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Abstract
We consider two particles’ repelling random walks on complete graphs. In this model,
each particle has higher probability to visit the vertices which have been seldom
visited by the other one. By a dynamical approach we prove that the two particles’ oc-
cupation measure asymptotically has small joint support almost surely if the repulsion
is strong enough.
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1 Introduction and statement of result

In this paper, we consider a model of multi-particle vertex repelling random walks,
which is analogous to the well-studied reinforced random walks (RRW). See [13] for a
general reference to RRW. To the best knowledge of the author, this paper is one of the
first papers [7] investigating multi-particle interacting random walks. Our model was
proposed by Itai Benjamini around the year 2010 and can be generalized to any graph.

Now we define the model of two particles’ repelling random walks on a complete
graph. Denote the two particles by X and Y , and let G = (V,E) be a complete graph with
V = {1, . . . , d}. Let Xk, Yk be X,Y ’s locations at time k on V , and N(X, v, n), N(Y, v, n) be
the number of X,Y ’s visits to vertex v by time n. Assume that N(X, v, 0) = N(Y, v, 0) = 1

for any v ∈ V . Let

xi(n) =
N(X, i, n)

n+ d
, yi(n) =

N(Y, i, n)

n+ d
, ∀i ∈ V (1.1)

be X and Y ’s empirical occupation measure on V by time n. Let Fn(n ∈ N) be the
natural filtration generated by {Xk, 0 ≤ k ≤ n} and {Yk, 0 ≤ k ≤ n}. Then we define the
random walks (Xn, Yn) by

P(Xn+1 = i|Fn) =

[
δ1yi(n)≤δ + yi(n)1yi(n)>δ

]−α∑d
k=1

[
δ1yk(n)≤δ + yk(n)1yk(n)>δ

]−α , ∀i ∈ V, (1.2)
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and

P(Yn+1 = j|Fn) =

[
δ1xj(n)≤δ + xj(n)1xj(n)>δ

]−α∑d
k=1

[
δ1xk(n)≤δ + xk(n)1xk(n)>δ

]−α , ∀j ∈ V, (1.3)

where δ, α are some fixed positive numbers and 1{·} is the indicator function. Notice that
by the definition of (1.2) and (1.3), the random walks are lazy random walks, i.e. the
particles could stay at their current locations.

Let x(n) = (x1(n), . . . , xd(n)), y(n) = (y1(n), . . . , yd(n)), and z(n) be a 2d dimensional
vector

z(n) = (x(n), y(n)) = (x1(n), . . . , xd(n), y1(n), . . . , yd(n)). (1.4)

Notice that z(n) is a Markov chain living in R2d
+ . We are interested in z(n)’s asymptotic

behavior.
Here we want to mention that when mini,j∈V {xi(n), yj(n)} > δ, (1.2) and (1.3) are

equivalent to the following formulas

P(Xn+1 = i|Fn) =
N(Y, i, n)−α∑d
k=1N(Y, k, n)−α

, ∀i ∈ V, (1.5)

P(Yn+1 = j|Fn) =
N(X, j, n)−α∑d
k=1N(X, k, n)−α

, ∀j ∈ V, (1.6)

which can be viewed as a multi-particle analogue of the classical RRW with nonlinear
reinforcement. In the definition of (1.2) and (1.3), we are not able to work with δ = 0

due to a technical difficulty of our proof. See Problem 4.2.
Then we can state our main result.

Theorem 1.1. For any fixed positive integer d ≥ 3, there exists some α(d), s.t. when
α ≥ α(d), for any fixed δ > 0 in the definition of (1.2) and (1.3), the two components x(n)

and y(n) of z(n) in (1.4) asymptotically have joint support bounded by 4δ almost surely,
i.e.

P

∃n0,
⋂
n≥n0

{
d∑
i=1

xi(n)yi(n) < 4δ

} = 1.

Our result says that for a fixed complete graph, when the repulsion is strong enough,
in the definition of our model we can push δ down to zero to relax its restriction on the
occupation measures x(n) and y(n), so that the joint support of the particles’ occupation
measures can be made arbitrarily small. Our result is analogous to the localization
results [1, 3, 9, 10, 14, 16] in the RRW models.

The organization of this paper is as follows: In Section 2, we will do some preparation
work for the proof of Theorem 1.1. More specifically, we will introduce a notion of
stochastic approximation algorithm, describe the dynamical approach and then apply
them to z(n), finally conclude that the limit set of z(n) is contained in the chain recurrent
set of a semiflow induced by an ordinary differential equation (ODE). In Section 3, we
will prove Theorem 1.1. In Section 4, we will propose some open problems.

2 Some preparations to prove the main result

2.1 Stochastic approximation algorithm and dynamical approach

A stochastic approximation algorithm is a discrete time stochastic process whose
form can be written as

z(n+ 1)− z(n) = γnH(z(n), ξ(n)) (2.1)

where H : Rm × Rk → Rm is a measurable function that characterizes the algorithm,
{z(n)}n≥0 ⊂ Rm is the sequence of parameters to be recursively updated, {ξ(n)}n≥0 ⊂
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Rk is a sequence of random variables defined on some probability space, and {γn}n≥0 is
a sequence of “small" nonnegative numbers. Such processes were first introduced in the
early 50s in the works of Robbins and Monro [15] and Kiefer and Wolfowitz [6].

