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Abstract

The objective of the paper is to study sharp inequalities for transforms of martingales
taking values in `N∞. Using Burkholder’s method combined with an intrinsic duality
argument, we identify, for each N ≥ 2, the best constant CN such that the following
holds. If f is a martingale with values in `N∞ and g is its transform by a sequence of
signs, then

||g||1 ≤ CN ||f ||∞.
This is closely related to the characterization of UMD spaces in terms of the so-called
η-convexity, studied in the eighties by Burkholder and Lee.
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1 Introduction

Let (Ω,F ,P) be a probability space, filtered by (Fn)n≥0, a non-decreasing sequence
of sub-σ-fields of F . Let (B, || · ||) be a separable Banach space and let f = (fn)n≥0

be an adapted martingale taking values in B. We define df = (dfn)n≥0, the difference
sequence of f , by df0 = f0 and dfn = fn − fn−1, n ≥ 1. A Banach space B is called a
UMD space if for some 1 < p < ∞ (equivalently, for all 1 < p < ∞) there is a finite
constant β = βp with the following property: for any deterministic sequence ε0, ε1, ε2,
. . . with values in {−1, 1} and any f as above,∣∣∣∣∣
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, n = 0, 1, 2, . . . .

Here and below, we will write ||·||p instead of ||·||Lp(Ω;B), if it is clear which Banach space
B we work with. For given p and B, let βp,B denote the smallest possible value of the
constant βp allowed above. Then, as shown by Burkholder [2, 4], we have βp,R = p∗− 1,
where p∗ = max{p, p/(p − 1)}; in fact, the equality holds true if R is replaced by any
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Martingale inequalities

separable Hilbert space H. By Fubini’s theorem, this yields βp,`Np (H) = p∗ − 1 for any
integer N . For the other choices of p and B, the values of the corresponding constants
βp,B are not known.

There is a beautiful geometrical characterization of UMD spaces, which is due to
Burkholder. A function ζ : B× B→ R is called biconvex, if for any z ∈ B, the functions
x 7→ ζ(x, z) and y 7→ ζ(z, y) are convex. One of principal results of [1] states that B is
UMD if and only if there is a biconvex function ζ satisfying

ζ(0, 0) > 0 (1.1)

and
ζ(x, y) ≤ ||x+ y|| if ||x|| = ||y|| = 1. (1.2)

The existence of such a function is strictly related to the validity of the weak-type esti-
mate
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, n = 0, 1, 2, . . . , (1.3)

for some constant C depending only on B. In fact, if there is ζ satisfying (1.1) and (1.2),
then (1.3) holds with C = 2/ζ(0, 0). Then, using classical extrapolation arguments (see
Burkholder and Gundy [5]), it can be shown that∣∣∣∣∣
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, n ≥ 0, 1 < p <∞. (1.4)

In general, if B is UMD, then the class of all biconvex functions ζ satisfying (1.1) and
(1.2) is infinite. However, it can be shown that there is the largest element in this class,
i.e., the function ζ̄ such that ζ̄(x, y) = supζ ζ(x, y) for all x, y ∈ B (see [1], [3]). This
extremal element yields the optimal constant 2/ζ̄(0, 0) in (1.3) and a tight one in (1.4).
Thus, for a given UMD space B, it would be desirable to find such a function ζ̄, or at
least the value ζ̄(0, 0); unfortunately, this is a very difficult task and, so far, it has been
successfully tackled only in the case when B is a Hilbert space. Namely, Burkholder [3]
showed that

ζ̄(x, y) =

{[
1 + 2〈x, y〉+ ||x||2||y||2

]1/2
if ||x|| ∨ ||y|| ≤ 1,

||x+ y|| if ||x+ y|| > 1,

where 〈·, ·〉 denotes the scalar product in B. In view of the above remarks, this function
shows that the weak-type constant for transforms of Hilbert-space-valued martingales
equals 2.

In this paper we will be concerned with a different, dual geometrical characteriza-
tion of UMD due to Lee [7]. Let S denote the set {(x, y) ∈ B×B : ||x− y|| ≤ 2}. One of
the main results of [7] is as follows: a Banach space B is UMD if and only if there is a
biconcave function η : S → R satisfying

η(x, y) ≥ ||x+ y|| for all (x, y) ∈ S. (1.5)

As we have stressed above, the existence of ζ is closely related to the validity of (1.3); a
similar phenomenon occurs for η, which is strictly connected to the following martingale
inequality (see p. 304 in [7]). For any martingale f and any deterministic sequence
ε0, ε1, ε2, . . . of signs,∣∣∣∣∣
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, n = 0, 1, 2, . . . . (1.6)
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Martingale inequalities

More precisely, if η satisfies (1.5), then the above bound holds with c = η(0, 0)/2. This
statement can be extracted from the works of Burkholder [3] and Lee [7] (another
convenient reference on the subject is the paper [6] by Geiss). In analogy with the
previous setting, if B is a UMD space, then there are many possible biconcave functions
η; however, this class of functions contains the least element η̄, and the corresponding
constant η̄(0, 0)/2 is optimal in (1.6). In the case when B = R, Burkholder [2] identified
η̄. This function is given by the symmetry property

η̄(x, y) = η̄(y, x) = η̄(−x,−y), (x, y) ∈ S,

and the equality

η̄(x, y) =

{
x+ y + (y − x+ 2)e−y if 0 ≤ y ≤ x ≤ y + 2,

2(1 + y)− (y − x+ 2) log(1 + y) if − 1 < y ≤ 0, −y ≤ x ≤ y + 2.

This has been pushed further by Lee [7], who proved that if the dimension of B over R
is at least two, then

η̄(x, y) = 2
√

1 + 〈x, y〉.

In both cases we have η(0, 0) = 2 and thus the optimal constant in (1.6) (for Hilbert
spaces) is equal to 1. Of course, this can also be proved directly, simply by inserting the
identity ||

∑n
k=0 εkdfk||2 = ||

∑n
k=0 dfk||2 in the middle of the estimate.

The purpose of this paper is to study sharp version of (1.6) for a different class of
Banach spaces, namely, for B = `N∞(H), where H is a Hilbert space and N is an integer
larger than 1. To gain some initial insight into the size of the constants involved, let us
exploit the following well-known argument. Namely, we have∣∣∣∣∣
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for n = 0, 1, 2, . . .. Here in the third inequality we have used the fact that βp,`Np (H) =

p∗ − 1, which was mentioned at the beginning. Hence, assuming N > e2 and taking
p = logN , we get that (1.6) holds with the constant e(logN − 1).

Actually, we will study a slightly more general setting in which the transforming
sequence (εn)n≥1 may depend on coordinates of `N∞(H). That is, we allow determin-
istic “multisigns” εn = (ε1

n, ε
2
n, . . . , ε

N
n ) ∈ {−1, 1}N , for which we put (εndfn)n≥0 :=(

(ε1
ndf

1
n, ε

2
ndf

2
n, . . . , ε

N
n df

N
n )
)
n≥0

. Of course, this is again a martingale difference se-
quence.

