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Abstract

We prove strong small deviations results for Brownian motion under independent
time-changes satisfying their own asymptotic criteria. We then apply these results to
certain stochastic integrals which are elements of second-order homogeneous chaos.
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Small deviations and second-order chaos

1 Introduction

In this paper, we study small deviations for some time-changed Brownian motions,
for the purpose of applications to certain elements of Wiener chaos. Large deviation
estimates for Wiener chaos are well-studied (see for example [15]), largely due to the
work of Borell (see for example [5] and [6]). However, small deviations in this setting
are much less understood and are of interest for their myriad interactions with other
concentration, comparison, and correlation inequalities as well as various limit laws
for stochastic processes; see for example the surveys [17] and [19]. The present work
gives strong small deviations results for certain elements of second-order homogeneous
chaos. In particular, let W, H, i) be an abstract Wiener space, {W;};>o denote Brown-
ian motion on W, and w : W x W — R be a continuous bilinear antisymmetric map . We
will study processes {Z(t)};>o of the form

t
Z(1) ;z/ w(Ws, V). (1.1)
0

(A precise definition is given in Section 3.) In particular, we show that Z is equal in
distribution to a Brownian motion running on an independent random clock for which
small deviation probabilities are known, and thus the small deviations behavior of Z
follows. From these results one may infer, for example, a functional law of iterated
logarithm and hence a Chung-type law of iterated logarithm for Z. To the authors’
knowledge, these are the first results for small deviations of elements of Wiener chaos
in the infinite-dimensional context beyond the first-order Gaussian case.

1.1 Statement of main results

We first discuss the general small deviations result for time-changed Brownian mo-
tion we will be using. We will assume that the random clocks satisfy the following.

Assumption 1.1. Suppose {C(t)}:>0 is a continuous non-negative non-decreasing pro-
cess such that C(0) = 0 and there exist « > 0, § € R, and a non-decreasing function
K : (0,00) — (0,00) such that for any m € N, {d;}™, C (0,00) a decreasing sequence,
and 0 =ty <ty < - <ty

m m (14w)
lim £*| log £|® log P d;AC <e|=— AYK (t;_q, 1)) 0F) 1.2
61&)15|0g€\ og (; 5) <;(z (ti-1,ti)) (1.2)
where A;C =Cy, — Cy,_,.

By the exponential Tauberian theorem (see Theorem 2.1), equation (1.2) is equiva-
lent to

lim A~/ (149 (Jog X)#/ 1+ Jog

A—00

exp <—/\ i diAiC>
i=1

= _(]_ + a)1+ﬂ/(1+a)a—a/(1+@) (d;-xK(ti,h ti))l/(lJFa) . (1.3)
=1

Also via the exponential Tauberian theorem, equation (1.2) clearly holds when C' is a
subordinator satisfying

hﬁ’)lf;‘a‘ loge? log P(C(t) <€) = —K (t)
£
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Small deviations and second-order chaos

for any ¢t > 0, although the additional requirement of continuity makes this example
trivial (since in this case C(t) = ct a.s. for some ¢ > 0). More generally, (1.2) holds if C
has independent increments which satisfy

liﬁ)leoﬂ loge|? log P(C(t) — C(s) < &) = —K (s, 1)

for all 0 < s < t. However, it is not necessary for C to have independent or station-
ary increments for Assumption 1.1 to hold. One important source of examples for the
present paper is the following theorem from [16] for weighted LP norms of a Brownian
motion.

Theorem 1.2. Letp € [1,00) and p : [0,00) — [0, 0] be a Lebesgue measurable function
satisfying

(i) p is bounded or non-increasing on [0, a] for some a > 0;

(ii) t>*P)/Pp(t) is bounded or non-decreasing on [A, oc) for some A < co;
(iii) p is bounded on [a, A]; and
(iv) p?*/(P+2) js Riemann integrable on [0, 00).

Then

)

oo ) (2+p)/p
e tog ([ oo B as <<) =y ([ ot )
€ 0

0

) (2+p)/2

where k,, = 22/pp (>\21T(1;) for

Ai(p) = e ﬁf?—;vw) {/_O; |x|p¢2(x) dz + % /_O;(¢/(x))2 dx} .

For example, if p is any non-negative continuous function on [0, o) and

ct) = / A(s)P|B(s)|? ds,

then

m m ti
S dAC = Zdi/ A(5)?| B(s)|P ds
i=1 i=1 ti-1
and applying Theorem 1.2 with p(s) = >, di/pl(ti,l,ti] (s)p(s) gives (1.2) with o = 2/p,
B8 =0, and

t (24+p)/p
K(ti_1,t;) = (/ ,5(5)2p/(p+2) ds> .
ti—1

A particularly relevant example to our later applications is the simplest case where
p =2 and p =1, for which

C(t) = /OtB(s)2ds, (1.4)

ko = 1/8, and K (t;_1,t;) = (A;t)? where At :=t; —t;_;.

See Section 6 of [17] for more results related to Theorem 1.2. Additionally, Chapter
7.3 of [20] contains these results under weaker assumptions. Known small deviations
for weighted LP norms of other stochastic processes provide other interesting examples.
For example, in [21] a result analogous to Theorem 1.2 is proved for fractional Brownian
motions. See this and related references for further examples.

Now working under Assumption 1.1, one may prove the following.
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Theorem 1.3. Suppose that {Z(t)},>¢ is a stochastic process given by Z(t) = B(C(t)),
where C' is as in Assumption 1.1 and B is a standard real-valued Brownian motion
independent of C. Let M (t) := supg<,<; |Z(8)|. Then, foranym e N,0 =ty <t; <--- <
tm <00, and 0 < ay < by <as < by 57 < ay < by,

lig)laza/(Ha” 10g5|5/(1+a) log P (m{ai5 < M(t;) < bﬁ})
: i=1

2\ @/(1+a) m 1/(14a)

9B/ 4 )8/ (1) (g ) 3 (K(tbw> .
(6% <
=1 7

Such estimates have been previously studied for processes {Z; };>¢ that are symmet-
ric a-stable processes [8], fractional Brownian motions [12], certain stochastic integrals
[13], m-fold integrated Brownian motions [30], and integrated a-stable processes [31].
In particular, the stochastic integrals studied in [13] are essentially finite-dimensional
versions of the class of stochastic integral processes we study, and the proof that we
give for Theorem 1.3 follows the outline of the proof of small ball estimates in that
reference.