Observe that z(n) in (1.4) is a stochastic approximation algorithm. Indeed, from (1.1)

xi(n+ 1)− xi(n) =
N(X, i, n) + 1Xn+1=i

n+ 1 + d
− N(X, i, n)

n+ d

=
−xi(n) + 1Xn+1=i

n+ 1 + d
. (2.2)

Similarly, a difference equation for yi(n) can be derived. Then z(n) satisfies (2.1) with

γn =
1

n+ 1 + d
, ξ(n) = (1Xn+1=1, . . . , 1Xn+1=d, 1Yn+1=1, . . . , 1Yn+1=d) (2.3)

and H : R2d ×R2d → R2d be H(z(n), ξ(n)) = −z(n) + ξ(n). That is,

z(n+ 1)− z(n) =
1

n+ 1 + d
(−z(n) + ξ(n)) . (2.4)

The dynamical approach is a method used to analyze stochastic approximation
algorithms, introduced by Ljung [11] and Kushner and Clark [8]. The idea is to decouple
the stochastic approximation algorithm into its mean part and the other so-called “noise"
part, and then study the asymptotic behavior of the algorithm in terms of the mean
component’s behavior. This method has been widely studied and inspired many works,
such as the book by Kushner and Clark [8], numerous articles by Kushner, and more
recently the book by Benveniste, Metivier, and Priouret [4].

In the above perspective, our stochastic approximation algorithm z(n) can be written
as

z(n+ 1)− z(n) = γn {(−z(n) + E [ξ(n)|Fn]) + (ξ(n)− E [ξ(n)|Fn])} . (2.5)

Before moving on, we need to introduce some notations.

Notation 2.1. 1. Let ∆ be the closed (d− 1)−dimensional simplex

∆ =

{
u ∈ Rd : ui ≥ 0,

d∑
i=1

ui = 1

}
.

Denote the relative interior of ∆ by
◦
∆.

2. Let D be the product of two simplices ∆×∆

D =

{
(u, v) ∈ R2d : ui ≥ 0,

d∑
i=1

ui = 1 and vi ≥ 0,

d∑
i=1

vi = 1

}
.

Denote the relative interior of D by
◦
D, and the boundary of D by ∂D ;

3. Let TD be the set identified with the tangent space to D at each point

TD = T (∆×∆) =

{
(u, v) ∈ R2d,

d∑
i=1

ui = 0,

d∑
i=1

vi = 0

}
.

4. Let U be the d−dimensional vector (1/d, . . . , 1/d). We also call U the uniform
distribution.
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5. Let ‖ · ‖ be the L1 norm on R2d.

Let $(x) = [δ1x≤δ + x1x>δ]
−α, and define a map π = (π1, . . . , πd) : ∆→ ∆ by

πi(x) =
$(xi)∑d
k=1$(xk)

, ∀x ∈ ∆. (2.6)

Observe that, by (1.2), (1.3) and (2.3),

E [ξ(n)|Fn] = (π(y(n)), π(x(n))).

Thus, defining {un}n≥0 ⊂ R2d by

un = ξ(n)− E [ξ(n)|Fn] (2.7)

and F = (F1, . . . , F2d) to be a vector field in D with

Fi(x1, . . . , xd, y1, . . . , yd) =

{
−xi + πi(y1, . . . , yd), if 1 ≤ i ≤ d;
−yi−d + πi−d(x1, . . . , xd), if d+ 1 ≤ i ≤ 2d,

(2.8)

by (2.5), z(n) takes the form

z(n+ 1)− z(n) = γn [F (z(n)) + un] . (2.9)

The above expression is a particular case of a class of stochastic approximation
algorithms studied by Benaïm in [2], on which he related the behavior of the algorithm
to a weak notion of recurrence for the ODE: that of chain-recurrence. His theorem
asserts that, under some appropriate conditions, the accumulation points of {z(n)}n≥0

are contained in the chain-recurrent set of the semiflow generated by the ODE.
In the remaining of this section, we introduce the necessary definitions for semiflows,

state Benaïm’s theorem, and conclude the section by proving that our model satisfies
the required conditions of this theorem.

2.2 Preliminaries on semiflows

Let Γ ⊂ Rm be a metric space and “dist(·, ·)" denote the metric. Let Φ : R+ × Γ→ Γ

be a continuous map. For simplicity, denote Φ(t, x) by Φt(x).

Definition 2.2 (Semiflow). A semiflow on Γ is a continuous map Φ : R+ × Γ → Γ such
that

(i) Φ0 is the identity on Γ, and

(ii) Φt+s = Φt ◦ Φs for any t, s ≥ 0.

In particular, for every continuous vector field F : Rm → Rm with unique integral
curves, we can associate a semiflow on Rm by the equation

d

dt
Φt(x) = F (Φt(x)) , ∀x ∈ Rm,∀ t ∈ R+.

If F is Lipschitz, then it has unique integral curves.
Fix a semiflow Φ on Γ ⊂ Rm.

Definition 2.3 (Invariant set). A set A ⊂ Γ is called invariant if Φt(A) ⊂ A for every
t ≥ 0.

Note that our definition of “invariant” is equivalent to the definition of “positively
invariant” in some literature.
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Definition 2.4 (Equilibrium point). A point x ∈ Γ is called an equilibrium if Φt(x) = x for
all t ≥ 0. The equilibrium set of Φ is the set of all equilibrium points.

When Φ is induced by a vector field F , the equilibrium set coincides with the set of
points on which F vanishes.

Definition 2.5 (Chain-recurrent point). Given ρ, T > 0, a point x ∈ Γ is called (ρ, T )-
recurrent if there are points x0 = x, x1, . . . , xk−1, xk = x ∈ Γ and real numbers
t0, t1, . . . , tk−1 ≥ T such that

dist (Φti(xi), xi+1) < ρ, i = 0, . . . , k − 1.

x is said to be chain-recurrent if it is (ρ, T )-recurrent for any ρ, T > 0.

Let CR (Φ) be the set of chain-recurrent points associated with Φ. Note that CR (Φ)

is closed and invariant.
We denote the limit set of a discrete sequence {x(n)}n≥0 ⊂ Γ by L ({x(n)}n≥0). The

sets describing the asymptotic behavior of the orbits of Φ are the omega limit sets.

