ t

s+ε

(
1− e−ϕ(u)

)
λe−2πudu

)
. (A.7)

To show (A.7), the main point is that the sigma field G 8π
β s

already contains the information

on the two diffusions (αλ( 8π
β u))0≤u≤s, (αλ′(

8π
β u))0≤u≤s and (αλ′′(

8π
β u))0≤u≤s up to time s

as they are strong solutions to the stochastic differential equation system (1.5). Note
that we have introduced a small gap of macroscopic size ε > 0 after time t as (A.7) is
not true for ε = 0 because of the conditioning: it is indeed possible that the position of
αλ(( 8π

β )s) (if it is very close to 2π modulo 2π) induces a jump quickly after time s.

This issue is circumvented by introducing an independent random time U distributed
uniformly over the interval [s, s+ ε]. The position of αλ( 8π

β U) belongs to an interval of
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the type [2kπ, 2kπ + 4 arctan(β1/4)] with probability going to 1 when β → 0. Indeed, we
have

P[{αλ(
8πU

β
)}2π ≥ 4 arctan(β1/4)| G 8π

β s
] =

β

8π
E[

∫ 8π(s+ε)
β

8πs
β

1{{αλ(v)}2π≥4 arctan(β1/4)}dv| G 8π
β s

]

6 sup
x∈R+

β

8π
Ex,8πs/β [

∫ 8π(s+ε)
β

8πs
β

1{{αλ(v)}2π≥4 arctan(β1/4)}dv]

=
β

8π
sup
x∈R+

Ξβ(s, s+ ε, x) −→β→0 0,

using for the second line the notation and result of Lemma 2.8.
Remark 2.5 after Theorem 2.4 then shows that the conditional law of the measure µβλ

over [U,∞) when αλ modulo 2π starts below 4 arctan(β1/4) at time 8πU/β converges to
the Poisson measure of intensity λ exp(−2πt)dt and (A.7) holds.

From the joint convergence of the triplet (3.4) along the sequence (βk), we can
deduce for ϕ, f, g, h ∈ C0(R+),

lim
k→∞

E

[
exp

(
−
∫ t

s+ε

ϕ(u)µβkλ (du)

)
exp

(
−
∫ s

0

(f(u)µβkλ (du) + g(u)µβkλ′ (du) + h(u)µβkλ′′−λ′(du))

)]
= E

[
exp

(
−
∫ t

s+ε

ϕ(u)Pλ(du)

)
exp

(
−
∫ s

0

(f(u)Pλ(du) + g(u)Pλ′(du) + h(u)Pλ′′−λ′(du))

)]
.

(A.8)

On the other hand, using in addition (A.7), we can check that

lim
k→∞

E

[
exp

(
−
∫ t

s+ε

ϕ(u)µβkλ (du)

)
exp

(
−
∫ s

0

(f(u)µβkλ (du) + g(u)µβkλ′ (du) + h(u)µβkλ′′−λ′(du))

)]
= exp

(
−
∫ t

s+ε

(
1− e−ϕ(u)

)
λe−2πudu

)
E

[
exp

(
−
∫ s

0

(f(u)Pλ(du) + g(u)Pλ′(du) + h(u)Pλ′′−λ′(du))

)]
.

(A.9)

Gathering (A.8) and (A.9) and taking the limit ε→ 0 (as a.s. Pλ does not jump on s), we
obtain (A.6).
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