We apply Theorem 1.3 to stochastic integrals of the form (1.1) as follows.

Theorem 1.4. Let {Z(t)}:>0 be as in equation (1.1). Then {Z(t)} 4 {B(C(t))} for B a
standard real-valued Brownian motion and

00 t
Ct) = lwter, N [ (W2 ds

k=1 0
where {e; }?2 , is any orthonormal basis of # contained in . := {h € 1 : (h, ) extends to
a continuous linear functional on W} and {W*}%° | are independent standard Brownian
motions which are also independent of B. If we further suppose that ||w(eg, )||ln =
O(k™") forr > 1, then, foranym € N, 0 =ty < t; < -+ < ty,, and {d;}1*, C (0,00) a
decreasing sequence,

, 2
m 1 m

. 2 _ 2 A

lglim0 clogP ( E d; A, C < 5) = —§||w||1 (;Zl d1A1t> ,

i=1

where Ait =1t; —t;_1 and
o
lwlls := > llw(ex, ) lx < oo
k=1
Thus, forany 0 < a; <by <as <by < - < amm < by,

lgifgelogP (ﬂ{aié < sup |Zs] < bﬁ}) = _ZHw”l; b: )

i=1 0<s<t;

Remark 1.5. Note that in the above theorem, and in the sequel, we make the standard
identification between H* and H via Riesz representation. That is, for a linear functional
 on ‘H, we write

o0 o0
el =D Hpseidnl® =D leles) .
j=1 j=1

In particular, for fixed h € H, we write [[w(h, -)|13, := llw(h, x5, = 2252, lw(h, ;).

Applications of such estimates include using the small deviations in Theorem 1.4
to prove a Chung-type law of iterated logarithm as well as a functional law of iterated
logarithm for the process Z. We record these results in Theorem 3.17 and 3.18.
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1.2 Discussion

First-order small deviation estimates of the standard form

log P ( sup |Z(s)|] < s)

0<s<t

were studied in [25] for processes Z(t) = fot w(Ws, dW,) with W an n-dimensional Brow-
nian motion and w : R® — R given by w(z,y) = Az -y for A a skew-symmetric n x n
matrix. These estimates were then applied to prove an analogue of the classical limit
result of Chung. (This was done earlier in [29] in the case n =2 and A = (?/2 1(/)2),
that is, for Z the stochastic Lévy area.) In [13], the authors improved these results by
proving stronger asymptotic results like those in Theorem 1.3 for the same Z as in [25]
and applying these results to prove a functional law of iterated logarithm.

In the present paper, the proof of the small ball estimates established in Theorem 1.3
is a direct generalization of the techniques of [13]. However, Theorem 1.3 is sufficiently
general to be of independent interest for other potential applications. Thus for that
purpose, as well as for clarity and self-containment, we include the proof here. It is also
clear from the proofs that, given only the asymptotic order for C, one could infer the
asymptotic order for Z instead.

We also mention the reference [2], in which the authors study general iterated pro-
cesses of the form X oY where X is a two-sided self-similar process and Y is a contin-
uous process independent of X. Since X is two-sided, it is not required that Y satisfy
any monotonicity or positivity criteria. In this general setting, under the assumption
that the first-order (m = 1) asymptotics are known for X and Y, the authors are able to
prove a first-order small ball estimate (Theorem 4 of [2]). Theorem 1.3 is stated in the
restricted setting that X is a Brownian motion; however, the proof carries through for
first-order estimates for processes X satisfying more general assumptions (as in [2]).
See Proposition 2.9 for more details.

The organization of the paper is as follows. In Section 2 we give the proof of Theorem
1.3. In Section 3, we apply Theorem 1.3 to prove small ball estimates for the relevant
collection of stochastic integrals. In Section 3, we define precisely the processes of
interest, and in Theorem 3.10 we prove that these processes have a representation as
Brownian motions on an independent random clock. In Subsection 3.2, we determine
the small ball asymptotics of the clock. Thus we are able to apply Theorem 1.3, and
we additionally record a Chung-type law of iterated logarithm and functional law of
iterated logarithm that follow from these estimates.

Acknowledgement. This paper is dedicated to the memory of Wenbo Li, who sug-
gested the problems addressed in Section 3 of this paper, thus motivating the whole of
this work.

The authors would also like to thank an anonymous referee for careful reading and
several useful comments to improve this paper.

2 Small deviation estimates

In this section, we prove separately the upper and lower bounds of Theorem 1.3. The
outline of the proof here follows Section 4 of [13]. First, we record a standard relation
between asymptotics of the Laplace transform and small ball estimate of a positive
random variable in the form of the exponential Tauberian theorem (see for example
Theorem 4.12.9 in [3]). We give a special case of that theorem here.
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Theorem 2.1. Suppose that X is a positive random variable. There exista > 0, 8 € R,
and K € (0,00) such that

1iﬁ)1€a| loge|/’logP(X <¢) = —K
1>

if and only if

lim A~/ (F9) (Jog \)A/(1H0) Jog Ble™*X] = —(1 + o)A/ 1+ (oo )1/ (Fe),

A—00

We will use this theorem repeatedly in the sequel along with the standard fact that,

for any € > 0,

2 2 4 2
“e sz <P < sup |B(s)| < 8) < —e &2, (2.1)
™ 0<s<1 ™

see for example [9]. Now the upper bound of Theorem 1.3 follows almost immediately
from this and the upper bound for the random clock C via conditioning.