Our main result can be stated as follows.
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Theorem 1.1. Suppose that f is a martingale taking values in `N∞(H) and let ε0, ε1, ε2,
. . . be a deterministic sequence with values in {−1, 1}N . Then∣∣∣∣∣
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where

CN =

{√
N if N ≤ 4,

2 + log(N/4) if N ≥ 5.

The inequality is sharp.

By duality, this leads to an analogous statement for `N1 (H) spaces.

Theorem 1.2. Suppose that f is a martingale taking values in `N1 (H) and let ε0, ε1, ε2,
. . . be a deterministic sequence with values in {−1, 1}N . Then∣∣∣∣∣
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and the inequality is sharp.

The novelty lies in the fact that, to the best of our knowledge, this is the first result in
the literature in which the best constant for transforms of (non-Hilbert) Banach-space-
valued martingales has been found. It would be very interesting if the reasoning could
be modified to yield sharp bounds for other class of Banach spaces, for instance for `p
spaces, 1 < p <∞. Unfortunately, so far this seems to be hopeless.

Before we proceed, let us mention here two interesting corollaries.

Theorem 1.3. Let B = `N∞(H). Then

η̄(0, 0) ≤

{
2
√
N if N ≤ 4,

4 + 2 log(N/4) if N ≥ 5.
(1.9)

We do not know whether equality takes place here; in other words, we do not know
if the passage from signs to multisigns increases the constant in (1.7). Unfortunately,
in our proof of the sharpness of this estimate, we strongly exploit the fact that the
transforming sequence does depend on coordinates of `N∞.

The second corollary provides a lower bound for the constant βp,`N∞(H).

Theorem 1.4. We have βp,`N∞(H) ≥ CN for any N ≥ 1 and any 1 < p <∞.

We have organized the paper as follows. In Section 2 we study an auxiliary bound
for Hilbert-space-valued martingales; this is accomplished with the use of Burkholder’s
method combined with an intrinsic duality argument. The next two sections are the
most complicated parts of the paper: we construct there appropriate examples, which
prove that the constant CN cannot be improved in (1.7). Quite surprisingly, we require
completely different arguments for N ≤ 3 and N ≥ 4. The first case is slightly easier
and is studied in Section 3; the final part addresses the sharpness of (1.7) for N ≥ 4.

2 A sharp inequality for H-valued martingales

Let us begin by showing that Theorems 1.1 and 1.2 are equivalent. To see that (1.7)
implies (1.8), pick a bounded martingale f = (f1, f2, . . . , fN ) with values in `N1 (H), a
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multisign ε and observe that∣∣∣∣∣
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where the supremum is taken over all random variables g = (g1, g2, . . . , gN ) taking val-
ues in the unit ball of `N∞(H). Let (gn)n≥0 = (E(g|Fn))n≥0 denote the associated `N∞(H)-
valued martingale. Note that (gn)n≥0 is bounded by 1, since g has this property. By the
orthogonality of martingale difference sequences, for any n ≥ 1 we have∣∣∣∣∣
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where the latter bound follows from (1.7), applied to (gn)n≥0. This establishes (1.8); the
proof of the implication (1.8)⇒(1.7) goes along the same lines.

Thus, from now on, we will focus on Theorem 1.1. For notational convenience, the
norm in `N∞ will be denoted by || · ||, while the norm in the Hilbert space H will be de-
noted by | · |. Recall that a Banach-space-valued martingale f is called simple, if for
any n the random variable fn takes only a finite number of values and there is a de-
terministic number m such that fm = fm+1 = fm+2 = . . . = f∞. By straightforward
approximation, it suffices to study (1.7) for simple martingales f , g only. Furthermore,
we may restrict ourselves to those f , g, which satisfy f0 = g0 = 0. Indeed, if this is
not the case, we consider an independent Rademacher variable θ and new martingales
(0, θf0, θf1, θf2, . . .), (0, θg0, θg1, θg2, . . .). These two do start from 0, the latter is a trans-
form of the former, and they have the same norms as f and g. Thus, by homogeneity,
the assertion of Theorem 1.3 is equivalent to saying that

CN = sup
{
||g∞||1 : f0 = g0 = 0, ||f ||∞ ≤ 1, g is a transform of f

by a deterministic sequence of multisigns
}
.

(2.1)

Before we proceed, let us mention here that the above supremum is closely related to
the value η̄(0, 0). As proved by Lee [7], we have

η̄(0, 0) = sup
{

2||g∞||1 : f0 = g0 = 0, ||f ||∞ ≤ 1, g is a transform of f

by a deterministic sequence of signs
}
.

(2.2)

This formula immediately shows how to deduce (1.9) from (1.7).
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We turn to the analysis of the right-hand side of (2.1). Let us assume that (f, g) =(
(f1, f2, . . . , fN ), (g1, g2, . . . , gN )

)
is a martingale pair as appearing there. Then for each

j, f j is a Hilbert-space valued martingale bounded by 1 and gj is its transform by a
certain deterministic sequence of signs. Furthermore, there is a splitting of Ω into
pairwise disjoint events A1, A2, . . ., AN such that Aj ⊆ {||g∞|| = |gj∞|}, and thus we may
write

||g∞||1 =

N∑
j=1

E|gj∞|1Aj
. (2.3)

This suggests to analyze carefully each term under the above sum. To do this, fix t ∈
[0, 1] and put

V (t) = sup
{
E|G∞|1A

}
, (2.4)

where the supremum is taken over all A ∈ F with P(A) ≤ t and all simple H-valued
martingales F , G starting from 0 such that F is bounded by 1 and G is a transform of F
by a deterministic sequence of signs. Here we allow the filtration is to vary, as well as
the probability space, unless it is assumed to be nonatomic. We have the following.

Lemma 2.1. The function V is concave.

Proof. This is straightforward. We may assume that the probability space is the interval
[0, 1] equipped with its Borel subsets and Lebesgue’s measure. Pick t1, t2 ∈ [0, 1], a
weight α ∈ (0, 1). Take two events A1, A2 and two pairs (F 1, G1), (F 2, G2) of simple
martingales as in the definition of V (t1) and V (t2). We splice these two events into one
set A, and the two pairs into one martingale pair (F,G), by the following formulas:

A = αA1 + (α+ (1− α)A2)

and, for n = 0, 1, 2, . . .,

(F2n, G2n)(ω) =

{
(F 1
n , G

1
n)(ω/α) if 0 ≤ ω ≤ α,

(F 2
n , G

2
n)
(
(ω − α)/(1− α)

)
if α < ω ≤ 1

and

(F2n+1, G2n+1)(ω) =

{
(F 1
n+1, G

1
n+1)(ω/α) if 0 ≤ ω ≤ α,

(F 2
n , G

2
n)
(
(ω − α)/(1− α)

)
if α < ω ≤ 1.