Definition 2.6 (Omega limit set). The omega limit set of w ∈ Γ, denoted by ω(w), is the
set of x ∈ Γ such that limk→∞Φtk(w) = x for some sequence tk > 0 with limk→∞ tk =∞.

If Γ is compact, ω(w) is a nonempty, compact, connected and invariant set.

Definition 2.7 (Lyapunov function). A continuous map L : Γ→ R is said to be a Lyapunov
function for some subset Λ ⊂ Γ if the function t ∈ R+ → L(Φt(x)) is strictly decreasing
along any non-constant orbit Φt(x) ⊂ Λ.

2.3 A limit set theorem

The reason we can characterize the limit set of a random process via the chain-
recurrent set of a deterministic semiflow is due to Theorem 1.2 of [2] which, to our
purposes, is stated as

Theorem 2.8. Let F : Rm → Rm be a continuous vector field with unique integral
curves, and let {z(n)}n≥0 be a solution to the recursion

z(n+ 1)− z(n) = γn [F (z(n)) + un] ,

where {γn}n≥0 is a decreasing gain sequence1 and {un}n≥0 ⊂ Rm. Assume that

(i) {z(n)}n≥0 is bounded, and

(ii) for each T > 0,

lim
n→∞

sup
k

{∥∥∥∥∥
k−1∑
i=n

γiui

∥∥∥∥∥ :

k−1∑
i=n

γi ≤ T

}
= 0.

Then L({z(n)}n≥0) is a connected set chain-recurrent for the semiflow induced by F .

2.4 The random process (2.9) satisfies Theorem 2.8

First, note that δ1x≤δ + x1x>δ is bounded by δ and 1, and $(x) is Lipschitz. Then π in
(2.6) and F in (2.8) are Lipschitz. Meanwhile, γn = 1/(n+ 1 + d) satisfies

lim
n→∞

γn = 0 and
∑
n≥0

γn =∞.

1limn→∞ γn = 0 and
∑

n≥0 γn = ∞.
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It remains to check condition (ii). For that, let Mn =
∑n
i=0 γiui. Observe that {Mn}n≥0 is

a martingale adapted to {Fn+1}n≥0

E [Mn+1|Fn+1] =

n∑
i=0

γiui + E [γn+1un+1|Fn+1] =

n∑
i=0

γiui = Mn.

Furthermore, because for any n ≥ 0

n∑
i=0

E
[
‖Mi+1 −Mi‖2|Fi+1

]
≤ (2d)2 ·

n∑
i=0

γ2
i+1 ≤ (2d)2 ·

∑
i≥0

γ2
i <∞ a.s.,

the sequence {Mn}n≥0 converges to a finite random vector in R2d almost surely (see e.g.
Theorem 5.4.9 of [5]). In particular, it is a Cauchy sequence and so condition (ii) holds
almost surely.

Now, in view of Theorem 2.8, we will investigate the chain-recurrent set of the
semiflow generated by the following ODE

dui(t)

dt
= −ui(t) +

f(vi(t))
−α∑d

k=1 f(vk(t))−α
, i = 1, . . . , d

dvi(t)

dt
= −vi(t) +

f(ui(t))
−α∑d

k=1 f(uk(t))−α
, i = 1, . . . , d

(2.10)

where f is a function as follows

f(x) = δ1x≤δ + x1x>δ, i.e. f(x) = $(x)−
1
α . (2.11)

We can rewrite (2.10) in vector form
du(t)

dt
= −u(t) + π(v(t))

dv(t)

dt
= −v(t) + π(u(t))

or
dΞ(t)

dt
= F (Ξ(t)) (2.12)

where Ξ(t) = (u(t), v(t)) ∈ D.
Before moving to the proof of Theorem 1.1, we will prove a simple fact regarding

(2.10).

Proposition 2.9. The domain D is invariant under Φ, the semiflow induced by (2.10).

Proof. Suppose (u, v) ∈ ∂D. Without loss of generality, we can assume that there exists
some i ∈ V such that ui = 0. Then by (2.10), we have

dui(t)

dt

∣∣∣∣
(u,v)

≥ inf
v∈∆

f(vi)
−α∑d

j=1 f(vj)−α
> 0.

Hence, F (u, v) points inward whenever (u, v) belongs to the boundary of D. Thus any
forward trajectory based in D remains in D. This completes the proof.

3 Proof of the main result

By Theorem 2.8, the limit set of {z(n)}n≥0 is contained in the chain recurrent set,
and so the first step to prove Theorem 1.1 is to characterize chain-recurrent set for our
specific semiflow induced by (2.10). Recall U defined in Notation 2.1. We will conclude
the proof of Theorem 1.1 by showing that {z(n)}n≥0 has probability zero to converge to
the isolated unstable equilibrium (U,U).
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3.1 Chain recurrent set

3.1.1 Lyapunov function

We characterize the chain-recurrent set CR (Φ) by introducing a Lyapunov function

L(u, v) =

d∑
i=1

uivi, (u, v) ∈ D. (3.1)

Let Φt(x) = (u1(t), . . . , ud(t), v1(t), . . . , vd(t)) (t ≥ 0) be an orbit of Φ where x = (u1(0),

. . . , ud(0), v1(0), . . . , vd(0)). Then

d

dt
(L(Φt(x)))

=

d∑
i=1

vi(t)
dui(t)

dt
+

d∑
i=1

ui(t)
dvi(t)

dt

=

d∑
i=1

vi

(
−ui +

f(vi)
−α∑d

k=1 f(vk)−α

)
+

d∑
i=1

ui

(
−vi +

f(ui)
−α∑d

k=1 f(uk)−α

)

= −2

d∑
i=1

uivi +

∑d
i=1 uif(ui)

−α∑d
k=1 f(uk)−α

+

∑d
i=1 vif(vi)

−α∑d
k=1 f(vk)−α

. (3.2)

Notice that the right hand side of (3.2) depends on t only through dependence on ui(t)
and vi(t). We have the following lemma about (3.2), which confirms that L(u, v) is a
Lyapunov function for a large subset of the domain D according to Definition 2.7.