Notation 2.2. For C as in Theorem 1.3, we let Po(-) = P(- | C).

Proposition 2.3. Under the hypotheses of Theorem 1.3, we have that

lim sup 2%/ (19| Jog g|#/(1+) Jog PP (ﬂ{ais < M(t;) < bﬁ})
€40 i=1

2\ o/ (1+e) m 1/(1+a)
< —27A/(He) (1 4 g)1+B/(1+e) (g) 3 (K(tb;;t)> .
6 e

2 A C
exp (;22 2 )] 2.2)
=1 ?

Then applying equation (1.3) with d; =1/ bf finishes the proof. So first we define

=1

Proof. We will show that

P <ﬁ{ai5 < M(t) < bi5}> < (i)mE

i=1

A; = { sup |Z(s)| < bis}.

ti—1<s<t;

Then we have that

Pc (ﬁ{ais < M(t;) < bﬁ}) < Pq (ﬁ Ai) 7

i=1

and for pc,,_, ()= Pc(Z(tm-1) €")

()

m—1
= / Po ( ﬂ A, sup |Z(s) = Z(tm—1) + x| < bpe
R -1t

m—1<8<tm
m—1
= / Pc ( ﬂ Ay
R i=1

x Pc ( sup  |Z(s) = Z(tm-1) + x| < bm5> dpcy,, ,(x)

Z(tm—1) = x) dpc t,, -, (@)

Z(tm_l) = l‘)

tm—1<8<tm

EJP 19 (2014), paper 85. ejp.ejpecp.org
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m—1
since  sup  |Z(s) — Z(tm—1) + x| is Pc independent of Z(¢,,—1) and ﬂ A; by the Po
tm—1<s<tm i=1

independent increments of Z.
Since {Z (t)}tgo is a Po Gaussian centered process, we have by Anderson’s inequality
(see, for example Theorem 1.8.5 of [4]) that

pc( sup |Z(s)—Z(tm_1)—|—a:|§bme)

tm—1<s<tm

< Pe ( sup  |Z(s) — Z(tm-1)| < bm€>

tm—1<s<tm

bme
=P S B(s)| < ,
¢ <0<1§21 ()] < AmC)

by the monotonicity and continuity of C' and the stationary and scaling properties of
Brownian motion. Thus

Po (_ﬂ Ai> < Pe ( N Ai> Pc( sup |B(s)] < bfc)

i1 0<s<1

By iterating the above computation m times we see that

- il bie

P, A ] < P sup |B(s)| < —
C(i_l ) 11 e (2o, 18001 < 77

4 m 7T2 i AZC

<(3) ow (82 = )

where the second inequality follows from the upper bound in (2.1). Taking the expecta-
tion of both sides yields (2.2). O

We now move towards obtaining the lower bounds with the following lemma.

Lemma 2.4. Fix~y > 0, and let 0 < § < « be such that a;(1 + ) < b;(1 — ¢). Also let
fi = fi(e,6) and g; = gi(e,9) be given by

bi(1 —6)5) ( ai(1—|—5)6)
z:P 3 B Si andi::P B Si
f c (Ozligll (s)] AC g c Oggll (s) AC
and set
O = {¢p={p;}i2 : ¢i € {fi,9:} and at least one ¢; = g;}.
Then

P (ﬁ{ais S M(ti) S biE}, ‘Z(tm)| S bm’7€>

i=1

>E

e <B<1>| < Aib‘%)

i=1 A0 ocd  Li=1
where A;b = b; — b;_1 with by = 0.
Proof. Define
T, = {aig < sup  |Z(8)| < bje, | Z(t;)] < bi&} .
i 1<s<ts
EJP 19 (2014), paper 85. ejp.ejpecp.org
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Since sup |Z(s)| < M(t;) and b;ye > b;de for all i, we have that
ti—1<s<t;

i=1 i=1
Define

Ai = {U,i(l + 5)6 < sup |Z(8) — Z(ti_l)‘ < bl(l — (S)E,

ti—1<s<t;

By Pc independent increments,

m m—1 m—1
Pc (ﬂn) > P (ﬂ TmAm> = P <ﬂ Ti> Po(An),
i=1 1=1

i=1

and repeating this computation m times gives that

Pc <ﬁ Ti) > I Pc (A;).

i=1
Again we use the stationary and scaling properties of Brownian motion, as well as
Sidak’s Lemma (see for example, Corollary 4.6.2 of [4]), to show that

i 1 ) bi 1-96 Azbé
P4y = o (M7 = g, 1801 = 2 e 9001 < 7 )
a;(1+0)e bi(1—9d)e A;bde
> P (TC < s (B9 < U 0 >PC (|B<1>< TC)
A;bd
— (fi — g:)Pe (|B(1) < Aé)‘

Thus, taking expectations we have that

m

IP(QL)EE

>k

m

[[ 47 (|B<1>| < AA“) S [P (|B<1>| < AA“C)
A;b

® -1
58 m
T,;C) };[1 ¢i]

-2 E
as desired. O

Q

[T5re (150)] <

i=1

[l

Now the next three lemmas give the necessary estimates on the terms appearing in
Lemma 2.4.