Then (F,G) is a simple martingale with respect to its natural filtration, we have F0 =

G0 = 0 and G is a transform of F by a deterministic sequence of signs. Furthermore,
we have

P(A) = αP(A1) + (1− α)P(A2) ≤ αt1 + (1− α)t2.

Therefore, by the definition of V , we may write

V (αt1 + (1− α)t2) ≥ E|G∞|1A
= E|G∞|1αA1 + E|G∞|1α+(1−α)A2

= αE|G1
∞|1A1 + (1− α)E|G2

∞|1A2 .

Taking supremum over all Ai and (F i, Gi), we obtain the desired concavity.

Coming back to (2.3), we obtain the bound

||g∞||1 ≤
N∑
j=1

V (P(Aj)).
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Thus, if we denote the supremum on the left-hand side of (2.1) by SN , we see that the
concavity of Lemma 2.1 implies

SN ≤ NV

 1

N

N∑
j=1

P(Aj)

 = NV (1/N). (2.5)

Now, to obtain the proper upper bound for V (1/N), we will consider a dual approach.
First we prove the following fact.

Theorem 2.2. Suppose that ξ is an H-valued martingale and let ζ be its transform by
a deterministic sequence of signs. Then for any C ≥ 1 we have

||ζ||1 ≤ C||ξ||1 +
e1−C

4
||ξ||∞. (2.6)

For each C the constant e1−C/4 is the best possible.

This bound will be established with the use of Burkholder’s method. In order to
simplify the technicalities, we shall combine the technique with an “ integration ar-
gument ”, invented in [8] (see also [9]). That is, first we introduce a simple function
v∞ : H ×H → R, for which the calculations are relatively easy; then define U by inte-
grating this object against an appropriate nonnegative kernel. Let

v∞(x, y) =

{
0 if |x|+ |y| ≤ 1,

(|y| − 1)2 − |x|2 if |x|+ |y| > 1.

We have the following fact (see Lemma 2.2 in [9] for a slightly stronger statement
concerning differentially subordinated martingales).

Lemma 2.3. Let ξ be a square integrable, H-valued martingale and let ζ be its trans-
form by a deterministic sequence of signs. Then we have

Ev∞(ξn, ζn) ≤ 0 for any n ≥ 0.

Let K denote the unit ball of H and define U : K ×H → R by the formula

U(x, y) =
1

2

∫ 1/2

exp(1−C)/2

v∞(y/t, x/t)dt+ eC−1(|y|2 − |x|2) +
e1−C

4

(note that under the integral, we have v∞(y/t, x/t), not v∞(x/t, y/t)!). One easily com-
putes the explicit formula for U . Namely, we have

U(x, y) =


eC−1(|y|2 − |x|2) + e1−C/4 if |x|+ |y| ≤ e1−C/2,

|x|+ |y| − |x| log(2|x|+ 2|y|)− C|x| if e1−C/2 < |x|+ |y| ≤ 1/2,

|y|2 − |x|2 + (1− C)|x|+ 1/4 if |x|+ |y| > 1/2.

We will need the following majorization property of U .

Lemma 2.4. For any (x, y) ∈ K ×H we have

U(x, y) ≥ |y| − C|x|. (2.7)

Proof. Let r be a fixed nonnegative number. Let us fix |x| + |y| = r and consider both
sides of (2.7) as functions of s = |y|. These functions are both linear and hence it suffices
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to establish the majorization in three extremal cases: for x = 0, for |x| = 1 and for y = 0.
If x = 0 and |y| ≤ e1−C/2, the inequality is equivalent to

(2eC−1|y| − 1)2 ≥ 0,

which is obviously true. If x = 0 and |y| ∈ (e1−C/2, 1/2), then both sides are equal. Next,
if x = 0 and |y| ≥ 1/2, or |x| = 1, then the majorization can be rewritten in the form
(2|y| − 1)2 ≥ 0, which holds trivially. Finally, suppose that y = 0. If |x| ≤ e1−C/2, we
must prove that

−eC−1|x|2 + e1−C/4 + C|x| ≥ 0.

But this is straightforward: the left-hand side, as a function of |x| ∈ [0, e1−C/2), is
increasing, and we have already verified the estimate for x = 0. If e1−C/2 < |x| ≤ 1/2,
the majorization is equivalent to 1− log(2|x|) ≥ 0, which is obvious. Finally, if |x| > 1/2,
the inequality (2.7) reads −|x|2 + |x|+ 1/4 ≥ 0, which is evident.

We turn to the proof of Theorem 2.2.

Proof of (2.6). Pick ξ, ζ as in the statement. We may and do assume that ξ is bounded,
since otherwise the right-hand side is infinite and there in nothing to prove. By homo-
geneity, it suffices to show that

||ζ||1 ≤ C||ξ||1 +
e1−C

4

under the assumption ||ξ||∞ ≤ 1. Then in particular ξ is square integrable and hence so
is ζ, since ||ζn||2 = ||ξn||2 for all n. Because the transforming sequence ε takes values in
{−1, 1}, we see that the relation of being a transform by ε is symmetric. Consequently,
for any t > 0 the martingale ξ/t is a transform of ζ/t and thus, by Lemma 2.3, we have
Ev∞(ζn/t, ξn/t) ≤ 0 for all n. Furthermore, we have v∞(x, y) ≤ c(|x|2 + |y|2 + 1) for some
universal constant c, so by Fubini’s theorem, we get

EU(ξn, ζn) = E

∫ 1/2

exp(1−C)/2

v∞(ζn/t, ξn/t)dt+ ||ζn||22 − ||ξn||22 +
e1−C

4
≤ e1−C

4
.

Therefore, an application of (2.7) yields

||ζn||1 − C||ξn||1 ≤ EU(ξn, ζn) ≤ e1−C

4

and it suffices to let n go to infinity.

Theorem 2.5. We have

V (1/N) ≤

{
N−1/2 if N ≤ 4,

2N−1 +N−1 log(N/4) if N ≥ 5.

Proof. This statement, combined with (2.5), will yield (1.7). Furthermore, comparing
(2.1) and (2.2), we will get the assertion of Theorem 1.3. Let F , G, A be as in the
definition of V (1/N) and let ε0, ε1, ε2, . . . be the transforming deterministic sequence
which produces G from F . Suppose first that N ≤ 4; in this case the proof is very
simple. Namely, by Schwarz inequality, we have

E|G∞|1A ≤
√
E|G∞|2

√
P(A) ≤

√
E|F∞|2

√
1/N ≤ 1/

√
N,
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since ||F ||∞ ≤ 1. The case N ≥ 5 is more involved. Introduce the random variable
ξ = 1AG∞/|G∞| (with the convention ξ = 0 if G∞ = 0) and consider the martingales
(ξn)n≥0 = (E(ξ|Fn))n≥0 and

ζn =

n∑
k=0

εkdξk, n = 0, 1, 2, . . . .