Lemma 3.1. Let Dδ = {(u, v) ∈ D : L(u, v) ≥ 3δ}. For any fixed d ≥ 3 ∈ N, there exists
some α(d) independent of δ, s.t. when α ≥ α(d)

d

dt
(L(Φt(x)))

∣∣∣∣
(u,v)

≤ 0, ∀(u, v) ∈ Dδ, (3.3)

with equality if and only if (u, v) = (U,U).

To prove Lemma 3.1, we need several other lemmas. Recall that V = {1, . . . , d}.

Lemma 3.2. When α > d− 2, U is a local minimum of the function g :
◦
∆→ R defined as

g(u1, . . . , ud) = 2 min
i∈V

ui − d
(

min
i∈V

ui

)2

−
∑d
i=1 u

−α
i∑d

i=1 u
−(α+1)
i

.

In particular, g(U) = 0.

Proof. Define a function G on Rd+:

G(w1, . . . , wd) =
2 mini∈V wi∑d

i=1 wi
− d (mini∈V wi)

2

(
∑d
i=1 wi)

2
− 1∑d

i=1 wi
·
∑d
i=1 w

−α
i∑d

i=1 w
−(α+1)
i

.

Observe that G(w1, . . . , wd) is a homogeneous function, and it has the same value as
g(u1, . . . , ud) whenever

ui =
wi∑d
j=1 wj

, ∀i ∈ V.

Without loss of generality, we can assume wd = mini∈V wi, then

G(w1, . . . , wd) =
2wd∑d
i=1 wi

− dw2
d

(
∑d
i=1 wi)

2
− 1∑d

i=1 wi
·
∑d
i=1 w

−α
i∑d

i=1 w
−(α+1)
i

. (3.4)
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Let W = (w, . . . , w) (w > 0), and we refer to W as the diagonal. So to prove the lemma,
it suffices to prove that W is a local minimum of G(w1, . . . , wd).

First, by direct calculation, we can check that G(w1, . . . , wd) has zero gradient at W ,
i.e. ∇G|W = 0. Hence, W is a critical point of G(w1, . . . , wd).

Further, we will prove that G(w1, . . . , wd) is convex along all the other directions
except the diagonal. We calculate H, the Hessian matrix of G(w1, . . . , wd) at W :

H =
2

d2w2


−α+2

d + α+ 1 . . . −α+2
d 1− α+2

d
...

. . .
...

...
−α+2

d . . . −α+2
d + α+ 1 1− α+2

d

1− α+2
d . . . 1− α+2

d −α+2
d + α+ 1 + 2− d

 .

Let

P =


−α+2

d + α+ 1 . . . −α+2
d 1− α+2

d
...

. . .
...

...
−α+2

d . . . −α+2
d + α+ 1 1− α+2

d

1− α+2
d . . . 1− α+2

d −α+2
d + α+ 1 + 2− d

 ,

and hence H = (2/(d2w2))P . We want to calculate the eigenvalues of P first. Let

Q =


−α+2

d −α+2
d . . . −α+2

d 1− α+2
d

−α+2
d −α+2

d −α+2
d . . . 1− α+2

d
...

...
...

...
...

−α+2
d . . . −α+2

d −α+2
d 1− α+2

d

1− α+2
d . . . . . . 1− α+2

d −α+2
d + 2− d


and hence P = (α + 1)I + Q, where I is the identity matrix. By direct calculation, we
can have the eigenvalues of Q

λQ1 = . . . = λQd−2 = 0, λQd−1 = −(α+ 1), λQd = − (d− 1) .

Then shifting Q’s eigenvalues by α+ 1, we get the eigenvalues of P

λP1 = . . . = λPd−2 = α+ 1, λPd−1 = 0, λPd = α+ 2− d.

Finally, we derive the eigenvalues of H

λH1 = . . . = λHd−2 =
2(α+ 1)

d2w2
, λHd−1 = 0, λHd =

2(α+ 2− d)

d2w2
.

Thus when α > d−2, one of H’s eigenvalues is zero and all the others are strictly positive.
It is easy to check that the sum of each row of H is zero, which means

H
(
1, . . . , 1

)T
= 0 ·

(
1, . . . , 1

)T
.

That is, the diagonal is an eigenvector associated with H’s zero eigenvalue. This proves
that G(w1, . . . , wd) is convex along all the other directions except the diagonal, and hence
the diagonal is its local minimum.

Keeping the notations of Lemma 3.2, we have the following lemma.

Lemma 3.3. For any fixed positive integer d ≥ 3, there exists some α0(d), such that
when α > α0(d), U is the global minimum of g(u1, . . . , ud).
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Proof. It is equivalent to prove that for any u = (u1, . . . , ud) ∈
◦
∆ the following holds

2 min
i∈V

ui − d
(

min
i∈V

ui

)2

≥
∑d
i=1 u

−α
i∑d

i=1 u
−(α+1)
i

, (3.5)

with equality if and only if u = U .
We will divide the proof of (3.5) into two cases:

(1) u is in a neighborhood of U ;

(2) u is bounded away from U . Equivalently, for some fixed 0 < κ < 1, u satisfies
mini∈V ui < κ/d.