Lemma 2.5. Let f;, g;, and ® be as in Lemma 2.4. Then for any ¢ € ¢

lim sup 22/ (1+e) | log 6|ﬂ/(1+°‘) log &

el =1
2\ /(1+a) m Kt 1) 1/(1+a)
< _9-B/(+a)(q 14+8/(1+a) (T Blbi-1, )
smmeem) S aee
o5y ._ [ bi(1—0) ifgi=f;
where d; (0) .—{ ai(140) ifs—g; °
EJP 19 (2014), paper 85. ejp.ejpecp.org
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Proof. By the upper bound in (2.1),

T T df (0)e
1_1;[1@11;[1% ( sup |B(s)| < Aic>

0<s<1

4 m 71_2 m AZC
< (= —— .
—(w> eXp( SEQ;df((W)

Then applying (1.3) completes the proof. O

Lemma 2.6. Suppose that {n;}!", are nonnegative random variables such that, for any
B1,-..,0m >0, there exists « > 0, § € R, and K > 0 such that

lim %] log £|? log P i <el|>-—K.
Elﬁ)lE|Og€‘ og <ZB?7_€>_

i=1

Let P, = P(- | m,...,mm). Then, if G is a standard normal random variable and
Y1,---,Ym > 0, we have that

lim inf A~/ (1+9) (]og \)#/ 1+
A—00

exp (Aiﬂﬂ%) Z_ﬁan <|G| < \/%ﬂ

> (14 ) HB/(Fe) g o/ () f1/(a),

Proof. For any L > 0, when Z:’;l Bim; < L, the positivity of all parameters implies that
n; < L/B; for each ¢ and thus

% . | Bi
min > min 4/ — > 0.
1<i<m /1 1gigm% L

Also, note that for all sufficiently small = > 0, one may choose K’ > 0 such that P(|G| <
x) > K'z. Thus, for sufficiently large A, there exists K" > 0 such that

E |exp <—)\ ﬁi%‘) P (|G <X )]
— - . . 3 ’y’i m' - . .
>E €xXp ( A;ﬁzﬁz) (121%17”1377 <|G| < \/W)) 7;51771 <L
K\ ™ m m
> — E -2 I i1 S L. 2.3
—(ﬁ) eXP( ;W;) ;Bn ] (2.3)

Thus, for any ¢ > 0, we may take §()\) = EA~1/(1+) (Iog \)~#/(1+2)  and we have
exp <—)\Zﬁmi> ;Zﬁim <L
i=1 i=1
exp (—/\ > Biﬁi) P> Bimi < H(A)]

i=1 i=1

> lim inf A=/ (1) (Jog \)A/(1+e) (—e(m +log P (Z Bin; < 9()\)> )
A—o0

i=1

li)\m inf A~/ (142) (]og X)A/(1+) oo |
—o00

> liminf A=/ (5 (1og 1)/ (14 oo |

A—o0

=€+ +a) lim inf (1) | log o(\)|P log P (Z Bims < 9(A)>

=1
> —£-¢*(1+a)’K
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In particular, combining this inequality with (2.3) and taking ¢ = (Ka(1 + «)?)1/(0+e)
completes the proof. O

Lemma 2.7. Let f; be as in Lemma 2.4. Then

hm 1nf g2/ (1+a)| Jog g/ (1+) |og

Hﬁ<%OMN Bibde

P AC
72\ &/ (+a) m 1/(14a)
_oBlLka) (] 4 )48/ (14e) ( ) 3 (M) .
S —\b; (1—14)%

Proof. The lower bound in (2.1) implies that

i . M bl(l—é)s
il;[lfi = EPC < sup |B(s)| < m)

0<s<1

Z<i>meXp< 82§:b2 )

Using this estimate to bound the desired expectation and applying Lemma 2.6 and
equation (1.3) completes the proof. O

Proposition 2.8. Under the hypotheses of Theorem 1.3, we have that

m
lim inf £2¢/ 1+ | Jog | #/ (1+) Jog P (ﬂ{azs < M(t;) < b; 5})
el0

i=1
o\ @/(1+a) m 1/(14a)
> 2" [3/(1+a)(1_|_a)1+/3/(1+a) (8 ) Z (K(tli;;,ti)> )
(67 :
i=1 K

Proof. Clearly, for any v > 0,

(ﬂ{a6<M )<b5}> >]P<ﬂ{aza<M( i) < b}, |Z(t )|§bm'y€>.
i=1 i=1

Thus, by Lemma 2.4, for any 0 < § < « with ¢ sufficiently small that a;(1+ ) < b;(1 — )
for each i, we have that

(ﬂ{a1€<M )<bs}>>IE

Now, given any ¢ € @, the associated sequence {df’(é) ™, (as defined in Lemma 2.5)
must satisfy d?(5) = a;(1 + &) for at least one i. Thus, for any ¢ € ® we have that

i 17 N K(ti—1,t;)
S L

i=1

Hﬁ%omn<Awﬂ

=1

-> E

JOISL

[o|

=1

Given this strict inequality, Lemmas 2.5 and 2.7 imply that, for each ¢ € ®
E[[[, ¢ie)]
E ([T, fi(e)Pe (1B(1)] < 2452 )]

as € | 0. This fact, combined with the identity log(A — B) = log A + log(1 — B/A) and
again applying Lemma 2.7 gives the desired result with b; replaced by b;(1 — J). Since
6 > 0 was arbitrary, allowing ¢ | 0 completes the proof. O

— 0
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As alluded to in the discussion from Section 1, a brief review of the proof shows that
conditioning easily determines the first-order (m = 1) asymptotics of Z = X o C for
other self-similar processes X satisfying their own small ball estimates. The following
statement could also be inferred from the proofs of [2].

Proposition 2.9. Suppose that {C(t)};> is continuous non-negative non-decreasing

and {X(t)}+>0 is an H-self-similar process (that is, {X (ct)}i>0 4 {1 X(t)}4>0 for any
¢ > 0) which is independent of C. If there exist o, 0, > 0 and K : (0,00) — (0, 00) such
that

lsig)l % log PP (é’(t) < 5) =—K(t)

forallt > 0 and
lim &% log P ( sup |X(s)] < g) = —k,
el0

s€[0,1]
then
lim e®?/ P+ 1og P | sup |X(C(s))|<e | = —(p+ a)(k*p Pa K (t)°)Y/ (PFe)
el0 s€[0,4]
where p = 0H.