Clearly, (ζn)n≥0 is a transform of (ξn)n≥0 by (εn)n≥0. Consequently, we may write the
following chain of expressions:

E|G∞|1A = E〈G∞, ξ∞〉 =

∞∑
k=0

E
〈
dGk, dξk

〉
=

∞∑
k=0

E
〈
εkdGk, εkdξk

〉
= E〈F∞, ζ∞〉 ≤ E|ζ∞|.

Now we apply (2.6) with C = 1 + log(N/4). The martingale (ξn)n≥0 is bounded by 1 and
||ξ||1 ≤ P(A) ≤ 1/N , so we obtain

E|G∞|1A ≤ (1 + log(N/4))N−1 +N−1 = 2N−1 +N−1 log(N/4),

which is the claim.

Remark 2.6. It is well known that in general Burkholder’s function (that is, the special
function leading to a given martingale inequality) is not unique, see e.g. [4]. Sometimes
it is of interest to determine the optimal (that is, the least) of the possible ones, at
least for H = R. Though we shall not need this, we would like to mention here that
we have managed to find the least function for (2.6) in the real case. Namely, for
(x, y) ∈ [−1, 1]×R, the value of this function at (x, y) equals

eC−1(y2 − x2) + e1−C/4 if |x|+ |y| ≤ e1−C/2,

|x|+ |y| − |x| log(2|x|+ 2|y|)− C|x| if e1−C/2 < |x|+ |y| ≤ 1/2,

|y|+ |x| exp(1− 2|x| − 2|y|)− C|x| if 1/2− |y| ≤ |x| ≤ 1/2,

|y|+ (1− |x|) exp(−1− 2|y|+ 2|x|)− C|x| if 1/2 < |x| ≤ |y|+ 1/2,

|y|+ 1− |x| − (1− |x|) log(2 + 2|y| − 2|x|)− C|x| if |x| > |y|+ 1/2.

We omit the further details in this direction, leaving them to the interested reader.

3 Sharpness, the case N = 2 and N = 3

3.1 Preliminary observations

We begin by several useful remarks, which will be often exploited below. We will
show that the constant CN is already the best for the Banach space `N∞ = `N∞(R). To do
this, it suffices, for each N and ε > 0, to construct a pair (f, g) of `N∞-valued martingales
such that f is bounded by 1, g is a transform of f by a sequence of multisigns and
||g||1 > CN−ε. In the search for appropriate examples, we recall the following inequality
for transforms of real-valued martingales, proved by Burkholder [4]. Namely, if f is
bounded by 1, g is its transform by a sequence of signs and λ > 1, then we have the
sharp bound

P(|g∞| ≥ λ) ≤

{
λ−2 if 1 < λ ≤ 2,

e2−λ/4 if λ > 2.
(3.1)

Note that if we pick λ = CN , the above estimate becomes P(|g∞| ≥ λ) ≤ 1/N . This
gives a very strong indication how to proceed: if we work with `N∞-valued martingales
f , g, then
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1◦ for each 1 ≤ k ≤ N the coordinates fk, gk must be the extremal in (3.1),

2◦ the sets {|g1
∞| ≥ λ}, {|g2

∞| ≥ λ}, . . ., {|gN∞| ≥ λ} must be pairwise disjoint.

Having ensured these two conditions, we are done: then the martingale f is bounded
by 1, g is its transform by a certain deterministic multisign and ||g∞|| ≥ λ = CN with
probability 1.

There is nothing special in the requirement 1◦: one only has to study carefully
Burkholder’s examples (which are quite complicated) to get the intuition about them.
However, the condition 2◦ turns out to be much more difficult. It is a nontrivial combina-
torial problem to take N pairs of extremal martingales as in 1◦ and bind them together
so that 2◦ holds. The obstacle is that the pairs (fk, gk) must be adapted to the same
filtration and thus have complicated dependence structure.

3.2 An auxiliary function

It will be convenient to work with a certain function closely related to η̄ and the
supremum SN considered in (2.1). Let N be a given positive integer. For any x, y ∈ `N∞
such that ||x|| ≤ 1, let M(x, y) denote the class of all pairs (f, g) of simple `N∞-valued
martingales such that

1◦ f starts from x and satisfies ||f ||∞ ≤ 1,
2◦ g starts from y and satisfies dgn = εndfn for n ≥ 1, for some deterministic se-

quence ε1, ε2, . . . of multisigns.

Here the filtration is to vary, as well as the probability space, unless it is assumed to
be nonatomic.

Define U : {(x, y) ∈ `N∞ × `N∞ : ||x|| ≤ 1} → R by the formula

U(x, y) = sup {||g∞||1 : (f, g) ∈M(x, y)} .

We will prove the following statement.

Lemma 3.1. The function U satisfies the following properties.

(a) For any multisigns θ = (θ1, θ2, . . . , θN ), γ = (γ1, γ2, . . . , γN ) and x, y,

U(θx, γy) = U(x, y) (3.2)

(here θx = (θ1x1, θ2x2, . . . , θNxN ) and similarly for γy).

(b) For any x, y ∈ `N∞ and any permutation π of the set {1, 2, . . . , N},

U(xπ, yπ) = U(x, y) (3.3)

(here xπ = (xπ1 , xπ2 , . . . , xπN
) and similarly for yπ).

(c) For any x, y ∈ `N∞ we have the majorization

U(x, y) ≥ ||y||. (3.4)

(d) The function U enjoys the following concavity property. For any x, y ∈ `N∞ with
||x|| ≤ 1, any multisign θ, any t1, t2 ∈ `N∞ with ||x+ ti|| ≤ 1 and any α ∈ (0, 1) such
that αt1 + (1− α)t2 = 0,

U(x, y) ≥ αU(x+ t1, y + θt1) + (1− α)U(x+ t2, y + θt2). (3.5)

Proof. The properties (a) and (b) are evident and follow at once from the very definition
of U and the fact that the three conditions: (f, g) ∈ M(x, y), (θf, γg) ∈ M(θx, γy) and
(fπ, gπ) ∈ M(xπ, yπ), are equivalent. The majorization (c) is also straightforward: the
constant pair (f, g) ≡ (x, y) belongs to M(x, y). The condition (d) can be easily proved
using the splicing argument: see the proof of Lemma 2.1 above.
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3.3 The case N = 2

We start with recalling Burkholder’s extremal example for (3.1) with λ =
√

2. Con-
sider the points

P0 = P8 = −P4 =

(
−
√

2

2
, 1−

√
2

2

)
, P1 = −P5 = (−1, 0),

P2 = −P6 =

(√
2

2
− 1,

√
2

2

)
, P3 = −P7 = (−1,

√
2).

Introduce a Markov martingale (f, g) with values in R2, with the distribution uniquely
determined by the following requirements:

(i) We have (f0, g0) = (−1/2, 1/2).

(ii) In its first move, it goes to P0 or to P2.

(iii) For k ∈ {0, 1, 2, 3}, the state P2k leads to P2k+1 or to P2k+2.

(iv) All the remaining points are absorbing.