Case (1) directly follows from Lemma 3.2.
To prove case (2), first we use the minimum coordinates of u to bound the right hand

side of (3.5) from above. More precisely, for fixed d and α, we will prove that for any

u ∈
◦
∆, the following holds ∑d

i=1 u
−α
i∑d

i=1 u
−(α+1)
i

≤ d1/(α+1) min
i∈V

ui. (3.6)

Without loss of generality, we can assume ud = mini∈V ui. Then if letting ai = mini∈V ui/ui
= ud/ui ∈ (0, 1], (3.6) is equivalent to the following inequality with ai ∈ (0, 1] (i =

1, . . . , d− 1)

1 +
∑d−1
i=1 a

α
i

1 +
∑d−1
i=1 a

α+1
i

≤ d1/(α+1). (3.7)

To prove (3.7), observe that by Hölder’s inequality,(
1 +

∑d−1
i=1 a

α
i

d

)1/α

≤

(
1 +

∑d−1
i=1 a

α+1
i

d

)1/(α+1)

,

i.e.

1 +
d−1∑
i=1

aαi ≤ d1/(α+1)

(
1 +

d−1∑
i=1

aα+1
i

)α/(α+1)

.

Then

1 +
∑d−1
i=1 a

α
i

1 +
∑d−1
i=1 a

α+1
i

≤
d1/(α+1)

(
1 +

∑d−1
i=1 a

α+1
i

)α/(α+1)

1 +
∑d−1
i=1 a

α+1
i

=
d1/(α+1)(

1 +
∑d−1
i=1 a

α+1
i

)1/(α+1)
< d1/(α+1),

thus proving (3.7) and also (3.6). Notice that when α ≥ log d/ log(2 − κ) − 1, for any
ud ∈ (0, κ/d) the following inequality holds

d1/(α+1) · ud < 2ud − du2
d, i.e. d1/(α+1) < 2− dud. (3.8)

Then (3.6) and (3.8) together imply that when α ≥ log d/ log(2−κ)−1, for any u satisfying
mini∈V ui < κ/d

2 min
i∈V

ui − d
(

min
i∈V

ui

)2

>

∑d
i=1 u

−α
i∑d

i=1 u
−(α+1)
i

. (3.9)
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This finishes the proof of case (2).
Finally, we need to combine the two cases together. From case (1), for fixed d and

α > d − 2, there exists a neighborhood of the uniform distribution N (U, εα) s.t. for

any u ∈ N (U, εα), (3.5) holds. For any u 6= U in
◦
∆, since

∑d
i=1 u

−α
i /

∑d
i=1 u

−(α+1)
i is a

decreasing function2 in α, g(u1, . . . , ud) in Lemma 3.2 is an increasing function in α.
This allows us to take some common neighborhood N (U, εd) =

⋂
α>d−1N (U, εα) just

depending on d such that (3.5) holds. Take some κ = κ(d) < 1 such that{
u ∈

◦
∆ : min

i∈V
ui <

κ

d

}
∪N (U, εd) =

◦
∆.

Then let

α0(d) = max

{
d− 1,

log d

log(2− κ)
− 1

}
.

When α > α0(d), the above two cases combined imply that (3.5) holds for any u ∈
◦
∆.

Lemma 3.4. For any fixed positive integer d ≥ 3, there exists some α0(d), such that

when α > α0(d), for any (u, v) = (u1, . . . , ud, v1, . . . , vd) ∈
◦
D the following holds

2

d∑
i=1

uivi ≥
∑d
i=1 u

−α
i∑d

i=1 u
−(α+1)
i

+

∑d
i=1 v

−α
i∑d

i=1 v
−(α+1)
i

, (3.10)

with equality if and only if (u, v) = (U,U) .

Proof. First for any fixed u, v ∈
◦
∆, we will bound the left hand side of (3.10) from below

by a function of the minimum coordinates of u and v. More precisely, we construct two
d−dimensional vectors u′ and v′ by the minimum coordinates of u and v

u′ =

(
min
i∈V

ui, . . . ,min
i∈V

ui, 1− (d− 1) min
i∈V

ui

)
and

v′ =

(
1− (d− 1) min

i∈V
vi,min

i∈V
vi, . . . ,min

i∈V
vi

)
,

and then we will prove that

d∑
i=1

uivi ≥
d∑
i=1

u′iv
′
i = min

i∈V
ui + min

i∈V
vi − d ·min

i∈V
ui min

i∈V
vi. (3.11)

By the Rearrangement inequality, it suffices to prove (3.11) for any (u, v) ∈
◦
D satisfying

u1 ≤ . . . ≤ ud and v1 ≥ . . . ≥ vd. For such u and v, we have

d∑
i=1

uivi = u1v1 +

d∑
i=2

uivd +

d∑
i=2

ui(vi − vd)

≥ u1v1 +

d∑
i=2

uivd +

d∑
i=2

u1(vi − vd)

= u1(1− (d− 1)vd) +

d∑
i=2

uivd

=

d∑
i=1

uiv
′
i ≥

d∑
i=1

u′iv
′
i,

2This can be proved by looking at the derivative.
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where the last step is obtained by repeating the argument in the previous steps. Thus
we have proved (3.11).

By Lemma 3.3, when α > α0(d), for any u, v ∈
◦
∆

2 min
i∈V

ui − d
(

min
i∈V

ui

)2

+ 2 min
i∈V

vi − d
(

min
i∈V

vi

)2

≥
∑d
i=1 u

−α
i∑d

i=1 u
−(α+1)
i

+

∑d
i=1 v

−α
i∑d

i=1 v
−(α+1)
i

(3.12)

Observe that the following elementary inequality holds

2

(
min
i∈V

ui + min
i∈V

vi − dmin
i∈V

ui min
i∈V

vi

)
≥ 2 min

i∈V
ui − d

(
min
i∈V

ui

)2

+ 2 min
i∈V

vi − d
(

min
i∈V

vi

)2

(3.13)
Then it follows from (3.12) and (3.13) that

2

(
min
i∈V

ui + min
i∈V

vi − dmin
i∈V

ui min
i∈V

vi

)
≥

∑d
i=1 u

−α
i∑d

i=1 u
−(α+1)
i

+

∑d
i=1 v

−α
i∑d

i=1 v
−(α+1)
i

. (3.14)

Finally, (3.11) and (3.14) together imply (3.10).