Proof. Under the assumptions on X, for any ¢ > 0, there exists €9 = €¢(d) such that for
any ¢ € (0,&9)

exp (—(1+d)ke™?) <P ( sup |X(s)] < 5) <exp (—(1—0d)re?).
s€[0,1]
Thus, there exist ¢;, ¢ € (0,00) depending only on ¢q so that, for all e > 0,

crexp (—(1+ 5)&870) <P < sup |X(s)] < 5) < cpexp (—(1— 5)/{5*9) .
s€[0,1]

Then continuity of C and self-similarity of X implies that

P, ( sup |X(C(s))] < ) P, ( sup [ X(s)| < )

s€[0,1] [0,C(t)]

=P < sup C(HT|X(s)| < E) < coexp (—(1 - J)HCA’(t)ng(’) .

s€[0,1]

Taking expectations and applying the asymptotics of C gives

lim sup 20/ (P+2) Jog P ( sup |X(C(s))] < 5)
€l0 s€[0,t]

= —(p+a)((1 = 0)r)*p~Pa K (t)°)H/ (Pre).
Letting 0 | 0 proves the upper bound. The lower bound follows in a similar manner. O

Remark 2.10. Note that this result can be more general than that for the two-sided
diffusions in [2] where they require that 0 H = 1. This equality is often satisfied with the
supremum norm, but there are basic processes in this setting for which this does not
hold. For example, the process C' defined in (1.4) is 2-self-similar, but by Theorem 1.2
satisfies a small ball estimate with a = 1. (And more generally, for p = 1 and general
p€el,x),a=2/pand H = (p+2)/2.)
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Remark 2.11. Note also that we could have again allowed a slowly varying factor in
the asymptotics of C, but we have omitted it for ease.

Remark 2.12. It is in the iterative arguments for Theorem 1.3 that one uses, for exam-
ple, the Gaussian properties of Brownian motion. It is clear that some of these estimates
may be extended to other more general processes. For example, there is a known ana-
logue of the Anderson inequality that holds for symmetric a-stable processes (see for
example Lemma 2.1 of [8]) that one could use to extend the proof of Proposition 2.3.

3 Applications to second order chaos

Here we apply the results of the previous section to prove small deviations estimates
for stochastic integrals of the form

t
Zt:/ W(WS,dWS),
0

where W is an infinite-dimensional Brownian motion and w is an anti-symmetric con-
tinuous bilinear form. Small deviations have been studied for analogous integrals of
finite-dimensional Brownian motions in [25] and [13].

First we define the integral processes we study. We will then prove that these
processes are equal in distribution to a Brownian motion under an independent time-
change, and we establish a small ball estimate for the relevant random clock. Then by
applying the results of Section 2, we are able to prove small deviations results for Z.
We fix the following notation for the sequel.

Notation 3.1. Let (W, H, u) be a real abstract Wiener space (see for example [14] and
[4]). We will let

H.:={h € H:(h,-) extends to a continuous linear functional on W}.
Let {W,}+>0 be a Brownian motion on WV with variance determined by
E[(Ws, h)y(Ws, k)] = (h, k) g min(s, t)

foralls,t > 0andh,k € H.. Letw : WxW — R be a anti-symmetric continuous bilinear
map.

Remark 3.2. It is standard that continuity for a bilinear map w on VW x VW implies that
the restriction of w to H x H is Hilbert-Schmidt, that is,

oo
lwllfzs = llwlruxalizes = D lw(hi, hy)* < o0
i,j=1
where {h;}{°, is any orthonormal basis of H; see for example Proposition 3.14 of [10].

Associated to any abstract Wiener space is a class of canonical projections. Suppose
that P : H — H is a finite-rank orthogonal projection such that PH C .. Let {e; };‘:1 be
an orthonormal basis for PH. Then we may extend P to a (unique) continuous operator
from W — H (still denoted by P) by letting

Pw := Z(w,ej>yej (3.1)
for all w € W.
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Notation 3.3. Let Proj(W) denote the collection of finite-rank projections on H such
that PH C H. and P|y : H — H is an orthogonal projection (that is, P has the form
given in equation (3.1)).

For P asin (3.1) and {W;},;>¢ a Brownian motion on W as in Notation 3.1, { PW, };>¢
is a Brownian motion on the finite-dimensional space Range(P) and thus may be ex-
pressed as PW; = > 7, W/e; where the W/’s are independent real-valued Brownian
motions. We will let {Z/'},>¢ denote the process defined by

t
zk ::/ w(PW,, dPW,).
0

Note that, by the bilinearity and anti-symmetry of w, we may write

t n n
_ Jo. k
7/ w E Wsej,g dWiey
0 j=1 k=1
n

t t
= Z w(ej,ek)/ Widwk = Zw(e‘j,ek)/ Widwk — wkaw;
0 0

3 k=1 i<k

thus, {ZF};>0 is a continuous L?-martingale.
It is well-known that 4. contains an orthonormal basis of H. Thus, we may always
take a sequence P,, € Proj(W) so that P, |y T Iy.

Proposition 3.4. If {P,}°, C Proj(W) is an sequence of projections such that P, |y 1
Iy and Z* := Z[", then there exists an L?-martingale {Z;} ;> such that, forallp € [1, c0)
and T > 0,

lim E { sup |Z{" — Zt|p] =0, (3.2)

n—oo 0<t<T

and {Z,}:>0 is independent of the sequence of projections. Thus, we will denote the
limiting process by

t
Z, :/ (W, dW,).
0

The quadratic variation of Z is given by

t t
2y = [ aWer s i= [ olWares) P s, (3.3)
0 0 =1

where {e;}72, is an orthonormal basis of H, and, for all p € [1,00) and T > 0, {Z:}+>0
satisfies

IE{ sup |Zt|p] < 0.
0<t<T

Proof. First note that, for P as in (3.1),

n t
E|zF 2 =E(Z"), = Z/O E |w(PWs, e;)[* ds

1
/ / w(ex, €; | dsyds; < §t2\|w||§15.
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Let P, P’ € Proj(W), and let {h;}}_, be an orthonormal basis for P# + P'H. We then
have that

