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Abstract

The genome of bacterial species is much more flexible than that of eukaryotes.
In particular, the distributed genome hypothesis for bacteria states that the total
number of genes present in a bacterial population is greater than the genome of
every single individual. The pangenome, i.e. the set of all genes of a bacterial species
(or a sample), comprises the core genes which are present in all living individuals,
and accessory genes, which are carried only by some individuals. Bacteria have
developed mechanisms in order to exchange genes horizontally, i.e. without a direct
relationship. Here, we extend the infinitely many genes model from Baumdicker, Hess
and Pfaffelhuber (2010) for such horizontal gene transfer. We take a genealogical
view and give a construction – called the Ancestral Gene Transfer Graph – of the joint
genealogy of all genes in the pangenome. As application, we compute moments of
several statistics (e.g. the number of differences between two individuals and the
gene frequency spectrum) under the infinitely many genes model with horizontal gene
transfer.
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1 Introduction

Many prokaryotic species (i.e. bacteria and archea) are now known to have highly
flexible genomes (e.g. Tettelin et al., 2005; Ehrlich et al., 2005; Tettelin et al., 2008;
Koonin and Wolf, 2012). Unlike in eukaryotes, genes can be transferred horizontally
(i.e. without a direct relationship between donor and recipient) between prokaryotic
individuals of either different or the same population. As a result, gene content can differ
substantially between strains from the same population. For example, the pathogenic
strain E. coli O157:H7 carries 1387 genes which are absent in the commensal strain E.
coli K-12 (Perna et al., 2001). This huge variation in gene content led to the concepts of
the distributed genome of bacteria and their pangenome (Tettelin et al., 2005; Ehrlich
et al., 2005).
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The infinitely many genes model with horizontal gene transfer

In order to understand the growing amount of genomic data from bacterial species,
classical population genetic theory – using mutation, selection, recombination and
genetic drift as main evolutionary forces – must be extended in order to include realistic
mechanisms of horizontal gene transfer (HGT). Since genomic data from prokaryotic
species has become abundant only recently, HGT can in particular be seen as a newly
discovered evolutionary factor (Doolittle, 1999; Koonin et al., 1997). However, theoretical
work on the population genomics of HGT is still in its infancy. In order to include HGT in
population genetic models, some scenarios have to be distinguished according to the
following basal mechanisms: Transformation, which is the uptake of genetic material
from the environment. Transduction, which describes the infection of a prokaryote by a
lysogenic virus (phage) which provides additional genetic material that can be integrated
into the bacterial genome. Conjugation, which is also termed bacterial sex, which
requires a direct link (pilus) between two bacterial cells and leads to exchange of genetic
material. In addition, small virus-like elements called Gene Transfer Agents (GTAs)
have been found which may become even more important for the amount of horizontal
genetic exchange in some species (McDaniel et al., 2010). Another mechanism of
horizontal gene transfer is due to mobile genetic elements like plasmids, gene cassettes
and transposons, which transfer genes even within a single individual (de la Cruz and
Davies, 2000). Although all these mechanisms transfer only parts of the gene sequences,
it is a valid approach to model only complete gene transfers events, since bacteria
are efficient in getting rid of non-functional genetic material. Most importantly, when
considering horizontal gene transfer by transformation, transduction and conjugation,
transformation (and to a lesser extend also transduction) transfers genes mainly between
distantly related species, while conjugation only works for bacteria from closely related
species.

In Baumdicker et al. (2010) (see also Baumdicker et al., 2012), we presented the
infinitely many genes model, a population genomic model which includes HGT from
different species, e.g. by transformation, but no HGT within species. It accounts for
gene gain (or gene uptake) from the environment (at rate θ/2) along the genealogical
tree which describes the relationships between the individuals of the population. The
term gene gain covers HGT from other species as well as gene genesis (the formation of
new genes), because from the perspective of a species under consideration these two
mechanisms are indistinguishable. Pseudogenization may lead to deletion of genes and
is incorporated by gene loss (at rate ρ/2). The model uses the coalescent (Kingman,
1982; Hudson, 1983) as underlying genealogy instead of a fixed (phylogenetic) tree. On
the latter, the same two mechanisms were studied already by Huson and Steel (2004).

In the present paper, we extend the infinitely many genes model in order to incor-
porate events of intraspecies horizontal gene transfer. We stress that HGT in bacteria
differs from crossover recombination in eukaryotes, since only single, non-homologous,
genes are horizontally transferred in bacteria, while only homologous genomic regions
are transferred by recombination in eukaryotes. Accordingly, since we aim at a ge-
nealogical picture of HGT in bacteria, the ancestral recombination graph (Hudson, 1983;
Griffiths and Marjoram, 1997) as an extension of the coalescent, cannot be used. Rather,
we model HGT such that each gene present in the population comes with its own events
of HGT, resulting in the Ancestral Gene Transfer Graph (AGTG). In the limit of large
population sizes, we compute moments of several quantities of interest. The gene fre-
quency spectrum – see Theorem 1 – describes the amount of genes present in k out of n
individuals. In Baumdicker et al. (2012) the gene frequency spectrum has been used
to test whether a bacterial population shows unusual patterns for neutral evolution. In
Theorem 2, we give our results for the expectations of the average number of genes
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Figure 1: The graphical representation of
the Moran model of size N = 5 from Defi-
nition 2.1. At thick arrows, the individual
at the tip of the arrow is replaced by a
copy of the individual at the tail. Three
mechanisms are illustrated as follows:
1. Gene loss of gene u is given at events
•u; rate ρ/2 per gene per line.
2. Gene gain of gene u is given at events
Hu; rate θ/2 per line.
3. Horizontal gene transfer of gene u

from individual i to j is given through a
thin arrow i

u−−→j; rate γ/(2N) per gene
for every ordered pair (i, j), indicating a
potential HGT event.
Here we show only the events for genes
u1, u2 and u3. Presence and absence of
these genes at the top gives rise through
resampling, gene gain (only gene u2),
gene loss and HGT to presence and ab-
sence of the genes at the bottom.

per individual, and the average number of symmetric pairwise differences and the total
number of genes, respectively. Calculations which give the variances of some of these
quantities, can be carried out using the AGTG and are given in Theorem 3.

The paper is organized as follows: In Section 2, we introduce the infinitely many
genes model with horizontal gene transfer. After stating our results in Section 3, we
discuss our results with a view towards biological applications in Section 4. In Section 5
we introduce our main tool, the AGTG. The proofs of the main results, Theorems 1–3, are
given in Section 6.

2 The model

We introduce two different views on the same model. In this section, we describe a
Moran model forwards in time, including events of gene gain, gene loss and horizontal
transfer of genes; see also Figure 1 for a graphical representation. Later, in Section 5 we
describe how to obtain the distribution of genes in equilibrium using a genealogy-based
approach.

We consider the following model for bacterial evolution: Each bacterial cell carries
a set of genes and every gene belongs either to the core genome or to the accessory
genome. The uncountable set I := [0, 1] is the space of conceivable accessory genes. In
addition there is a set of persistent genes, the core genome – see also Baumdicker et al.
(2012). As by definition these core gens can never be lost or gained and are just present
in all individuals we will ignore these genes in the following analysis. A population of
constant size consists of N individuals, where each individual represents a (genome of
a) bacterial cell which consists of several accessory genes. We model this accessory
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genome of individual i at time t by a finite counting measure GNi (t) on I. We will identify
finite counting measures with the set of atoms, i.e. we write u ∈ GNi (t) if 〈GNi (t), 1u〉 ≥ 1.
The dynamics of the model is such that 〈GNi (t), 1u〉 ≤ 1 for all i and u ∈ [0, 1], almost
surely. In other words, there is at most one copy of each gene in any individual.

The population evolves according to Moran dynamics; see also Figure 1. That is, time
is continuous and every (unordered) pair of individuals {i, j} undergoes a resampling
event at rate 1. Here, in each resampling event between individuals i and j, one
bacterium is chosen at random (i, say), produces one offspring which replaces the other
individual (j in this case) such that the population size stays constant. The offspring
carries the same genes as the parent, i.e. if an offspring of i replaces j at time t, we have
GNj (t) = GNi (t−). In addition to such resampling events, the following (independent)
events occur:

1. Gene loss: For gene u ∈ GNi (t−) in individual i, at rate ρ/2, we have GNi (t) =

GNi (t−) \ {u}, i.e. gene u is lost from GNi (t).

2. Gene gain: For every individual i, at rate θ/2, choose U uniform in [0, 1] and set
GNi (t) = GNi (t−) ∪ {U}, i.e. every individual gains an (almost surely) new gene at
rate θ/2.

3. Horizontal gene transfer: For every (ordered) pair of individuals (i, j) and u ∈ GNi (t),
a horizontal gene transfer event occurs at rate γ/(2N). For such an event, set
GNj (t) = GNj (t−) ∪ {u} and GNi (t) = GNi (t−), i.e. individual i is the donor of gene u
and transfers a copy of the gene u to the recipient j.

Horizontal gene transfer events can as well be written in the measure-valued notation
as GNj (t) = (GNj (t−) + δu) ∧ 1. The ’∧1’-term indicates that we do not model paralogous
genes, i.e. horizontal gene transfer events have no effect if the recipient individual j
already carries the transferred gene.

Definition 2.1 (Moran model with horizontal gene transfer). We refer to
(GN1 (t), . . . ,GNN (t))t≥0 undergoing the above dynamics as the Moran model for bacte-
rial genomes with horizontal gene flow.