It is also easy to check that the equality in (3.10) holds if and only if u = v = U .

Proof of Lemma 3.1. Recall that f(x) = δ1x≤δ + x1x>δ. The proof of this lemma is
divided into three cases:

(1) mini∈V f(ui) > δ and mini∈V f(vi) > δ;

(2) mini∈V f(ui) = δ and mini∈V f(vi) > 2δ, or the symmetric case mini∈V f(vi) = δ and
mini∈V f(ui) > 2δ;

(3) mini∈V f(ui) = δ and mini∈V f(vi) ≤ 2δ, or the symmetric case mini∈V f(vi) = δ and
mini∈V f(ui) ≤ 2δ.

Let’s prove case (1). Observe that mini∈V f(ui) > δ and mini∈V f(vi) > δ imply
f(ui) = ui > δ and f(vi) = vi > δ for any i ∈ V . Hence, to prove (3.3), by (3.2), it is
equivalent to prove (3.10). Then by Lemma 3.4, case (1) follows if α(d) > α0(d) + 1.
Notice that in case (1), by Lemma 3.4, when α(d) > α0(d) + 1, (u, v) = (U,U) is the only
point where d

dt (L(Φt(x)))
∣∣
(u,v)

≤ 0 can hold with equality.

Now we prove case (2). We only prove the case mini∈V f(ui) = δ and mini∈V f(vi) >

2δ. By (3.2),

d

dt
(L(Φt(x)))

∣∣∣∣
(u,v)

= −2

d∑
i=1

uivi +

∑d
i=1 uif(ui)

−α∑d
k=1 f(uk)−α

+

∑d
i=1 vif(vi)

−α∑d
k=1 f(vk)−α

≤ −2

d∑
i=1

uivi +

∑d
i=1 f(ui)f(ui)

−α∑d
k=1 f(uk)−α

+

∑d
i=1 f(vi)f(vi)

−α∑d
k=1 f(vk)−α

≤ −2

d∑
i=1

uivi + d1/α

(
min
i∈V

f(ui) + min
i∈V

f(vi)

)
, (3.15)

where the last step is by (3.6), which actually holds for any collection of positive numbers.
Since

d∑
i=1

uivi ≥ max

{
min
i∈V

ui,min
j∈V

vj

}
,

EJP 19 (2014), paper 113.
Page 11/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2669
http://ejp.ejpecp.org/


Two particles’ repelling random walks

it follows from the assumptions mini∈V f(ui) = δ and mini∈V f(vi) > 2δ that

d∑
i=1

uivi ≥ max

{
min
i∈V

ui,min
j∈V

vj

}
≥ min

j∈V
vj = min

i∈V
f(vi).

Hence,

d

dt
(L(Φt(x)))

∣∣∣∣
(u,v)

≤ −2

d∑
i=1

uivi + d1/α

(
min
i∈V

f(ui) + min
i∈V

f(vi)

)
≤ −2 min

i∈V
f(vi) + d1/α

(
δ + min

i∈V
f(vi)

)
= −

(
2− d1/α

)
min
i∈V

f(vi) + d1/αδ

≤ −
(

2− d1/α
)

2δ + d1/αδ = −
(

4− 3d1/α
)
δ.

Thus if choosing α > log d/ log 4
3 such that 4− 3d1/α > 0, we obtain d

dt (L(Φt(x)))
∣∣
(u,v)

< 0

in case (2).
In case (3), we just prove the case mini∈V f(ui) = δ and mini∈V f(vi) ≤ 2δ. First we

can choose α > log2 d such that 3
2d

1/α < 3. Then by the definition of Dδ,

L(u, v) ≥ 3δ >
3

2
d1/αδ, ∀(u, v) ∈ Dδ. (3.16)

(3.15) and (3.16) together imply

d

dt
(L(Φt(x)))

∣∣∣∣
(u,v)

< −2

d∑
i=1

uivi + 3d1/αδ < 0, (3.17)

establishing case (3).
To sum up, taking

α(d) = max

{
α0(d) + 1, log d/ log

4

3
, log2 d

}
+ 1,

we prove the lemma.

3.1.2 The main lemma

Now it comes to the main lemma to characterize the chain recurrent set CR (Φ) for our
specific semiflow Φ.

Lemma 3.5. Let Sδ = {(u, v) ∈ D :
∑d
i=1 uivi ≤ 4δ}. Then CR (Φ) ⊂ Sδ ∪ (U,U).

Proof. Let ζ0 = 3.5δ, ζ1 = 4δ and ζ2 = 1. Define

Mj = {(x, y) ∈ D : L(x, y) ≤ ζj}, j = 0, 1, 2.

Note that M1 = Sδ,M2 = D, and (U,U) ∈ M2 \M1 when δ is small enough. By Lemma
3.1 and Proposition 2.9, Mj (j = 0, 1, 2) are compact invariant sets. Clearly, the lemma
will follow once we prove:

(a) CR1 := CR (Φ) ∩M1 and CR2 := CR (Φ) ∩ (M2 \M1) are invariants sets;

(b) CR2 = (U,U).
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Let’s prove (a).
By the invariance of CR (Φ) and M1, it is clear that CR1 is invariant.
Now we prove by contradiction that CR2 is invariant. Suppose CR2 is not invariant.