We easily check that g is a transform of f by a sequence of signs and that |f∞| = 1,
|g∞| =

√
2 almost surely. Thus

2P(|g∞| ≥
√

2) = ||g∞||22 = ||f∞||22 = 1,

so both sides of (3.1) are equal. To get the extremal pair of martingales with values in
`2∞, we need to complicate the above example a little bit. Namely, consider a Markov
martingale (f, g) with values in `2∞ × `2∞, with the distribution given as follows.

(i) We have (f1
0 , f

2
0 , g

1
0 , g

2
0) = (−1/2,−1/2, 1/2, 1/2).

(ii) In its first move, it goes to (P0, P2) or to (P2, P0).

(iii) For k ∈ {0, 1, 2, 3}, the state (P2k, P2k+2) leads to (P2k+1, P2k+3) or to (P2k+2, P2k+4)

(here P10 = P2).

(iv) For k ∈ {0, 1, 2, 3}, the state (P2k+2, P2k) leads to (P2k+2, P2k+4) or to (P2k+1, P2k+3).

(iv) All the remaining points are absorbing.

One easily verifies that the above definition makes sense (i.e., the moves described in
(iii) and (iv) are of martingale type), that the martingale g is a transform of f by a
multisign and that 1◦, 2◦ are satisfied. This implies that the inequality (1.7) is sharp for
N = 2. However, it will be convenient to rewrite this proof in a different manner, with
the use of the function U introduced in the previous subsection. This approach will be
particularly efficient (much simpler) in the case N = 3, in which the explicit example is
extremely complicated.

By the very definition of U , it suffices to show the inequality

U((1/2, 1/2), (1/2, 1/2)) ≥
√

2. (3.6)

Using the concavity of U (see (d)) and the property (3.3), we write

U
((

1

2
,

1

2

)
,

(
1

2
,

1

2

))
≥ 1

2
U

((
1−
√

2

2
,

√
2

2

)
,

(√
2

2
, 1−

√
2

2

))

+
1

2
U

((√
2

2
, 1−

√
2

2

)
,

(
1−
√

2

2
,

√
2

2

))

= U

((√
2

2
, 1−

√
2

2

)
,

(
1−
√

2

2
,

√
2

2

))
.
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The further use of the concavity and the application of (3.2), (3.3) and (3.4) give

U

((√
2

2
, 1−

√
2

2

)
,

(
1−
√

2

2
,

√
2

2

))

≥ (
√

2− 1)U

((
1−
√

2

2
,−
√

2

2

)
,

(
−
√

2

2
, 1−

√
2

2

))
+ (2−

√
2)U((1, 1), (0,

√
2))

= (
√

2− 1)U

((√
2

2
, 1−

√
2

2

)
,

(
1−
√

2

2
,

√
2

2

))
+ (2−

√
2) ·
√

2,

which implies

U

((√
2

2
, 1−

√
2

2

)
,

(
1−
√

2

2
,

√
2

2

))
≥
√

2

and thus (3.6) follows. Of course, this proof of the sharpness is the same as the previous
one: the weights in Jensen inequalities exploited above correspond to the transition
probabilities from (ii), (iii) and (iv), and the value points are exactly (Pi, Pj) used there
(up to some changes in the signs of the coordinates).

The case N = 3. Here the calculations are much more involved. We do not spec-
ify the extremal Markov martingale (f, g), and write the proof in the language of the
function U . It suffices to show that

U
((

1

2
,

1

2
,

1

2

)
,

(
1

2
,

1

2
,

1

2

))
≥
√

3. (3.7)

Using concavity and the conditions (3.2) and (3.3), we get

U
((

1

2
,

1

2
,

1

2

)
,

(
1

2
,

1

2
,

1

2

))
≤ 1

2
U

((
1−
√

3

2
,

1

2
,

√
3

2

)
,

(√
3

2
,

1

2
, 1−

√
3

2

))

+
1

2
U

((√
3

2
,

1

2
, 1−

√
3

2

)
,

(
1−
√

3

2
,

1

2
,

√
3

2

))

= U

((√
3

2
,

1

2
, 1−

√
3

2

)
,

(
1−
√

3

2
,

1

2
,

√
3

2

))
.

However, if we put α = 4(1− 1/
√

3), then

U

((√
3

2
,

1

2
, 1−

√
3

2

)
,

(
1−
√

3

2
,

1

2
,

√
3

2

))

≥ 1

α
U

((
1−

(
1−
√

3

2

)
α, 1− α

2
, 1−

√
3

2
α

)
,

((
1−
√

3

2

)
α,
α

2
,
√

3−
√

3

2
α

))

+

(
1− 1

α

)
U((1, 1, 1), (0, 0,

√
3))

=
1

α
U

((
1−

(
1−
√

3

2

)
α, 1− α

2
, 1−

√
3

2
α

)
,

((
1−
√

3

2

)
α,
α

2
,
√

3−
√

3

2
α

))

+

(
1− 1

α

)
·
√

3,

(3.8)
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where in the last line we have used (3.4). Denote the first term in the latter sum by 1
αI.

By the concavity of U ,

I ≥ 2
√

3− 2√
3
U

((
5

2
−
√

3, 1−
√

3

2
, 2− 3

√
3

2

)
,

(
√

3− 3

2
,

√
3

2
, 3− 3

√
3

2

))

+
2−
√

3√
3
U
(

(6− 3
√

3, 2−
√

3, 2−
√

3), (3
√

3− 5,
√

3− 1, 3− 2
√

3)
)
.

(3.9)

Similarly,

U

((
5

2
−
√

3, 1−
√

3

2
, 2− 3

√
3

2

)
,

(
√

3− 3

2
,

√
3

2
, 3− 3

√
3

2

))

≥
√

3

2 +
√

3
U

((
1

2
,−
√

3

2
,

√
3

2
− 1

)
,

(
1

2
,

√
3

2
− 1,

√
3

2

))

+
2

2 +
√

3
U((1, 1,−1), (0,

√
3, 0))

=

√
3

2 +
√

3
U

((√
3

2
,

1

2
, 1−

√
3

2

)
,

(
1−
√

3

2
,

1

2
,

√
3

2

))
+

2
√

3

2 +
√

3

and, for β = 2/
√

3,

U
(

(6− 3
√

3, 2−
√

3, 2−
√

3), (3
√

3− 5,
√

3− 1, 3− 2
√

3)
)

=
1

β
U((1− (3

√
3− 5)β, 1− (

√
3− 1)β, (3−

√
3)β − 1),

(3
√

3− 5)β, (
√

3− 1)β, (3−
√

3)β −
√

3))

+

(
1− 1

β

)
U((1, 1,−1), (0, 0,−

√
3)).

A little calculation shows that the latter expression is equal to 1
β I+(1− 1

β ) ·
√

3. Plugging
the last two statements into (3.9) yields

√
3

2
I ≥ 2

√
3− 2

2 +
√

3
U

((√
3

2
,

1

2
, 1−

√
3

2

)
,

(
1−
√

3

2
,

1

2
,

√
3

2

))
+

20
√

3− 33

2

and combining this with (3.8) implies (3.7), the desired lower bound.