Lemma 2.2 (Equilibrium). The Moran model of size N for bacterial genomes with
horizontal gene flow has a unique mixing, ergodic equilibrium. We denote random finite
measures distributed according to this equilibrium by GN1 := GN1 (∞), ...,GNN := GNN (∞).

Proof. First, existence of a stationary measure follows from tightness of the family
(GN1 (t), ...,GNN (t))t≥0. In order to see this, note that a single gene in frequency k rises to
k + 1 at rate ( 1

2 + γ
2N )k(N − k) and decreases to k − 1 at rate 1

2k(N − k)− ρ
2k. Denoting

the hitting time of 0 of this birth-death process by T , we have that Ek[T ] <∞ by positive
recurrence of the birth-death process for all k = 1, ..., N . As a consequence, we can

bound E
[∑N

n=1〈GNn (t), 1〉
]

by contributions from the time-0 population and newly gained

genes, i.e. by

sup
t≥0

E
[ N∑
n=1

〈GNn (t), 1〉
]
≤

N∑
n=1

〈GNn (0), 1〉+N2 θ
2 sup
t≥0

∫ t

0

P1(T > t)dt <∞,

which is enough for tightness; see Kallenberg (2002), Lemma 14.15. Any weak limit must
be a stationary measure by standard arguments. Now, we show that (GN1 (t), ...,GNN (t))t≥0,
started in any stationary measure at time −∞, is mixing. Indeed, there is a random, finite
time S when all genes present at time t = 0 have become lost. Now, the distribution of
(GN1 (t), ...,GNN (t))t≤0 is independent of (GN1 (t), ...,GNN (t))t≥S , since the latter only depends
on events in the graphical construction after t ≥ 0.
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Remark 2.3 (Diffusion limit). In mathematical population genetics, one frequently stud-
ies models of finite populations forward in time, constructs their diffusion limit – most
often a Fleming–Viot measure-valued diffusion – and only afterwards uses genealogi-
cal relationships in order to have a dual process to the Fleming–Viot measure-valued
diffusion and to compute specific properties of the underlying forwards model. Since
our interest in the present paper lies in seeing the effects of horizontal gene transfer
on summary statistics (see Theorems 1–3), we take another route here and leave the
construction of the infinite model forwards in time for future research. Here, one would
have to consider the set of counting measures on [0, 1] as a type space (which is locally
compact), and define the current state of a finite population as the empirical measure of
types on this state space. Constructing the diffusion limit then gives the measure-valued
diffusion. We foresee two challenges in such a construction: (i) The corresponding
recombination operator modeling HGT events for the limiting Fleming-Viot process is
unbounded, since the number of genes in a genome is unbounded; (ii) Although we
will give a genealogical construction of HGT in Section 5, it is not straight-forward to
interpret the resulting graph as a dual process.

Remark 2.4 (Gene transfer of more than one gene). Note that we model only the transfer
of DNA segments too small for more than one gene, although it is known that the transfer
of multiple genes at once can occur (Price et al., 2008). However, we postulate that the
results of Theorem 1 and Theorem 2 are as well valid for a model with multiple gene
transfers and multiple gene losses, where at rate γ′ (ρ′) each gene of an individual is
transfered (lost) with some probability pγ (pρ). In this case, first moments of the statistics
we compute in Theorems 1 and 2, as well as Lemma 2.5, are not affected if we replace γ
and ρ by γ′pγ and ρ′pρ. However, our results for second moments in Theorem 3 differ in
the case of multiple gene transfer/loss events.

We are mainly interested in large populations. The corresponding limit is usually referred
to as large population limit in the population genetic literature. The following result of
the Moran model with HGT will already be useful in various applications.

Lemma 2.5 (The frequency path of a single gene). Let XN (t) be the frequency of gene
u at time t in the Moran model for bacterial genomes with horizontal gene flow of size N

with XN (0) such that XN (0)
N→∞−−−−→ x. Then, in the large population limit, N →∞, the

process (XN (t))t≥0 converges weakly to the solution of the SDE

dX =
(
− ρ

2X + γ
2X(1−X)

)
dt+

√
X(1−X)dW (2.1)

with X(0) = x for some Brownian motion W .

Remark 2.6 (The diffusion (2.1) in population genetics). The diffusion (2.1) also appears
in population genetics models including selection (see e.g. Kimura (1964), (Ewens, 2004,
chapt. 5.3), (Durrett, 2008, chapt. 7.2)). In the present setting, the term proportional
to X(1 − X)dt appears because horizontal gene flow increases the frequency of the
gene by a rate which is proportional to the number of possible donor/recipient-pairs of
individuals; see also Tazzyman and Bonhoeffer (2013).

Due to the close connection of horizontal gene transfer with selective models, a
comparison to recent work is appropriate. In particular, the theory for the frequency
spectrum in selective models with irreversible mutations is carried out in Fisher (1930);
Wright (1938); Kimura (1964, 1969). We re-derive these results in our proof of Theorem 1
below, but we stress that the genealogical interpretation we give is derived with a special
focus on horizontal gene flow, but not to the selective case.

Proof of Lemma 2.5. As in the proof of Lemma 2.2, note that gene loss reduces XN with
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rate ρ
2NX

N . Second, horizontal gene transfer increases XN with rate γ
2NN

2XN (1 −
XN ). By construction, the evolution of frequencies of gene u is a Markov process with
generator

(GNf)(x) = N(N − 1)x(1− x)
(1

2
f(x+ 1/N) +

1

2
f(x− 1/N)− f(x)

)
− ρNx

2
(f(x− 1/N)− f(x)) +

γN2x(1− x)

2N
(f(x+ 1/N)− f(x))

N→∞−−−−→ 1

2
x(1− x)f ′′(x) + (−ρ

2
x+ γx(1− x))f ′(x)

for f ∈ C2([0, 1]). Using e.g. standard results from (Ewens, 2004, chapt. 4) it is now easy
to show weak convergence to the diffusion (2.1).

3 Results on Summary Statistics

Consider a sample GN1 , . . . ,GNn of size n taken from the Moran model of size N in
equilibrium. We introduce several statistics under the above dynamics:

• The average number of genes (in the accessory genome) of the sampled n individu-
als is given by

A(n) := A(n,N) :=
1

n

n∑
i=1

|GNi | (3.1)

where |GNi | := 〈GNi , 1〉 is the total number of accessory genes in individual i.

• The average number of symmetric pairwise differences is given by

D(n) := D(n,N) :=
1

n(n− 1)

∑
1≤i 6=j≤n

|GNi \ GNj | (3.2)

where GNi \ GNj := (GNi − GNj )+ are the genes present in i but not in j.

• The size of the accessory genome of the sample is given by

G(n) := G(n,N) :=
∣∣∣ n⋃
i=1

GNi
∣∣∣ (3.3)

where
⋃n
i=1 GNi =

(∑n
i=1 GNi

)
∧ 1 is the set of genes present in any individual from

the sample, counting each gene only once no matter in how many individuals it is
present.

• The gene frequency spectrum (of the accessory genome) is given by G
(n)
1 :=

G
(n,N)
1 , . . . , G

(n)
n := G

(n,N)
n , where

G
(n)
k := G

(n,N)
k := |{u ∈ I : u ∈ GNi for exactly k different i}|. (3.4)

Remark 3.1 (Notation). In the following results, we will suppress the superscript N of
the population size. Instead, we require that our results hold in the large population
limit. E.g. if we say that (3.6) holds in the large population limit, we really mean that

E[A(n,N)]
N→∞−−−−→ θ

ρ

(
1 +

∞∑
m=1

γm

(1 + ρ)m↑

)
.
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The proofs of all results presented here are given in Section 6. For first moments, we
provide proofs using diffusion theory and Lemma 2.5. For second moments, we rely
on the Ancestral Gene Transfer Graph (AGTG) of Section 5. Since the proofs of the
results are either using Lemma 2.5 or the AGTG or both, we formulate the following
three Theorems.

Theorem 1 (Gene frequency spectrum). Consider a sample of size n taken from the
Moran model for bacterial genomes with horizontal gene flow with ρ > 0, θ > 0, γ ≥ 0 in
equilibrium. Then, in the large population limit, it holds that

E[G
(n)
k ] =

θ

k

(n)k↓
(n− 1 + ρ)k↓

(
1 +

∞∑
m=1

(k)m↑γ
m

(n+ ρ)m↑m!

)
(3.5)

with (a)b↑ := a(a+ 1) · · · (a+ b− 1) and (a)b↓ := a(a− 1) · · · (a− b+ 1).

Theorem 2 (More sample statistics). Under the same assumptions as in Theorem 1,

E[A(n)] =
θ

ρ

(
1 +

∞∑
m=1

γm

(1 + ρ)m↑

)
, (3.6)

E[D(n)] =
θ

1 + ρ

(
1 +

∞∑
m=1

γm

(2 + ρ)m↑

)
, (3.7)

E[G(n)] = θ

n−1∑
k=0

1

k + ρ
+ θ

∞∑
m=1

γm

m

( 1

(ρ)m↑
− 1

(n+ ρ)m↑

)
(3.8)

in the large population limit.

Remark 3.2 (Behavior of (3.5)–(3.8)). The infinite sums in (3.5) – (3.8) are all finite as
can be seen by a comparison with the exponential series. Note further that (3.6) and
(3.7) do not depend on the sample size n, while (3.8) shows a nontrivial dependence on
the sample size: The size of the accessory genome grows logarithmically with n if n is
large enough.