Then there exists some z ∈ CR2, s.t. ΦT0
(z) ∈M1 for some T0 > 0. Then by Lemma 3.1

and compactness of M1\M0, there exists some T1 > T0, such that for all t > T1

L(Φt(z)) < ζ0, i.e. Φt(z) ∈M0. (3.18)

Also by Lemma 3.1 and compactness of M1\M0, there exists some T2 > 0, such that for
all t > T2

Φt(M1) ⊂M0. (3.19)

Let ρ0 = dist
(
M0, D\M1

)
> 0 and T = max{T1, T2}. By the assumption z ∈ CR2 ⊂

CR(Φ), there are points z0 = z, z1, . . . , zk−1, zk = z ∈ D and real numbers t0, . . . , tk−1 > T

such that

dist (Φti(zi), zi+1) < ρ0, i = 0, . . . , k − 1. (3.20)

By (3.18), Φt0(z0) = Φt0(z) ∈ M0 and so, by (3.20), z1 ∈ M1. By induction, we claim
that z1, z2, . . . , zk ∈ M1. Indeed, if zi ∈ M1, by (3.19), Φti(zi) ∈ M0, and then by (3.20),
zi+1 ∈ M1. In particular, zk = z ∈ M1, which contradicts the assumption z ∈ M2 \M1.
Hence, Φt(CR2) ⊂M2 \M1 for all t ≥ 0. By invariance of CR (Φ), CR2 is invariant.

It remains to prove (b).
Since (U,U) ∈ CR2, it suffices to show CR2 ⊂ (U,U). For any z ∈ CR2, by invariance

of CR2 and the non-increasing property of the Lyapunov function L(·) along any trajectory
in M2 \M1, it follows that the limit of L(Φt(z)) exists. Let

L∞ = lim
t→+∞

L(Φt(z)).

Then for any p ∈ ω(z) (the omega limit set of z), L(p) = L∞. Together with invariance
of ω(z), this implies L(·) is constant along trajectories in ω(z). Therefore, ω(z) ⊂ (U,U).
Since ω(z) is nonempty, ω(z) = (U,U). Further, we will prove by contradiction that
z = (U,U). Suppose z 6= (U,U), then there exists a neighborhood of z, s.t. L(Φt(z)) is
strictly decreasing in this neighborhood. Since

L(Φt(z)) ≥ L(ω(z)) = L(U,U) = 1/d,

there exists some ε > 0, s.t. L(z) > 1/d+ ε. Let

E =

{
w ∈ D

∣∣∣∣L(w) ≤ 1

d
+
ε

3

}
, F =

{
w ∈ D

∣∣∣∣L(w) ≥ 1

d
+
ε

2

}
.

By Lemma 3.1 and compactness of F , there exists some T ′, such that for all t > T ′,
Φt(F ) ⊂ E. Let ρ1 = dist (E,F ) > 0. By the assumption that z ∈ CR2 ⊂ CR(Φ), z is
(ρ1, T

′)-recurrent. Then by a similar argument as the proof of (a), letting E play the role
of M0, we can get the desired contradiction.

3.2 Non-convergence to unstable equilibrium

By Theorem 2.8 and Lemma 3.5,

P
(
L({z(n)}n≥0) ⊂ Sδ ∪ (U,U)

)
= 1.

Since Sδ and (U,U) are disconnected, we can finish the proof of Theorem 1.1 by proving
the following lemma.
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Lemma 3.6. When α > 1, z(n) in (1.4) satisfies

P
(

lim
n→∞

z(n) = (U,U)
)

= 0.

Lemma 3.6 is an easy application of a theorem due to Pemantle [12] which, to our
purposes, is stated as

Theorem 3.7. [12, Theorem 1] Let z(n) be a stochastic process satisfying

z(n+ 1)− z(n) =
1

n+ 1 + d
[F (z(n)) + un]

with E(un|Fn) = 0. Assume that z(n) always remains in a bounded domain D. Let p be

any point in
◦
D with F (p) = 0, and N be a neighborhood of p. Assume that there are

constants c1, c2 > 0 for which the following conditions are satisfied whenever z(n) ∈ N
and n is sufficiently large:

(1) p is an unstable critical point,

(2) E((un ·θ)+|Fn) ≥ c1 for every unit vector θ ∈ TD (see the definition of TD in Notation
2.1),

(3) ‖un‖ ≤ c2,

where (un · θ)+ = max{un · θ, 0} is the positive part of un · θ. Assume that F is smooth
enough to apply the stable manifold theorem: at least C2. Then

P
(

lim
n→∞

z(n) = p
)

= 0.

The rest of this section is to verify that z(n) in (1.4) satisfies the conditions of Theorem
3.7 with p = (U,U). First it is easy to check that p is a critical point of the vector field
F in (2.8), i.e. F (U,U) = 0. Before proving that p is unstable, we need to introduce a
formal definition.

Definition 3.8 (attracting/unstable point). Let T be the linear approximation to some
vector field F near a critical point p so that F (p+ w) = T (w) +O(|w|2), then

(a) If all the eigenvalues of T have strictly negative real part, p is called an attracting
point.

(b) If some eigenvalues of T have strictly positive real part, p is called an unstable point.

Lemma 3.9. 1. When α > 1, (U,U) is an unstable point of F in (2.8).

2. When α < 1, (U,U) is an attracting point of F in (2.8).

Proof. In a neighborhood of (U,U), F has the Taylor expansion

F (p+ w) = DF |p · w +O(|w|2),

where DF |p is the Jacobian matrix at p and w is some vector in a neighborhood of 0 (a
2d dimensional vector). By direct calculation, DF |p has expression

DF |p =



−1 0 . . . 0 −α+ α
d

α
d . . . α

d

0 −1 0 . . . α
d −α+ α

d
α
d . . .