2

/12 t
EﬂZf’—ZtP\ =E / (w(PW,, dPW,) — w(P'W,, dP'W,))
0

2

E/t( (P — P'YW,,dPW,) + w(P'W.,d(P — P')W,))
0

2

t t
<2k /w((P—P')WS,dPWS) + / w(P'W,,d(P — P'YW,)
0 0

T

=12 3" (l((P = P)ex, Pey)|” + [w(Plex, (P = Pe;)) . 34
j.k=1

N
-2y (|w (P = P"Yhg, Phyj)|* + [w(P by, (P — p)h)\“')
7,k=1

Taking P = P, and P’ = P,, for m < n gives

n m
Bz -2 <[ )+ 3 Y lelene)? | 0
j=1k=m+1 Jj=m+lk=1

| = |lw||%g¢ < oco. Since the space of continuous

as m,n — oo since Y _, |w(ex,e;)
2, and, by Doob’s maximal

L?-martingales on [0, 7] i
inequality, there exists ¢ < oo such that

IE{ sup |th} < cE|Nrl|P,
0<t<T
it follows that there exists an L*-martingale {Z;}+>( such that (3.2) holds with p = 2.
For p > 2, since Z is a chaos expansion of order 2, a theorem of Nelson (see Lemma 2
of [24] and pp. 216-217 of [23]) implies that, for each j € IN, there exists ¢; < oo such
that .

E|Z] — Zi¥ < ¢; (B|Z] — ZiJ?)”,

and again this combined with Doob’s maximal inequality is sufficient to prove (3.2).
One may similarly use (3.4) to show that, for {e ©, C H. another orthonormal
basis of # and P/, a corresponding sequence of orthogonal projections, that

-

. 3 P!
lim E | sup ‘ZtP" —Z; "
n—o0 0<t<T

and thus Z is independent of choice of basis.
Since the quadratic variation of Z" is given by

(Z™), f/ |w (P, By, dPy, By) / le P, Bs,e;)| ds

and

E[(Z); — (Z")i| < VE(Z — Z7)i| - E(Z + Z7)]
=VE|Z, — Z]']2 - E|Z + Z'| = 0

as n — oo and (3.3) follows.
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More general integrals of the form above are considered in [10], in the context of
Brownian motions on certain infinite-dimensional Lie groups, and the above proposition
is a special case of Proposition 4.1 of that reference. In particular, processes like the
Z, defined in Proposition 3.4 appear as the central component of hypoelliptic Brownian
motions on infinite-dimensional Heisenberg groups with one-dimensional center, and
more generally as a term in Brownian motions on infinite-dimensional nilpotent Lie
groups.

We give the following basic example of the type of process Z we study here.

Example 3.5. Let g = {q;}52, € ('(R") and set

W= £2(C) =S v e CN: ) gjlul* < oo

Jj=1

and H = ¢*(C) where both W and H are considered as vector spaces over R. Then
(W, H) determines an abstract Wiener space (for example, Example 3.9.7 of [4]). Define
w:WxW — R by

qulm (wjw qu 'T]yj Yj g)

where w] = x; + iy, for each j. Then for a Brownian motion W = {X7 +iY 7} 521, where
{X7, YJ 2, are independent standard real-valued Brownian motions, we have that

t
Z(t):/ (W, dW,) Zq]/ XIdY? - YidX)
0

is an infinite weighted sum of independent Lévy areas. (Note that, since the weights
{q;} are (1, this expression for Z makes sense. Indeed, in order for the Brownian motion
W to make sense on W, these weights must be ¢*. See [4] for more details.)

Remark 3.6. Since Z is a martingale with

Z), = / (W, )2 ds = / timws,emds
/if| wlew e ds =305 lolenes) |2/< 12d

j=1k=1 Jj=1k=1

=3 loler,- HH/< kY2 ds,

k=1

—

we know there exists a (not necessarily independent) real-valued Brownian motion B
such that Z(t) = B({Z):) by the Dubins-Schwarz representation (see for example Theo-
rem 34.1 on page 64 of [26]). We will show in the next section that this representation
in fact holds with B an independent Brownian motion.

3.1 A representation theorem

In this section, we show that Z < B((Z)) for an independent Brownian motion B.
This representation is well-known for Z the standard stochastic Lévy area for two-
dimensional Brownian motion (see for example Example 6.1 on page 470 of [11]), and
was also proved for more general stochastic integrals of finite-dimensional Brownian
motions in [13]. We summarize the latter result now; see Section 3 of [13] for a proof.
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Lemma 3.7. Let W be a standard Brownian motion in R™ and A be a real non-zero
skew-symmetric n X n matrix with non-zero eigenvalues {+ia;}’_, (where 2r < n and 0
is an eigenvalue of multiplicity n — 2r). Fort > 0, let

L(t) = /Ot<AWS,dWS>

L=y /0 (X7)? + (Y9)2ds | |

where B and { X}, Y;}_, are independent standard real-valued Brownian motions. Then
the law of {L(t)}¢>0 is equal to the law of {L(t)};>o.

Remark 3.8. In particular, this lemma implies that each of the finite-dimensional ap-
proximations Z" to Z has such a representation, in the following way. By Remark 3.2,
the continuity assumption for w implies that its restriction to the Cameron-Martin space
is Hilbert-Schmidt, and thus the Riesz representation theorem implies the existence of
an anti-symmetric Hilbert-Schmidt operator Q = Q,, : H — H such that

w(h,k) = (Qh, k)3, forallhkecH.
Thus,
t t t
th = / w(PBs,dPB;) = / (QPB,dPBg)y = / ((PQP)PBs,dPBg)y,
0 0 0
and we may apply Lemma 3.7 to Z*, as PB is a Brownian motion on the finite-dimensional

space PH C H and A = PQP is a skew-symmetric linear operator on PH.

We will use this representation for the finite-dimensional approximations to show
that an analogous statement is true for Z. First we record the following simple lemma.