Theorem 3 (Second moment of the number of genes). Under the same assumptions and
in the large population limit as in Theorem 1, we have, in the limit γ → 0,

V[A(1)] =
θ

ρ

(
1 +

1

1 + ρ
γ +

( 1

(1 + ρ)(2 + ρ)
(3.9)

+
θ

(1 + ρ)2(3 + 2ρ)(2 + 7ρ+ 6ρ2)

)
γ2
)

+O(γ3),

V[D(2)] =
θ

1 + ρ

(1

2
+

θ

(1 + ρ)(1 + 2ρ)
+
( 1

2(2 + ρ)
(3.10)

+ θ
2(12 + 110ρ+ 248ρ2 + 209ρ3 + 60ρ4)

(1 + ρ)(2 + ρ)(1 + 2ρ)2(3 + 2ρ)(2 + 3ρ)(6 + 5ρ)

)
γ
)

+O(γ2).

Remark 3.3 (Higher order terms in (3.9) and (3.10)). Although computationally intensive,
it should be straightforward to improve the approximations in Theorem 3 for small γ to
higher orders O(γn). In our proof, we use an ancestral perspective which includes up to
two HGT events, leading to the order γ2. Including more than two HGT events will result
in higher order terms, but will lead to an increasing amount of genealogies which must
be considered. For the second order result in (3.10), we had to consider more than 5000
genealogies.

Before we prove our Theorems, let us give some biological implications and relations to
previous work in the biology literature.
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4 Discussion: Biological Implications

Unraveling the amount of HGT shaping bacterial diversity can today be tackled using
a growing amount of genomic data. In particular, several datasets from closely related
strains, which are of the same bacterial species are available today (Medini et al., 2005;
Tettelin et al., 2005, 2008). In such datasets, genes present in all genomes of a taxon are
called core genes while genes present in only some but not all individuals comprise the
accessory genome. The latter set of genes is further split into the medium-frequency
shell of genes and the cloud of genes of low frequency (Koonin and Wolf, 2008).

HGT comes in two flavors, either between or within populations. As for HGT between
populations, a variant of the infinitely many genes model from Baumdicker et al. (2010)
was introduced by Haegeman and Weitz (2012), who couple gene gain and loss events
in order to obtain a genome of constant size. However, this is in contrast to available
data, since flexible genomes of bacteria usually come with different genome sizes. An
interesting extension of the infinitely many genes model was studied in Collins and
Higgs (2012); see also Lobovsky et al. (2013). Here, different random trees, including
the coalescent tree, were used as underlying genealogies as well as different classes
of genes, each class with its own rate of gene gain and loss. It was found that the
coalescent produces a good fit with data, and it is likely that the rate of gene gain and
loss depends on the gene.

In contrast to the vast amount of available data on HGT in bacteria, mathematical
models for HGT within a population are hardly available. A first approach of the
population genomics of bacteria was made by Novozhilov et al. (2005), extending a
model from Berg and Kurland (2002). Here, a birth and death process is used in
order to describe the evolution of the frequency of a single gene under selection under
within-population horizontal transmission (“infection”), mutation (leading to loss of the
gene) and population size changes. However, this study is limited since only a single
gene is considered, but bacterial genomes are comprised of several hundreds of genes,
each of which may be under selection and horizontal gene transfer. In Mozhayskiy
and Tagkopoulos (2012), a simulation study was carried out, taking selective forces
into account which arise from gene regulatory networks, i.e. epistasis of presence and
absence of genes. Finally, Vogan and Higgs (2011) present a macro-evolutionary model in
a constant environment and conclude that HGT was probably favorable in early evolution
since loss of genes is frequent, but later, when genomes are rather adapted to the
environment, HGT is not favorable and gene losses are rarer.

Conceptually, HGT within and between populations are different. Above all, the
tree of life has become a classical way of thinking about inheritance since Darwin’s
Origin of Species. However, the abundance of HGT within population counteracts the
tree-like structures evolutionary biologists like to think about. Results are phylogenetic
networks, which display at the same time the joint evolutionary fate of many genes
(Huson and Scornavacca, 2011; Dagan, 2011), in addition to other reticulate events
such as hybridization and incomplete lineage sorting. It is becoming clear that any
genealogical tree of bacteria which have a flexible genome is at most a tree of 1% of all
genetic material (Dagan and Martin, 2006), which may eventually lead to a paradigm
shift in evolutionary biology of prokaryotes (Koonin and Wolf, 2012).

Using the incongruence of genes with the species tree, several approaches have led
to a number of methods to estimate HGT rates and identify the corresponding genes
(Lawrence and Ochman, 2002; Kunin and Ouzounis, 2003; Nakhleh et al., 2005; Linz
et al., 2007; Didelot et al., 2010). Current estimates show that at least 32% of the genes
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Figure 2: The expected gene frequency spectrum from Theorem 1 is highly dependent
of γ, the rate of horizontal gene flow. For high values of γ, most genes are in high
frequency, leading to a closed pangenome. We use ρ = 2 and sample size n = 10 in the
figure.

in prokaryotic populations have been horizontally transferred at some point (Koonin
et al., 2001; Dagan and Martin, 2007). It may even be argued that this number is still
a lower bound because only a fraction of all events of HGT can be seen in data, either
because the transferred gene is subsequently lost or the pattern is in accordance to
vertical gene transfer (Gogarten et al., 2002).

Note that the distinction of HGT within and between populations points to the long-
standing question of a clear definition of a bacterial species (Fraser et al., 2009). In our
approach, we at least assume that the entity of a bacterial population exists.

Recently, the concepts of open and closed pangenomes were introduced (Medini
et al., 2005). If, after sequencing a finite number of genomes, all genes present in the
population are found, one speaks of a closed pangenome. If new genes are found even
after sequencing many genomes, the pangenome is called open.

In the infinitely many genes model with HGT, one can not identify a sharp transition
between open and closed pangenomes in the limit of large sample sizes (n → ∞).
Theorem 2 (see (3.8)) shows that an infinite population possesses an infinite number
of genes, regardless of the parameters γ, ρ and θ. However, a closer look reveals that
almost all of these genes are in extreme low frequency. Nonetheless it is possible to
give a quantitative impression how typical rare genes are in a sample in the presence of
HGT. It is not hard to see that abundant HGT (i.e. a high value of γ) implies that most
genes are in high-frequency. In other words, sequencing a new individual hardly leads to
new genes which were not seen before. This impact of openness and closeness of the
pangenome can as well be seen from Figure 2.

Although we have made an attempt to include the important evolutionary force of
HGT within a population, the model presented here can still be extended. We think that
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the following approaches are conceivable:

• Gain, loss and transfer of multiple genes: The exact mechanisms of gene gain, loss
and HGT are still under study. However, it seems clear that several genes can be
gained or lost at once.

• Gene families: Frequently, a single gene is present not only once but several times
in a bacterial genome. The reason can either be a copying event along its ancestral
line, or the gene is introduced by HGT although it was already present.

• Gene synteny: The order of genes in the genome is called gene synteny. In our
model, the synteny of genes is not modeled, but can be observed in genomic data.
Above all, gene synteny can give hints of events of horizontal gene transfer, since
the order of genes can be different in donor and recipient.

• Mobile genetic elements: There are parts of the genome like mobile elements
which are more likely to be transferred horizontally. Examples are transposons,
plasmids and gene cassettes, i.e. horizontal gene transfer even within a single cell
can be considered.

5 The Ancestral Gene Transfer Graph

Since the seminal work of Kingman (1982) and Hudson (1983), the genealogical view
is a powerful tool in the analysis of population genetic models. Here, we will give a
genealogical construction in order to obtain the distribution of GN1 , ...GNn for a sample of
size n ∈ N in the large population limit of the Moran model with horizontal gene transfer
in equilibrium. The resulting genealogy is denoted the Ancestral Gene Transfer Graph
(AGTG). In this random graph, every ancestral line splits at constant rate γ/2 per gene
due to a potential gene transfer event. We note that such events leading to potential
ancestors are well-known for the ancestral selection graph (ASG) of Neuhauser and
Krone (1997) and Krone and Neuhauser (1997). However, potential ancestors in the ASG
arise by fitness differences within the population while the potential ancestors within
the AGTG may take effect by events of horizontal gene transfer.

We start with the construction of the genealogy for a single gene and come to the full
picture including all genes afterwards.

Definition 5.1 (The AGTG for a single gene). Consider a random graph An which arises
as follows: Starting with n lines, denoted i = 1, ..., n,

• each (unordered) pair of lines coalesces at rate 1,

• each line disappears at rate ρ/2 (meaning that the gene was lost),

• each line splits in two lines at rate γ/2 (meaning that the gene was horizontally
transferred from another individual which was so far no ancestor of the original n
cells, such that the gene can now have two different origins).

Sample a single point E uniformly at random according to the length measure from the
graph. (This point determines the time when the gene under consideration was gained.)
For every line 1, ..., n, let Gi = 1 if there is a direct (i.e. increasing in time) path from i to
E and Gi = 0 otherwise. Then, (G1, ..., Gn) is denoted the gene distribution of a single
gene read off from the AGTG.

For later use, we show that all moments of the length of the AGTG are finite. In particular,
the length is almost surely finite, and the uniform distribution according to the length
measure, from which E is picked, is well-defined.