4 Sharpness, the case N ≥ 4

Here we will use a different method, based on the explicit construction of extremal
examples. For the sake of convenience, we split the reasoning into several parts.

4.1 The case N = 4

As we will see, the calculations in the case N = 4 are easy; however, it is instructive
to analyze this case carefully, as similar arguments will be used later, while studying
the sharpness for larger N .

As previously, the underlying idea is to keep f bounded by 1 and make ||g|| as
close to C4 as possible. The construction is as follows. As in the preceding section,
it is enough to find an appropriate martingale pair (f, g) which starts from the point
((−1/2,−1/2,−1/2,−1/2), (1/2, 1/2, 1/2, 1/2)). The first step is to split the pair into two:
(f1, g1) and (f2, f3, f4, g2, g3, g4). We determine the distributions of the variables (f1

1 , g
1
1)

and (f2
1 , f

3
1 , f

4
1 , g

2
1 , g

3
1 , g

4
1) by the requirements
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(i) (f1
1 , g

1
1) takes values (−1, 0), (1, 2).

(ii) f2
1 = f3

1 = f4
1 , g2

1 = g3
1 = g4

1 .

(iii) (f4
1 , g

4
1) takes values (−1/3, 2/3), (−1, 0) .

Note that the values listed in (i) are attained with probabilities 3/4 and 1/4, respectively;
the same is true for those in (iii). Thus, merging these two variables appropriately, we
obtain (f1, g1) such that (fn, gn)1

n=0 forms a martingale with respect to one filtration.
We turn to the second step. The first coordinates f1 and g1 are kept fixed and will

not be changed. On the set {(f4
1 , g

4
1) = (−1, 0)} we have ||g|| = 2 = C4, so g is large,

as we wanted - thus, we will not change (f, g) on this set. On the other hand, we
do change the martingale on {(f4

1 , g
4
1) = (−1/3, 2/3)}, and this is done as follows. We

split (f2, f3, f4, g2, g3, g4) into two pairs: (f2, g2) and (f3, f4, g3, g4). We determine the
conditional distributions of the variables (f2

2 , g
2
2) and (f3

2 , f
4
2 , g

3
2 , g

4
2) on {(f1

1 , g
1
1) 6= (1, 2)}

by the requiring that when restricted to this set,

(i) (f2
2 , g

2
2) takes values (−1, 0), (1, 2).

(ii) f3
2 = f4

2 , g3
2 = g4

2 .

(iii) (f4
2 , g

4
2) takes values (0, 1), (−1, 0) .

The values listed in (i) are attained with (conditional) probabilities 2/3 and 1/3, respec-
tively; the same is true for those in (iii). Thus, these two variables can be appropriately
glued so that (fn, gn)2

n=0 forms a martingale with respect to one filtration.
We turn to the final step. The second coordinates f2, g2 are kept fixed. On the

set {(f4
2 , g

4
2) = (−1, 0)} we have ||g||2 = 2, so the goal of approaching C4 by g is

achieved; thus, (f, g) will not be altered on this set. Let us restrict ourselves to the
set {(f4

2 , g
4
2) = (0, 1)} and split (f3, f4, g3, g4) into two pairs: (f3, g3) and (f4, g4). We

require that conditionally on this set,

(i) (f3
3 , g

3
3) takes values (−1, 0) and (1, 2).

(ii) (f4
3 , g

4
3) takes values (1, 2) and (−1, 0).

Again the values listed in (i) and (ii) are taken with conditional probability 1/2 and
thus we may appropriately splice these variables, extending the martingale (f, g) to the
time-set {0, 1, 2, 3}. Note that the martingale f is bounded by 1 and for each ω, a certain
coordinate of g3(ω) is equal to C4; thus, equality in (1.7) is attained. Furthermore, it is
clear that g is a transform of f by the sequence −1, 1, 1, 1, and this completes the proof
of the sharpness.

4.2 A splitting argument

We turn to the analysis of the case N ≥ 5. It will be convenient to work with
continuous-time processes. Throughout, δ is a fixed positive number (which will be
eventually sent to 0) and we take λ = CN = 2 + log(N/4). It is convenient to split the
reasoning into a few intermediate parts.

Step 1. Special intervals. First let us introduce some auxiliary notation. Consider
the following families (I+

k )k≥0, (I−k )k≥1 of line segments. Let I+
0 be a line segment with

endpoints (−1, λ− 2) and (1, λ); for k ≥ 1, we assume that

I+
k has endpoints (−1, λ− 2− 2kδ) and (δ, λ− 1− 2kδ + δ),

I−k has endpoints (0, λ− 1− 2kδ + 2δ) and (1, λ− 2− 2kδ + 2δ).

Note that the segments I±` has the slope ±1. See Figure 1 below.

Step 2. A family of Markov martingales. Let k be a fixed positive integer and let
(x, y) ∈ I+

k . Let B be a standard Brownian motion starting from 0 and consider the

EJP 18 (2013), paper 73.
Page 14/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2667
http://ejp.ejpecp.org/


Martingale inequalities

Figure 1: The intervals I±` .

decreasing families (τ+
j )kj=0, (τ−j )k+1

j=0 of stopping times, given by the backward induction

as follows: τ−k+1 ≡ 0, and

τ+
` = inf

{
t > τ−`+1 : Bt ≤ −x− 1 or Bt ≥ δ − x

}
, ` = k, k − 1, . . . , 0,

τ−` = inf
{
t > τ+

` : Bt ≤ −x or Bt ≥ 1− x
}
, ` = k, k − 1, . . . , 1.

Now, for t ≥ 0, define the Markov martingale (X,Y ) by

Xt = x+Bτ+
0 ∧t

and Yt = y +

∫ t

0

HsdXs,

where

Hs =

{
1 if s ∈ [τ`+1, τ

+
` ) for some `,

−1 if s ∈ [τ+
` , τ

−
` ) for some `.

To gain some intuition about the process (X,Y ), let us look at the line segments I±` .
The process (X,Y ) starts from (x, y) ∈ I+

k and moves along this line segment until it
reaches one of its endpoints (which occurs at time τ+

k ). If it gets to the left endpoint
(i.e., lying on the line x = −1), it terminates; otherwise, it starts to evolve along I−k ,
until it reaches one of the endpoints of this line segment (which happens for t = τ−k ). If
it gets to the right endpoint (that is, lying on the line x = 1), it stops; if this is not the
case, it starts moving along I+

k−1, until it reaches one of its endpoints, etc. The pattern
of the movement is then repeated. We see that the terminal variable X∞ = Xτ+

0
takes

values ±1 with probability 1, while Y∞ = Yτ+
0

is concentrated on the set

{λ, λ− 2, λ− 2− 2δ, λ− 2− 4δ, λ− 2− 6δ, . . . , λ− 2− 2kδ}.