Lemma 3.9. Let Q : H — H be a Hilbert-Schmidt operator, and let P, be an increas-
ing sequence of orthogonal projections on ‘H such that P,|y 1 Iy. Then, as n — oo,
P,QP, —  in Hilbert-Schmidt norm.

Proof. Let {e;}3°, be an orthonormal basis of H so that {e;};”, is an orthonormal basis
of P,H. We have

HPnQpn - Q”?{S = Z H(P”QPTL - Q)%H%

i=1

=Y P - DQeillF + > IQeil3
=1 1=rn,+1
o0 (o)

<Y P = DQeill5 + > [1Qeill3,
i=1 i=rp+1

The second term goes to zero since it is the tail of the convergent sum > 2 [|Qe;||3, =
|Q||3;¢ < oc. For the first term, we may use the dominated convergence theorem: since
P,, — I strongly we have ||(P, — I)Qe;||?, — 0 for each i, and ||(P, — I)Qe;||3, < 4]|Qe; |3,
which is summable. O

Now we may prove the desired representation for Z.
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Theorem 3.10. Let Z(¢ fo w(Ws,dWy) be as defined in Proposition 3.4, and let
@ = Q. be the linear operator on H such that w(h,k) = (Qh, k)s for all h,k € H as in
Remark 3.8. Let {X7, YJ ° . be independent standard real-valued Brownian motions,
{+ig;}32, be the e1genva1ues of Q so that {q;}72, is ordered from largest to smallest,
and define fort > 0

oo

t
=Y [ oy i pas
j=1 70

(Note that C(t) is well-defined ayd finite a]mosg surely for each t.) Then the law of
{Z(t)}+>0 is equal to the law of {Z(t)};>o where Z(t) = B(C(t)) for B a standard Brow-
nian motion independent of {X7,Y7}32 .

Proof. Let {P,}5°; C Proj(W) be such that P, |3 1 I3 and

t t
Zn(t) = /O w(PnWSa dPnWs) = /0 <(P7LQP7L)PnWS7 dPnWs>7-L

as in Proposition 3.4, Then Lemma 3.7 implies that, for each n, the law of {Z"(t)};>¢ is
equal to the law of {Z"(t)}+>0 where

Tn

Zn(t) = B(C}) - qu / 024 (Y9)? ds

where {£ig,; }2“:1 are the non-zero eigenvalues of P,,QP,. For each n, we will assume
the g¢,; are ordered in j from largest to smallest. Clearly, Proposition 3.4 and in particu-
lar (3.2) imply that Z™ = Z and the collection {Z"}52 , is tight. Equality in distribution
then implies that Z" = Z and {Z"},> is tight.

Now we also have that, for each fixed ¢ > 0,

E|Z(t) - Z"(t)* = E[E[|Z(t) - Z"(t)|*|C,C"]] = E|C(t) — C"(1)]

[e'e] t Tn t
_E Zq?/o (Xg>2+<m2ds—zqij/o (X9)% 4 (V3)? ds
=1 j=1

Note that

Tn )
1QullFrs =2 an; and |Qlks =2 ¢f <ce.
j=1 j=1

Thus, for the second term,

o t o
E| 3 ¢ [ 00)as =2 Y & o
j=rn+1 0 G=rna1
EJP 19 (2014), paper 85. ejp.ejpecp.org
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clearly, since this is the tail of a convergent sequence. For the first term,

Tn

E Z(qu»—qij)/o( 2+ (Y)ds <t22|qj_qm|_t22 4] = n;)

j=1

Tn

oo
D= | 0,
j=1 j=1

where the equality follows from the min-max theorem which implies that

Qni = sup  min 12wl
" scu hes A
dim(S) = j
< sup min LQhH = sup min ——— (o H < q,;
= W sl T S Th hes a =Y
dim(S) = j dim(S) = j

and the limit follows from Lemma 3.9 which implies that the Hilbert-Schmidt norms of
Q., converge to the Hilbert-Schmidt norm of Q. Thus, for any (¢1,...,t,) € (RT)™

E(Z,..., 20 )= (Zyy,. . 24

tyr ) Ty

ZEIZ" —Z(t)P? =0

as n — oo, and the finite-dimensional distributions of A converge to those of Z . Com-
bining this with the tightness of {Z"} implies that Z" = Z. However, since Z" = Z
also, it must be that {Z(¢)},>0 and {Z(¢)};>0 are equal in distribution. O

Noting that, for {e;}?>, an orthonormal basis of A,

Z lw(er, )7, = Z KQex, Hnll3 = Z 1Qex17, = 22%

we see that indeed C(t) = (Z); up to a reordering of terms. Given this last theorem,
in order to prove small deviations for Z, it suffices to prove them for Z. The results of
Section 2 lead us to find a small ball estimate for the process (Z).

3.2 Small deviations for (Z), and applications

Note again that, as in Remark 3.6 we may write (Z), = > r- | |lw(ex, -)||%&x(t) where
{&,}%2, are i.i.d. copies of
t
£(t) = / B2 ds. (3.5)
0
Recall that, if {(;}*, are independent positive random variables satisfying small ball
estimates with the same exponents a and f3 for coefficients {K;}7.,, then

lim A~2/(152) (Iog X) /() log | [~ i &

A—o0

= (14 a) B/ (e) g/ (Lra) § L/ (1+e)

j=1
and equivalently
(1+a)
m
hmsa\logdﬂlogIP ZCJ <el|l=- ZK;/(H@)
Jj=1 j
EJP 19 (2014), paper 85. S ——
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In particular, if {nj};-":l are positive i.i.d. random variables satisfying small ball esti-

mates with K; = K for each j and ¢; = a;7n; for some a; > 0, then we have that
(14a)
m

m
li aly 51 P n. < — _ ?‘/(1+a)
Elf(r)le |logel|” log ;ajn] <e j:1aJ

Equivalently,
lim sup A~/ 1) (Jog )8/ (14) Jog [e—* PO %]

A—00
=—(1+ a)1+5/(1+0‘)a_a/(1+0‘)Kl/“*a) Z a}l/(Ha). (3.6)
j=1
In the event this sum is actually infinite with a summable sequence of coefficients

{a; };?‘;1, analogous results hold under additional requirements on the coefficients. Small
deviations of random variables of the form

S= ai
j=1

where {a;} € ¢*(R") and {¢;} are non-negative i.i.d. random variables, have been stud-
iedin [1, 7, 22, 27, 28, 18]. In particular, we present the following theorem (Theorem
3.1 of [7]) without proof.