Lemma 5.2 (Length of AGTG for a single gene has finite moments).
Let An be the AGTG for a single gene from Definition 5.1 and let L(An) be its length.
Then, E[L(An)k] <∞ for all k = 1, 2, ...
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A4

•

•

•H

1 2 3 4
7 3 3 3

Figure 3: In the construction
of A4, the AGTG for a single
gene, start with 4 lines at the
bottom of the figure. Every
pair of lines coalesces with
rate 1, and every line splits
at rate γ/2 and disappears
(marked by •) at rate ρ/2. The
sampled point E (marked by
H for a gene gain event) de-
termines G1 = 0 (indicated by
the 7) and G2 = G3 = G4 = 1

(indicated by the 3’s).

Proof. The number of lines in An is a birth-death process with birth rate λ̂i = γi/2 and
death rate µ̂i =

(
i
2

)
+ ρi/2 (when there are i lines) and 0 as absorbing state. Since the

length during times with i lines increases at rate i, L(An)/2 is distributed as the hitting
time T of 0 of a birth-death process (Zt)t≥0 with rates λi = γ and µi = i−1+ρ, i = 1, 2, ...

and absorbing state 0. In order to show finite moments of T , note that the process
(Žt)t≥0 with Žt = Zt − 1 is bounded from above by a birth-death process with birth rates
λ̌k = γ and death-rate µ̌k = k. In other words, (Žt)t≥0 is the number of customers in an
M/M/∞-queue. Let S denote the partial busy period of this queue (i.e. the first time
when the queue is empty). Moreover, when Žt = 0 we have that Zt = 1 and there is
a chance ρ/(γ + ρ) that T is reached after an exp(γ + ρ)-distributed time. From this

construction, we see that T ≤ S1 + · · · + SN where Sk
d
= S + S′, and S′ ∼ exp(γ + ρ)

independent from S, and N ∼ geom(ρ/(γ + ρ)), all Sk’s being independent. Hence, the
assertion follows from finite moments of S (Artalejo and Lopez-Herrero, 2001).

We now come to the desired connection between the Moran model with horizontal gene
transfer and the AGTG.

Lemma 5.3 (Gene distribution of Moran model and AGTG coincide). Fix u ∈ [0, 1] and let
GN1 , ...,GNn be as in Remark 2.2. Then, for N → ∞, the distribution of GN1 (u), ...,GNn (u),
conditioned on

⋃n
i=1 GNi (u) 6= ∅, converges weakly to the distribution of (G1, ..., Gn) from

Definition 5.1.

Proof of Lemma 5.3. Consider the graphical construction of a Moran model with horizon-
tal gene flow from Definition 2.1, run between times −∞ and 0. Let GNi (−t) be the finite
measure describing the genome of individual i at time −t. If we consider only a single
gene u ∈ [0, 1], we can use the following procedure in order to obtain the genealogy and
distribution of gene u in GN1 , ...,GNn :

(a) Restrict the Moran model to (i) resampling events, (ii) potential gene loss events of
gene u at rate ρ/2 per line, (iii) potential horizontal gene transfer events of gene u
at rate γ/(2N) per pair of individuals.

(b) Put gene gain events on all lines according to a Poisson point process with intensity
(θ/2)du.

Clearly, by (a) we can determine the coordinates (i,−t) with the property, that u ∈⋃n
j=1 GNj (0) iff u ∈ GNi (−t). This subgraph is a random graph, which can be constructed

from time 0 backwards as follows: Starting with n lines, any pair of lines coalesces at
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time

A(0)
4 A(1)

4

•1

•1

1

1
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•2
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Figure 4: In the construction of the AGTG, start with the clonal genealogy for the
bacterial cells of the sample (here of size 4), i.e. with A(0)

4 . Then, in order to obtain

the genealogy of the first potential gene, construct A(1)
4 by additional splitting events

(at rate γ/2), loss events (at rate ρ/2), both marked by 1, and coalescence events.

Iteratively, construct A(n+1)
4 by keeping all lines in ∪ni=0A

(i)
4 and adding splitting, loss

and coalescence events. In the three figures, the vertical solid lines are the ones where –
potentially – the corresponding gene can be gained. This means that gene 2 is present
only if the second gain event at time T2 occurs at a time which is smaller than the sum
of all vertical lines in A(2)

4 , i.e. smaller than L(A(2)
4 ). If it occurs, it is put uniformly on

the solid vertical lines.

rate 1, every line is killed at rate ρ/2 and every line splits in two lines (due to a horizontal
gene transfer event) at rate γ(N −k)/(2N) if there are currently k lines within the graph.
(For the latter rate, observe that the donor of gene u might already be part of the graph.)
Hence, as N →∞, this random graph converges (weakly) to the AGTG for a single gene
as in Definition 5.1. In addition, for small ε, genes in (u − ε, u + ε) are gained at most
once on this graph. Hence, when conditioning on the event of a gene gain of gene u
on the random graph (i.e. the Poisson point process has a point (x, u)), by well-known
properties of Poisson processes, this event is uniformly distributed on the graph. In
other words, the distribution is the same as that of E in Definition 5.1.

While the construction of the genealogy of a single gene was straight-forward, consid-
ering all genealogies of all genes seems to be harder. The reason is that there can be
infinitely many genes, and each of these genes comes with its own events of gene gain,
loss and horizontal gene flow. Even worse, we can decide on the presence or absence of
a gene only if we know if there was a gene gain event somewhere along the genealogy,
which means that we have to follow all (uncountably many) potential genes back in time.

We will resolve such difficulties by constructing (countably) many potential genealo-
gies, which all rely on the same clonal genealogy of n bacterial cells, and model gene
gain events along them. The result is the ancestral gene transfer graph (AGTG) for
infinitely many genes. An illustration is found in Figure 4.

Definition 5.4 (The AGTG for infinitely many genes). Consider a sequence
A(0)
n ,A(1)

n ,A(2)
n , ... of coupled random graphs which arise as follows:
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• A(0)
n is distributed according to Kingman’s coalescent, i.e. starting with n lines,

each (unordered) pair of lines coalesces at rate 1 (and the graph is stopped as soon
as the number of blocks (lines) is one).

Given A(0)
n , the random graph A(1)

n gives all potential ancestors of gene 1 and is con-
structed such that: Starting with the same n lines as in A(0)

n ,

• each line splits in a continuing and an incoming line at rate γ/2 (meaning that the
gene was horizontally transferred from the incoming line). If the line was part of
A(0)
n , the continuing line runs along A(0)

n as well. The resulting splitting event is
marked with “1”

• each line is terminated by a loss event, also marked with “1”, at rate ρ/2 (indicating
that gene 1 was lost).

• in addition to coalescences of lines within A(0)
n , each (unordered) pair of lines in

(A(1)
n \ A(0)

n )2 and in A(0)
n × (A(1)

n \ A(0)
n ) coalesces at rate 1 (and A(1)

n is stopped as
soon as the number of lines is zero).

Given A(0)
n , ...,A(k)

n , the random graph A(k+1)
n gives all potential ancestors of gene k + 1

and is constructed such that: Starting with the same n lines as in A(0)
n ,

• each line splits in a continuing and an incoming line at rate γ/2 (meaning that the
gene was horizontally transferred from the incoming line). If the line was part of⋃k
j=0A

(j)
n , the continuing line runs along

⋃k
j=0A

(j)
n as well. The resulting splitting

event is marked with “k + 1”.

• each line is terminated by a loss event, also marked with “k + 1”, at rate ρ/2

(indicating that gene k + 1 was lost).

• in addition to coalescences of lines within
⋃k
j=0A

(j)
n , each (unordered) pair of lines

in (A(k+1)
n \

⋃k
j=0A

(j)
n )2 and in

⋃k
j=0A

(j)
n × (A(k+1)

n \
⋃k
j=0A

(j)
n ) coalesces at rate 1

(and the graph A(k+1)
n is stopped as soon as the number of lines is zero).

After the construction of all graphs we consider for each k only the relevant parts of A(k)
n ,

i.e. those parts that can be reached from at least one of the leaves by running through
coalescence events or splitting events marked with k. In Figure 4 these parts are shown
as solid lines, while the additional lines, necessary for the construction but unreachable
from the leaves, are shown as dashed lines.

In order to model gene gain events, consider the events (Tm, Um)m=1,2,... of a Poisson
point process on [0,∞) × [0, 1] with intensity measure 1

2θ dt du (ordered by their first
coordinate). For all k,

• let L(A(k)
n ) be the length of A(k)

n , i.e. the length of all vertical solid lines in Figure 4.

If Tk ≤ L(A(k)
n ), pick a point Ek uniformly at random according to the length

measure on A(k)
n . (This point determines the time and line when the gene Uk was

gained.)

Finally, for every i = 1, ..., n, let Uk ∈ Gi if there is a direct (i.e. increasing in time) path
from i to Ek in A(k)

n . Then, (G1, ...,Gn) is denoted the Gene distribution read off from the
AGTG in the infinitely many genes model.

Remark 5.5 (Alternative way of distributing gain events on the AGTG). In the last step
of constructing the AGTG, we used the condition Tk ≤ L(A(k)

n ) in order to distribute a

uniformly chosen point Ek on A(k)
n . In distribution, the same result is achieved as follows:

If Tk ≤ L(A(k)
n ), choose a way of running through A(k)

n along all paths at constant speed.
Such a path might well go back and forth and jump in time. Then, the gene gain event is
placed after running length Tk.
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The following Lemma is the key element in the proofs given in Section 6.