Note that (X∞, Y∞) = (1, λ) if and only if (X,Y ) leaves I+
` ’s through their right end-

points and I−` ’s through their left endpoints. Consequently, we easily see that

p(x, y) = P((X∞, Y∞) = (1, λ)) =
1 + x

1 + δ
· (1− δ)k · 1

(1 + δ)k−1
=

1 + x

2
·
(

1− δ
1 + δ

)k
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and this probability is a continuous function of (x, y). Since (1 − δ)/(1 + δ) ≤ e−2δ, we
have

p(x, y) ≤ 1 + x

2
e−2kδ =

1 + x

2
ey−x+1−λ. (4.1)

A similar calculation can be carried out if the starting point (x, y) belongs to one of the
“negative” intervals I−k .

Step 3. A stopping procedure. Now we will appropriately stop the process (X,Y ) and
use its Markov property. We start with the following crucial observation: if (x, y) ∈ I+

k

and s < p(x, y), then on each I±` , ` ≤ k, we may choose points P±` such that p(P±` ) = s.

That is, on each I±` we may choose such a starting point, that the probability of reaching
(1, λ) is equal to s. A similar statement can be formulated if (x, y) ∈ I−k (but then the
interval I+

k is not taken into account). Now, let P = Ps = {P±` } denote the collection of
the chosen points and define

τs = inf
{
t : (Xt, Yt) ∈ P

}
,

with the convention inf ∅ =∞. We may write

p(x, y) = P
(
(X∞, Y∞) = (1, λ)

)
= P

(
(X∞, Y∞) = (1, λ)|τs <∞

)
P(τs <∞)

+ P
(
(X∞, Y∞) = (1, λ)|τs =∞

)
P(τs =∞)

= s(1− P(τs =∞)) + P(τs =∞)

and hence the probability that the stopped process (Xτs , Y τs) ever reaches (1, λ) equals
(p(x, y) − s)/(1 − s) which, with a proper choice of s, can be equal to any arbitrary
number from the interval (0, p(x, y)]. A similar argumentation can be repeated if the
starting point (x, y) belongs to one of the “negative” intervals I−k .

Step 4. Discretization. The stopped process (Xτs , Y τs) can be represented by a
pair (fn, gn)Mn=0 of finite discrete-time martingales, starting from (x, y) and satisfying
dfn ≡ ±dgn for each n (here by representation we mean that the distribution of (Xτs , Yτs)

coincides with that of the terminal value (fM , gM )). Again, we will describe it in detail
when (x, y) ∈ I+

k . This is straightforward: we put M = 2k + 1, (f0, g0) ≡ (x, y) and for
each n = 1, 2, . . . , k,

(f2n−1, g2n−1) =
(
Xτs∧τ+

k+1−n
, Yτs∧τ+

k+1−n

)
and

(f2n, g2n) =
(
Xτs∧τ−k+1−n

, Yτs∧τ−k+1−n

)
.

Finally, we set

(f2k+1, g2k+1) =
(
Xτs∧τ+

0
, Yτs∧τ+

0

)
.

Directly from the construction we check that the condition dfn = (−1)n+1dgn is satisfied.
Note that

P((f2k+1, g2k+1) = (1, λ)) = P((Xτs , Yτs) = (1, λ)) =
p(x, y)− s

1− s
(4.2)

in light of the considerations of Step 3.

Step 5. Iteration. The whole procedure described above can be applied inductively
to several values of s. Suppose that we are given a starting point (x, y) and a sequence
0 ≤ sm < sm−1 < . . . < s1 < p(x, y). The above reasoning gives the corresponding sets
P1, P2, . . ., Pm. Let (f, g)M1

k=0 be the finite martingale starting from (x, y), corresponding
to s = s1; its terminal variable takes values in P1∪{(1, λ)}. Now, on each set of the form
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{(fM1
, gM1

) = P`}, where P` ∈ P1, we repeat the above construction with the starting
point P` and s = s2, thus obtaining the extension of the martingale (f, g) to a larger
time interval {0, 1, 2, . . . , M2}. Now the terminal variable (fM2

, gM2
) takes values in

P2∪{(1, λ)}. We continue the reasoning, applying the above construction on each set of
the form {(fM2

, gM2
) = P`}, where this time P` is a given point from P2, and thus extend

the martingale (f, g) to the time set {0, 1, 2, . . . , M3}, etc..

Step 6. A summary. Let (x, y) be a fixed starting point and consider a sequence
0 ≤ sm < sm−1 < . . . < s1 < s0 = p(x, y). We have constructed a finite martingale
(f, g) starting from (x, y) and satisfying dfn ≡ ±dgn for each n ≥ 1, and a deterministic
sequence 0 = M0 < M1 < M2 < . . . < Mm such that the following holds:

P((fMn
, gMn

) = (1, λ)|(fMn−1
, gMn−1

) 6= (1, λ)) =
sn−1 − sn

1− sn
, n ≥ 1,

or, equivalently,

P((fMn
, gMn

) 6= (1, λ)|(fMn−1
, gMn−1

) 6= (1, λ)) =
1− sn−1

1− sn
, n ≥ 1, (4.3)

This equality follows directly from (4.2). Observe that in particular, the choice m = 1

and s1 = 0 leads to (f, g) which is just the discretization of the process (X,Y ) presented
in Step 2.

4.3 A splicing procedure

Now we will describe another tool which will be used in our construction. Let (x, y) ∈
[−1, 1] × R be a fixed point lying on a certain interval I+

k or I−k , k ≥ 1. Consider the
continuous-time process (X,Y ) studied in Step 2 of the previous subsection. Since
p(x, y) < 1/2, it is easy to see that there is a unique y′ > y such that if we put τ = inf{t :

Yt = y′} (again, inf ∅ =∞), then

P(τ =∞) = p(x, y). (4.4)

Let (Fk, Gk)Kk=0 be the discretization of the process (Xτ , Y τ ): we repeat the formulas
from Step 4, with τs replaced by τ . Decreasing K if necessary, we may assume that it is
equal to the length of (F,G) (i.e., for each 0 ≤ m < K we have Gm 6= Gm+1).

For k = 0, 1, 2, . . . ,K − 1, put

pk = P(dGk+1 > 0|dGk > 0).

In view of (4.4), we have p0p1p2 . . . pK−1 = P(GM = y′) = 1− p(x, y). Define a sequence
sk = 1 − pmpm+1pm+2 . . . pK−1, k = 0, 1, 2, . . . , K − 1, and put sK = 0. We easily check
that 0 = sK < sK−1 < . . . < s1 < s0 = p(x, y) and

1− sk−1

1− sk
= pk−1, k = 1, 2, . . . , K. (4.5)

Let (f, g) be a martingale corresponding to (sk)Kk=0, defined in Step 6 of the previous
subsection and let (Ω,F , (Fn)n≥0,P) be the probability space on which (f, g) was con-
structed. We will define a pair (F̃ , G̃) on this probability space, closely related in distri-
bution to (F,G). Namely, put (F̃0, G̃0) = (x, y), and require that for all 1 ≤ n ≤M ,

(F̃Mn
− F̃Mn−1

, G̃Mn
− G̃Mn−1

) has the same distribution as (dFn, dGn)

and
{G̃Mn

− G̃Mn−1
> 0} = {(fMn

, gMn
) 6= (1, λ)}.
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This is possible: the two above events have the same probability, by (4.3) and (4.5).
We extend (F̃ , G̃) to the martingale on the full time set {0, 1, 2, . . . , MK−1} by putting
(F̃n, G̃n) = E

[
(F̃MK−1

, G̃MK−1
)|Fn

]
. Note that for any n we have FMn

− FMn−1
= GMn

−
GMn−1

with probability 1 or FMn
− FMn−1

= −(GMn
− GMn−1

) almost surely; this guar-
antees that the “finer” martingale pair (F̃ , G̃) also satisfies dF̃n = ±dG̃n for each n.
Observe that we have the following crucial property: on the set {GMn

−GMn−1
< 0} we

have gMn
= λ.