...
...

. . .
...

...
...

. . .
...

0 . . . 0 −1 α
d . . . α

d −α+ α
d

−α+ α
d

α
d . . . α

d −1 0 . . . 0
α
d −α+ α

d
α
d . . . 0 −1 0 . . .

...
...

. . .
...

...
...

. . .
...

α
d . . . α

d −α+ α
d 0 . . . 0 −1


.
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To get the eigenvalues of DF |p, we need to solve an equation of matrix’s determinant:∣∣∣DF |p − λI2d×2d

∣∣∣ = 0. (3.21)

Notice that DF |p has the same upper-right and lower-left block matrix as marked in the
expression. Let B denote this d× d block matrix. Because the sum of B’s each row is
zero, B has a zero eigenvalue and hence zero determinant. Then one can easily check
that λ = −1 is a solution to (3.21). Now assume λ 6= −1. Then we can apply a formula of
Schur complement, and derive from (3.21) that∣∣B2 − (λ+ 1)2Id×d

∣∣ = 0, (3.22)

where Id×d is the d dimensional identity matrix. (3.22) is equivalent to

|B − (λ+ 1)Id×d| · |B + (λ+ 1)Id×d| = 0. (3.23)

Under the assumption λ 6= −1, we can easily solve (3.23): λ = −1 ± α. Hence the
eigenvalues of DF |p (without counting multiplicities) are −1,−1 ± α. So when α > 1,
DF |p has a positive eigenvalue −1 + α; When α < 1, all of its eigenvalues are strictly
negative. This completes the proof of the lemma.

Clearly, un in (2.7) satisfies condition (3) of Theorem 3.7. It remains to check condition
(2), which is the statement of the following lemma.

Lemma 3.10. In a small neighborhood of p = (U,U), there exists some constant c1 > 0,
s.t. E((un · θ)+|Fn) ≥ c1 for every unit vector θ = (θk)1≤k≤2d ∈ TD.

Proof. For any fixed i, j ∈ V , conditioning on the event that Xn+1 = i, Yn+1 = j,

un · θ = (1− πi(y(n)))θi −
∑

m 6=i,m∈V

πm(y(n))θm

+(1− πj(x(n)))θj+d −
∑

s6=j,s∈V

πs(x(n))θs+d

= θi + θj+d −
∑
m∈V

πm(y(n))θm −
∑
s∈V

πs(x(n))θs+d. (3.24)

Now we will prove that for any unit vector θ ∈ TD, its maximum coordinate is bounded
from below by a positive number, and more precisely,

max
1≤k≤2d

θk ≥
1

2d(d− 1)
. (3.25)

Observe that θ as a unit vector (‖θ‖ = 1) always satisfies

max
1≤k≤2d

|θk| ≥
1

2d
, (3.26)

but it does not necessarily satisfy

max
1≤k≤2d

θk ≥
1

2d
. (3.27)

If θ satisfies (3.27), (3.25) naturally holds for this θ since 1/(2d) > 1/[2d(d − 1)]. If θ
doesn’t satisfy (3.27), by (3.26), it must hold that min1≤k≤2d θk ≤ −1/(2d). Then it follows

from
∑d
k=1 θk = 0 and

∑2d
k=d+1 θk = 0 that there exists some coordinate 1 ≤ k0 ≤ 2d, s.t.

θk0 ≥ 1/[2d(d− 1)], which again implies (3.25).
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By (3.25), without loss of generality, we can assume

θ1 = max
1≤k≤2d

θk ≥
1

2d(d− 1)
. (3.28)

Then by
∑2d
k=d+1 θk = 0, there also exists some j0 ∈ V , s.t. θj0+d ≥ 0.

Because (x(n), y(n) lives in a small neighborhood of (U,U), π(x(n)) and π(y(n))

also live in a small neighborhood of (U,U), and hence both
∑
m∈V πm(y(n))θm and∑

s∈V πs(x(n))θs+d in (3.24) are close to zero. Therefore, by (3.24),

E((un · θ)+|Fn) ≥ P(Xn+1 = 1, Yn+1 = j0|Fn)θ1

= P(Xn+1 = 1|Fn)P(Yn+1 = j0|Fn)θ1.

Again by the fact that π(x(n)) and π(y(n)) live in a small neighborhood of (U,U), both
P(Xn+1 = 1|Fn) and P(Yn+1 = j0|Fn) are close to 1/d. Then together with (3.28), it
follows that E((un · θ)+|Fn) is uniformly bounded from below by some positive constant.
This completes the proof.

Finally, we can apply Theorem 3.7, obtaining Lemma 3.6. This also completes the
proof of Theorem 1.1.

4 Further problems

This paper is a starting point to understand the behavior of multi-particle repelling
random walks. The general question remains widely open. The dynamical approach
should still work, but the corresponding dynamical system only gets more complex and
harder to analyze.

Regarding the model we just studied, we conjecture that

Conjecture 4.1. For any positive integer d ≥ 3, αc = 1 is critical. Namely,

1. when α > 1, there exists some constant c = c(α, d) depending on α and d, such that
the following holds

P

∃n0,
⋂
n≥n0

{
d∑
i=1

xi(n)yi(n) ≤ cδ

} = 1.

2. when 0 < α < 1, the following holds

P
{

lim
n→∞

z(n) = (U,U)
}

= 1.

Another problem of interest is

Problem 4.2. When δ = 0 in (1.2) and (1.3), is it possible to derive a similar result as
Theorem 1.1?

Notice that when δ = 0, the vector field F is not well defined on the boundary of D.
Particularly, F won’t be continuous at the boundary, and hence Theorem 2.8 and then
the proof of Theorem 1.1 are invalid in this case.
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