Lemma 5.6 (Gene distribution from Moran model and AGTG coincide). Fix n ∈ N, let
(GN1 , ...,GNn ) be as in Definition 2.1 and Remark 2.2, and (G1, ...,Gn) as in Definition 5.4.
Then,

(GN1 , ...,GNn )
N→∞
====⇒ (G1, ...,Gn) (5.1)

as well as

(GN1 ⊗ · · · ⊗ GNn )
N→∞
====⇒ (Gi ⊗ · · · ⊗ Gn) (5.2)

Remark 5.7 (Interpretation of (5.1) and (5.2) and a convergence criterion).

1. Note that the space of finite (counting) measures on [0, 1] is equipped with the topol-
ogy of weak (or vague) convergence. (In our proofs we will use Skorohod’s Theorem
which states that weak convergence is equivalent to almost sure convergence on
an appropriate probability space; cf. Kallenberg, 2002, Theorem 4.30.) In addition,
we will interpret a vector (ξ1, ..., ξn) of counting measures on [0, 1] as a counting
measure on {1, ..., n}× [0, 1]. Henceforth, we write GN (∪ni=1{i}×Ai) =

∏n
i=1 GNi (Ai)

for A1, ..., An ∈ B([0, 1]) such that (5.1) is the same as

(〈GN1 , f1〉, ..., 〈GNn , fn〉)
N→∞
====⇒ (〈G1, f1〉, ..., 〈Gn, fn, 〉)

for all f1, ..., fn ∈ C([0, 1]).

Since 1 ∈ C([0, 1]), (5.1) also implies the convergence of total masses of GNi . In
addition, (5.2) is stronger because total masses of products, 〈GN1 , 1〉 · · · 〈GNn , 1〉
converge as well.

2. In our proof, we use the following convergence criterion from Kallenberg (2002),
Proposition 16.17, here adapted for random measures on a compact space:

Let ξ, ξ1, ξ2, ... be random counting measures on a compact metric space I,

where ξ is simple. Then, ξn
N→∞
====⇒ ξ, if (i) P(ξn(A) = 0)

n→∞−−−−→ P(ξ(A) = 0)

for all open A ⊆ I and (ii) lim supn→∞E[ξn(A)] ≤ E[ξ(A)] < ∞ for all
compact A ⊆ I.

Proof of Lemma 5.6. We proceed in five steps. In Step 1, we define another set of
models for a population of size N with horizontal gene transfer, indexed by K, in which
I = [0, 1] is separated into K classes of genes, ∆K

i := [(i − 1)/K; i/K), i = 1, ...,K. For
the resulting genomes, denoted (GN,K1 , ...,GN,Kn ), we show in Step 2 that the genealogies
of (GN,K1 , ...,GN,Kn ) are given by an AGTG with K + 1 coupled random graphs. The
construction of these random graphs can be re-ordered such that the limit K →∞ can
be taken easily; see Step 3. In Step 4, we let N →∞ and show the convergence of the
coupled random graphs to (A(0)

n ,A(1)
n , ...), implying the convergence to (G1, ...,Gn). In the

last step we show convergence of second moments.

Step 1: Definition of GN,Ki : Fix K ∈ N and set ∆K
i := [(i − 1)/K; i/K), i = 1, ...,K.

We define another Moran model (called Moran∆-model) with horizontal gene transfer.
Briefly, in this model, all genes u ∈ ∆K

i follow the same gene loss and gene transfer
events. Precisely, in addition to resampling events (at rate 1 for every ordered pair of
individuals), the following events occur:

1. Gene loss: For all k = 1, ...,K, a gene loss event occurs at rate ρ/2 per individual.
Upon such an event in individual i, we have GN,Ki (t) = GN,Ki (t−) \ ∆K

k , i.e. all
genes u ∈ ∆K

k are lost from GN,Ki (t).
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2. Gene gain: For every individual i, at rate θ/2, choose U uniformly in [0, 1]. If U ∈
∆K
k , set GN,Ki (t) = (GN,Ki (t−) \∆K

k ) ∪ {U}, i.e. U is the only gene in GN,Ki (t) ∩∆K
k .

3. Horizontal gene transfer: For every (ordered) pair of individuals (i, j) and k =

1, ...,K, a horizontal gene transfer event occurs at rate γ/(2N). For such an event,
set GN,Kj (t) = GN,Kj (t−) ∪ (GN,Ki (t−) ∩ ∆K

k ), i.e. individual i is the donor of all

genes u ∈ GN,Ki (t−) ∩∆K
k to the recipient j.

Again, (GN,K1 (t), ...,GN,KN (t))t≥0 has a unique ergodic equilibrium; compare with Lemma 2.2.
We start it at time−∞ and thus obtain the equilibrium measures (GN,K1 := GN,K1 (0), ...,GN,KN :=

GN,KN (0)) by time 0.

Step 2: (GN,K1 , ...,GN,Kn ) can be constructed using K + 1 random graphs: Recall the con-
struction of the AGTG for a single gene from Definition 5.1. We extend this construction
in order to obtain the distribution of (GN,K1 , ...,GN,Kn ). Since K is finite, we can proceed
by a two-step procedure similar to the proof of Lemma 5.3 in the Moran∆ model. Here,
we first generate resampling, gene loss and transfer events and subsequently introduce
gene gain events. So, first consider a Moran model with (i) resampling events, (ii) po-
tential gene loss events for genes in ∆K

k with rate ρ/2 along all lines, where a transition
from GN,Ki (t) to GN,Ki (t) \∆K

k occurs, k = 1, ...,K and (iii) potential gene transfer events
of genes in ∆K

k with rate γ/(2N) per pair of individuals, as in Moran∆, k = 1, ...,K. Next,
introduce gene gain events for all lines and all ∆K

k , k = 1, ...,K at rate θ/(2K), where
each new gene is assigned a uniformly distributed random variable on ∆K

k .

Equivalently, as for the AGTG for a single gene, we can start from time 0 backwards
and construct K + 1 random graphs such that graph k describes the possible ancestry
of genes in ∆K

k , k = 1, ...,K. Precisely, start with graph 0, which is a coalescent started
with n individuals (without gene loss and horizontal gene transfer events). In graph 1,
add gene loss events, valid for all u ∈ ∆K

1 and gene transfer events, which lead to splits
of lines in the graph at rate γ(N −m)/(2N), if it currently has m lines. In addition, at
rate γm/(2N), the split of a line leads to ancestry to a line which is already within the
graph. Iteratively, in graph k, additional loss and split events, valid for genes u ∈ ∆K

k ,
occur. Again, a split might generate a line which was already present in graph 0, ..., k− 1,
and otherwise gives a new line. These graphs are denoted A(0)

n,N,K , ...,A
(K)
n,N,K .

After having constructed all K + 1 random graphs, graphs 1, ...,K are hit by gene
gain events, each with rate θ/(2K). As above, each new gene in graph k is assigned a
uniformly distributed random variable on ∆K

k . In each ∆K
k , keep only the gene which is

closest to time 0, since in Moran∆, a new gene in ∆K
k overwrites present ones. By this

procedure, we can read off (GN,K1 , ...,GN,Kn ) from the random graphs, which are marked
by gene gain events. Note that there is at most one gene in each ∆K

k for any individual i
(i.e. GN,Ki (∆K

k ) ≤ 1) and we claim that graphs 1, ...,K are exchangeable by construction.

Indeed, the gene losses and splits of A(j)
n,N,K are only valid for genes in ∆K

j . Hence the
crucial part to understand exchangeability is the time a line produced by a split within
∆K
j needs to merge back to the graph A(0)

n,N,K , ...,A
(i)
n,N,K for i < j. The newly generated

line merges with each line in A(0)
n,N,K , ...,A

(i)
n,N,K at rate 1. This rate does not depend on

whether the new line merges previously to a line in A(i+1)
n,N,K , ...,A

(j−1)
n,N,K \A

(0)
n,N,K , ...,A

(i)
n,N,K

or not, as each line in A(i+1)
n,N,K , ...,A

(j−1)
n,N,K \ A

(0)
n,N,K , ...,A

(i)
n,N,K merges as well at rate 1

with each line in A(0)
n,N,K , ...,A

(i)
n,N,K . Thus the times to merge to A(0)

n,N,K , ...,A
(i)
n,N,K are

equal in law for the line produced by a split in ∆K
j and the line in A(i+1)

n,N,K produced at

the same time by a split in ∆K
i+1.
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Step 3: (GN,K1 , ...,GN,Kn )
K→∞
====⇒ (GN1 , ...,GNn ) and the limit can be constructed using count-

ably many random graphs: In the construction of the last step, we reverse the order
of generating gene gain events and the random graphs. First, let (Tm, Um)m=1,2,... be
the points in a Poisson point process T on [0,∞) × [0, 1] with intensity θ

2dtdu, ordered
by their first coordinates. Instead of constructing the random graphs 0, ...,K + 1 in
the order of the intervals ∆N

1 , ...,∆
N
K in [0, 1], we can as well construct the random

graphs in the order of appearance of gene gain events. Formally, let Km := k if
Um ∈ ∆K

k , i.e. Km gives the number of the interval ∆K
k in which the mth gene gain

event (Tm, Um)m=1,2,... appears. Then, let i1 := 1 and ir+1 := inf{m > ir : Km /∈
{K1, ...,Km−1} for r < K. This means that Ki1 , ...,KiK is the number of intervals in the
order of the appearance of the first gene gain within each interval. Most importantly,

(A(0)
n,N,K ,A

(1)
n,N,K ...,A

(K)
n,N,K)

d
= (A(0)

n,N,K ,A
(Ki1 )

n,N,K , ...,A
(KiK )

n,N,K) since the Poisson point pro-

cess T is independent of (A(1)
n,N,K , ...,A

(K)
n,N,K) and the random graphs (A(1)

n,N,K , ...,A
(K)
n,N,K)

are exchangeable.
Now, consider gene gain events on A(K1)

n,N,K . By construction, the first gene gain event

at time T1 falls into ∆K
K1

. Hence, this graph is hit after an exponentially distributed time
with rate θ/2. (Note the difference to the rate θ/(2K) from the last step.) In order to
model this, take T1 (the time of the first gene gain in T ), determine a set of paths how
to move through A(K1)

n,N,K and place a gene gain event after time T1. In case the length

of A(K1)
n,N,K is smaller than T1, do nothing. Continuing, by construction, A(Ki2 )

n,N,K (recall
Ki2 = K2 if K2 6= K1) is hit by a gene gain event, this event occurs by time T2 of T .