4.4 An extremal example

We are ready to exhibit a martingale pair (f̃ , g̃) with values in `N∞ × `N∞, for which
the inequality in (1.7) will be almost attained. This is based on the following inductive
argument. First, put

−f̃0 = g̃0 =

(
1

2
,

1

2
, . . . ,

1

2

)
∈ RN .

Now let (F̃k, G̃k)Mk=0, (fk, gk)Mk=0 be the finite martingales corresponding to (x0, y0) =

(−1/2, 1/2), constructed in the previous subsection. Put

(f̃1, g̃1) = (f, g) and (f̃2, g̃2) = (f̃3, g̃3) = . . . = (f̃N , g̃N ) = (F̃ , G̃).

The martingale (f̃N , g̃N ) either terminates in {−1, 1} × R, or at some point (x1, y1).
These events have probabilities p(x0, y0) and 1−p(x0, y0), respectively. On the set where
the first possibility occurs, the construction is complete. Note that in view of the last
sentence of the previous subsection, we have ||g|| = sup1≤`≤N |g`∞| = λ on this set
(actually, g1

∞ = λ there). On the other hand, to continue the construction on the set
{(f̃N∞, g̃N∞) = (x1, y1)}, let (F̃k, G̃)M

′

k=0, (f, g)M
′

k=0 be the finite martingales corresponding
to (x1, y1), considered in the previous subsection. We define (f̃k, g̃k) for k = M + 1,M +

2, . . . ,M +M ′ by requiring that

(i) (f̃1, g̃1) = (f̃1
M , g̃

1
M ) (so the first coordinates of f̃ and g̃ are not changed.

(ii) (f̃3, g̃3) = (f̃4, g̃4) = . . . = (f̃N , g̃N ).
(iii) the conditional distribution of (f̃2, g̃2)M+M ′

k=M on the set {f̃NM , g̃NM ) = (x1, y1)} is equal
to that of (F̃k, G̃k)M

′

k=0.

(iv) the conditional distribution of (f̃3, g̃3)M+M ′

k=M on {(f̃NM , g̃NM ) = (x1, y1)} is equal to
that of (F̃k, G̃k)M

′

k=0.

The martingale (f̃N , g̃N ) constructed so far either terminates in {−1, 1}×R, or at some
point (x2, y2). The first possibility occurs with probability p(x0, y0)+(1−p(x0, y0))p(x1, y1),
the second has the remaining probability (1− p(x0, y0))(1− p(x1, y1)). On the set where
the first possibility occurs, the construction is over; observe that ||g|| = λ on this set. To
continue the construction on {(fN∞, gN∞) = (x2, y2)}, consider (F̃ , G̃), (f, g) of the previous
subsection, corresponding to (x2, y2), and so on.

After k steps, the probability that (f̃N∞, g̃
N
∞) is equal to (xk, yk) (so the construction

will be continued) is equal to

Lk = (1− p(x0, y0))(1− p(x1, y1)) . . . (1− p(xk−1, yk−1)).

On the other hand, we have

(1− p(x0, y0))(1− p(x1, y1)) . . . (1− p(xk−1, yk−1))p(xk, yk) = p(x0, y0).

Indeed, the left-hand side is the probability that (f̃k+1, g̃k+1) ever reaches (1, λ), which
is p(x0, y0), since for all `, (f̃ `, g̃`) are discretized versions of the process (X,Y ) (in
distribution). In consequence, we have

Lk = 1− kp(x0, y0)
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and thus

p(xk, yk) =
p(x0, y0)

Lk
=

(
1

p(x0, y0)
− k
)−1

<
1

N − k
,

because, by (4.1), p(x0, y0) < e2−λ/4 = 1/N . Thus, the above procedure can be repeated
N − 1 times (as we have noted at the beginning of §4.3, we require p(x, y) < 1/2 to
proceed, so the N − 1-st step is allowed). Now, if δ is sufficiently small, then p(x0, y0)

can be made arbitrarily close to 1/N . By the above reasoning, we get that p(xN−1, yN−1)

is close to 1 which implies that yN−1 is as close to λ as we wish.
Summarizing, we have constructed a pair (f̃ , g̃) which has the following properties:

(i) −f0 = g0 ≡ (1/2, 1/2, . . . , 1/2).

(ii) g̃ is a transform of f̃ by a certain sequence of multisigns in RN .

(iii) ||f ||∞ ≤ 1.

(iv) With probability 1, either g`∞ = λ for some 1 ≤ ` ≤ N −1, or gN∞ is larger than λ− ε
(where ε is an arbitrary positive number).

This implies that the best constant in the inequality (1.7) cannot be smaller than λ = CN .
The proof is complete.
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[9] Osȩkowski, A.: On relaxing the assumption of differential subordination in some martingale
inequalities, Electr. Commun. in Probab. 15, (2011), 9–21. MR-2753300

Acknowledgments. The author would like to thank an anonymous referee for the
careful reading of the first version of the paper and several helpful comments, including
the remark which gave rise to Theorem 1.2.

EJP 18 (2013), paper 73.
Page 19/19

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=0632972
http://www.ams.org/mathscinet-getitem?mr=0744226
http://www.ams.org/mathscinet-getitem?mr=0864712
http://www.ams.org/mathscinet-getitem?mr=0864712
http://www.ams.org/mathscinet-getitem?mr=1108183
http://www.ams.org/mathscinet-getitem?mr=0440695
http://www.ams.org/mathscinet-getitem?mr=1434474
http://www.ams.org/mathscinet-getitem?mr=1159174
http://www.ams.org/mathscinet-getitem?mr=2307394
http://www.ams.org/mathscinet-getitem?mr=2307394
http://www.ams.org/mathscinet-getitem?mr=2753300
http://dx.doi.org/10.1214/EJP.v18-2667
http://ejp.ejpecp.org/

	Introduction
	A sharp inequality for H-valued martingales
	Sharpness, the case N=2 and N=3
	Preliminary observations
	An auxiliary function
	The case N=2

	Sharpness, the case N4
	The case N=4
	A splitting argument
	A splicing procedure
	An extremal example

	References