Theorem 3.11. Suppose that ( is a non-negative random variable such that there exist
a > 0 and a slowly varying function L so that

logP(¢ <€) ~ —e “L(¢)
as e |} 0, and there exist k,6 > 0 so that

E [C(l/(’y+f@))+5} < o0,

where v = H‘T‘X Then, given a sequence {aj}?il c R* such that a; = O(j*(wr'i)) and
{¢;}52, i.i.d. copies of ¢,
oo oo (1+a)
logPP | D aj¢; <e | ~ ag/ ) e *L(e)
Jj=1 j=1

ase | 0.

Remark 3.12. For any {a;} € (*(RT), we easily obtain the upper bound for (3.6) in the
following way. First, note that

E [G—A Z;L“J'C;} — ﬁ o) [B*MjCj]
j=1

by independence and bounded convergence. Thus,

lim sup A~/ (142 (Jog \)#/ 1+ oo | {e‘A DDt C_;}

A—o0

< Z lim sup A~/ (142 (Jog X)#/(1+) Jog | [e™254]

=1 A—00

=—(1+ CY)1+/3/(1—s-a)O[—a/(l—s-a)Kl/(l—s-a) Z a?/(Ha)
j=1

by reverse Fatou’s lemma for non-positive functions.
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Remark 3.13. When {a;} € ¢*(R") are such that a; < a; for {a;} a sequence as in
Theorem 3.11, then we may easily obtain a lower bound in terms of {a;}. Since a; < a;,

S = ZajCj < Zdjcj = S
j=1 j=1

and thus P(S < ¢) < P(S < ¢). It follows that
liminf e log P(S < &) > liminfe*log P(S < ) = —K a2/ (e
im i e*logP(S <e¢) > im i elogP(S <¢) Zaj

Similarly,

lim inf A~ /() 1OgE[ _)\Sq} > lim inf A~/ (1+) logE{ _/\SQ}

A—00 A—00

_(1 + a)a—a/(l—&-a)KZa;z/(l-&-a).
j=1

Proposition 3.14. Let Z(t fo w(Ws,dW5) be as in Proposition 3.4, and suppose that
llw(ej, )|l =0(~") forr > 1. Then C = (Z) satisfies Assumption 1.1 witha =1, =0,
and

1
K(ti-1,ti) = §||w||f(Az‘t)2

where Ait =1t; —t;_1 and

o0
lwll =D llwle, )la < co.

j=1

That is, foranym € N, 0 = tg < t1 < --- < t, and {d;}/, a decreasing sequence,

2
m B 1 , m 12
lenglslogIP <;_1 d;iA(Z) < €> = —§||o.)||1 <Z§_1 d; Aﬂf)

Proof. By Equation (3.5), we have that 3" | d;A;C = 377 | [lw(e;, -)||5,(; where {¢;}32,

are i.i.d. copies of
m t;
C = Z dl/ (Bs)2 ds.
i=1 Yti-1

Theorem 1.2 implies that

hmelog]P((<5 —= (Zd1/2A t)

Thus, under the assumptions on w, the desired result follows from Theorem 3.11 with
a=1and a; = [[w(ej,")|3. O

Now combining this result with Theorem 3.10 and Theorem 1.3 with a =1, 8 = 0,
and K (t;—1,t;) = 1||w|3( Ait)Q immediately yields the following.

Theorem 3.15. Let Z(t fo (Wy,dW) with ||w(ej, )|l = O(j~") forr > 1. Then, for
anyme]N,0:t0<t1< c<tm,and0<a; <bp <ag <by << ay < by,

hmslogP(ﬂ{a5< sup |Z (8)|§bi5}>:

i=1 0<s<t;
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Remark 3.16. Note that the logarithmic asymptotics determined by Remarks 3.12 and
3.13 are sufficient to show that Theorem 1.3 has the correct order of asymptotics for
general w satisfying ||wl||1 < co.

As was done in [13], Theorem 3.15 may be used to prove a functional law of the
iterated logarithm for Z. This immediately implies a Chung-like law of the iterated
logarithm, or one may prove this directly from the first-order small deviations estimates
proved in Theorem 3.15 as was done in [25]. The proofs follow exactly analogously to
the finite-dimensional cases in [25] and [13], so we omit the proofs here.

Theorem 3.17. Let Z(t) = fgw(WS,dWS) with ||w(e;, )|l = O(j~") forr > 1. Then

loglogt
P (liminngOg sup |Z(s)| = Z||w||1> =1.

t—o00 0<s<t

Theorem 3.18. Let Z(t) = [} w(W,,dW,) with |[w(e;,-)| = O(j ") forr > 1. Let

loglogn
= 1Z(s)

nn(t) :

- Fllwlhin o<s<ne 7

and let M denote the set of non-negative, non-decreasing continuous functions such

that f(0) = 0 and tlim f(t) = co. Then, with probability 1, {n,} is relatively compact in
— 00

M and the set of cluster points of {n,} is

{feM:/Ooofl(s)dsgl}.

From here it is possible to obtain various occupation measure results for the maximal
process of Z, as was done in [8], [12], and [13].

Remark 3.19. Note that Theorems 3.15, 3.17, and 3.18 also include the finite-dimensional
stochastic integrals already studied in [25] and [13]. The difference in factors of 2 arises
from the fact that the non-zero singular values of () necessarily have multiplicity which

is a factor of 2 and the sum in |lw||; counts all of these.
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