Again, determine a set of paths how to move through A(K2)
n,N,K and place a gene gain event

after time T2, if possible. Continue until TiK and A(KK)
n,N,K .

In this construction, we can now let K →∞, which means that we construct infinitely
many random graphs, A(0)

n,N ,A
(1)
n,N , ... such that the first K + 1 are distributed according

to (A(0)
n,N,K ,A

(Ki1 )

n,N,K , ...,A
(KiK )

n,N,K). On these infinitely many random graphs A(0)
n,N ,A

(1)
n,N , ...,

we can now use all points (Tm, Um) in order to construct the resulting genomes, which
we denote by G̃N .

We now show that GN,K K→∞
====⇒ G̃N as well as GN,K K→∞

====⇒ GN (the latter being the set

of genomes from the Moran model), implying that GN d
= G̃N , i.e. the genomes GN can be

constructed from infinitely many random graphs by using all points in T . We use the
criterion from Remark 5.7. For the convergence to G̃N , note that both GN,K and G̃N can
be constructed on a joint probability space, using the same (infinitely many) random
graphs. The difference in construction is that for G̃N , all points in T are used, while in
GN,K only the first points within each ∆K

i are used. Moreover, as long as at most one

gene gain event hits A(i)
n,N,K the random measures GN,K and G̃N agree on ∆K

i . Hence,
we write, for any Borel set A ⊆ {1, ..., n} × [0, 1] and k = 0, 1, 2, ... and using Lemma 5.2
in the last step

|P(G̃N (A) = k)− P(GN,K(A) = k)|

≤ P
( K⋃
i=1

A(i)
N,K hit by 2 gene gain events

)
≤ K · P(A(1)

N,K hit by 2 gene gain events)

≤ K · E[1− exp(−θL(A(1)
N )/(2K))(1 + θL(A(1)

N )/(2K))]

≤ Kθ2

4K2
E[(L(A(1)

N ))2]
K→∞−−−−→ 0,

(5.3)

implying (i) of Remark 5.7.2. Now, let L(A(1)
1,N,K) and L(A(1)

1,N ) be the lengths of the
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random graphs A(1)
1,N,K and A(1)

1,N , which correspond to GN,K1 and G̃N1 , respectively. Note

that A(1)
1,N,K

d
= A(1)

1,N . By construction, we write

GN,K1 ([0, 1]) =

K∑
m=1

1
L(A(Km)

1,N,K)≥Tm
,

G̃N1 ([0, 1]) =

∞∑
m=1

1
L(A(m)

1,N )≥Tm
.

(5.4)

Then, by exchangeability, for a rate-1-exponentially distributed random variable X and
E[L(A(1)

1,N,K)] = E[L(A(1)
1,N )] ≤ E[L(A1)] <∞ by Lemma 5.2,

E[GN,K({1, ..., n} × [0, 1])] = n · E[GN,K1 ([0, 1])]

= nK · P(L(A(1)
1,N,K) ≥ 2K

θ X)

= nK · E[1− exp(−θL(A(1)
1,N,K)/(2K))]

K→∞−−−−→ nθ · E[L(A(1)
1,N )] = n · E[G̃N1 ([0, 1])]

= E[G̃N ({1, ..., n} × [0, 1])],

(5.5)

which gives (ii) of the convergence criterion given in Remark 5.7.2. (Note that the
finiteness of the right hand side of the last equation can be seen from E[L(A(1)

1,N )] <∞;

see Lemma 5.2.) Next, we come to the convergence GN,K K→∞
====⇒ GN . Again, we observe

that both random measures can be constructed on one probability space. Here, use
the K + 1 random graphs in order to construct GN,K first and draw them as a part
of a graphical construction of the Moran∆-model, starting at time 0. Note that in the
Moran∆-model, gene gain events for a gene u ∈ ∆K

k can lead to loss of another gene
v ∈ ∆K

k , if the line of the gene gain event carries gene v. For such genes, which are
lost in the Moran∆-model, put additional gene loss and transfer events in the (regular)
Moran model. Again, we claim that GN,K = GN if every random graph A(1)

n,N,K , ...,A
(K)
n,N,K

is hit by at most one gene gain event. Hence, the same calculations as in (5.3) and (5.5)

gives the convergence GN,K K→∞
====⇒ GN as well.

Step 4: (GN1 , ...,GNn )
N→∞
====⇒ (G1, ...,Gn), constructed from infinitely many random graphs:

By now, we have shown that (GN1 , ...,GNn ) can be constructed from infinitely many random

graphs A(0)
N ,A(1)

N , ... such that A(0)
N is a Kingman coalescent started with n lines, A(i+1)

N

has additional coalescence events, regular split events at rate γ(N −m)/(2N) to new

lines, if there are a total of m lines in graphs A(0)
N , ...A(i+1)

N and irregular split events

at rate γm/(2N) to already existing lines, if there are m lines in graphs A(0)
N , ...A(i+1)

N .
Now, as N →∞, the rate of regular splitting events converges to γ/2. By almost sure

convergence of the random graphs, the genomes converge as well, i.e. (GN1 , ...,GNn )
N→∞
====⇒

(G1, ...,Gn). Precisely, we again have to check (i) and (ii) of Remark 5.7.2. For (i), first

note that (for L(A(0)
N ∪ · · · ∪ A

(i)
N ) the total length of A(0)

N , ...A(i)
N )

P(Gk([0, 1]) ≥ C) ≤ 1

C
E[Gk([0, 1])] =

θ

2C
E[L(A(1)

n )]
C→∞−−−−→ 0,

P
(
A(i)
N hit by irregular split event

)
= 1− E[exp(−γL(A(0)

N ∪ · · · ∪ A
(i)
N )/(2N))]

≤ (i+ 1)γ

2N
E[L(A(1)

N )]
N→∞−−−−→ 0.

(5.6)
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according to Lemma 5.2. So, we write for A ⊆ {1, ..., n} × [0, 1]

|P(G(A) = k)− P(GN (A) = k)|

≤ P(G(A) ≥ C) + P
( C⋃
i=1

A(i)
N hit by irregular split event

)
≤ P(G(A) ≥ C) +

C∑
i=1

P(A(i)
N hit by irregular split event

)
N→∞−−−−→ P(G(A) ≥ C)

C→∞−−−−→ 0

(5.7)

by (5.6) implying (i) of Remark 5.7.2. For (ii) (again noting that the same calculation
holds for arbitrary compact A ⊆ {1, ..., n} × [0, 1]), we have, since (L(A(1)

N ))N=1,2,... is
uniformly integrable, by standard arguments (see e.g. Billingsley (1999), Theorem 3.5),

E[GN ({1, ..., n} × [0, 1])] = nθ · E[L(A(1)
1,N )]

N→∞−−−−→ nθ · E[L(A(1)
1 )] = E[G({1, ..., n} × [0, 1])] <∞.

(5.8)

Step 5: Convergence of moments: The calculations are similar to (5.7) and (5.8).
We only have to deal with finiteness of moments in order to show GN1 ⊗ · · · ⊗
GNn

N→∞
====⇒ G1 ⊗ · · · ⊗ Gj . Here, (i) of Remark 5.7.2 is implied by (5.7). For (ii), we

know that (L(A(1)
N ) · · ·L(A(n)

N ))N=1,2,... is uniformly integrable by Lemma 5.2 (since

L(A(1)
N ) · · ·L(A(n)

N ) ≤ L(A(1)
N )n + · · · + L(A(n)

N )n and the latter is uniformly integrable

by Lemma 5.2) and L(A(1)
N ) · · ·L(A(n)

N )
N→∞
====⇒ L(A1) · · ·L(An). Hence,

E[GN1 ⊗ · · · ⊗ GNn (({1, ..., n} × [0, 1]))n] = θn

2n · E[L(A(1)
1,N ) · · ·L(A(n)

1,N )]

N→∞−−−−→ θn

2n · E[L(A1) · · ·L(An)] = E[G1 ⊗ · · · ⊗ Gn(({1, ..., n} × [0, 1])n)]

<∞.

(5.9)

6 Proofs of Theorems 1–3

6.1 Proof of Theorem 1

Using diffusion theory and Lemma 2.5, we obtain first moments of all of the statistics
G

(n)
1 , . . . , G

(n)
n in equilibrium. Moreover, the statistics as considered in Theorem 2 are

linear combinations of G(n)
1 , . . . , G

(n)
n ; see the first proof of Theorem 2 below.

We consider the diffusion (2.1) with infinitesimal mean and variance

µ(x) = −ρ2x+ γ
2x(1− x), σ2(x) = x(1− x).

The Green function for the diffusion, measuring the time the diffusion, i.e. a gene, spends
in frequency x until eventual loss, if the current frequency is δ ≤ x, is given by

G(δ, x) = 2
φ(δ)

σ2(x)ψ(x)
,

where

ψ(y) := exp

(
−2

∫ y

0

µ(z)

σ2(z)
dz

)
= (1− y)−ρe−γy,

φ(x) :=

∫ x

0

ψ(y)dy.
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Following (Durrett, 2008, chapt. 7.11), we introduce new genes in frequency δ � 1

at rate θ
2

1
φ(δ) in a consistent way. That is, the gene rises in frequency to ε > δ with

probability φ(δ)
φ(ε) . Hence the number of genes in frequency x is Poisson with mean

θ

2

1

φ(δ)
G(δ, x) = θ

eγx

x(1− x)1−ρ .

The gene frequency spectrum is now given by

E[G
(n)
k ] =

(
n

k

)∫ 1

0

θ
eγx

x(1− x)1−ρx
k(1− x)n−kdx

=

(
n

k

)
θ

∫ 1

0

eγxxk−1(1− x)n−k−1+ρdx

= θ

(
n

k

)
(k − 1)!

Γ(n− k + ρ)

Γ(n+ ρ)
1F1(k;n+ ρ; γ)

=
θ

k

(n)k↓
(n− 1 + ρ)k↓

(
1 +

∞∑
m=1

(k)m↑γ
m

(n+ ρ)m↑m!

)
where 1F1(k;n+ ρ; γ) = 1 +

∞∑
m=1

(k)m↑γ
m

(n+ρ)m↑m! is a confluent hypergeometric function (Kum-

mer’s function), see chapter 13 in Olver et al. (2010).

6.2 Proof of Theorem 2

We give two proofs, one using diffusion theory and Theorem 1, one using the AGTG
from Section 5.

Proof of Theorem 2 using Theorem 1. Given the expected gene frequency spectrum from
Theorem 1, it is now easy to compute first moments of A, D and G by using, in the
infinite population limit,

A(1) d
= G

(1)
1 , D(2) d

= 1
2G

(2)
1 ,

G(n) = |G1|+ |G2 \ G1|+ · · ·+
∣∣∣Gn \ n−1⋃

i=1

Gi
∣∣∣ (6.1)

such that

E[A(n)] = E[A(1)] = E[G
(1)
1 ] =

θ

ρ

(
1 +

∞∑
m=1

γm

(1 + ρ)m↑

)
,

E[D(n)] = E[D(2)] = 1
2E[G

(2)
1 ] =

θ

1 + ρ

(
1 +

∞∑
m=1

γm

(2 + ρ)m↑

)
,

E[G(n)] =

n∑
k=1

1
kE[G

(k)
1 ] =

n∑
k=1

θ

k

k

k − 1 + ρ

∞∑
m=0

γm

(k + ρ)m↑

= θ

∞∑
m=0

γm
n−1∑
k=0

1

(k + ρ)m+1↑

= θ

n−1∑
k=0

1

k + ρ
+ θ

∞∑
m=1

γm

m

n−1∑
k=0

( 1

(k + ρ)m↑
− 1

(k + 1 + ρ)m↑

)
= θ

n−1∑
k=0

1

k + ρ
+ θ

∞∑
m=1

γm

m

( 1

(ρ)m↑
− 1

(n+ ρ)m↑

)
.
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Proof of Theorem 2 using the AGTG. First we note that A(1) = G(1) and D(2) = 1
2 (|(G(1)

1 ∪
G(2)

1 ) \ G(1)|+ |(G(1)
1 ∪ G(2)

1 ) \ G(2)|) such that

E[A(n)] = E[A(1)] = E[G(1)],

E[D(n)] = E[D(2)] = E[G(2)]− E[G(1)],

and it suffices to compute E[G(n)] in the proof. We will abuse notation and write dx and
dy for infinitely small portions of the genome. In order to compute E[G(n)], the idea is to
write G(n) := (

∑n
i=1 Gi) ∧ 1 and

E[G(n)] = E
[ ∫ 1

0

G(n)(dx)
]

=

∫ 1

0

E[G(n)(dx)] =

∫ 1

0

θ

2
E[L(An)]dx =

θ

2
E[L(An)], (6.2)

such that we have to compute the expected length of An, the AGTG for a single gene,
which we denote by L(An). Therefore consider the birth and death process (Zt)t≥0 with
birth rate λi = γ and death rate µi = i+ ρ− 1. Recall that the hitting time T , when this
birth and death process hits zero has the same distribution as L(An)/2, see proof of
Lemma 5.2. Now, it is well known (see e.g. Karlin and Taylor, 1975, chapt. 4.7) that

E[L(An)] = E[T |Z0 = n] =

∞∑
i=1

pi +

n−1∑
k=1

(
k∏
r=1

µr
λr

) ∞∑
m=k+1

pm (6.3)

where

pi =
λ1 · · ·λi−1

µ1 · · ·µi
=

γi−1

ρ(1 + ρ) · · · (i− 1 + ρ)
=
γi−1

(ρ)i↑
. (6.4)

Combining (6.2) and (6.3) yields

1

θ
E[G(n)] =

1

2
E[L(An)]

=

∞∑
i=1

γi−1

(ρ)i↑
+

n−1∑
k=1

(ρ)k↑
γk

∞∑
m=k+1

γm−1

(ρ)m↑

=

n−1∑
k=1

∞∑
m=k+1

γm−1−k

(ρ+ k)(m−k)↑
+

∞∑
i=1

γi−1

(ρ)i↑

=

∞∑
m=1

n−1∑
k=0

γm−1

(ρ+ k)m↑

=

n−1∑
k=0

1

k + ρ
+

∞∑
m=1

γm
n−1∑
k=0

1

(ρ+ k)(m+1)↑

=

n−1∑
k=0

1

k + ρ
+

∞∑
m=1

γm

m

n−1∑
k=0

(
1

(ρ+ k)m↑
− 1

(ρ+ k + 1)m↑

)

=

n−1∑
k=0

1

k + ρ
+

∞∑
m=1

γm

m

(
1

(ρ)m↑
− 1

(n+ ρ)m↑

)
.

(6.5)

According to (6.1), E[A(n)] is readily obtained and the expected number of differences is
given using (6.5) by

1

θ
E[D(n)] =

1

θ

(
E[G(2)]− E[G(1)]

)
=

∞∑
m=1

γm−1

(ρ+ 1)m↑

=

∞∑
m=0

γm

(1 + ρ)(m+1)↑
=

1

1 + ρ

(
1 +

∞∑
m=1

γm

(2 + ρ)m↑

)
.

EJP 19 (2014), paper 115.
Page 20/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2642
http://ejp.ejpecp.org/


The infinitely many genes model with horizontal gene transfer

6.3 Proof of Theorem 3

Since A(1) = G1([0, 1]) =
∫ 1

0
G1(dx), we can use the first and second moment measures

of G1 in order to compute the moments of A(1); see e.g. Daley and Vere-Jones (2003),
Section 5.4, which are given byA 7→ E[G1(A)] for the first and (A,B) 7→ E[G1(A)G1(B)] for
the second moment. (A similar statement holds for the random measureD1,2 := |GN1 −GN2 |
and 2D(2) = D1,2([0, 1]).) For the integral with respect to these measures, we will – as
in (6.2) – abuse notation (see e.g. the term V[G1(dx)] below) such that

V[A(1)] =

∫ 1

0

V[G1(dx)] +

∫ 1

0

∫ 1

0

1x6=yCOV[G1(dx),G1(dy)]. (6.6)

First, given A(1)
1 (which is distributed like the AGTG for a single gene A1), the probability

of a gene gain event on A(1)
1 is (θ/2)L(A(1)

1 )dx such that

V[|G1(dx)|] = V
[
E[|G1(dx)| |A(1)

1 ]
]

+ E
[
V[|G1(dx)||A(1)

1 ]
]

= V
[
θ
2L(A(1)

1 )dx
]

+ E
[
E[|G1(dx)| |A(1)

1 ]
]

=
θ

2
E[L(A1)]dx+O(dx2) = E[A(1)]dx+O(dx2)

=
θ

ρ

(
1 +

γ(2 + ρ) + γ2

(1 + ρ)(2 + ρ)
+O(γ3)

)
dx+O(dx2)

(6.7)

Second, for x 6= y,

COV[|G1(dx)|, |G1(dy)|] = COV
[
E[|G1(dx)| |A(1)

1 ,A(2)
1 ],E[|G1(dy)| |A(1)

1 ,A(2)
1 ]
]

+ E
[
COV[|G1(dx)|, |G1(dy)| |A(1)

1 ,A(2)
1 ]
]

= COV
[
θ
2L(A(1)

1 )dx, θ2L(A(2)
1 )dy

]
=
θ2

4
COV[L(A(1)

1 ), L(A(2)
1 )]dx dy

since |G1(dx)| and |G1(dy)| are independent given A(1)
1 ,A(2)

1 . Now we compute the term

COV[L(A(1)
1 ), L(A(2)

1 )] up to second order in γ. For this computation, we make use of the
fact that the AGTG for two genes can be defined in analogy to the AGTG for a single gene
from Definition 5.1, but with two different kind of loss and transfer events. Precisely,
we consider the following random graph: starting with x lines of state only gene 1, y
lines of state both genes and z lines only gene 2, pairs of lines coalesce at rate 1. (Note
that coalescence of a line of state only gene 1 and a line of state only gene 2 gives a
single line of state both genes.) Lines where gene 1 (gene 2) is considered are lost at
rate ρ/2. (If a line of state only gene 1 (only gene 2) is lost, it is lost completely, while if
a line of state both genes is lost, it turns into a line of state only gene 2 (only gene 1 ).)
Finally, every line of state only gene 1 (only gene 2 ) is split at rate γ/2 and the new line
is again of state only gene 1 (only gene 2 ). In addition, a line of state both genes splits
at rate γ and the new line is of state only gene 1 or only gene 2, both with probability
1/2. The length of the graph of lines at states with gene 1 (gene 2), i.e. either at state
only gene 1 (only gene 2 ) or both genes is denoted L1(t) (L2(t)) if a sample from time t
of the population is considered. We write Exyz[.] for the expected value if the process is
started as above.

It is important to note that E[L(A(1)
1 )L(A(2)

1 )] = E010[L1(t)L2(t)] for any t, since the
AGTG describes the population in equilibrium. In order to compute E010[L1(t)L2(t)], we
use a time derivative and write

E010[L1(t+ dt)L2(t+ dt)] = (1− (γ + ρ)dt)E010[(L1(t) + dt)(L2(t) + dt)]

+ γdt · E110[(L1(t) + dt)(L2(t) + dt)] + ρdt · 0
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Using that the AGTG is in equilibrium and ignoring effects of order dt2, we obtain (for
Li := Li(t), i = 1, 2)

(γ + ρ)E010[L1L2] = E010[L1 + L2] + γ · E110[L1L2],

(1 + 3
2ρ+ 3

2γ)E110[L1L2] = E110[L1 + 2L2] + γ · E210[L1L2] + 1
2γE111[L1L2]

+ 1
2ρ · E101[L1L2] + (1 + 1

2ρ) · E010[L1L2],

(3 + 2ρ)E210[L1L2] = E210[L1 + 3L2] + (3 + ρ) · E110[L1L2]

+ 1
2ρ · E201[L1L2] +O(γ),

(3 + 2ρ)E111[L1L2] = E111[2L1 + 2L2] + E020[L1L2]

+ (2 + ρ) · E110[L1L2] + ρ · E201[L1L2] +O(γ),

(1 + γ + ρ)E101[L1L2] = E101[L1 + L2] + E010[L1L2] + γ · E201[L1L2],

(3 + 3
2ρ)E201[L1L2] = E201[L1 + 2L2] + (1 + ρ) · E101[L1L2]

+ 2 · E110[L1L2] +O(γ),

(1 + 2ρ)E020[L1L2] = E020[2L1 + 2L2] + E010[L1L2]

+ 2ρ · E110[L1L2] +O(γ).

(6.8)

Note that some terms O(γ) were written which will not lead to the first two leading terms
inE010[L1(t)L2(t)]. The expectationsEj [Li] for i = 1, 2 and j ∈ {010, 110, 101, 210, 111, 201}
can readily be computed using the AGTG for a single gene, since

Exyz[L1] = E[L(Ax+y)] and Exyz[L2] = E[L(Ay+z)]. (6.9)

We use from (6.5) that

E[L(An)] =

n−1∑
k=0

2

k + ρ
+ 2γ

n

ρ(n+ ρ)
+ γ2 n(n+ 2ρ+ 1)

ρ(ρ+ 1)(n+ ρ)(n+ ρ+ 1)
+O(γ3),

such that

E[L(A1)] =
2

ρ

(
1 +

γ

1 + ρ

)
+ γ2 2

ρ(ρ+ 1)(ρ+ 2)
+O(γ3),

E[L(A2)] =
2 + 4ρ

ρ(ρ+ 1)
+

4γ

ρ(ρ+ 2)
+O(γ2),

E[L(A3)] =
6ρ2 + 12ρ+ 4

ρ(ρ+ 1)(ρ+ 2)
+O(γ).

(6.10)

Solving (6.8) using (6.9) and (6.10) gives

COV[L(A(1)
1 ), L(A(2)

1 )] = E010[L1L2]− E[L(A1)]2

=
4

ρ(1 + ρ)2(3 + 2ρ)(2 + 7ρ+ 6ρ2)
γ2 +O(γ3).

(6.11)

Combining (6.11) with (6.7) and (6.6) gives the result.

To compute the variance for the number of differencesD(2) we will use a similar approach.
Recall D1,2 = |GN1 − GN2 | and 2D(2) =

∫ 1

0
D1,2(dx). Thus,

V[2D(2)] =

∫ 1

0

V[D1,2(dx)] +

∫ 1

0

∫ 1

0

1x 6=yCOV[D1,2(dx),D1,2(dy)]. (6.12)

Let A(i,sing)
2 be the subgraph of A(i)

2 consisting of branches leading to either individual 1

or individual 2 but not to both. If L(A(i,sing)
2 ) denotes its length, given A(i)

2 , the chance
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of a gene gain event in dx leading to a difference between two given individuals is
(θ/2)L(A(i,sing)

2 )dx such that (compare with (6.7))

V[D1,2(dx)] = V
[
E[D1,2(dx)|A(i)

2 ]
]

+ E
[
V[D1,2(dx)|A(i)

2 ]
]

= V
[
θ
2L(A(i,sing)

2 )dx
]

+ E
[
E[D1,2(dx)|A(i)

2 ]
]

=
θ

2
E[L(A(i,sing)

2 )]dx+O(dx2) =
θ

2
E[2D(2)]dx+O(dx2)

= θ
2

1 + ρ
+

2γ

2 + 3ρ+ ρ2
+O(γ2) +O(dx2).

(6.13)

In the same way as seen below equation (6.7) we obtain, for i 6= j

COV[D1,2(dx),D1,2(dy)] =
θ2

4
COV[L(A(i,sing)

2 ), L(A(j,sing)
2 )]dx dy.

As E[L(A(i,sing)
2 )] · E[L(A(j,sing)

2 )] is already known the remaining part is to compute

E[L(A(i,sing)
2 )L(A(j,sing)

2 )] =
32

(1 + ρ)(1 + 2ρ)

+
32(48 + 314ρ+ 611ρ2 + 464ρ3 + 120ρ4)γ

(1 + ρ)(2 + ρ)(1 + 2ρ)2(3 + 2ρ)(2 + 3ρ)(6 + 5ρ)
+O(γ2).

(6.14)
For that we will split (A(i)

2 ,A(j)
2 ) into two parts, T (A(i)

2 ,A(j)
2 ) and S(A(i)

2 ,A(j)
2 ). Recall that

there are three different types of events in (A(i)
2 ,A(j)

2 ), namely loss, merging lines and

splitting lines. The first part, T (A(i)
2 ,A(j)

2 ), contains solely the times T1, T2, . . . between

these events, while the second part, S(A(i)
2 ,A(j)

2 ) contains the remaining information
from (A1,A2) on which lines split, merge and get lost, i.e. it is possible to describe the

structure/topology/shape of the AGTG from S(A(i)
2 ,A(j)

2 ). Note that given S(A(i)
2 ,A(j)

2 ),

the times T1 = T1(S(A(i)
2 ,A(j)

2 )), T2 = T2(S(A(i)
2 ,A(j)

2 )), ... are independent exponentially

distributed random variables with rates measurable with respect to S(A(i)
2 ,A(j)

2 ). In

particular, the number of lines between the kth and (k + 1)st time in T (A(i)
2 ,A(j)

2 ),
which lead to either one or the other of the individuals, but not to both, denoted by
Di
k = Di

k(S(A(i)
2 ,A(j)

2 )), is S(A(i)
2 ,A(j)

2 )-measurable and

L(A(i,sing)
2 ) =

∑
k

Di
kTk (6.15)

Let S be the space of all possible shapes which can be taken by S(A(i)
2 ,A(j)

2 ) and let
Sγ2 := {s ∈ S : P(s) /∈ O(γ2)}, i.e. Sγ2 contains all shapes which have at most one

splitting event. Within Sγ2 , there are at most 8 events before (A(i)
2 ,A(j)

2 ) has lost all lines,
so we can write

E[L(A(i,sing)
2 )L(A(j,sing)

2 )] = E[E[L(A(i,sing)
2 )L(A(j,sing)

2 )]|S(A(i)
2 ,A(j)

2 )]]

=
∑
s∈Sγ2

P(s) · E[L(A(i,sing)
2 )L(A(j,sing)

2 )]|S(A(i)
2 ,A(j)

2 ) = s] +O(γ2)

=
∑
s∈Sγ2

P(s) · E
[ 8∑
k=1

Di
kTk

8∑
k=1

Dj
kTk|S(A(i)

2 ,A(j)
2 ) = s

]
+O(γ2)

=
∑
s∈Sγ2

P(s)

8∑
k=1

Di
k(s)Dj

k(s)E[T 2
k (s)]

+ P(s)
∑

1≤k,k′≤8;k 6=k′
Di
k(s)Dj

k′(s)E[Tk(s)]E[Tk′(s)] +O(γ2)
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As Sγ2 has more than 5000 elements we used Mathematica to compute P(s) – see
the accompanying file available at the arXiv (http://arxiv.org/abs/1301.6547) – the
variables Di

k(s), resp. Dj
k(s), and the parameters of the exponentially distributed times

Tk(s) for 1 ≤ k ≤ 8 and all s ∈ Sγ2 . Combining (6.13) and (6.14) gives the result as
shown in (3.10).
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